
Jörg P. Müller
Massimo Cossentino (Eds.)

 123

LN
CS

 7
85

2

13th International Workshop, AOSE 2012
Valencia, Spain, June 2012
Revised Selected Papers

Agent-Oriented Software
Engineering XIII

Lecture Notes in Computer Science 7852
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jörg P. Müller Massimo Cossentino (Eds.)

Agent-Oriented Software
Engineering XIII

13th International Workshop, AOSE 2012
Valencia, Spain, June 4, 2012
Revised Selected Papers

13

Volume Editors

Jörg P. Müller
Technische Universität Clausthal, Institut für Informatik
38678 Clausthal-Zellerfeld, Germany
E-mail: joerg.mueller@tu-clausthal.de

Massimo Cossentino
Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche
90128 Palermo, Italy
E-mail: cossentino@pa.icar.cnr.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39865-0 e-ISBN 978-3-642-39866-7
DOI 10.1007/978-3-642-39866-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013943815

CR Subject Classification (1998): I.2.11, D.2, I.2, D.1, D.3, I.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Since the mid-1980s, software agents and multiagent systems have grown into
a very active area of research and of commercial development activity. One of
the limiting factors in the industry take-up of agent technology, however, is
the lack of adequate software engineering support and knowledge in this area.
The Agent-Oriented Software Engineering (AOSE) Workshop is focused on this
problem and provides a forum for those who study the synergies between software
engineering and agent research. The concept of an agent as an autonomous
system, capable of interacting with other agents in order to satisfy its design
objectives, is a natural one for software designers. Just as we can understand
many systems as being composed of essentially passive objects, which have state,
and upon which we can perform operations, so we can understand many others
as being made up of interacting, autonomous or semi-autonomous agents. This
paradigm is especially suited to complex systems. Software architectures that
contain many dynamically interacting components, each with their own thread
of control, and engaging in complex coordination protocols, are typically orders
of magnitude more complex to correctly and efficiently engineer than those that
simply compute a function of some input through a single thread of control, or
through a limited set of strictly synchronized threads of control. Agent-oriented
modeling techniques are especially useful in such applications.

The 12 past editions of the agent-oriented software engineering workshop
(AOSE) had a key role in this endeavor. For the 13th AOSE workshop held dur-
ing the 11th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2013), the thematic focus was on exploring the new
emerging role of agent-oriented software engineering as a bridge from the now
consolidated agent-oriented programming languages and platforms, to recent
systems modeling paradigms such as self-*, autonomic systems, and systems of
systems (SoS). Thus, the theme of this workshop was to explore, from an agent-
based perspective, foundations, models, methods, architectures, and tools for
engineering future software-intensive IT ecosystems.

The AOSE 2012 workshop received 24 submissions. Each paper was peer-
reviewed by three members of an international Program Committee. The papers
in this volume include both selected and thoroughly revised papers from the
AOSE 2012 workshop and two invited papers. The papers cover a broad range
of topics related to software engineering of agent-based systems, with particular
attention to integration of concepts and techniques from multiagent systems with
recent programming languages, platforms, and established software engineering
methodologies. We hope that this volume will stimulate further research in agent-
oriented software engineering as well as its integration with conventional software
engineering.

VI Preface

This volume is special in another respect, too: It documents the results of
what is very likely to have been the last AOSE workshop. The reason for this is
that from 2013 onwards, AOSE will be merging with two other notable events,
the International Workshop on Programming Multi-Agent Systems (ProMAS)
and the International Workshop on Declarative Agents Languages and Technolo-
gies (DALT), to form a new event, the International Workshop on Engineering
Multiagent Systems (EMAS). The first edition of EMAS will be held at the
AAMAS 2013 conference. It is our hope that the merger of the three major sci-
entific workshops on software engineering for multiagent systems will sustainably
strengthen our research field and create new impact for research directed toward
engineering large-scale, distributed software systems.

We wish to express our gratefulness to the AAMAS 2012 organizers for host-
ing AOSE. We thank the AOSE PC members and auxiliary reviewers for their
thorough, critical, and constructive review work. We are grateful to the AOSE
Steering Committee for their continued support and advice. Finally, we thank
the Springer staff headed by Alfred Hofmann for accompanying the AOSE work-
shop over the past 13 years and for supporting the publication of this volume.

May 2013 Jörg P. Müller
Massimo Cossentino

Organization

The AOSE 2012 workshop was organized in colocation with the 11th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS) which was held in Valencia, Spain in June 2012.

AOSE 2012 Chairs

Jörg P. Müller TU Clausthal, Germany
Massimo Cossentino National Research Council of Italy, Italy

Program Committee

Carole Bernon
Olivier Boissier
Juan Antonio Botia Blaya
Lars Braubach
Scott Deloach
Amal El Fallah Seghrouchni
Maksims Fiosins
Klaus Fischer
Giancarlo Fortino
Ruben Fuentes-Fernández
Aditya Ghose
Holger Giese
Paolo Giorgini
Adriana Giret
Marie-Pierre Gleizes
Alma Gomez-Rodriguez
Jorge J. Gómez Sanz
Vincent Hilaire
Lam-Son Lê
Joao Leite
João G. Martins
Philippe Mathieu
Frédéric Migeon

Ambra Molesini
Pavlos Moraitis
Juan Carlos Gonzalez Moreno
Haralambos Mouratidis
Andrea Omicini
Flavio Oquendo
H. Van Dyke Parunak
Juan Pavón
Michal Pečhouček
Gauthier Picard
Alexander Pokahr
Alessandro Ricci
Fariba Sadri
Valeria Seidita
Onn Shehory
Carles Sierra
Nikolaos Spanoudakis
Angelo Susi
Kuldar Taveter
László Zsolt Varga
Danny Weyns
Eric Yu

AOSE Steering Committee

Paolo Giorgini University of Trento, Italy
Jörg P. Müller TU Clausthal, Germany

VIII Organization

Gerhard Weiss Maastricht University, The Netherlands
Danny Weyns Linnaeus University, Sweden
Michael Winikoff University of Otago, New Zealand

Table of Contents

Model-Driven Approaches to AOSE

A Methodological Approach to Model Driven Design of Multiagent
Systems . 1

Klaus Fischer and Stefan Warwas

A Norm-Governed Holonic Multi-agent System Metamodel 22
Patrizia Ribino, Carmelo Lodato, Salvatore Lopes, Valeria Seidita,
Vincent Hilaire, and Massimo Cossentino

Specification of Trade-Off Strategies for Agents: A Model-Driven
Approach . 40

René Schumann, Zijad Kurtanovic, and Ingo J. Timm

MDA-Based Approach for Implementing Secure Mobile Agent
Systems . 56

Slim Kallel, Monia Loulou, Molka Rekik, and Ahmed Hadj Kacem

Engineering Pervasive and Ubiquitous Multiagent
Systems

Developing Pervasive Agent-Based Applications: A Comparison of Two
Coordination Approaches . 73

Inmaculada Ayala, Mercedes Amor, Lidia Fuentes,
Marco Mamei, and Franco Zambonelli

Agent Perception within CIGA: Performance Optimizations and
Analysis . 99

Joost van Oijen, Han La Poutré, and Frank Dignum

Ambient Intelligence with INGENIAS . 118
Jorge J. Gómez-Sanz, José M. Fernández-de-Alba, and
Rubén Fuentes-Fernández

AOSE Methodologies

Analysing the Suitability of Multiagent Methodologies for e-Health
Systems . 134

Emilia Garcia, Gareth Tyson, Simon Miles, Michael Luck,
Adel Taweel, Tjeerd Van Staa, and Brendan Delaney

How to Extract Fragments from Agent Oriented Design Processes 151
Valeria Seidita, Massimo Cossentino, and Antonio Chella

X Table of Contents

Forward Self-combined Method Fragments . 168
Noélie Bonjean, Marie-Pierre Gleizes, Christine Maurel, and
Frédéric Migeon

“Engineering” Agent-Based Simulation Models? . 179
Franziska Klügl

Author Index . 197

A Methodological Approach to Model Driven

Design of Multiagent Systems

Klaus Fischer and Stefan Warwas

German Research Center for Artificial Intelligence (DFKI) GmbH
Campus D3 2, 66123 Saarbrücken, Germany

firstname.lastname@dfki.de

Abstract. In this paper we propose a methodological approach to model
driven design of multiagent systems (MAS). However, several method-
ologies for MAS have already been proposed and we do not want to
present yet another new methodology. Our aim is rather to explain how
our MAS development framework Bochica, which we already presented
in [1], relates to such methodologies and how the proposals from litera-
ture can be integrated to extend the Bochica framework. As a result,
we propose an iterative process for MAS design where several stakehold-
ers work cooperatively in a food chain for the design of MAS and each
stakeholder gets the tool support that he or she needs.

1 Introduction

The multiagent system (MAS) research group at the German Research Center
for Artificial Intelligence (DFKI) GmbH has a long history in research on MAS
design as well as in the development of MAS that are in practical use in an
industrial setting. The most complex of these systems is a shop floor control
system that is in daily use 24/7 in the steel work of Saarstahl AG in Völklingen.
All the experience from this work went into the design and implementation of
the Bochica framework for the model driven design of MAS. Bochica aims
in the first place at the system engineer who wants to adopt an agent-based
approach to a specific problem in some application domain. The major use of
Bochica in the MAS research group is currently in the area of MAS design for
agents that solve problems in virtual 3D environments.

At least in our work so far we did not put much effort into the investigation or
use of methodologies in our system development but consider this fact as a major
drawback of our contribution. However, Bochica is well-suited to be embedded
into existing methodologies and provides explicit support for such an endeavor.
In the first place a model driven approach works best if a system can be designed
and developed in a top down manner. However, if at all, such an approach is
only applicable in situations where a system is developed from scratch and such
situations are in practice rather an exception than the regular case. Most of
the time the system under considerations (SUC) is already designed and/or
implemented partially or already existing subsystems have to be included into
a fresh system architecture and design. Bochica’s aim is to support round-trip

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 1–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 K. Fischer and S. Warwas

�����������

	
����
��

�������
���	�
��
����������
����
���
����
����������
����

�������������

���� ����

���
���

�

�
�

�
�

�

�����
�����

�������
�����������
������
������
������ ����
�������	���
����
������	���
���

�����
����
�����!��"��
����
������"���

�����������

��������
���

�
�
#
$
�%

�

�
�
&
�

��
�����
��������������

$� ����'��
$� ����'��
 $� ����'��
$� ����'��

�
��

!�

�'
��
�
&
�(
�
'
�
��
�$
)

 �
�
�
��
�
�%

�
&
�
��

Fig. 1. The Bochica Framework

engineering by supporting reverse engineering of models form implementations.
Therefore, a methodology that supports iterative and agile system development
is best suited to extend the Bochica framework.

Furthermore, usually a group of engineers is involved in the design of com-
plex systems and therefore collaborative system design and modeling is an issue
that we want to deal with in the further development of Bochica. Views and
viewpoints are important concepts to support different stakeholders in the de-
velopment process and to give them access exactly to the information they need.

2 The Bochica Framework

In this section we briefly summarize the Bochica framework for model driven
AOSE. It has been initially introduced in [1].Bochica (see Figure 1) evolved from
research on a platform independent metamodel and tool chain for the design of
MAS. The role of Bochica in the overall software development process is to pro-
vide the means for capturing design decisions and bridging the gap between design
and code. This raises the question of howBochica can be integrated with typical
software development processes. As of today, iterative and agile development pro-
cesses turned out to bemore appropriate formost software projects than sequential
ones. Most agent-oriented methodologies also propose to use an iterative develop-
ment processes (see Section 3). As depicted in Figure 1, the core domain specific

MDA Methodology for MAS Design 3

language (DSL)underlying theBochica framework is structured into three layers.
We distinguish between the macroscopic, microscopic, and deployment layer:

Macroscopic. The overall structure of a MAS is specified by Dsml4Mas
1

(cf. [2]) in terms of organizational structures. The responsibilities inside an
Organization are represented by DomainRoles and AbstractGoals. The com-
munication between the involved parties is defined by Interactions. An Inter-

action defines the valid message sequences. The design artifacts of the
macroscopic layer serve as a contract between the agents. They can be used
for deriving the basic structure of the microscopic layer. However, how every
agent fulfills the requirements is left open to the agent.

Microscopic. The microscopic layer of Bochica defines concepts for model-
ing the internals of agents. This encompasses concepts like Behavior, Event,
Resource, KnowledgeBase, and Collaboration. A Behavior specifies the be-
havior of agents by Activities which are connected by Flows. ConcreteGoals
are used to refine the AbstractGoals from the macroscopic layer. The concept
of Expression is used to abstract from concrete software languages. For exam-
ple, the software language for defining a BooleanExpression always depends on
the concrete scenario. Bochica abstracts from those details and provides exten-
sion interfaces for plugging in 3rd-party languages. Likewise, the KnowledgeBase
concept abstracts from concrete knowledge representation languages. The inter-
nals of Organizations are defined by Collaborations. A Collaboration ex-
actly specifies the bindings between roles of an Organization and Actors of
an Interaction. Moreover, ProtocolConfigurations are used to instantiate
the abstract Interaction of the macroscopic layer with concrete content types,
time out values, and role bindings.

Deployment. The deployment layer specifies concrete instances of agents and
organizations defined by the microscopic and macroscopic layers. This includes
the initialization of concrete role fillers of organizational roles. Moreover, an
AgentInstance contains Initializers for specifying the initial beliefs and
goals.

In the following we summarize the new features Bochica with respect to
what already was present in Dsml4Mas [2]:

Expressiveness. Expressive modeling languages are required for closing the
gap between models and code. For this purpose, we further developed the un-
derlying core modeling language so that large portions of the source code can
be generated.

Conceptual Extensions. TheBochica framework offers various interface con-
cepts that can be extended through external plug-ins. For example, existing
concepts can be specialized for certain application domains or execution envi-
ronments. Moreover, new ways for modeling existing aspects can be contributed
(e.g. behaviors or interactions).

1 Domain Specific Modelling Language for MAS.

4 K. Fischer and S. Warwas

Language Extensions. A large number of software languages are around that
are relevant for developing agent-based systems such as knowledge representa-
tion languages, query languages, or programming languages. Bochica provides
abstract language interfaces such as BooleanExpression or ContextCondition
which can be extended by external language plug-ins. The interfaces check syn-
tactical correctness and the binding of variable symbols in the surrounding scope.

Transformations. The Bochica framework uses so called base transformations
for mapping the concepts of the core DSL to concepts of the target execution
environment. AsBochica gets extended with new concepts, a so called extension
transformation extends the base transformation for the new concepts. Currently,
we have a base transformation for Jadex which is implemented in QVT.

Reusability. It is desirable to reuse model artifacts that proved their practical
use and were validated (e.g. interaction protocols or goal hierarchies). For this
purpose, we established a reverse engineering approach for extracting the under-
lying structure of Jadex BDI agents [3]. The approach is used to build up model
repositories and ease the migration of existing projects to Bochica.

3 Related Work on Agent-Oriented Design Methodologies

Several software development processes like the classical waterfall model [4] and
the iterative spiral model [5] originated from traditional software engineering.
During the recent years, iterative and agile development processes gained more
and more attention by software developers. For example, the Rational Unified
Process (RUP) [6] is a widely accepted iterative development process and pro-
vides a customizable framework for configuring the development process. RUP
uses UML for capturing the design decisions. According to [6], RUP distinguishes
between the four phases Inception, Elaboration, Construction, and Transition.
RUP follows the idea of producing a prototype of the system in each iteration.
This means that each phase undergoes at least once the whole iteration cycle
from requirements to code and produces a deployable artifact. Each phase in
RUP is dedicated to answers different questions. For example, the Inception
phase focuses on determining the feasibility of the overall project, while later
iterations phases narrow down the concrete software architecture. Thus, the
possibility to produce early prototypes which can be refined in later iterations
is important for RUP. A further output of the Inception phase is to define the
concrete development process (e.g. the utilized methods) and the used tools.

It has been widely recognized within the agent community that the existing
software engineering methodologies do not satisfy the needs of AOSE (e.g. [7], [8,
p. 22]). During the recent years, various agent-oriented methodologies have been
proposed. The FIPA Methodology Technical Committee2 and the FIPA Working
Group: Design Process Documentation and Fragmentation3 are two initiatives
for the unification and standardization of agent-oriented methodologies. As of

2 http://www.fipa.org/activities/methodology.html
3 http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/

http://www.fipa.org/activities/methodology.html
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/

MDA Methodology for MAS Design 5

today, there exists no standardized agent-oriented approach and the method-
ologies are still driven by research. The Bochica framework is related to agent
methodologies as it provides the means for capturing design decisions and bridg-
ing the gap between high-level designs and executable code. In the following we
give a brief overview of the agent-oriented design methodologies which we con-
sider most important for our approach. For the lack of space and time it is not
possible to give a complete overview over the state of the art in this section. [9],
[10], [11], and [12] provide a good overview of the state-of-the-art. The method-
ologies were selected due to their influence in the community and the relevance
to our approach.

Gaia ([13] and [7]) is an agent-oriented methodology which follows a sequen-
tial development process. Gaia covers the agent-oriented analysis and design
phases. The design artifacts are kept abstract and leave many aspects open
(e.g. concrete interaction protocols or behavior patterns are not defined). Gaia
highlights the role of organizational structures and the environment. During
the analysis phase, organizational structures, interactions, and an environment
model are defined. The architectural and detailed design phases further refine
the models by adding agent and service models.

INGENIAS ([14], [15], and [16]) is an agent-oriented methodology which
supports the development of agents with a mental model. INGENIAS originated
from the MESSAGE [17] methodology and is aligned to RUP. Much research
effort has been spent on the detailed design and implementation. In [14], testing
and debugging of interaction protocols in INGENIAS was discussed. In order to
unify the benefits of INGENIAS with other approaches, the combination with
Tropos [18] and Prometheus [19], was discussed [20].

The O-MaSE4 ([21], [22] and [23]) methodology has an organizational view
on AOSE. For example, it supports policies for constraining the behavior of a
system. The O-MaSE methodology does not define a fixed development pro-
cesses. Instead, O-MaSE provides a framework for combining different method
fragments for the requirements, analysis, and design phases.Method construction
guidelines support this process. The process framework was initially based on
the Open Process Framework (OPF) [24] and was migrated to SPEM. Accord-
ing to [23], O-MaSE has been evaluated in sequential and iterative development
processes.

Prometheus5 ([8]) is a methodology for developing BDI agent systems. It
covers the three development phases (i) system specification, (ii) architectural de-
sign, and (iii) detailed design. Testing and debugging has been discussed by [25],
[26], and [27]. During the system specification phase, system goals, typical pro-
cesses of a system (called scenarios), and perceptions and actions are collected.
Similar goals, perceptions, and actions are grouped to functionalities. The ar-
chitectural and detailed design phases are concerned with identifying agent and
capability types by grouping functionalities and specifying interaction protocols

4 Organization-based Multiagent System Engineering.
5 http://www.cs.rmit.edu.au/agents/SAC2/methodology.html

http://www.cs.rmit.edu.au/agents/SAC2/methodology.html

6 K. Fischer and S. Warwas

using AUML. The integration of AUML for specifying interaction protocols has
been discussed by [28] and [29].

PASSI6 ([30]) comprehends the construction of five models (System Require-
ments, Agent Society, Agent Implementation, Code Model, and Deployment
Model). The developers behind PASSI provide an add-in for the commercial
UML-based CASE tool Rational Rose which allows to combine the PASSI de-
velopment process with UML-based modelling for the design of the system.

Tropos7 ([31], [32] and [33]) is an agent-oriented methodology that covers
the development phases reaching form early and late requirements to architec-
tural and detailed design. In Tropos, models undergo an incremental step-wise
refinement. The development process starts with identifying actors (stakehold-
ers), the system’s goals and their dependencies. Goals are further decomposed
into sub-goals and means-end-analysis is used for identifying plans and resources
(means) necessary for achieving a goal (end). The architectural design phase is
concerned with identifying sub-actors and specifying information and control
flows. The detailed design phase uses UML activity diagrams for defining the
behavior of agents and AUML sequence diagrams for the interaction between
agents. It has been discussed how Tropos can be used for developing Jack [32],
Jade [33], and Jadex [34] agent systems. There exists also an extension of Tropos
for adaptive systems [35].

There are a number of other approaches like for example ASPECS [36], MAS-
SIVE [37], MOISE+ [38], and OMNI [39] which make valuable contributions
regarding the design of MAS in different directions.

The different approaches listed above have two commonalities: (i) most of
them are dedicated to BDI agents and (ii) the majority proposes to follow an
iterative development process. The methodologies differ in their foci – e.g. on
early are late phases. Currently, the agent-oriented methodologies are undergoing
a consolidation phase. There are several initiatives for unifying the different
approaches using process languages like SPEM. We expect that this phase will
continue for some more time.

Our aim is not to define yet another methodology but to integrate existing
methodologies in our framework. The selection of concrete methods and the defi-
nition of the development process is orthogonal to theBochica framework which
we describe in more detail. Bochica provides the concept MethodologyArtifact
as interface to such methodologies. Instead of having a separate modeling lan-
guage and tool for each methodology, most of the methodologies could be in-
tegrated into one framework and share a common core. This would join the
efforts of the involved parties and would ease the maintenance of the tool chain.
In case the methodology requires additional model artifacts for capturing the
design decisions which can be integrated into Bochica by extending the pro-
vided interfaces. With this Bochica complements the FIPA activity FIPA De-
sign Process Documentation and Fragmentation Working Group (cf. [40]) which
tries to standardize the development and documentation process of MAS design.

6 Process for Agent Societies Specification and Implementation.
7 http://troposproject.org

http://troposproject.org

MDA Methodology for MAS Design 7

The database of model fragments which is one of the aims of this activity could be
linked to methodology plugins provided for Bochica. In this sense the Bochica

framework can act as a mediator between standardized development processes
for MAS and target execution platforms which are supported by the Bochica

framework.

4 Extending Bochica

In the following, we take the iterative RUP methodology as basis for the discus-
sion of how Bochica can be aligned to a typical software development process.
We assume there exists a plug-in repositories for Bochica which enables the
reuse of domain, methodology, and execution environment specific extensions
across software development projects. Plug-in vendors maintain and distribute
those plug-ins. At the beginning of each software project, the Bochica frame-
work is configured with a basic set of plug-ins. If the requirements regarding the
framework and the plug-ins are not clear, vanilla Bochica can be used for a basic
evaluation. If there are no plug-ins available which cover the required function-
ality or the plug-ins only cover it partially, new extensions have to be developed
or existing ones have to be customized. In most cases some customization will be
necessary. For this purpose, we propose an iterative extension mechanism which
is being discussed in the following.

We can distinguish at least two development cycles. On the one hand, it is the
cycle of the tool development, on the other hand, the development cycle of the
SUC for some application domain. It is clear that in the positive case there will
be a significant number of instances for the development of systems for different
application domain and that these cycles will have a higher frequency what the
number of iteration concerns than the cycle for tool development. The feedback
between the two cycles is given on the one hand by requirements and feature
request from the application engineers and domain experts and on the other
hand by new versions of the modeling tool chain by the tool developers.

In the following, Section 4.1 explains how Bochica itself should be further
developed according to RUP, Section 4.2 defines the stakeholders in MAS design
and their tasks for the application of Bochica, Section 4.3 discusses the role
collaboration in AOSE, and Section 4.4 introduces the concept of viewpoints to
support different stakeholders.

4.1 Evolution Process of Bochica

Figure 2 b) depicts an iterative rapid prototyping process for Bochica which
is aligned to RUP. In the first iteration, the core concepts of the framework
and model transformations are used to develop an early prototype of the sys-
tem. Different execution platforms are evaluated by reusing existing base trans-
formations. Based on the gained experiences, the requirements regarding the
framework are collected. Later iterations, use the requirements for extending
the Bochica metamodel with new concepts and the base transformation with

8 K. Fischer and S. Warwas

���

����������	
����������	

����
�
����
�

��
�����
���

�������	�	����������	�	���

���������	

��

���

���

���

����

����
�
��
�����������������

�
�
�
�
��
�

Fig. 2. (a) depicts the different abstraction layers as defined by model driven archi-
tecture (MDA) [41]. The blue box indicates that the conceptual framework underlying
Bochica is dedicated to the analysis and design layers. The ability to extend Bochica

with additional method, application domain, and platform specific concepts simplifies
the transition from computational independent models (CIM) to platform indepen-
dent models (PIM) and from PIM to platform specific models (PSM). (b) An iterative
process for the extension of the Bochica framework.

an extension transformation. The extensions include custom concepts for the
application domain, used methods, and the execution environment.The steps in
the evolution of Bochica can be characterized as follows:

Modeling. The Bochica core DSL is used to capture the design decisions
of the SUC. As the core DSL gets extended by an extension model in later
iterations, the framework minimizes the need for customizations at code
level.

Code Generation. A forward transformation is used to automatically generate
code for a target environment. We distinguish between a base transformation
which maps the concepts of the core DSL to code and an extension transfor-
mation which complements a base transformation with mapping rules for the
custom concepts of the extension model.

Refinement. The generated code is refined by adding business logic where
necessary. Concepts for capturing the design decisions for the SUC which
are not covered by the modeling language and/or the model transformation
are manually refined at the code level.

Evaluation. Aspects of the SUC which required manual refinements of the
generated code are candidates for further extensions of Bochica. This is
especially the case when there are no adequate concepts for expressing im-
portant design decisions. We call those requirements bottom-up requirements.

Extension. The collected requirements are used to create an extension model
that extends the Bochica core DSL with missing concepts. Moreover, re-
quired views and tools are integrated. Finally, an extension transformations
is created with additional mapping rules for the custom concepts.

MDA Methodology for MAS Design 9

4.2 Stakeholders in MAS Design

The application of the Bochica framework requires the interplay of different
stakeholders. Stakeholders take different roles in the development process where
each role can have a possibly large number of role fillers depending on the com-
plexity of the SUC. In the following we characterize the involved parties and
define their tasks. We separate the different stakeholders regarding the two de-
velopment cycles. We do not consider our list of stakeholders to be complete. The
stakeholders that we discuss here are meant to be illustrations of what we have
in mind. Regarding the development cycle of tool development we distinguish
the following stakeholders:

Methodology Expert: Integration of design methodologies derived from re-
search on agent system design and general software engineering.

Language Engineer: Since Bochica is based on a DSL, the language engi-
neer is responsible for extending it with new concepts. Detailed knowledge
of the core DSL and the underlying metamodel is required to align new con-
cepts to existing ones. We distinguish between (a) language engineers who
further develop the core DSL and (b) those who create 3rd-party plug-ins.
The firmer are not involved in the development process as depicted in the
previous section. The latter are involved in the evaluation, requirements,
and extension tasks. The language engineer has to choose the right level of
abstraction for the conceptual extensions.

Tool Developer: The tool developer is responsible for building the develop-
ment environment based on the DSL. This includes (i) writing model trans-
formations (ii) creating new or extended diagrams, and (iii) providing further
usability extensions such as wizards and additional tools. He has to make
sure that the tools cover the (required) functionality of the target platform.
The tool developer is involved in the extension task.

Regarding system development for application domains we consider the following
stakeholders (see also Figure 3):

Agent Engineer: The agent engineer is the end user of the development envi-
ronment. According to his needs, he installs the required plug-ins and uses
an agent methodology to design the MAS. Model repositories are used to
cooperate with colleagues and reuses existing model artifacts. The agent en-
gineer is also responsible to refine the generated code where necessary. He is
involved in the modeling, code generation, and evaluation tasks.

Protocol Experts: Protocol experts are responsible for specifying communi-
cation and negotiation protocols. Research results (e.g. about the properties
of a specific auction protocol) can be directly linked to model artifacts in the
model repository. This information helps engineers in constructing MAS.

BDI Expert: Example for theory experts who know a specific theory (in this
case BDI) very well and can apply it in the system development for the
application domain.

10 K. Fischer and S. Warwas

���
����	

���

�������	

�	�
����
����	

�

�	�����

������
����	

����������	
���
�	

Fig. 3. This figure depicts typical stakeholders involved in the development of a MAS
for some application domain. Each stakeholder uses specialized viewpoints to create
model artifacts which are shared and reused through model repositories. A similar
diagram can be given for the tool development where of course a different set of stake-
holders is involved and the repository these stakeholders are working on is rather a
plug-in repository.

Domain Expert: Domain experts have the knowledge regarding the applica-
tion domain for the SUC.

Regarding the use of the MAS design methodologies listed in Section 3 different
approaches are possible. One can use any of the listed methodologies to produce
a separate design and manually translate it into model artifacts of Bochica.
Such an approach is feasible but not really desirable because in the manual
translation loss of information and missinterpretation is possible. The better way
to include a concrete methodology is to provide a plugin which directly supports
this methodology. If additional concepts are needed which are not yet available
in Bochica, an extension of Bochica’s metamodel has to be provided for this
methodology. On top of the extended metamodel the plugin can be implemented
which would then provide tool support for the selected design methodology.
Because the artifacts which are produced in the development process when the
methodology is applied would be directly part of the model instance which is
created, only the model transformations which translate the model instance into
executable code would need to be extended.

With the resources which we can spend on the development of Bochica, it is
impossible to provide a metamodel extension and a plugin for each methodology
which is presented in literature. For this we limit our contribution to provide
the framework. The research community will decide on whether our proposal is

MDA Methodology for MAS Design 11

Fig. 4. Relationships between Patterns, Aspects, and Viewpoints (from [42], p. 6)

beneficial and whether the methodology designers see the benefits of theBochica

framework to go through the trouble of providing the metamodel extensions and
the respective plugins.

4.3 Collaboration

The development of large scale software systems requires the collaboration of
many different stakeholders. Each stakeholder requires specialized views which
enable him to abstract form other aspects. Validated and tested model artifacts
are shared through model repositories. Design patterns can be reused as blue
print for similar scenarios and execution platforms. Methods for model-driven
reverse engineering enable the reuse of design patterns of already implemented
MAS. Currently, we are using a file-based approach for sharing model artifacts
but native model repositories are already becoming available (e.g. CDO8).

4.4 Views and Viewpoints

Bochica’s modeling tool supports views that allow the system engineer to view
fragments of the underlying system in a diagram in a graphical manner. For
different stakeholders it is not desirable to give all of them access to the full
set of available views. The collection of views for a specific stakeholder makes
up a viewpoint. The most easy way to deal with access restrictions regarding
viewpoints is to provide a separate tool for each viewpoint. In this case the
operating system is dealing with all problems of security, at least what pure
access to the viewpoints is concerned. If security aspects in the interaction of
the viewpoints is an issue, of course, additional mechanisms are necessary but
such mechanisms are out of scope for the discussion in this paper.

Figure 4 shows how the concept viewpoint relates to other concepts that are
important for system design. According to this diagram a viewpoint is dedicated

8 http://www.eclipse.org/cdo/

http://www.eclipse.org/cdo/

12 K. Fischer and S. Warwas

to concerns that should be handled by a specific stakeholder and by using views
this stakeholder can access the model instance that corresponds to a system
where several model instances can contribute to this system. Most important to
notice is that the viewpoint is basically defined by the set of views that it offers.

There are two basic possibilities to define viewpoints. One is filtering where
the assumption is that from an existing metamodel the concepts that are rel-
evant for the viewpoint to be defined are selected and after this selections the
views are defined. The second possibility is to define an explicit metamodel for
the viewpoint and to define all necessary views according to this metamodel.
The two options are actually not that different from each other. If a filter is
defined for a specific metamodel, one can easily create a separate metamodel
by deleting all concepts that are not involved with respect to the defined filter.
However, depending on how the filter definition looks like the resulting meta-
model might not be very meaningful and model validation for this metamodel
might be not very meaningful either. If one is forced into actually defining an
explicit metamodel the result might look better because in the definition process
of the metamodel missing links or missing information might become obvious.

However, regarding filtering the exchange of information between viewpoints
is more straight forward. All that has to be done is to pass on the complete
model instances among the viewpoints (for simplicity we assume that only one
stakeholder is active on the model instance at one point in time). However, the
side effects the different viewpoints might have on each other might be diffi-
cult to see. Additionally, information hiding is not really possible and therefore
there is no guarantee that a stakeholder is only able to see and manipulate the
information that he or she should actually see and manipulate.

4.5 Integration of Methodology Artefacts

We use an example from the Prometheus methodology to illustrate how to in-
tegrate model artefacts of a certain agent methodology and tool support into
Bochica. The example is based on so called scenarios of the Prometheus method-
ology. A Prometheus scenario is used during the system specification phase to
identify relevant entities of the system. A scenario describes a typical workflow
of the SUC in terms of steps. This also includes the involved roles, goals, percep-
tions, etc. In later development phases the identified entities are used to derive
agent types. Bochica does not natively support the user in identifying those
entities. An extension of the Bochica framework for the Prometheus way of
identifying those entities is depicted in Figure 5. It consists of (i) the user in-
terface and tool support and (ii) the underlying metamodel which extends the
Bochicamethodology artefact concept. By extending the Bochicametamodel,
the model artefacts become part of the framework. Both, the GUI as well as the
metamodel extension, are contributed as an Eclipse-based plug-in to Bochica.
Moreover, the Prometheus extension would benefit from the strong conceptual
core of the Bochica framework and the mature code generation facilities.

MDA Methodology for MAS Design 13

��������	
���
��
�����

����������������
����
���������������� !� "

����

������
��	
��
�����������	
���

#$$%

�������
�����������
�����
��

���������
���	
���

Fig. 5. This figure depicts an example of how Bochica might be extended for the
Prometheus methodology

5 Case Study

Virtual worlds play an increasingly important role for many application domains.
Besides entertainment, they are used for serious applications like digital engi-
neering and for training employees in virtual environments before a product or
plant has been actually built. As of today, realistic and flexible behavior of agents
in virtual worlds is usually simulated by triggered script sequences which create
the illusion of intelligent behavior for the user. In the research project Intelligent
Simulated Realities (ISReal) our research group developed a simulation platform
based on Semantic Web technology for bringing intelligent behavior into virtual
worlds [43]. The basic idea of ISReal was to use Semantic Web technology to
extend purely geometric objects with ontological information (OWL-based; e.g.
concept door links two rooms and can be open or closed) and specify their func-
tionality by semantic service descriptions (OWL-S-based; e.g. open and close
door services), called object services. Intelligent agents perceive this informa-
tion, store it in their knowledge base, and use it for reasoning and planning. An
object service is grounded in a service implementation which invokes according
animations or simulation modules. Before we discuss the Bochica extensions
for developing intelligent ISReal avatars, we introduce the main components of
the ISReal platform.

Global Semantic Environment. The Global Semantic Environment (GSE)
maintains the global ontological facts of the virtual world. It is responsible for
(i) executing object services (e.g. checking the pre-condition and invoking the
service grounding), (ii) updating facts (e.g. when a door gets closed), and (iii)
handling queries (e.g. SPARQL).

14 K. Fischer and S. Warwas

��������	
��������	

��	�����	��
��	����������

��	�����	��
��	����������

���	�������
���	�������

��������������
��������	

��������������
��������	

�	��
����
�	�����
�����

�	��
����
�	�����
�����

����
�	��	���

����
�	��	���

���������
���������

� !	����	�"��	�
����	�	�������

� !	����	�"��	�
����	�	�������

�	�
��
#������������

�	�
��
#������������

Fig. 6. Overview of the artifacts that encompass an ISReal agent configuration

Agent Environment. The ISReal agent environment defines interfaces for con-
necting 3rd party agent execution platforms to the ISReal platform (we currently
use Jack, Jadex, and the Xaitment9 game AI engine). Every ISReal agent is
equipped with a Local Semantic Environment (LSE) which is an agent’s local
knowledge base. The LSE stores the perceived information and enables the agent
to reason about it. Moreover, the LSE is equipped with an AI planner.

Graphics Environment. The user interface of the ISReal platform is realized
by an XML3D10-enabled standard Web browser. The 3D scene graph is part of
the browser’sDocument Object Model (DOM) and can be manipulated using Java
Script. It also contains RDFa11-based semantic annotations of the 3D-objects
such as the concept URI, the object URI, and the semantic object service URIs.
Moreover, we extended the browser with an agent sensor which allows agents to
perceive the annotated 3D objects.

5.1 Intelligent ISReal Agents

The design of a 3D simulation, like the simulation of workflows of a virtual pro-
duction line, is a complex endeavor and involves many different stakeholders. In
ISReal, agent technology is used to simulate the behavior of human entities in the
virtual environment. Figure 6 shows the artifacts that encompass a typical ISReal
agent configuration for the development of a typical ISReal scenario.An intelligent
ISReal agent consists of (i) the body geometry and animations, (ii) semantic an-
notations, (iii) a sensor component, (iv) the agent that processes the perceptions
and controls the body, and (v) an OWL-based knowledge base. An agent’s body
geometry is part of the scene graph like any other annotated object. The geometry
and animations are developed using state-of-the-art 3D modeling tools.

9 http://www.xaitment.com/
10 http://www.xml3d.org
11 http://www.w3.org/TR/xhtml-rdfa-primer/

http://www.xaitment.com/
http://www.xml3d.org
http://www.w3.org/TR/xhtml-rdfa-primer/

MDA Methodology for MAS Design 15

�������	
����

������������

����������������������������������

�������������������� �� �������

!������"����

�"����������������

������������"�����������

����������

#������!�������

Fig. 7. Viewpoints of a typical ISReal scenario

5.2 ISReal Viewpoints

For the design of a typical ISReal scenario we distinguish 4 different stakeholder
for which we foresee viewpoints (see Figure 7). The different viewpoints are
summarized as follows:

Domain Experts. The viewpoint of the domain expert depends on the con-
sidered system. There might be several domain experts (e.g. mechanical en-
gineer, electrical engineer etc.).

Multiagent System Design. The viewpoint of the designer of the multiagent
system and the individual agents is the main viewpoint that is of interest
for the research and development of agent technologies. For now we only
foresee one viewpoint for this aspect but if the scenarios get more complex
and the number of engineers involved becomes larger we plan to specialize
this viewpoint according to the ideas presented in Section 4.4. For now we
distinguish two major aspects in this viewpoint.

Agent System: This aspect defines the views of the agent design expert
to the system for specifying the autonomous entities of the system. This

16 K. Fischer and S. Warwas

encompasses views for the specification of (i) interactions, (ii) organiza-
tional structures, (iii) means-end decompositions, and (iv) agent types.
We use the Bochica framework for agent-related aspects.

Semantic Web: The Semantic Web viewpoint defines the views required
by Semantic Web experts. This includes a view for specifying concept
and object ontologies, as well as a view for defining semantic service
descriptions. The ontologies and services have to be able to answer the
questions of the end user to the system. Usually, Semantic Web experts
use tools like Protegé12.

Simulation. The simulation viewpoint covers views for other aspects which are
relevant for a simulation.

3D Modeling: The views of the 3D modeler viewpoint are tailored to the
needs of computer graphics experts. This includes views for geometric
design of objects and their animations. Computer graphics experts use
tools like Cinema 4D13 or Blender14. Animations have to be modular
and fit to the needs of other components (e.g. an agent’s capabilities to
interact with its environment).

Simulation/Scene Design: The set of simulation artifacts created by the
different viewpoints is not sufficient for creating a simulation. The simu-
lation designer viewpoint provides views for integrating the artifacts into
one virtual simulation environment. For example, so called navmeshs
which support the path finding of an agent have to be computed. More-
over, several other aspects have to be modeled to get a running simula-
tion.

Platform Configuration: The platform configuration viewpoint focuses
on the configuration of the simulation components that make up the
ISReal platform. The configuration of the ISReal platform has to meet
the requirements of the modeled simulation.

UI Design: The User Interface (UI) design viewpoint defines the views for
defining the user interface to the simulation. Since the ISReal UI is based
on XML3D, ISReal UI designers use tools for ordinary Web/HTML user
interface design.

System Verification. The verification viewpoint provides views for modeling
the system as hybrid automata. Hybrid automata are used by engineers to
verify properties of the system.

5.3 Example Adaptation

This section provides an example of how the views of the agent viewpoint can
be adapted by the Bochica adaptation process to the needs of the application
domain of agents in semantically-enhanced virtual worlds. Figure 8 depicts an

12 http://protege.stanford.edu
13 http://www.maxon.net/products/cinema-4d-studio/
14 http://www.blender.org

http://protege.stanford.edu
http://www.maxon.net/products/cinema-4d-studio/
http://www.blender.org

MDA Methodology for MAS Design 17

�������	

������
������

Fig. 8. Example adaptation process

�������� ���	

� �
�	�
����

���������	

���	���
����
�����
������

������

�������	
�����
�����������
����������
���	������
�	

�������

��������	
�����
������������
���������
���	������
�	

���������
����	�

���	������
�	������
���
����	�	
�

���
��
�����	������
�	

�����������	�� ��������
�	
���� �
����
�

�	�!�"� �������������
��������
���
��#����

Fig. 9. ISReal-extension model for Bochica

example for the Bochica adaptation process introduced in Section 4.1. The
initial iteration is used evaluate and choose the required methods and tools for
the problem at hand. For this purpose, a simple prototype of the system is
created and mapped to different target platforms. After the tool stack and and
the target platform has been defined, the model of the system is gradually refined.
Relevant aspects which cannot be modeled using the Bochica core DSL are
candidates for conceptual extensions of the framework. Moreover, an extension
transformation is created which extends an existing base transformation with
additional mappings for the new concepts. Thus, the customized framework is
able to better close the gap between design and code with each iteration.

18 K. Fischer and S. Warwas

Figure 9 depicts an overview of concepts that have been introduced as part of
the adaptation process to the Bochica framework. The first column depicts the
graphical representation of the concepts. The second column shows the names
of the concepts and the third column depicts an overview of the ISReal-specific
properties. For example, the ISRealAgent concept has an additional ontological
concept and a graphical avatar (identified by URIs). The LocalSE is the agent’s
Semantic Web-based knowledge base. It can be configured with OWL-based
ontologies, and OWL-S-based object service descriptions. Moreover, there are
concepts for configuring an agent’s sensor (concept ISRealRaySensor) and for
orchestrating ISReal object services (concept InvokeWS). Two ISReal-specific
views have been defined that make use of those concepts:

– ISReal Agent View: The ISReal agent diagram extends the Bochica

agent diagramwith ISReal-specific model elements like the ISRealRaySensor
and the LocalSE. Moreover, it uses the ISReal notation.

– ISReal Platform View: The ISReal platform view enables the agent mod-
eler to configure the agent platform ISReal platform. For example, the on-
tologies of the GSE and the components of the ISReal platform can be
configured.

6 Conclusion

In this paper we presented a methodological approach to model-driven design
of MAS. We briefly described the Bochica framework for model-driven design
of MAS and showed how MAS design methodologies for MAS that are already
available from literature can be connected to Bochica. We introduced the RUP
methodology for iterative system development and demonstrated how it can be
adapted to serve in the context of MAS design. The different stakeholders in
MAS design were briefly discussed and the concepts of views and viewpoints
were introduced to support the different stakeholders in the best manner pos-
sible. Although right now it is possible for system engineers to work on the
modeling tool and provide adapted versions that can support the different needs
of the different stakeholders, more flexibility in defining views and viewpoints is
desirable that users with little or even no system engineering background can at
least adapt the existing views with respect to their personal needs. Dynamic cre-
ation of viewpoints would by non experts would be desirable, too, but is nothing
that could be easily achieved with the technology that is available today.

Acknowledgements. This work has been partially funded by the German Fed-
eral Ministry of Education and Research through ICT Projects Collaborate3D
(Scalable Intelligent Support and Reliability for Collaboration in the Future
3D Internet, FKZ 01IW11002) and ViBaM (Viewpoint-Based Modeling, FKZ
01QE1106C) which is running in the context of the European Eurostars Program
(E!5529). The authors wish to acknowledge EUREKA and the Commission for
their support. We also thank the reviewers for their valuable comments.

MDA Methodology for MAS Design 19

References

1. Warwas, S., Fischer, K., Klusch, M., Slusallek, P.: Bochica: A model-driven frame-
work for engineering multiagent systems. In: ICAART 2012 - Proceedings of the
4th International Conference on Agents and Artificial Intelligence, Vilamoura, Al-
garve, Portugal, February 6-8, vol. 1, pp. 109–118 (2012)

2. Warwas, S., Hahn, C.: The DSML4MAS development environment. In: 8th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2009), Budapest, Hungary, May 10-15, vol. 2, pp. 1379–1380 (2009)

3. Warwas, S., Klusch, M.: Making multiagent system designs reusable: A model-
driven approach. In: Proceedings of the 2011 IEEE/WIC/ACM International Con-
ference on Intelligent Agent Technology, IAT 2011, Campus Scientifique de la Doua,
Lyon, France, August 22-27, pp. 101–108 (2011)

4. Royce, W.W.: Managing the development of large software systems: concepts and
techniques. In: Proceedings of the 9th International Conference on Software En-
gineering, ICSE 1987, pp. 328–338. IEEE Computer Society Press, Los Alamitos
(1987)

5. Boehm, B.W.: A spiral model of software development and enhancement. Com-
puter 21(5), 61–72 (1988)

6. Kruchten, P.: The Rational Unified Process an Introduction, 3rd edn. Addison-
Wesley (November 2005)

7. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3), 317–370 (2003)

8. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide to Designing, Building, Implementing and Testing Agent Systems. John
Wiley & Sons (2004)

9. Henderson-Sellers, B., Georgini, P. (eds.): Agent-Oriented Methodologies. Idea
Group Publishing, Hershey (2005)

10. Weiß, G., Jakob, R.: Agentenorientierte Softwareentwicklung: Methoden und Tools.
Springer (2004)

11. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the tropos methodology. Eng. Appl. Artif. Intell. 18(2), 159–171
(2005)

12. Sterling, L., Taveter, K.: The Art of Agent-Oriented Modeling. The MIT Press
(2009)

13. Wooldridge, M.J., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000)

14. Gómez-Sanz, J.J.: Modelado de Sistemas Multi-agente. PhD thesis, Universidad
Complutense de Madrid. Facultad de Informatica (2002)

15. Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

16. Pavón, J., Gómez-Sanz, J., Fuentes-Fernández, R.: The INGENIAS Methodology
and Tools. In: Agent-Oriented Methodologies, pp. 236–276. IGI Global (2005)

17. Garijo, F.J., Gómez-Sanz, J.J., Massonet, P.: The MESSAGE methodology for
agent-oriented analysis and design. In: Henderson-Sellers, B., Giorgini, P. (eds.)
Agent-Oriented Methodologies, pp. 203–235. IGI Global (2005)

20 K. Fischer and S. Warwas

18. Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: Integrating agent-oriented
methodologies with uml-at. In: Proceedings of the 5th International JointConference
on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 1303–1310.
ACM (2006)

19. Gascueña, J.M., Fernández-Caballero, A.: Prometheus and INGENIAS agent
methodologies: A complementary approach. In: Luck, M., Gomez-Sanz, J.J. (eds.)
AOSE 2008. LNCS, vol. 5386, pp. 131–144. Springer, Heidelberg (2009)

20. Fernández-Caballero, A., Gascueña, J.M.: Developing multi-agent systems through
integrating prometheus, INGENIAS and ICARO-T. In: Filipe, J., Fred, A., Sharp,
B. (eds.) ICAART 2009. CCIS, vol. 67, pp. 219–232. Springer, Heidelberg (2010)

21. DeLoach, S.A.: Engineering organization-based multiagent systems. In: Garcia, A.,
Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS
2005. LNCS, vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

22. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.: O-maSE:
A customizable approach to developing multiagent development processes. In:
Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 1–15. Springer,
Heidelberg (2008)

23. DeLoach, S.A., Garcia-Ojeda, J.C.: O-MaSE: a customisable approach to designing
and building complex, adaptive multi-agent systems. Int. J. Agent-Oriented Softw.
Eng. 4(3), 244–280 (2010)

24. Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-
duction. Addison-Wesley (2001)

25. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the
Prometheus methodology. Engineering Applications of Artificial Intelligence 18(2),
173–190 (2005)

26. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent sys-
tems. In: Proceedings of the 2nd International Working Conference on Evaluation
of Novel Approaches to Software Engineering (ENASE 2007), pp. 10–18. INSTICC
Press (2007)

27. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing intelligent agents
in PDT. In: Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2008), pp. 1673–1674. International
Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS) (2008)

28. Winikoff, M.: Defining syntax and providing tool support for Agent UML using
a textual notation. International Journal of Agent-Oriented Software Engineer-
ing 1(2), 123–144 (2007)

29. Padgham, L., Thangarajah, J., Winikoff, M.: AUML protocols and code genera-
tion in the Prometheus design tool. In: Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), pp.
1374–1375. International Foundation for Autonomous Agents and Multiagent Sys-
tems (IFAAMAS) (2007)

30. Cossentino, M.: From requirements to code with the PASSI methodology. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 79–
106. Idea Group Publishing, Hershey (2005)

31. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos software development
methodology: Processes, models and diagrams. In: Giunchiglia, F., Odell, J.J.,
Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 162–173. Springer, Heidelberg
(2003)

32. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

MDA Methodology for MAS Design 21

33. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder intentions to
software agent implementations. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 465–479. Springer, Heidelberg (2006)

34. Morandini, M., Nguyen, D.C., Perini, A., Siena, A., Susi, A.: Tool-supported de-
velopment with tropos: the conference management system case study. In: Luck,
M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 182–196. Springer, Hei-
delberg (2008)

35. Morandini, M.: Goal-Oriented Development of Self-Adaptive Systems. PhD thesis,
University of Trento. International Doctorate School in Information and Commu-
nication Technologies (2011)

36. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: Aspecs: an agent-
oriented software process for engineering complex systems. Autonomous Agents
and Multi-Agent Systems 20(2), 260–304 (2010)

37. Lind, J.:The MASSIVE Method. LNCS (LNAI), vol. 1994. Springer (2001)
38. Hübner, J.F., Sichman, J.S., Boissier, O.: Moise+: towards a structural, functional,

and deontic model for mas organization. In: Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, AAMAS
2002, pp. 501–502. ACM, New York (2002)

39. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

40. Fipa design process documentation and fragmentation working group
41. OMG: Model driven architecture, http://www.omg.org/mda/
42. Akehurst, D.H., Kent, S., Patrascoiu, O.: A relational approach to defining and

implementing transformations between metamodels. Software and Systems Mod-
eling 2(4), 215–239 (2003)

43. Kapahnke, P., Liedtke, P., Nesbigall, S., Warwas, S., Klusch, M.: ISReal: An open
platform for semantic-based 3D simulations in the 3D internet. In: Patel-Schneider,
P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B.
(eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 161–176. Springer, Heidelberg
(2010)

http://www.omg.org/mda/

A Norm-Governed Holonic Multi-agent System
Metamodel

Patrizia Ribino1, Carmelo Lodato1, Salvatore Lopes1, Valeria Seidita2,1,
Vincent Hilaire3, and Massimo Cossentino1

1 Istituto di Reti e Calcolo ad Alte Prestazioni,
Consiglio Nazionale delle Ricerche, Palermo, Italy

{cossentino,c.lodato,s.lopes,ribino}@pa.icar.cnr.it
2 Dip. di Ingegneria Chimica Gestionale Informatica Meccanica,

University of Palermo, Italy
valeria.seidita@unipa.it

3 System and Transport Laboratory,
University of Technology of Belfort Montbéliard, France

vincent.hilaire@utbm.fr

Abstract. Modeling and designing systems that require a high level of
coordination, control and automation is a very difficult task. The problem
is the lack of design processes able to cover all the features these systems
present. This paper presents an extension of the ASPECS metamodel
for supporting organizational and normative principles and it allows to
define models not only from an holonic agent viewpoint but also from
a normative organization perspective. Moreover, our work emphasizes
and makes it explicit the norms that regulate the structural, behavioral
and finally adaptive aspect of an organizational system. The extended
metamodel was experimented creating a Virtual Enterprise model for
the optimization of distributions inside the logistic districts. This orga-
nizational model is implemented using JaCaMo.

1 Introduction

Nowadays, a lot of researchers in the field of artificial intelligence and intelligent
systems aim to develop software systems able to act in full autonomy such as
a human beings do in reaching their objectives. During their daily activities,
human beings pursue multiple goals that sometimes interleave and overlap; in
doing that, they often communicate and coordinate with other entities of the
world they live. We are far from having tools to create systems completely act-
ing as they were in a daily “human routine”. Nevertheless, literature proposes a
way for developing goal-driven systems using the knowledge these systems have
of their environment in order to react to environment changes. The ability of co-
ordinating, controlling and making autonomous the activities of all the different
involved entities is a strong requirement for this kind of systems. These issues
can be faced with the use of the Multi Agent System (MAS) design paradigm and
with organizational models. The latter is covered by only a restricted set of agent

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 22–39, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Norm-Governed Holonic Multi-agent System Metamodel 23

oriented design processes1 of which only few cover the whole design process life
cycle, from analysis to implementation. To the best of our knowledge, among the
agent-oriented processes only ASPECS [6] manages abstractions, such as holon,
group and goal, for modeling and implementing organizational structures like
holarchy. Instead, among organizational models, only Moise+ [13] and OMNI
[26] address the normative aspect of a multi-agent organization.

The novelty introduced by our work is merging the strength of ASPECS and
Moise+ in order to create a complete support for developing MASs structured
organizations, such as holarchies, ruled by norms. Actually ASPECS does not
include the possibility of designing norm-based systems. The need of introducing
norms arose from a design requirement, we needed the possibility of modeling
constraints in form of institutional rules (Norms) defined outside the agents.
Defining external rules (like social rules, laws, company procedures, etc. . .) al-
lows to face all the problems related to management, coordination and control of
different holons. The result was an extension of the ASPECS metamodel in order
to include all the elements providing abstractions for managing the normative
issues along with the definition of some new norms that regulate the structural,
behavioral and adaptive aspect of an organization. Moreover, we instantiated
this new metamodel in a specific logistics business model in order to create
an optimized representation of the distribution processes inside a supply chain.
We have implemented this model as a norm-governed holarchy using Jason [5],
Moise+ and Cartago[22], unified in the JaCaMo framework [24].

The rest of the paper is organized as follows. In Section 2 an overview on
the theoretical background of the work is presented. Section 3 is the core of the
paper. It presents the extended metamodels along with the definition of norms
we have introduced and the conceptual mapping among the elements of the
Agency Domain and JaCaMo metamodel. In Section 4 we show the addressed
case study. Finally some conclusions are presented in Section 5.

2 Theoretical Background

An agent is an autonomous, reactive and proactive entity that pursues individual
goals interacting with the environment and others agents by means of social
ability [28]. A multi-agent system [9] (MAS) is a software providing a tool to
model and reproduce the interaction and social structures observed in real world
organizations. It allows to adapt human organizational patterns in agent-based
systems that become a virtual counterpart of real organizations.

As well-known, there are different kinds of organizational schema, such as
hierarchies, holarchies, teams, coalitions and so on. Each organizational schema
is usually defined by means of roles adopted by an agent, relationships, rules and
norms defining the agents behavior and organizational structure.

In this paper we adopt holarchies as an organizational structure of the agents
societies. The concept of Holarchy adopted as an Enterprise model has its origin
1 We use the term design process and methodology as synonyms because here it is not

important to highlight the differences among them.

24 P. Ribino et al.

from the work of Koestler [16]. During his research on self-organization in biolog-
ical systems, Koestler discovered nested hierarchies of self-replicating structures
(holarchies). He coined the term holon to describe the elements of such systems.

A holon is, commonly, defined as a self-similar structure composed of holons
as sub-structures. For this reason, it can be seen from different perspectives,
either as an autonomous atomic entity or as an organization of holons. A holon
is a whole-part composed of other holons and at the same time, a component
of a higher level holon. A holon acts basically as an autonomous entity, al-
though cooperating to form self-organizing hierarchies of subsystems (such as
the cell/tissue/organ/system hierarchy in biology) in order to achieve the goals
of the holarchy. In addition, holons can simultaneously belong to different super-
holons and can be regulated by rules. These rules not only allow to define a
system as a holon with an individuality of its own but also to determine its
structural configuration, functional patterns and behavioral regulations [25].

Holonic systems, while modeling complex systems, are able to efficiently man-
age their resources and to adapt themselves to changes occurring in the environ-
ment. A useful way to implement holarchies in software system is by means of
the Holonic Multi-Agent System (HMAS) paradigm. As shown in [10], HMAS
paradigm allows to represent a holonic system where individual agents are driven
by coordination mechanism according to the cooperation rules of the holon the
agent is member of. In HMAS a holon is a set of individual agents organized
according to different organizational models (see [10] for more details).

In this paper we use the HMAS and the Virtual Enterprise paradigm to model
a holonic framework applied to the cited logistic problem. According to Uliero
et al. [25] we refer to Virtual Enterprise (VE) as a new organizational form
that can be characterized by a collection of geographically apart individuals,
groups or entire organizations depending on electronic communications in order
to collaboratively work and to provide a service or to realize a common goal.

Multi agent systems can be developed using several frameworks (JADE [2],
JADEX [20][27], PRACTIONIST [18] etc.) based on different approaches. In this
paper we adopt the JaCaMo approach in order to implement a Holonic Multi-
Agent System. JaCaMo [24] is a programming platform that integrates three
levels of multi-agent abstractions: an agent programming language (Jason), an
organizational model (Moise), and an environment infrastructure (CArtAgO).

Jason [5] is a Java-based interpreter for an extended version of the AgentSpeak
language [21], an abstract agent language founded on the BDI(Belief-Desire-
Intentions) model. A Jason agent is described by means of a set of plans the
agent is able to follow in some situations.

Moise+ [13][14] is an organizational model for MAS which specifies the struc-
tural, functional and normative aspect of MAS organizations. Each aspect is
defined in a specification set.

CArtAgO [22] is a general purpose framework/infrastructure that allows to pro-
gram and execute virtual environments for multi-agent systems. It is based on the
concept ofArtifacts intended as resources and tools dynamically constructed, used,
manipulated by agents to support/realise their individual and collective activities.

A Norm-Governed Holonic Multi-agent System Metamodel 25

3 A Norm-Governed Holonic MAS Metamodel

In order to have means for developing norm-governed multi-agent systems struc-
tured by holonic organizations we need a metamodel containing all the abstrac-
tions to be treated during the phases/activities of the design process devoted to
develop such systems. In this section we illustrate the metamodel we created by
adding to the ASPECS metamodel all those concepts from Moise+ metamodel
useful for modeling MASs under a normative point of view.

The ASPECS metamodel [6] is divided in three parts: the problem, agency and
solution domain. The first contains the elements useful for the description of the
problem under an organizational point of view. The second domain provides an
agent oriented solution to the problem. Finally, the last provides the concepts for
the implementation in a specific platform. As also stated in [15], ASPECS is one
of the most complex and complete organizational approaches. It covers all the
organizational aspects considered in other design processes “(roles, tasks, plans,
goals, organizations, resources, agents and, in this case, holonic structures), rich
interactions (communication, protocols, messages) and a formal definition of the
domain knowledge (ontology)”.

Nevertheless, ASPECS does not cover some aspects such as those related to
the tasks to be accomplished by the organization and the rules to observe in order
to ensure the profitable achievement of the goals of the organization. For these
reasons the Moise+ metamodel (deduced from [12]) was taken into account. In
particular, we have paid attention to the following Moise+ concepts: the Role
constraining the agent’s behavior; the Organizational Link regulating the social
behavioral part of agents and the group, to which agents belong; the Norms,
which rule the set of roles and missions that agents can do.

Our work consists in the definition of a new metamodel that emphases the
normative aspect of a HMAS. To do this: (i) we have extended the ASPECS’s
Problem and Agency Domain metamodels with the previous Moise+ concepts;
(ii) we have specialized the concept of Norms into three categories: Behavioral,
Structural and Adaptive Norms; (iii) we have mapped these new extended meta-
models in the Solution Domain provided by JaCaMo platform. In the following
subsections, we explain these three steps. For the sake of clarity, in Fig. 1 and
Fig.2, we have differently colored the new concepts to highlight the differences
with ASPECS metamodels. In the following, we give a detailed description of
new concepts referring to ASPECS metamodel for those not mentioned in this
paper.

3.1 Problem Domain Metamodel

The extended Problem Domain metamodel is shown in Fig. 1. According to
ASPECS, an Organization can be an aggregate of other sub-organizations. Each
organization is composed of Roles which specify the Capacities that should be
owned by an agent to play them. Interactions between Roles define Scenarios
where each Role contributes to the achievement of organizational objectives
(Requirements). Unlike ASPECS, we highlight that an Organization is plunged

26 P. Ribino et al.

Fig. 1. Problem Domain metamodel

in an Environment composed of Artifacts that can be either passive elements
(e.g. resources) used by agents and normative elements (e.g. social laws) imposed
on organizations and their members in order to fulfill their goals. Each element
of the Environment is described by means of an Ontology providing a common
vocabulary and a machine-readable knowledge.

In the following we give a brief description of the new concepts we have in-
troduced in the Problem Domain.

Functional Requirements describe the functions the software has to exe-
cute. In some context, often also in agent-oriented systems, they are also known
as Capabilities[1].

Nonfunctional Requirements [1] are seen as constraints or quality require-
ments of the solution to be adopted.

Goals and Softgoals are a specialization of functional and nonfunctional
requirements respectively. A Goal, representing an actor’ strategic interest, can
satisfy a system requirement. While Softgoals are generally considered as goals
for which it is difficult to decide whether they are satisfied or not. In our model
we use Softgoals to constrain Goals.

The Environment is a first-class abstraction that provides the surrounding
conditions for agents to exist and that mediates both the interactions among
agents and the access to resources. The passive components of the system, such as
resources and objects, that are shared and used, cooperatively or competitively,
by agents to support their activities or norms, rules, physical and social laws that
act on the environment or govern its living entities are represented by means of
Artifacts [19]. For this reason, we see the environment as a set of artifacts that
form a context in which agents perform their tasks and pursue their goals. A
special kind of artifacts that we considered in this paper are the norms, which
will be deeply explained in the next section.

3.2 Agency Domain Metamodel

Several complex dynamic systems, naturally occurring as well as those created
by the society, show common features. Such as (i) the composition of entities
operating in parallel (nerve cells into brain, individuals or enterprise in a market

A Norm-Governed Holonic Multi-agent System Metamodel 27

Fig. 2. Agency Domain metamodel

economy, etc...), (ii) different levels of organization (proteins and lipids form a
cell, cells form tissues, tissues form organisms and so on), (iii) the continuous
adaptation of their components through the process of evolution (adaptation
involves the recombination of the component elements or the generation of a
new one), only to name but a few. Adopting an organizational approach to
model these kinds of system is a very useful way to represent their structure as
well as all the elements indispensable to define a solution.

The Agency Domain metamodel shown in Fig. 2 describes an organizational
solution from the agent-oriented perspective along with normative concepts. As
ASPECS does, we consider Holons the base elements of the organizational so-
lution. The Holons are recursively composed of other Holons and, at the same
time, each of them is composed of groups. In our extended model we consid-
ered two different kinds of Groups : the Holonic Group and the Production
Group. At the first level of abstraction, members of the Holonic Group play
Institutional Roles to which are assigned the task to regulate the organizational
aspect of the system and to enforce the norms. In that, we accepted the position
of V. Dignum et al. who say [8] that Institutional Roles are roles needed in order
to keep the society going. Differently, members of the Production Group play
Operational Roles to which is assigned the task to perform activities necessary
to pursue the organizational objectives in accordance with the Behavioral Norms
and their Mission. A Mission is “a set of constraints that the agent must take
into account when it wants to execute parts of this task. It defines an allowed
behavior as a consistent set of authorization related to goals to be achieved, plans
to follow, actions to execute and resource to use” [12]. A set of missions to which

28 P. Ribino et al.

an agent must obey is assigned to each AgentRole. A Plan is defined as an ori-
ented graph where each node can be a simple Agent Action or Agent Task or a
set of sub-goals. It represents the way to reach the organizational objective. In
this context a Goal is seen as an aggregate of Plans. Roles inside different Holons
are linked by means of Organizational Links. The Organizational Links define
the way in which the social exchanges between Agent Roles occur [12].

The most significant difference compared to ASPECS is the introduction in the
Agency Domain of the Norms. A general definition of Norm is an authoritative
standard or model. We have specialized this concept making explicit different
kinds of Norm: Behavioral, Structural and Adaptive Norms.

We called Behavioral Norm what Boella et.al [3] define “a principle of
right action binding upon the members of a group and serving to guide, control,
or regulate proper and acceptable behavior ”, similar to the concepts of Regu-
lative norms described as the expected contributions to the social system [23].
In our model, a Behavioral Norm regulates the way a Agent Role performs a
Mission. Two main types of Behavioral Norms are Obligation and Permission.
When an Obligation is established between an Agent Role and a Mission, the
Autonomous Entity playing the Agent Role is obliged to execute the Mission. In-
stead, when the Behavioral Norm is a Permission then the Autonomous Entity
playing the Agent Role can decide to execute the Mission or not [12].

The Structural and Adaptive Norms are instead two new kinds of norm we
propose in order to regulate the static and dynamic aspects of an organization
separately. The Structural Norms define the static structural aspect of the
system at the design time, that is the initial composition defined by the designer
for the organization to fulfill its objectives. The Adaptive Norms govern the
state transition of the organization from a given configuration to a new one ac-
cording to needs emerging from environmental changes. By means of adaptive
norms the agent society spontaneously evolves toward another optimal configu-
ration for the new state of the world.

The last element introduced in the model is the Institution. Institutions [7]
provide the social and institutional backbone of the agent society and they are
the place where social norms are explicitly specified.

In the following subsection we highlight some general structural norms that
a holonic organization must comply with. As regard the adaptive norms, in
this paper we provide only a preliminary introduction without discussing any
theoretical details that will be argued in another specific work.

Structural Norm
When we want to adopt a solution based on organizations (without going into
the details of a methodological approach for holonic organization design), the
organizational structure is the first element to be defined. The choice of the
appropriate organizational schema is related, first of all, to the global objective
of the system. Its performance depends on the way tasks are distributed among
individuals, how their responsibilities (assigned to Roles) are defined and how
they could be aggregated in groups. For instance, organizational groups can be

A Norm-Governed Holonic Multi-agent System Metamodel 29

created as functional units responsible to execute either a process or some of its
phases, depending on the interdependence of groups involved in the work flow
execution. In the following, we exemplify an organizational schema by means of
structural norms. In particular, we distinguish the norms needed for the design
of holons from those used for the definition of organizational schema.

The following list shows a sub-set of structural norms that allow us to define
a holarchy [17]:
1. A generic holonic structure must contain at least three levels of representa-

tion. The level (n) represents a holon as a whole with its unique character-
istics, the level (n-1) contains the holons subordinated to the previous one,
finally, the level (n+1) holon is a super-holon containing the level (n) holon
(and others if required).

2. A top holon is not included in any holon of level(n+1).
3. A bottom holon does not include holons of level (n-1).
4. A stand-alone holon is a non-member holon. It can be seen as a top and

bottom holon at the same time.
5. Holons of the same level cannot be included in each other.
6. The number of holons at level (n) cannot be greater than that of the holons

at level (n-1).
7. Holons at level (n) can be part simultaneously of holons at level(n+1).
8. Holons at level (n) that are not decomposable can be brought to a lower

level(n-1) by means of virtual holons (see Fig. 5).

While, in order to define the organizational schema such as for example a mod-
erated group [11] three roles are necessary. The Head role identifies the decision
maker of the holon. The Representative role is the interface of the holon out-
side the world. Finally, the Peer role identifies the default members, generally
they perform tasks assigned by the Head. This organizational schema will be
well-formed applying the following structural norms:
1. A moderated group must contain at least one individual playing the Repre-

sentative role.
2. It must contain at least one individual playing the Head role.
3. It can include from zero to a generic number of Peer players.
4. Head and Peer are exclusive roles.
5. Members belonging to only one super-holon adopt the Part status.
6. Members of the moderated group can belong to more than one super-holon,

adopting the Multi-Part status.
7. The Part status is adopted by default.
8. Part and Multi-Part are exclusive status.

We have adopted these norms to define the structural specification for our case
study.

3.3 Conceptual Mapping in a Solution Domain

Designing systems normally results in realizing a possible implementative solu-
tion in a given platform. The aim of this section is to give a possible implemen-
tative solution to a holonic organization using the platform called JaCaMo[4].

30 P. Ribino et al.

Fig. 3. The JaCaMo Meta-Model adapted from [4]

Among several existing platforms, we have chosen JaCaMo because it natively
supports key concepts such as organizations and norms.

JaCaMo is a framework providing a set of programming abstractions that al-
low us to implement a holonic organization of BDI agents in a shared distributed
artifact-based environment. It gives an integrated vision of three fundamental
aspects for the implementation of a multi-agent system, such as: the agents be-
longing to the MAS; the organizational structure on which the MAS is based;
the environment in which agents are plunged. Fig. 3 shows an adapted version
of JaCaMo metamodel [4].

In JaCaMo, an Agent is an autonomous entity owning Beliefs, Plans and
Rules that allows him to pursue its Goals. The Beliefs represent the knowledge
owned by an agent about itself and the environment in which it lives. The Rules
are ways to infer new knowledge starting from some Beliefs. The Goals are the
states of the world the agent wants to reach. Finally, the Plans are ways to reach
goals. The Trigger Event defines the circumstances in which a plan should be
considered. The PlanBody is the core of a plan. It contains Actions and others
sub-goals to be performed/achieved in order to fulfill the goal a plan was defined
for. Actions are simple tasks that an agent can perform. There are two kinds
of action: Internal Actions (that does not produce changes in the environment)
and External Actions (changing the environment).

An Agent interacts with the Artifacts (non living entities) in the environment
performing Operations. An operation generates Observable Events and it updates
an Observable Property of the Artifact.

A Norm-Governed Holonic Multi-agent System Metamodel 31

Agency
Domain
Element

JaCaMo
Element Code Portion

Holon Group <organisational-specification id=[Holon ID]> … </organisational-specification>

Holonic Group Group

<sub-groups>
 <group-specification id=[Holonic Group ID] > … </ group -specification>
</sub-groups>

Production

Group
 Group

<sub-groups>
 < group -specification id=[Production Group ID]> … </ group -specification>
</sub-groups>

AgentRole Role <role id=[Role Name]></role>

Organiz. Link
 Organizational

 Link

<link from=[Role Name] to=[Role Name] type=[Autority | Acquaitance |
Communication] scope= [intra-group | inter-group] extends-sub-groups=[True |
False] bi-dir=[True | False]/>

Compatibility
 Compatibility

 Link

<compatibility from=[Role Name] to=[Role Name]
scope=[intra-group | inter-group] extends-sub-groups=[True | False]
bi-dir=[True | False]/>

Resource Artifact
class [ArtifactName] extends Artifact {
 void init() { defineObsProp ([ObservablePropertyName], 0);} … }

Service Operation

@OPERATION
void changeObservableProperty (int PropertyValue) {
 int c =getObsProperty([ObservablePropertyName]).intValue();
 if (PropertyValue > c)
updateObsProperty([ObservablePropertyName],PropertyValue);}

Ontology

Element
 Belief functor(term1, ..., termn)[annotation1, ..., annotationm]

Comunication
 Internal

 Action
.send([AgentName], [Performative], [Content])

Individual

Goal
 Goal ! functor(term1, ..., termn)

Collective

Goal

Organisational

Goal
<goal id=[Goal ID]>

Agent Agent [AgentName] agentArchClass jmoise.OrgAgent;

Plan

Plan Triggering Event : Context <- PlanBody.
Organizational

Plan
<plan operator=[sequential | parallel |choice] >… </plan>

Agent Task Body Plan PlanBody

Agent Action

Internal

Action
. actionName(term1, ..., termn)

Action
External

Action
actionName(term1, ..., termn)

Mission Mission <mission id=[Mission ID] >…</mission>

Behavioral

Norm

Norm
<norm id=[Norm ID] type=[Obligation | Permission]
role=[Role Name] mission=[Mission ID] />

Rule functor(term1, ..., termn) :- Logical Expression.

Structural

Norm

Formation

Constraints on

Group, Role,

Mission

<role id=[RoleName] min=[0…N] max=[0…N]>
<mission id=[Mission ID] min=[0…N] max=[0…N]> …

Adaptive

Norm
Belief adaptiveNorm ([RoleName], [Entry_Condition], [Plan])

Fig. 4. Conceptual mapping among Agency Domain and JaCaMo elements

Finally from the organizational viewpoint, an agent can adopt Roles defined
into a Group. Agents playing different roles can interact each other only if their
roles are connected by Organizational Links. An Agent can also play two or
more compatible roles at the same time. When an agent adopts a Role it is
committed to a Mission by means of Norms. A mission is responsible of a set
of Organizational Goals reachable by means of Organizational Plans. The Social
Scheme groups Missions and it defines the functional aspect of an organization.

The table in Fig. 4 shows the conceptual mapping among the Agency Domain
and the JaCaMo metamodel elements along with a codified solution. In particular,

32 P. Ribino et al.

wewant to underline thatPlan andBehavioralNorm elements do not have a unique
mapping with the elements of the solution domain. This is due to the dual nature
of a holonic MAS we want to implement. In the solution domain, in fact, Plans and
Behavioral Norms are defined differently when they refer to the holon as a whole
or as a part.

As we previously said, we adopted the HMAS paradigm in order to imple-
ment holarchies in software systems. In HMAS a holon is a set of individual
agents organized according to an organizational model. When we want to model
an HMAS we usually define the Collective Goals of the entire holon as well as
the Individual Goals of the members of the holon (single agents). In our Agency
Domain both Individual and Collective Goals can be reached by means of Plans
(hereafter Agency Domain Plan). In the Solution Domain, the Agency Domain
Plan concept is associated to two different elements (see Fig. 4): Plan and Or-
ganizational Plan. An Agency Domain Plan can be mapped in a Plan of the
JaCaMo agent dimension in order to define as an agent could reach its own Goal
(see Fig. 3). The Agency Domain Plan can be mapped in an Organizational Plan
in order to define as an entire holon could achieve its own Organizational Goal
(see Fig. 3).

As concerns a Behavioral Norm (see Fig. 4), it can be translated in the Solu-
tion Domain in two different elements: Norm and Rule. The former regulates the
agent’s behavior playing Roles inside a holonic system. The latter may regulate
an agent ’s behavior in the environment independent from the Role it plays.

As regards the Structural and Adaptive Norms, the JaCaMo meta-model does
not support natively these kinds of norms. Thus, we have mapped the Structural
Norm in the formation constraints imposed on Group, Role and Mission elements
of the JaCaMo metamodel. We are currently working for the definition of a new
element in the solution domain that may directly implement a Structural Norm.

Conversely, we have already defined a way to represent an Adaptive Norm in
the Solution domain (see table in Fig. 4). They are codified as a Beliefs with the
following specific notation:

adaptiveNorm ([RoleName], [EntryCondition], [Plan])

where [RoleName] identifies a list of roles to which the adaptive norm can be
applied. EntryCondition represents a set of environment changes to whom the
agent (playing the RoleName) tries to adapt itself. Plan define how the agent
could adapt itself.

For space concerns, we omit to detail the remaining elements of Fig. 4, which
are however easily understood because they have a direct codification in JacaMo
framework. In the following section we present our case study.

4 Case Study: Virtual Enterprise for Logistics

The work presented in this paper was carried out under the IMPULSO2 project
and it represents the solution we have studied for it. IMPULSO - Integrated
2 Further information available at http://www.vitrociset.it - Section Ricerca&

Sviluppo

http://www.vitrociset.it

A Norm-Governed Holonic Multi-agent System Metamodel 33

Multimodal Platform for Urban and extra urban Logistic System Optimization
- offers an integrated system for goods management within the logistic dis-
tricts, for their storage in special metropolitan distribution centers and finally
for distribution within the cities. The development of the IMPULSO system
was the test-bed for evaluating and assessing the newly created metamodel with
all its concepts. Indeed through the enactment of the design activities devoted
to instantiate each concept we were able to create the model of the system
(the Figures from now on are parts of the artefacts composing such model) on
the base of the right specification provided by the metamodel. We experienced
the completeness of the proposed metamodel, indeed both the domains contain
all the useful concepts for representing the problem we were dealing with and
for describing the solution in terms of holons. Moreover we were able to analyze
and establish the behavior of each part of the system through the use of the
identified norms.

In the following subsections only three artifacts of the development process
are illustrated. They deal with the concepts of holon, group, role and norm.

The Holonic Architecture. The whole Impulso System was modeled as a Virtual
Enterprise that is a holarchy of collaborative systems, where each system is a
holon itself. Each of them is composed of other systems that act according to the
same organizational schema, at the same time they perform different functions
at lower levels of resolution. For space concerns, we show only a member of
Impulso Holarchy: the Yard Management System(YMS).

The YMS deals with goods traffic inside logistic districts. It manages the
automatic container loading and unloading by means of the use of AGVs (Au-
tonomous Guided Vehicles) which move independently but are coordinated in
accordance to predetermined patterns by a remote control center. Fig. 5 shows
the holonic architecture we have designed for YMS. As we can see, the YMS is
composed by three holons: the YMC (Yard Management Central), the Freight
Forwarders and the YMP (Yard Management Peripheral). These holons inter-
act to fulfill the goal of their organization, the YMS, although they themselves
are autonomous entities with personal objectives. The holonic enterprise frame-
work, which connects enterprise entities, allows information exchange through
communication channels and resources management.

Groups, Roles and Norms. In this subsection we define the entire composition
of the holonic organization of the YMS (see Fig. 5). In particular, we define its
structural and functional aspects correlated to its normative features.

According to the metamodel shown in Fig. 2, there are two aspects that
overlap in a holon. The first is the holonic aspect that is directly related to the
holonic character of the entity, i.e. a holon (super-holon) is composed of other
holon members. As Fig. 5 shows, the YMS super-holon is an entity on its own
although composed by members. So, the holonic aspect refers how members
organize and manage their representative super-holon (i.e. how they form the
Holonic Group). We adopted the moderated group configuration as organizational
structure for the Holonic Group of each super-holon. Thus, each Holonic Group is

34 P. Ribino et al.

Fig. 5. Roles/Groups of the Yard Management System

created according to the structural norms defined in the section 3.2 which related
to the moderate group formation. The second aspect of the holon is related to the
problem the members are trying to solve (we will call this the production aspect
in order to maintain a uniform nomenclature). The production aspect refers to
how members of the holon are organized to pursue their goals according to the
global objective of their super-holon. This holonic representation, by means of
holonic and production groups, allows to clearly distinguish the different features
and functionalities to be attributed to each member.

In the following, we describe only the lowest level of abstraction of the YMS
architecture. At this final (finer grained) level of decomposition (see Fig. 5), the
holons are represented by groups of agents which play institutional and opera-
tional roles at the same time. We focus only on operational roles and production
groups, since the institutional roles of the holonic groups have been already
described in the section 3.2.

For the simulated scenario, we have defined two production groups (Truck
Unloading Simulation and Goods Receiving Simulation) of two high-level holons.
The Truck Unloading Simulation is a group formed by the Unloader and Route
Planner roles. The Route Planner can be played by YMC agents, which have
the capacity to perform the related task. While the Unloader is played by
AGV agents which emulate the behaviour of real automated guided vehicles.
The Goods Receiving Simulation group is formed by the Forwarder and Gate
Selector roles. The Forwarder is a role adopted by agents emulating the be-
haviour of the trucks. As we can see from Fig. 5, the Route Planner player in the
Truck Unloading Simulation group adopts the role of Gate Selector in the Goods

A Norm-Governed Holonic Multi-agent System Metamodel 35

Receiving Simulation group, at the same time. This is allowed by the structural
norm concerning the multi-part status previously defined (see section 3.2).

In the following list we only show some structural norms we have defined
for regulating the formation of Truck Unloading Simulation groups. Then, we
present their codification in JaCaMo framework. We avoid to list them all be-
cause the presented subset provides enough information in order to understand
the purpose of the structural norms.

1. The Route Planner role must be played by at least one agent.
2. The Route Planner role can be played by only one agent.
3. The Unloader role must be played by at least one agent.
4. The Unloader role can be played by at most 103 agents.
5. At least one Truck Unloading Simulation group must be active.
6. It can not be created more than 10 Truck Unloading Simulation groups

simultaneously.

The norms related to the Route Planner (i.e: norms 1. and 2.) and the Unloader
(i.e: norms 3. and 4.) role are codified respectively in

<role id="route_Planner" min="1" max="1"/>
<role id="unloader" min="1" max="10"/>.

While the last two rules concerning the Truck Unloading Simulation groups (i.e:
norms 5. and 6.) are translated into

<group-specification id="truck_Unloading_Simulation" min="1" max="10">.

As concern the functional aspect of Yard Management System, it is defined by
set of plans and missions the agents can commit into a Social Scheme (see Fig.3).
It describes how an organization can achieve its global goals. The Fig.6 gives an
overview of the Social Scheme of the organization shown as a goal decomposition
tree. The root goal of the Yard Management System is sorting out goods toward
metropolitan centers. To do that, the members of two production groups can
play the permitted roles according to the structural norms and commit to some
missions according to behavioral norms described below. Groups perform their
activities independently. Holonic groups are responsible for managing their re-
spective production groups and their coordination. For everything else, the Fig.6
is self explanatory.

In the following we show those behavioral norms, which represent JaCaMo
Norm elements, according to following template:

norm<id> : type=[Obligation | Permission]
role=<RoleName> mission=<MissionName>

As we have previously said, these norms impose agents to commit to certain
missions when they choose to play a role. Some of them are reported below:

3 This is a constraint of the project because the AGVs are costly resources.

36 P. Ribino et al.

��������
	��
�

��������
��������

��������
����
��

��
 �	�� �������
�������

�����
������

��������
������

	������� �����
������� ���

�!

�!�"

�# �$

�% �%

�%��������
�������

�& �"

������

	����

������

����������'

��(����

Fig. 6. The functional view of Truck Unloading simulation group represented by means
of a goal/mission decomposition tree

norm 1: type=Obligation role=unloader
mission=AgvMission

norm 2: type=Permission role=forwarder
mission=ForwarderMission

norm 3: type=Permission role=representative
mission=ManagementMission

norm 4: type=Permission role=representative
mission=RecruitmentMission

Finally, we have introduced some adaptive norms that allow us to regulate the
dynamic evolution of the Yard Management System. We have defined a set of
norms that allow the adaptation of the holon to perceived environmental changes.
Three examples are:

– If the workload grows beyond some limit (for instance a new truck arrives
to be unloaded), the Representative holon creates a new Truck Unloading
Simulation group.

– If the workload decreases (for instance unloading operations of a truck are
over), Truck Unloading Simulation groups are removed proportionally by the
Representative.

– If all role-players leave Representative roles an election has to be made for
new players.

According to the definition given in section 3.3, the codified solution of the listed
adaptive norms are:

1. adaptiveNorm(representative, workload(W) & W >Treshold, @HolonReorg
+! createUnloadingSimGroup <– .createGroup(GroupSpec, IDHolon, ID))

A Norm-Governed Holonic Multi-agent System Metamodel 37

2. adaptiveNorm(representative, workload(W) & W <Treshold2, @HolonRe-
org2 +! removeUnloadingSimGroup <– .removeGroup(IDHolon, ID))

3. adaptiveNorm(Role, violated(RepresentativeStructNorm), @HolonReorg3 +!
newElection <– vote(Player)), where RepresentativeStructNorm is

<role id="representative" min="1" max=N />

that is the codification of the structural norm 1. of section 3.2 related to
moderated group formation.

We want to point out that all upper-case terms are variables that can assume
different values during the running of the system. This means that the same
adaptive norm can be triggered by different conditions. For example for the
first norm, the threshold is a variable value according to the number of created
group. In fact the first time the threshold has a defined value according to the
amount of work the members of Truck Unloading Simulation group are able to
perform. Thus when this norm is applied not only a new group is created but
a new value of threshold is automatically defined. This avoids the creation of
groups not necessary. Analogous considerations can be made about the second
norm. Moreover, if the second norm is applied, the number of Truck Unloading
Simulation groups can not become less than one, because it violates the above
defined structural norm (i.e: norm 5.) of this production group.

Instead, as concerns the last norm, it is different from the previous ones be-
cause it can be adopted by different roles (Role in this norm is a variable) and
it is triggered by a violation of a structural norm related to the formation of
a moderated group. Thus when this violation occurs, all agents, playing roles
inside holons, vote a player from a list of possible candidates according with
some defined criteria.

5 Conclusions

In order to solve problems and engineering systems related to fields in which
a high level of coordination, control and automation is needed we propose an
extension of the ASPECS metamodel obtained by introducing some new con-
cepts such as Norms. Norms are used to regulate holons’ behavior, these norms
separately deal with the behavioral aspect of the holonic members from the orga-
nizational one. From the agents viewpoint, behavioral norms impose constraints
to their actions in order to maintain a social order. Conversely, from an organiza-
tional perspective it is useful to separate the static aspect from the dynamic one,
in this paper this is done by respectively introducing Structural and Adaptive
Norms. The formers define the static structural aspect of the system at design
time and provide the initial composition required to the organization to fulfill
its objective. The latters govern the state transition of the organization from a
given configuration to a new configuration to fit the environmental changes.

The proposed metamodel fully supports, and we experimented that by devel-
oping the IMPULSO system, a methodological approach for holonic multi-agent

38 P. Ribino et al.

system design in which the holons are ruled by means of norms. In the future we
will improve the design process based on the new metamodel that is obviously
an extension of ASPECS.

References

1. Abran, A., Moore, J., Bourque, P., Dupuis, R., Tripp, L.: SWEBOK R©: Guide to
the Software Engineering Body of Knowledge. IEEE Computer Society (2004)

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE–A FIPA-compliant agent frame-
work. In: Proceedings of PAAM, London, vol. 99, pp. 97–108 (1999)

3. Boella, G., Van Der Torre, L., Verhagen, H.: Introduction to normative multiagent
systems. Computational & Mathematical Organization Theory 12(2), 71–79 (2006)

4. Boissier, O., Bordini, R., Hübner, J., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Science of Computer Programming (2011)

5. Bordini, R., Hubner, J., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason. Wiley-Interscience(2007)

6. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: ASPECS: an agent-
oriented software process for engineering complex systems. Autonomous Agents
and Multi-Agent Systems 20(2), 260–304 (2010)

7. Dignum, V., Dignum, F.: Modelling agent societies: Co-ordination frameworks
and institutions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI),
vol. 2258, pp. 191–204. Springer, Heidelberg (2001)

8. Dignum, V., Meyer, J., Weigand, H., Dignum, F.: An organization-oriented model
for agent societies. In: Proceedings of International Workshop on Regulated Agent-
Based Social Systems: Theories and Applications (2002)

9. Ferber, J.: Multi-agent systems: an introduction to distributed artificial intelli-
gence, vol. 222. Addison-Wesley, New York (1999)

10. Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation
for the organisation of multiagent systems. In: Mařík, V., McFarlane, D.C., Val-
ckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 71–80. Springer,
Heidelberg (2003)

11. Gerber, C., Siekmann, J., Vierke, G.: Holonic multi-agent systems. Technical re-
port, Université- und Landesbibliothek (1999)

12. Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: MOISE: An organizational
model for multi-agent systems. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000
and IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 156–165. Springer, Heidelberg
(2000)

13. Hubner, J., Sichman, J., Boissier, O.: Moise+: towards a structural, functional,
and deontic model for mas organization. In: Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, p. 502.
ACM (2002)

14. Hubner, J., Sichman, J., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels.
International Journal of Agent-Oriented Software Engineering 1(3), 370–395 (2007)

15. Isern, D., Sánchez, D., Moreno, A.: Organizational structures supported by agent-
oriented methodologies. J. Syst. Softw. 84, 169–184 (2011)

16. Koestler, A.: The ghost in the machine. Psychiatric Communications 10(2), 45
(1968)

A Norm-Governed Holonic Multi-agent System Metamodel 39

17. Mella, P.: The holonic revolution: Holons, holarchies and holonic networks: The
ghost in the production machine (2009)

18. Morreale, V., Bonura, S., Francaviglia, G., Centineo, F., Cossentino, M., Gaglio,
S.: Reasoning about goals in BDI agents: the PRACTIONIST framework. In: Pro-
ceedings of the 7th WOA 2006 Workshop, From Objects to Agents (Dagli Oggetti
Agli Agenti). CEUR Workshop Proceedings, vol. 204, pp. 26–27. CEUR-WS.org
(2006)

19. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

20. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Multi-Agent Programming, pp. 149–174 (2005)

21. Rao, A.: AgentSpeak (L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

22. Ricci, A., Viroli, M., Omicini, A.: cArtAgO: A framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

23. Therborn, G.: Back to norms! On the scope and dynamics of norms and normative
action. Current Sociology 50(6), 863 (2002)

24. Toledo, C.M., Bordini, R.H., Chiotti, O., Galli, M.R.: Developing a knowledge
management multi-agent system using JaCaMo. In: Dennis, L., Boissier, O., Bor-
dini, R.H. (eds.) ProMAS 2011. LNCS, vol. 7217, pp. 41–57. Springer, Heidelberg
(2012)

25. Ulieru, M., Brennan, R., Walker, S.: The holonic enterprise: a model for Internet-
enabled global manufacturing supply chain and workflow management. Integrated
Manufacturing Systems 13(8), 538–550 (2002)

26. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing Multiagent Systems.
Journal of Autonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

27. Winikoff, M.: JackTM intelligent agents: An industrial strength platform. In: Multi-
Agent Programming, pp. 175–193 (2005)

28. Wooldridge, M.: Reasoning about rational agents. The MIT Press (2000)

Specification of Trade-Off Strategies for Agents:

A Model-Driven Approach

René Schumann1, Zijad Kurtanovic2, and Ingo J. Timm3

1 HES-SO,
Rue de Technopôle 3, 3960 Sierre, Switzerland

rene.schumann@hevs.ch
2 University of Hamburg
22527 Hamburg, Germany

kurtanovic@informatik.uni-hamburg.de
3 University of Trier
54286 Trier, Germany

ingo.timm@uni-trier.de

Abstract. Negotiation is an important part of today’s business processes
on an inter-enterprise level. Agent research offers a variety of approaches
and tools to automate negotiations. Currently these technologies have the
drawback that the human manager retains the responsibility for the out-
comeof a negotiation, but this personmost often does not have the required
knowledge todefine the agent’s behavior by himself.To increase acceptabil-
ity of automated negotiation approaches, we consider it necessary that hu-
man negotiators can specify the strategies for the agents. In this article we
present ametamodel,which enables humannegotiators to specify trade-off
strategies. Trade-off strategies are a key concept in negotiation in general.
This meta model is based on the Ecore meta model. The specified trade-
off strategies can automatically be transformed into representations that
can be used by an agent. Ourmetamodel provides amodel and a graphical
notation that allows it to create graphical editors for trade-off strategies.
Therefore, it becomes possible to specify trade-off strategies without any
programming knowledge.

Keywords: automated negotiation, trade-off strategies, MDD.

1 Introduction

Negotiation is an importantpart of today’s businessprocessesonan inter-enterprise
level. Agent research offers a variety of approaches and tools to automate nego-
tiations. To enable agents to act on behalf of humans, several challenges have to
be dealt with. From our perspective we see a particular challenge in the fact, that
the human principal of an agent retains responsibility for the outcome of an auto-
mated negotiation. Thus, to establish agent-based negotiations it is required to a)
give quality guarantees to the human principal, or b) allow the principal to spec-
ify the negotiation strategy of the agent. Independently of the chosen approach it
has to be discussed if humans are willing to delegate negotiation tasks to agents.

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 40–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Specification of Trade-Off Strategies for Agents: A Model-Driven Approach 41

Also it seems reasonable that automated negotiation can be support for humans,
and that the human negotiator has in the end to accept the proposed deal of the
system, before it becomes legally binding. In this article we restrict ourself to dis-
cuss the technique hownegotiations can be realized, that follow a given negotiation
strategy. How these techniques afterwards can be integrated into systems designed
to support human negotiators is beyond the scope of this paper.

In real-world negotiation, multiple parameters as well as non-rational behav-
ior of actors have to be considered. Thus, formal guarantees, i.e., proof of optimal
behavior does not seem to be feasible. Therefore, we are focusing here on the
second approach, enabling the human principal to specify her strategy. Such an
approach includes means for the acquisition of negotiation knowledge from the
human principal [1] of the agent, typically this is a manager or a negotiator.
The negotiator has implicit knowledge about the negotiation process and re-
lated negotiation strategies. The knowledge on the process will be encoded in
protocols. The knowledge on strategies is essential to automated negotiation in
practical settings and has to be encoded, too. In this article we focus on trade-
off strategies. In particular we present a meta model for trade-off strategies, and
how strategies that have been defined based on this model, can be automatically
transformed into a format that can be used by a negotiating agent.

A trade-off between two negotiation attributes specifies a preference among
pairs of assignments to both variables. The idea of a trade-off is to improve
one attribute while worsening the other in return [1]. Trade-offs are an impor-
tant aspect of negotiations in human behavior [2,3] and have been adopted for
negotiations among software agents, see e.g. [4,1].

A current problem in the application of autonomous agents as negotiators, or
agents that support human negotiators, is that the human negotiator is not capa-
ble of designing or programming the agent, even though he remains responsible
for the outcome of the negotiation. While on the other side the programmers can
have problems understanding the strategy used during the negotiation.s In our
research we want to provide means to bridge this mismatch, by providing means
for specification of trade-off strategies that enables human negotiators to specify
their trade-off strategies in a comprehensive way. Of course, trade-off strategies
are only one part of negotiation strategies, which comprises also other aspects,
like the protocols or the effects of time passing during the negotiation, e.g. if a
deal has to be reached within a given time.

We use a model-driven development (MDD) approach to automatically trans-
late a specification of a trade-off strategy into a representation that can be used
by a software agent. Thus, the person specifying the strategies is not required
to have knowledge about software agents or programming. Consequently, we
empower the person responsible for the negotiation, the principal of the agent,
to specify the strategy of the agents by himself. The need for encoding these
strategies by hand becomes obsolete.

The rest of this article is structured as follows. In the next section we outline
related work. Afterwards we describe formally the concept of trade-off strategies
(Section 3.1). Based on this background we present our meta model (Section 3.2)

42 R. Schumann, Z. Kurtanovic, and I.J. Timm

and how it can be used to specify a trade-off strategy (Section 3.3). The trans-
formation process of a strategy is outlined in Section 3.4. In Section 4 we present
an example how our meta model can be used to specify trade-off strategies in a
show case. Finally, we summarize our work and outline future research.

2 Related Work

In this paper, we focus on means of modeling trade-off strategies to enable hu-
mans to specify their strategies with the goal to support them by (partially)
automate the negotiation process.

Automated negotiation is an established and active research topic in multia-
gent systems research, see e.g. [5,6]. To increase user acceptance, agents which
act on behalf of humans in negotiations require knowledge from the human ex-
pert. Surprisingly, it has to be stated that only little research has been done
in investigating how to acquire negotiations strategies from human experts in
the field of automated negotiations, the work by Lou et al. [1] is one of those
rare exceptions. Only very few work has been done to provide means that would
allow to specify negotiation strategies in a declarative way.

One exception is the work by Chiu et al. [7]. The author present an e-
Negotiation process based on an ontology. The process should support human
negotiators to specify their negotiation strategies. The improvement of our work
is, that we have combined means to specify trade-off strategies with MDD tech-
niques to automatically generate a representation that can be used by agents,
without any additional human effort.

Benyoucef and Rinderle [8] have presented a model-driven approach for devel-
oping service-oriented negotiation systems. Their specification of the negotiation
behavior uses also a declarative approach for the specification. In our paper we
strictly focus only to trade-off strategies.

In [1] user’s trade-off strategies and preferences are acquired by using the
default-then-adjust method. This approach is based on the use of a preexisting
default knowledge with the aim to assist the user and reduce their workload. On
the one side, such knowledge can be an important assistance for the user, on the
other side the access to relevant expertise is limited and often not available [9].

Our work is based on the definition of trade-off- and preference-functions
presented in [1], we have modified them slightly as follows:

– In [1] it is assumed that the domains of negotiation attributes are all contin-
uous and numeric. We have relaxed this assumption and can handle domains
with symbolic values and also attributes with discrete domains, too. This is
done by mapping symbolic values to numeric values.

– To avoid formal case-based considerations and to be able to base a trade-off
strategy on a pair of attributes with heterogeneous value sets, the domains
of all negotiation attributes are represented as numeric and continuous. In
the agent’s reasoning his proposals are based on this assumption and are
then approximated to become conform with the actual domains.

Specification of Trade-Off Strategies for Agents: A Model-Driven Approach 43

Another field in multiagent system research that is considered as related work
here is the application of MDD techniques to multiagent system development.
The probably most widely known system for the model-driven development of
multiagent systems (MAS) is the INGENIAS system [10], which can be con-
sidered as a forerunner for MDD development of MAS. Recently, Hahn et al.
have developed a coherent modeling framework for MAS. In their effort Hahn
et al. have developed a platform-independent meta model for MAS [11], and
afterwards detailed their model by adding modeling capabilities for interaction
protocols [12]. In current research efforts the development of MDD tooling for
MAS is top-down. Meta models are presented for MAS in general, as pointed out
above. Their goal is to allow the modeling of entire MAS and their generation.
In the approach we present here we only cover one aspect, namely the modeling
of trade-off strategies. This bottom-up approach tries to come up with dedicated
aspects of a MAS, that can be put in use early on. Also it would be interesting
to see to what extend the work proposed in this article can be used in existing
approaches. The negotiation meta model is not designed to be exclusive to other
approaches, but allows for a more detailed modeling of a specific aspect of a
MAS.

3 A Meta Model for Trade-Off Strategies

Before we are going to present the meta model for trade-off strategies (Section
3.2) we provide a brief definition of the concepts used. Afterwards, we detail how
a trade-off strategy can be specified (Section 3.3) and transformed (Section 3.4)
to be used by an agent during a negotiation.

3.1 Trade-Off Strategies

A trade-off strategy specifies what combination of attributes’ values form an
acceptable deal for the user. Within a trade-off strategy all information about
the trade-offs is encoded. Formally, a trade-off strategy contains a set of trade-
off relations and a set of independent attributes. Independent attributes are not
member of a trade-off relation with other attributes.

A trade-off is a relation between two negotiation attributes. It defines that in
favor for worsening one attribute the other one has to improve. Note that we
focus here on binary trade-off relationships, since these are the most common
ones [3]. According to [1] a trade-off function can be formalized as follows:

Definition 1
Let the domain of the attribute x be X = [lx, rx], and the domain of y be
Y = [ly, ry]. Note the domains values are ordered. A function f : X → Y is a
trade-off function if it is continuous,monotonic and met the boundary condition.
The boundary condition ensures, that if one attribute is assigned to the best
value, the other attribute has to be made worse [1].

44 R. Schumann, Z. Kurtanovic, and I.J. Timm

If a trade-off function exists between two attributes they are also called to
be a trade-off pair. For each trade-off a preference function p : A × B → [0, 1]
is defined, which define the preference over the trade-off alternatives. It reflects
a trapezoid formula of three segments (analogue to the preference function in
[1]) to describe the increasing, steady and decreasing preference over trade-off
alternatives. Trade-off and preference functions can also be specified graphically.
An example is shown in Figure 1. In Figure 1 right hand side, a trade-off func-
tion between price (on the x-axis) and accuracy (on the y axis) is shown. A
preference function indicates the degree of satisfaction (Figure 1 left hand side)
of the negotiator, expressed in terms of an interval between [0,1]. Thereby, 1 is
indicating high satisfaction and 0 is indicating dissatisfaction.

Fig. 1. Left: Example of a trade-off function between price (x-axis) and accuracy (y-
axis), Right: Preference function about prices. Prices x-axis, Satisfaction degree y-axis.

Preference functions are also defined for independent attributes as p : A →
[0, 1], with A: ∀a, b ∈ A : a � b ⇔ p(a) ≤ p(b).

Following the previous definition a trade-off strategy can be represented as a
forest, as illustrated in Figure 2: the nodes represent negotiation attributes and
the edges trade-off relations.

Fig. 2. Representing a trade-off strategy as a forest. L is an independent attribute.

Specification of Trade-Off Strategies for Agents: A Model-Driven Approach 45

This ensures some formal but also informal benefits. A trade-off strategy can
be visualized in a clear and accustomed way to the users. Due to the acyclic
structure there cannot exist inconsistencies, which may be introduced by cycles.
This reduces the complexity for specifying and validating these strategies. More-
over, the forest structure allows to use of efficient algorithms for reasoning about
the trade-off strategies [13].

3.2 Meta Model

We base our negostrategy-meta model on the meta model Ecore of the Eclipse
Modeling Framework (EMF)1. As shown in Figure 3 the meta model for trade-
off strategies has been modeled in two packages. Within the base package

Fig. 3. Package diagram of the trade-off meta model

negotiation attributes are defined that can be used to define trade-off strate-
gies. Also basic operators and other term are defined in the base package. The
base package is detailed in Figure 4.

Trade-off relations are defined in the agentnegos package (Figure 5). Within
this package we distinct between attributes that describe the context, in which
a trade-off relation is valid, and attributes used within a trade-off relation. A
trade-off strategy is formed by a set of trade-off relations and their context. The
context allows to specify when a particular relation is applicable.

1 see http://www.eclipse.org/modeling/emf, accessed at 27.10.2012.

http://www.eclipse.org/modeling/emf

46 R. Schumann, Z. Kurtanovic, and I.J. Timm

Fig. 4. The base package of the trade-off strategy meta model

In the following we highlight the three major concepts of the proposed meta
model in more details, these are negotiation strategies root, trade-off negotiation
attribute, and trade-off relation. The entire meta model can be found in [14]. For
most of the concepts we have also defined a graphical notation, to allow further
extensions, like a graphical editor for defining trade-off strategies, following our
vision that the agent behavior can be defined by the principal of the agent, and
not by a programmer.

The negotiation strategy root contains all negotiation attributes and their trade-
off relationships. It can be seen as the artificial root node, for the entire forest rep-
resenting a trade-off strategy. Each tree in the trade-off strategy has a priority, so
the relative value between the trees can be encoded. Also an acceptance thresh-
old is stored in the strategy. The acceptance threshold specifies a value that the
agent use to a) generate an offer that is acceptable or b) decide on acceptability of
an offer for the user. The graphical representation for this concept is a trapezoid
containing the name of the service, as shown in Figure 6(a).

A trade-off negotiation attribute represents a negotiation attribute used in a
trade-off strategy. It has a name, a domain, which can be an continuous inter-
val([]) or a discrete enumeration({}), and a preference function over it’s domain,
plus a list of trade-off relationships in which this attribute is involved. The
graphical representation is shown in Figure 6(b).

A trade-off relation encodes the trade-off function between two attributes. A
relation defines the optimal combination of values between the two attributes.
Given the optimal combination between the attribute values of the trade-off func-
tion and the preference functions, the trade-off combinations can be computed
and ranked. A trade-off relation is represented as a labeled edge connecting the

Specification of Trade-Off Strategies for Agents: A Model-Driven Approach 47

Fig. 5. The agentnegos package of the trade-off strategy meta model

��������	
���

(a) Negotiation strategy
root

�����

���	
��	�

(b) Negotia-
tion attribute

�����

���	
��	�

����������������

��
��
��
���

��������

(c) Trade-off relation be-
tween two negotiation at-
tributes

Fig. 6. Graphical representation for negotiation strategy concepts

two negotiation attributes. The label is the optimal value combination of both
attributes. An example is shown in Figure 6(c).

Additionally, it is possible to specify the context for which the trade-off re-
lations are defined. For instance, it is possible to differentiate the strategies
depending on with whom the agent negotiate.

3.3 Specification of Trade-off Strategies

As we use the EMF as a base for our meta model we have the option to pro-
vide a graphical editor for negotiation strategies in the near future. As outline
above, this would enable strategy specification by non IT-experts, which most
often comprises the persons responsible for the outcomes of a negotiation, e.g. a
manager.

Currently, a negotiation strategy is specified using an Eclipse widget that
has been generated automatically based on the specification of the meta model.

48 R. Schumann, Z. Kurtanovic, and I.J. Timm

Fig. 7. Overview of the current trade-off strategy editor: 1) points at the particular tab
for editing the trade-off strategy 2) panel for the editing of attribute values 3) panel
for the navigation within the attribute tree forming the data structure used for the
trade-off strategy

A screen shot is shown in Figure 7. Of course this form is not suitable for non IT
experts. Therefore a graphical editor is needed. The strategy is specified in form
of structured attribute value pairs, as shown in Figure 8. The specified strategy
will be validated against the meta model and saved in the XMI format.

3.4 Model Transformation

If a trade-off strategy has been specified it needs to be transformed into a repre-
sentation that can be used by a software agent. This requires platform-specific
details which supplies the EMF-generator with information like the connec-
tions between multiple Ecore-models, the name of the generated files, referenced
Ecore-models etc. [15]. Based on the XMI file a generator transforms a trade-off
strategy into a representation that can be used by an agent. We have decided
to use a relational representation. In this representation all acceptable deals,
i.e., combination of values for negotiation attributes that exceed the specified
acceptance threshold, are stored.

Specification of Trade-Off Strategies for Agents: A Model-Driven Approach 49

Fig. 8. Detailed view on the panel for editing the negotiation strategy

These deals are precomputed, because the problem of finding the next best
offer in a negotiation process would be too time consuming, for details see Lou
et al. [4]. In the same way the set of acceptable deals is precomputed. This
shifts the computational efforts form the execution into the compilation phase.
During the negotiation, queries are performed to retrieve elements with specific
characteristics in the set of acceptable deals. This querying can be done efficiently
using a relational representation, e.g., in form of SQL queries [16].

A trade-off strategy is transformed into a set of tables. For each tree of a trade-
off strategy a table is generated. Each negotiation attribute is represented by a
column. Each row specifies one acceptable deal. The set of tables is computed by
the function generateTables presented in Algorithm 1. For each tree of a trade-
off strategy, first a representation set of the root is generated. Afterwards the
representation sets of the direct child-nodes are induced by the corresponding
trade-off functions. Each directed edge in a tree represents a trade-off relation
from parent node to child node.

Consequently, a resulting table has a column for the parent node’s values, possi-
ble several columns holding child node’s values, a columnwith the preference values
and one column with preference values with priority degree considered. The struc-
ture of such a table is outlined in Table 1. In the resulting table preferences and
priority-preferences are aggregated, e.g. using the arithmetic mean. Examples for
such tables can be seen below in Figures 12 and 13. For retrieving information
about a negotiation attribute it can become necessary to join several tables.

Table 1. Example of a table representing a trade-off relation between ParentAttrib1
and ChildAttrib1

ParentAttrib1 ChildAttrib1 Pref PrioPref

...

50 R. Schumann, Z. Kurtanovic, and I.J. Timm

Algorithm 1. Pseudo code of the tree transformation algorithm

function generateTables(set of trees forming a trade-off strategy)
for each Tree do

generate a representation set of the root
Call InduceRepresentationSet(root)

end for
end function
function InduceRepresentationSet(Node X)

if X NOT ROOT then
Induce a representation set from X

end if
for each Child-Node C of X do

InduceRepresentationSet(C)
end for

end function

4 Automating Negotiations: A Case Study

In this section we demonstrate the specification of a negotiation by an example.
We show for a simple negotiation scenario how trade-off specification can be
done, and the resulting negotiation outcomes.

4.1 Negotiation Model

Since we focus here on the trade-off strategies, we choose an existing negotiation
model presented by Lou et al. [4]. It is a simple bilateral negotiation setting.
Two roles are defined: a buyer and a seller agent. Both agents negotiate about
a contract with a number of attributes like price, quality, delivery or payment
date. Each agent has a global preference function for all permutations of all
possible outcomes of the negotiation. The seller provides access to an information
service, that the buyer wants to subscribe to. Attributes of the contract are price,
actuality of the data, contract duration, and accounting period.

The agents operate in a semi-competitive environment. This is reflected by
their behavior strategies which are based on the principled negotiation approach
[2]. They try to weaken their position only minimally, e.g., by minimal infor-
mation disclosure, and minimal relaxation of their desires [4]. The negotiation
protocol is based on the alternating offers protocol [17]. The behavior of the
seller agent is presented in Figure 9(a). The ready state is the initial state. The
states check and relax represent the allowed performatives of sending messages
of an agent in a given negotiation state. The edges represent the performatives
of the buyer agent that can be received during a negotiation encounter. When
the performative find is received the negotiation is initiated and the agent can
answer with the performatives check or relax. The performative check is used
to ask the other agent to check if an offer satisfies its requirements. If no offer
could be found that satisfies the published buyers constraints, the seller asks to
relax at least one of the constraints, so that a suitable offer can be found.

Specification of Trade-Off Strategies for Agents: A Model-Driven Approach 51

(a) Seller agent’s behavior protocol (b) Buyer agent’s behavior
protocol

Fig. 9. Negotiation protocol for seller and buyer

The buyer agent’s behavior protocol is presented in Figure 9(b). The states
and edges are defined analogous to figure 9(a). The buyer starts a negotiations
by sending a find -performative to the seller agent. Agents constrains future of-
fers by sending constraints that all offers have to fulfill, e.g., the price should
be below 340e. Constraints are published with descending priority. An offer is
checked and either accepted or another constraint is published to specify the
requirements more precisely, by communicating the violated constraint with the
highest priority. The constraints that needs to be satisfied and the preference
function among all available feature combination of negotiation attributes en-
codes the negotiation strategy. Both have to be defined by the principal of the
agent.

4.2 Specification of Trade-off Strategies for the Example

From the seller’s perspective the negotiation attributes have the following do-
mains: The price can be in a range between [120,270] e, of course a higher price
is preferred. The delivered data can have an actuality of 1,2,4 or 6 hours. As more
accurate data is more expensive, older data is preferred. The seller assumes its
optimal ration between profit and accuracy ise 170,- for two hour old data. Pos-
sible contract durations are 6,12,18 or 24 month, a longer duration is preferred.
Accounting periods are 1,3,4 or 6 months, shorter periods are preferred, not giv-
ing a credit to the customer. Based on the notation presented in Section 3 the
resulting trade-off strategy can be modeled as shown in Figure 10. v

From the buyer’s perspective the attributes have other desired values and
preferences, of course. The price should be in the interval between [100,200] e,
and a lower price is preferred. Actuality of the data should be between two and
five hours, more accurate data is preferred and a higher price is acceptable. A fair
ratio between accuracy and price for the buyer is paying e 150,- for three hours
old data. The contract duration can be in the interval between [3,24] month,
where a shorter duration is preferred. For a better (for the buyer a lower) price

52 R. Schumann, Z. Kurtanovic, and I.J. Timm

�����

���	
��	�

���������

����������������

��
��
��
���

�����	
�

�����������������

��
�
��

��������� �!�"

�	�� ���

#�!�$���%%

��
�
�
�
&
��

Fig. 10. Graphical representation of the seller trade-off strategy

the buyer is willing to accept a longer contract duration. Acceptable accounting
periods can be one to three month. Longer periods are preferred, but for a better
price, shorter periods can be accepted. The graphical model for this strategy is
shown in Figure 11.

�����

���������

���������

��	
��
�����
��	

������

���	�

���	
�	��������

�����

�������������

����

�
�����

�����

�������

Fig. 11. Graphical representation of the buyers trade-off strategy

We have specified these two strategies with our editor and generated the
relational representation for these strategies. The resulting set of acceptable
deals have been generated. The relational representation for the seller’s strategy
is shown in Figure 12 and for the buyer’s strategy in Figure 13.

We have implemented negotiating agents, based on the Jade framework2, that
use the relation representation to negotiate with each other. In Table 2 we present
the negotiation process, as it has been executed by the agents for the described
example. The buyer starts the negotiation by selecting the row of the table shown

2 see http://jade.tilab.com, accessed at 27.10.2012.

http://jade.tilab.com

Specification of Trade-Off Strategies for Agents: A Model-Driven Approach 53

Fig. 12. Relational representation of seller’s trade-off strategy. His thresholds are
already considered, thus only acceptable trade-offs are shown.

Fig. 13. Relational representation of all possible attribute combinations of the at-
tributes price, actuality and contract duration

Table 2. Full negotiation trace of buyer and seller (PR: price, AC actuality, CD con-
tract duration, AP accounting period)

Round 1
Buyer

Performative: Find
Constraint: PR ≤ 160

Seller
Performative: Check
(PR:150,AC:4,CD:18,AP:1)

Round 2
Buyer

Performative: Find
Constraint: PR ≤ 160 ∧ AC ≤3

Seller Performative: Relax

Round 3
Buyer

Performative: Find
Constraint: PR ≤ 145 ∧ AC ≤3

Seller Performative: Relax

Round 4
Buyer

Performative: Find
Constraint: PR ≤ 175 ∧ AC ≤3

Seller
Performative: Check
(PR:165,AC:2,CD:18,AP:1)

Round 5
Buyer

Performative: Find
Constraint: PR ≤ 175 ∧ AC ≤3 ∧ CD ≤ 13

Seller Performative: Relax

Round 6
Buyer

Performative: Find
Constraint: PR ≤ 190 ∧ AC ≤3 ∧ CD ≤ 15

Seller
Performative: Check
(PR:180,AC:2,CD:12,AP:1)

Round 7
Buyer

Performative: Find
Constraint: PR ≤ 190 ∧ AC ≤3 ∧ CD ≤ 15 ∧ AP ≥ 2

Seller
Performative: Check
(PR:180,AC:2,CD:12,AP:3)

Round 8 Buyer Performative: Deal

54 R. Schumann, Z. Kurtanovic, and I.J. Timm

in Figure 13 with the most preferred combination of attributes’ values according
to his trade-off strategy. According to his behavior strategy the agent tries to
minimize the revelation of private information, thus revealing only one constraint
per round to the seller, i.e. the agent requests a deal for a price ≤ e 160,-. The
seller then queries his possible deals to find a suitable offer. The seller sends it’s
most preferred bid to the buyer and asks him to evaluate it. In round 2 the buyer
finds that the offer is not acceptable because some constraints are violated, e.g.
for the offered price a better actuality of data and shorter contract duration is
expected. In consequence the buyer asks the seller to find another offer satisfying
the price and another published constraint, i.e. the actuality should equal or
below 3 hours. The seller agent has no fitting offer and requests a relaxation of
the constraints. In doing so the buyer lowers his expected satisfaction degree he
will obtain in this negotiation. Finally, after 2 more unacceptable offers from the
seller in rounds 4 and 6, a deal is reached in round 8.

5 Conclusion

In this articlewe presented ametamodel,which enables humannegotiators to spec-
ify trade-off strategies.As ourmetamodel is based on theEcoremodel,wewere able
to define code generators that transform trade-offmodels into a representation that
can be used by software agents. With this approach it becomes possible that, e.g.,
a procurement manager can specify their trade-off strategies, and software agents
can negotiate on their behalf. Following theMDDprinciple we can avoid the expen-
sive and possibly erroneous process of encoding the negotiation strategies by hand.
We have demonstrated the feasibility of our approach in an prototype capable to
perform simple negotiations as shown in the previous section.

The vision of our research is to allow a human negotiator to specify their entire
negotiation strategy in a form that can be transformed automatically into reason-
ing knowledge of an agent. Therefore the principal of the agent is not required to
have any knowledge about software agents or programming. In the future we want
to realize further steps towards this vision.Wewill extend our tooling to covermore
aspects of negotiations.As our trade-off specificationmetamodel includes a graph-
ical notation, we are going to develop a visual editor for the specification of nego-
tiation strategies, to making it more convenient for humans. Moreover, we want
to automate more phases of the specification of software agent negotiations using
MDD principles. So further steps can be the specification and automated transfor-
mation of negotiation protocols, including the embedding of the strategy specific
behavior within the executable model of the protocol.

Another important non-technical aspect that needs to be covered, is to inves-
tigate under which conditions humans could be willing to completely automate
negotiations, or are willing to accept propositions made by an automated nego-
tiation system. Thus, after a sufficient tooling has been created it is necessary
to study the acceptance of such a technology. This is also necessary to adapt the
methodology and tooling towards a) scenarios in which a automation is accepted
by the users, and b) towards the needs of the human negotiators that are willing
to be supported by negotiating agents.

Specification of Trade-Off Strategies for Agents: A Model-Driven Approach 55

References

1. Luo, X., Jennings, N.R., Shadbolt, N.: Acquiring user tradeoff strategies and prefer-
ences for negotiating agents: A default-then-adjust method. Int. J. Hum.-Comput.
Stud. 64(4), 304–321 (2006)

2. Fisher, R., Ury, W.: Getting to yes: Negotiating agreement without giving in, 2nd
edn. Mifflin, Boston (1991)

3. Steele, P.T., Beasor, T.: Business negotiation: A practical workbook. Gower, Alder-
shot (1999)

4. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H., Lee, J.: A fuzzy constraint based
model for bilateral multi-issue negotiations in semi-competitive environments. Ar-
tificial Intelligence Journal 148(1-2), 53–102 (2003)

5. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for Au-
tomated Negotiation among Computers, 2nd edn. MIT Press, Cambridge (1998)

6. Sandholm, T.: Distributed rational decision making. In: Weiss, G. (ed.) Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence, pp. 201–258.
MIT Press (1999)

7. Chiu, D.K.W., Cheung, S.C., Hung, P.C.K.: Facilitating e-Negotiation Processes
with Semantic Web Technologies. In: Proceedings of the 38th Annual Hawaii In-
ternational Conference on System Sciences, HICSS 2005, p. 36a. IEEE Computer
Society (2005) ISSN=1530-1605, doi:10.1109/HICSS.2005.269

8. Benyoucef, M., Rinderle, S.: A model-driven approach for the rapid development
of e-negotiation systems. In: EMISA, pp. 80–93 (2005)

9. Wikberg, P.: Eliciting Knowledge from Experts in Modeling of Complex Systems:
Managing Variation and Interactions. PhD thesis, Linköping University, Depart-
ment of Computer and Information Science (2007)

10. Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

11. Hahn, C., Fischer, K.: A platform-independent metamodel for multiagent systems.
International Journal on Autonomous Agents and Multi-Agent Systems (JAA-
MAS) 18(2), 239–266 (2009)

12. Hahn, C., Zinnikus, I., Warwas, S., Fischer, K.: Automatic generation of executable
behavior: A protocol-driven approach. In: Gleizes, M.P., Gómez-Sanz, J.J. (eds.)
AOSE 2009. LNCS, vol. 6038, pp. 110–124. Springer, Heidelberg (2011)

13. Russell, S.J., Norvig, P.: Artificial intelligence: A modern approach. [the intelligent
agent book], 2nd edn. Prentice Hall series in artificial intelligence. Prentice Hall,
Upper Saddle River (2003)

14. Kurtanovic, Z.: Spezifikation von Verhandlungsstrategien. Diploma thesis, Institute
for Computer Science, Goethe University Frankfurt a.M. (2008)

15. Budinsky, F.: Eclipse modeling framework: A developer’s guide. The eclipse series.
Addison-Wesley, Boston (2003)

16. Apt, K.: Principles of Constraint Programming. Cambridge University Press, New
York (2003)

17. Osborne, M.J., Rubinstein, A.: Bargaining and markets. Economic theory, econo-
metrics, and mathematical economics. Acad. Press, San Diego (1990)

MDA-Based Approach for Implementing Secure

Mobile Agent Systems

Slim Kallel, Monia Loulou, Molka Rekik, and Ahmed Hadj Kacem

ReDCAD Laboratory
FSEGS, University of Sfax, Tunisia

B.P. 1173, 3038 Sfax, Tunisia
{slim.kallel,monia.loulou,ahmed.hadjkacem}@fsegs.rnu.tn

Abstract. We propose an approach for implementing secure mobile
agent systems. In the first step, we define a meta-model which extends
the UML deployment diagram by concepts related to the security and
mobility of multi-agent systems. We propose also a UML profile as an im-
plementation of this meta-model. All defined concepts are based on for-
mal specifications. In the second step, we project the application model
in AGLETS-specific model, which describes the structure and the main
functionalities of the application using the AGLETS concepts. In the
third step, we generate Java skeleton code from the obtained model, and
we generate also AspectJ code for enforcing security properties defined in
the application model. The generated aspects will be woven, in modular
way, into the functional application code.

1 Introduction

Security problems constitute a brake to the expansion of the mobile agent tech-
nology. In fact, security in mobile agent systems is twofold: it aims on the one
hand, to protect the mobile agents and, on the other hand, to protect systems in
which execute an incoming agent. Indeed, when an agent moves, it is crucial to
ensure that it will be executed correctly on the new visited system. Similarly, it
is crucial to reassure the agent system that there will not be any risk to receive
a new mobile agent.

The design and the development of secure mobile agent-based applications
must be rigorous and assisted in order to surmount the difficulties due to the
complexity of basic concepts related to the mobility and the security. In this
context, some research approaches have been proposed such as [1–3]. However
several limitations have been identified:

First, the specification of security requirements is mostly limited to control
the behavior of mobile agents and their resources access. Second, most of the
proposed approaches do not apply an automatic process until the code genera-
tion. Moreover, these approaches do not consider the implementation on several
mobile agents platforms; they take into account only one platform. Third, not all
steps in the process of implementing security properties are covered; these prop-
erties are not specified in the early phases of software development but rather

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 56–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

MDA-Based Approach for Implementing Secure Mobile Agent Systems 57

added later, which negatively affects the application code’s quality. Therefore,
these approaches do not support a refinement technique between the different
phases until the code generation. Fourth, the implementation of security policies
in mobile agent systems, often, poses serious problems: The code is not encap-
sulated in separate modules; it is mostly written and integrated manually with
the functional application code. This lack of modularity leads to overlapping
and interlacing the code. Thing which increases considerably the complexity of
systems. In addition, there is no guarantee that the code implementing these
requirements is conform to the specification.

To overcome all previous limitations, we propose a generic approach baptized
MDS4MAS which combines the advantages of model-driven architecture and
aspect-oriented programming for developing secure mobile agent systems. Our
approach covers the whole development process of secure mobile agent systems:
starting from the formal specification, the platform-independent modeling, the
AGLETS specific modeling by automatic transformation, to the generation of
functional application code and security code as aspects.

Our approach offers a better way to reduce the complexity of mobile agents
and their needs for security. It supports also most of security concepts related
to mobile agent systems. Based on aspect-oriented programming, our approach
provides modular and maintainable security code. Finally, our approach can also
be applied automatically in other multi-agent platforms based on the refinement
techniques and the transformation rules for generating corresponding code.

The remainder of the paper is organized as follows: Section 2 presents the
phases composing our approach. Section 3 gives an overview of the formal spec-
ification and verification of secure mobile agent systems and Section 4 presents
the modeling of such systems. Section 5 presents the transformation of the appli-
cation model into the AGLETS specific model. Section 6 describes the automatic
code generation from the specific model. In Section 7, we illustrate our approach
on an E-commerce case study. Section 8 reports on related work while Section 9
concludes the paper and presents areas of future work.

2 Our Proposed Approach

Our approach presumes a three-phase process as shown in Figure 1.
The first phase consists of designing with a high level of abstraction secure

mobile agent systems. This phase corresponds to the PIM level of the MDA
approach. We extended the UML deployment diagram by defining a new meta-
model for specifying new concepts required to model the security and mobility of
agent systems. We proposed also two UML profiles as an implementation of this
meta-model. The first one MobilityProfile extends UML in order to model a mo-
bile agent system, while the second profile SecurityProfile consists of modeling
security aspects of such systems. In addition to a set of stereotypes, this profile
defines a set of OCL constraints to specify security constraints. This phase is
based on our previous work [4], which proposes a conceptual model that rigor-
ously specifies the key concepts of secure mobile agent systems and unifies their

58 S. Kallel et al.

Fig. 1. An overview of MDS4MAS approach

representations independently of the specific application domain. Moreover, we
presented a formal verification framework which gives more completeness and
more consistency to the proposed specifications.

The second phase, known as PSM level in MDA approach, consists of gen-
erating a new model as a result of projecting the application model (described
in the previous phase) in a specific platform. We defined and applied a set of
transformation rules on the proposed model in order to generate automatically
an AGLETS specific model. This model describes the structure and the main
functionalities of the application using the AGLETS concepts.

In the third phase, we are interesting in the code generation process. Us-
ing Acceleo tool [5], we implemented a code generator based on two templates
for generating the corresponding mobility and security code. The first template
generates a Java skeleton code from the obtained AGLETS specific model (de-
scribed in phase 2), while the second template consists of generating aspect code
in AspectJ language from the OCL expression specifying the security constraints
(described in phase 1). The generated aspect will be integrated in modular way
into the functional application code for enforcing security constraints.

MDA-Based Approach for Implementing Secure Mobile Agent Systems 59

3 Formal Model for Secure Mobile Agent Systems

In this section, we present the formal specification of secure mobile agent systems
[6] that support the expression of numerous security policy types in order to
control the behavior of system entities and to protect them. In order to avoid
any anomalies able to reduce the policy performance, we verify the consistency
of the proposed specifications as well as the consistency intra-policy. All the
proposed concepts are specified rigorously using Z notation [7] and checked using
the Z/EVES toolkit [8].

3.1 Formal Specification

According to the study of several mobile systems, we present the most funda-
mental concepts of secure mobile agent systems. For mastering the complexity
related to the mobility and the security of mobile agent systems, we adopt a
high level of abstraction which eliminates any useless details in relation to the
required properties.

A Mobile Agent System (MbAS) is a computer network composed of a set
of interconnected host machines. Each one, has a unique name and described by
a set of computing resources CResource which design its hardware features. On
the same machine, one or more agents based systems AgentSystem can execute.

An Agent System (AgS) is composed of a set of agents (stationary/mobile)
evolving within an environment. This latter offers the basic functionality for
mobile agent execution. Indeed it ensures agent creation and initialization, re-
ception of incoming agents, communication between agents, access to resources,
agent migration, etc. These control services and others of application will be
ensured by service agents.

In general, aMobile Agent (MAg) is an active entity capable to migrate from
one site to another in order to get nearer to the required resources and services
to accomplish properly its goals. A MAg can be specified as a stationary agent
which should have some others attributes to express its mobility.

Thus, a mobile agent should be identified by a name defined at its creation.
This identity will be used to be able to localize the agent after its migration
and communicate with it. In addition, a mobile agent must remember the site
of its creation to be able to come back. The mobile agent acts according to its
capability and its knowledge in order to achieve tasks that are affected to him.
It defines its new localization according to its requirements in terms of resources
and services and according to its partial view of inter-hosts connections. The
sequence of visited systems constitutes the agent itinerary.

Both agent system and mobile agent should have well defined security pol-
icy with the aim to screen the incoming agents and/or adversary agent system
respectively adversary mobile agent and hosting agent system. Thus, a secure
entity SEntity can be either a mobile agent (MAg) or an agent system (AgS).

SEntity ::= MAg〈〈MobileAgent〉〉 | AgS 〈〈AgentSystem〉〉

60 S. Kallel et al.

Mobile agents and Agent systems aim to protect their secure objects denoted
by SObject. A secure object may be either data Data, or service or computing
resource CResource : : SObject ::= D〈〈Data〉〉 | Sr〈〈Service〉〉 | Rs〈〈CResource〉〉.
A security policy SecurityPolicy regroups a set of security rules SecurityRule.
Each one is described by :

– A type of the security rule Type. In order to express various kinds of security
policies, Type may be either authorization or prohibition or obligation,

– The secure entity concerned with the security rule Interested . It may be
either, a mobile agent or an agent system.

– The subject entity RSubject on which we apply the rule. It’s defined by a
non empty set of mobile agents or agent systems

– The target object Target . It defines the set of objects to be protected.
– A non empty set of actions ControlledAction to be enforced by the rule to

reach the desired behavior.

We formally specified a security rule using Z notation as follows.

SRule
Name : Propriety
Type : SConstruct
Interested : SEntity
RSubject : F1 SEntity
Target : FSObject
Context : Condition
Actions : F1 Action

∀ r : CResource | Target = {Rsr} • (Type = Auth ∨ Type = Prohb) [C1]
∧ (∃ s1 : AgentSystem • (Interested = AgSs1 ∧ r ∈ s1.Reserved res))

∧ ¬ (∃ s2 : AgentSystem • AgSs2 ∈ RSubject)
∀ sc : Service | Target = {Srsc} • (Type = Auth ∨ Type = Prohb) [C2]

∧ (∃ s1 : AgentSystem • (Interested = AgSs1 ∧ sc ∈ s1.Services))
∧ ¬ (∃ s2 : AgentSystem • AgSs2 ∈ RSubject)

Type = Oblig ⇒ {Context} �= ∅ [C3]

The declarative part presents all security concepts, while the predicate part
specifies the security related constraints.

The specification of a security rule must satisfy three constraints, given in
the predicate part. For example [C1] states that when a target of a given rule
is a computing resource, then the Interested entity in the rule must be an AgS
and, indeed, the RSubject of the rule must be a MAg. Moreover, we check with
[C1] that the AgS denoted with Interested can only control the access to its own
resources.

MDA-Based Approach for Implementing Secure Mobile Agent Systems 61

Formally, a security policy is specified with the following schema:

SPolicy
Subject : SEntity
Rules : FSRule

∀ r : SRule | r ∈ Rules • r .Interested = Subject
∀ a, b : SRule | a ∈ Rules ∧ b ∈ Rules ∧ a �= b

• a.Name �= b.Name

In the predicate part, we check that a policy SPolicy regroups the security rules
which have the subject defined in the declaration part. Moreover, we check that
different rules have different names.

3.2 Formal Verification

Writing proofs is an essential part in order to show the consistency of the spec-
ification and consequently improves the quality of the desired software [7].

Conflicting and redundant security rules may reduce the performance of the
policy and even make it inefficient. In fact, it is important to associate to the
specification of security policies, a verification framework which checks the two
main cases of policy inconsistencies : the modality conflicts and the redundancy
of rules.

Regarding the adopted specification of security policies, we distinguish three
different modalities which are authorization, prohibition and obligation. Two
types of modality conflicts may occur :

– An authorized action is forbidden by a prohibition rule,
– An obligation rule may require to perform an action which is forbidden by

a prohibition rule.

For modeling the relationships which may exist between two or several rules,
three relations has been defined: an unary relation named Consistent and two
binary relations named Contradictory and Redundant.

In order to prove the consistency of a given policy, we should check that there
is no contradiction between the policy rules and there is no redundant rules. On
that basis, a rigorous definition of policy consistency given by a rewriting-rule
Def Consistent is defined. It appeals the definition of Redundant and Contradic-
tory relations. A complete description of the specification of Contradictory and
Redundant relations is presented in [6]. To prove the consistency of a given pol-
icy requires to define a theorem which refers to the specification of the relation
Consistent. Let’s assume a security policy Test Policy. To prove the consistency
of Test Policy, we add the following conjecture asserting:

62 S. Kallel et al.

Consistent : PSPolicy

∀ p : SPolicy • Consistent p
⇔ (∀ a, b : SRule | a ∈ p.Rules
∧ b ∈ p.Rules ∧ a �= b

• ¬ a Redundant b ∧ ¬ a Contradictory b)

theorem verif consistency
Consistent Test Policy

The theorem’s goal predicate is Consistent Test Policy. When, we obtain the
predicate true, after running a list of proof scripts, we prove that the conjecture
is a theorem, and Test Policy, indeed, is a consistent policy. A detailed example
with regard to the proof of an intra-policy consistency is presented in [6].

After specifying and verifying secure mobile agent systems, the Z specification
will automatically be transformed to a UML Model, which will be detailed in the
next section. This transformation offers to the designer an easily way to design
his secure mobile agent system and generate after that the corresponding code.
The details of transformation rules is out of scope in this paper.

4 Modeling Secure Mobile Agent Systems

Recently in [9], we proposed a meta-model, which supports the already for-
mally specified concepts required for modeling secure mobile agent systems. Our
MDS4MAS meta-model is composed in two packages. The first one describes
the mobility concepts while the second one is interested in the security of mobile
agent systems. All these concepts are defined in our meta-model, which repre-
sents the vocabulary of a language which is used to specify the model. Du to lack
of space, we will schematically present, in the following figure, only the security
package of our meta-model.

We proposed also an UML profile as an extension of the UML2.0 deploy-
ment diagram for modeling secure mobile agent systems. This profile defines
all previous cited concepts in our meta-model as UML elements through defini-
tion of stereotypes for each meta-class. In addition, our profile contains a set of
OCL constraints to impose some restrictions on the defined stereotypes. Figure 3
presents a part of the proposed UML profile. For example, the stationary and the
mobile agent extend the meta-class component, while the agent system and the
mobile agent system extend respectively the meta-class Execution environment
and node. As an example of security elements, the SecurityModel, SecurityPolicy
and SecurityRule are defined as class and the SObject extends the meta-class
Artifact and Interface.

5 AGLETS Specific Modeling

According to the MDA approach, the next step corresponds to the transforma-
tion of application model into platform specific model. So, we need essentially to

MDA-Based Approach for Implementing Secure Mobile Agent Systems 63

Fig. 2. MDS4MAS meta-model for secure mobile agent systems

specify a deployment platform for mobile agents. We select the AGLETS plat-
form [10] for three main raisons: First, AGLETS requires a security framework
to ensure the access control of the agents. Second, it offers an environment for
programming mobile Java objects which react like mobile agents that can move
from one machine to another. Third, Several concepts of the AGLETS platform
are defined in our meta-model.

We proposed an UML profile partially describing the AGLETS platform. It
allows to automatically project the application model into AGLETS specific
model. This profile is presented in Figure 4, and represents only the most im-
portant concepts of the AGLETS platform. These AGLETS concepts are de-
fined as stereotypes. Aglet represents the mobile agent, which is identified by
an AgletID and communicates using Message. While AgletContext repre-
sents the environment of execution which manages the life cycles of the aglets
by offering them services and protecting the host against malicious aglets.

We use Atlas Transformation Language (ATL) [11] for automatically trans-
lating the application model into AGLETS specific model. We start by defining
the mapping between the concepts at meta-models level. The mapping suggested
between our MDS4MAS meta-model and the meta-model of AGLETS leads to
determine transformation rules needed to be applied on all application models
in conformity to the application meta-model.

64 S. Kallel et al.

Fig. 3. The proposed UML profile

Fig. 4. UML profile for a partial description of AGLETS platform

MDA-Based Approach for Implementing Secure Mobile Agent Systems 65

We take for example the transformation rule named AgM2Aglet, which con-
nects the element stereotyped Agent whatever StationaryAgent or MobileAgent
of application model with the element stereotyped Aglet of AGLETS specific
model. We call a set of lazy rules to add some attributes and operations which
are necessary for the implementation of our application, which are AGLETS
specific.

6 Code Generation

The code generation process is composed of two parts. The first part corre-
sponds to the generation of the functional code including the mobility concepts.
A Java code is automatically generated from the AGLETS specific model, which
does not contain any security related code. The second part corresponds to the
generation of security code, which is generated automatically from the OCL con-
straints describing the security constraints. We generate aspect code, which will
be integrated in modular way within functional application code to verify at
runtime if the specified security constraints are satisfied.

Using Acceleo, we create a new template which takes in consideration all
proposed stereotypes in AGLETS specific meta-model. Our template describes
that each stereotyped class will be translated as a Java class that inherits another
class named by the name of the stereotype. As an example, each Aglet agent (the
class agent stereotyped with Aglet) will be translated to a class with the same
name and will extend the predefined class Aglet. In addition, all cited methods
and attributes in AGLETS specific model will be translated to corresponding
code.

We take advantage of the AOP paradigm, which provides a high-level of mod-
ularity, to define a generative aspect-based approach that generates the corre-
sponding security aspects. Therefore, we propose to generate AspectJ code to
implement security concerns in a mobile agent application. Thus, we define Ac-
celeo template to generate an aspect code from these concerns according to the
AspectJ language [12]. We generate an AspectJ aspect for each security con-
straint specified using OCL.

As presented in Listing 1.1, the aspect template consists of three main parts:
an aspect declaration, a pointcut and an advice. (i) The aspect declaration (lines
2 – 5) consists of defining the name of the aspect as well as the name of aspect file,
which corresponds to the name of the corresponding security constraint. (ii) The
pointcut (lines 8 – 12) intercepts, for each instance of security rule, the methods
execution of the entity concerned with security. These methods represent in our
modeling the controlledAction attribute in the SecurityRule class. (iii) The advice
code (lines 15 – 28) checks if the corresponding OCL constraint is specified. If
the constraint is well satisfied, the aspect executes the intercepted agent action
and updates the state of system. Otherwise, an exception will be handled and
the aspect prohibits the execution of this action.

66 S. Kallel et al.

Listing 1.1. Aspect Template

1 // ============== Aspect D ec l a r a t i o n (p a r t 1) ==============
2 [module gene ra teAspe c t /]
3 [t emp l a te p u b l i c gene ra teAspe c t (c : C l a s s)]
4 [f i l e (c . name . conca t (’ . a j ’) , f a l s e)]
5 p ub l i c a s p e c t [c . name . t oUpp e r F i r s t () /]{
6

7 // ============== Po in tcu t (p a r t 2) ==============
8 po i n t cu t [c . name . conca t (’ pc ’) /] () : e x e cu t i o n (p u b l i c ∗
9 [f o r (p : Prope r t y | c . g e t A l l A t t r i b u t e s ())]

10 [i f (p . t ype . name = ’ SEnt i t y ’)] [p . name/] [/ i f] [/ f o r] .
11 [f o r (p : Prope r t y | c . g e t A l l A t t r i b u t e s ())]
12 [i f (p . t ype . name = ’ IAgen tAct i on ’)] [p . name/] [/ i f] [/ f o r] (. .)) ;
13

14 // ============== Around Advice (p a r t 3) ==============
15 around () : [c . name . conca t (’ pc ’) /] () {
16 // Genera t i ng Java code from OCL c o n s t r a i n t s as Java c o n d i t i o n s code .
17
18 // V e r i f y i n g i f a l l g ene ra ted c o n s t r a i n t s a r e s a t i s f i e d
19 i f (a l l OC LCo n s t r a i n t s A r e S a t i s f i e t e d) {
20 // The a c t i o n w i l l be execu ted and the sys tem s t a t e w i l l be updated
21 p roceed () ;
22
23 }
24 // Otherwi se , An ex c ep t i o n w i l l be hand led
25 e l s e {
26 sys tem . out . p r i n t l n (”You can not execu te t h i s a c t i o n . . . ”) ;
27 }
28 } }
29 [/ f i l e] [/ t emp l a te]

7 Case Study

We implement a graphical editor as an Eclipse plug-in, so that the designer can
easily model his secure mobile agent system based on our meta-model. Figure
5 presents the model of our case study E-commerce system, which is composed
of a set of stationary and mobile agents. A mobile agent Buyer is created in a
system agents SellerSystem1. This agent can move to another agent systems to
buy computer resource Printers. This agent can move to SellerSystem2 where
exists the Seller presented as a stationary agent, responsible for the action to
sell the Printer resource.

In the shutter console of our MDS4MAS editor, the designer can choose the
tab Interactive OCL to add his security constraints by using the OCL language.
As an example, we defined the security rule SR1, which prohibits the mobile
agent Buyer to buy the computer resource Printer with the stationary agent
Seller if this Printer is reserved to be sold (Figure 6).

According to our approach, we applied the defined transformation rules to
translate the previous platform-independent model (Figure 5) to the correspond-
ing AGLETS specific model, but without supporting security concerns. This
model, shown in Figure 7, is more detailed and near to the technical solution,
since it will be automatically translated after that to the AGLETS code.

As already explained, the transformation rules automatically generate further
methods and attributes for the mobile agent class. For example, in the Buyer
class, only the method toBuy is translated from the application model, all others

MDA-Based Approach for Implementing Secure Mobile Agent Systems 67

Fig. 5. A model of the E-commerce system

methods (e.g., getHome, onCreation, etc.) are automatically created to satisfy
the AGLETS requirements for developing mobile agent.

Finally, we apply also the Java and Aspect templates to generate respectively
AGLETS functional application code and the corresponding security code as
AspectJ aspects. As an example, we present in the Listing 1.2 the Buyer class.
This code contains first the declaration of the required package as well as the
name of the generated class. It contains also the list of attributes (lines 3–5) and
the declaration of the methods(lines 6–9).

Listing 1.2. Part of the generated code

1 import com . ibm . a g l e t . ∗ ;
2 pu b l i c c l a s s Buyer ex tend s Ag l e t {
3 p r i v a t e S t r i n g home = n u l l ;
4 p r i v a t e S t r i n g message = n u l l ;
5 . . .
6 p ub l i c vo i d toBuy () { . . . } // Shou ld be implemented
7 p ub l i c S t r i n g getHome () { r e t u r n t h i s . home ;}
8 p ub l i c vo i d onCrea t i on (Object i n i) { . . . } // Shou ld be implemented
9 . . .

10 }

68 S. Kallel et al.

Fig. 6. An example of OCL constraint

In the same way, we automatically generate aspect from the OCL constraints,
which are defined by the user in the application model. In the following, we detail
the generation of AspectJ code from the constraint SR1 (defined in Figure 5).

In the Listing 1.3, the pointcut SR1pc (line 2) intercepts the execution of
the public method toBuy of the class Buyer (the name of this class is defined
as the context of the SR1 constraint). We note that the skeleton of this method
is already generated as a part of the generation of the functional application
code. The advice (lines 3 – 15) associated with the previous pointcut has the
type around. The constraint SR1 is automatically translated to Java condi-
tion code (lines 4 – 7). If this constraint is satisfied according to the system
state, the method toBuy will be executed using the keyword proceed(line 8).
Otherwise, an exception will be raised and a message will be sent to the user
(lines 11 – 14).

Listing 1.3. An example of the generated security aspect

1 p u b l i c a s p e c t SR1{
2 po i n t c u t SR1pc () : e x e c u t i o n (p u b l i c ∗ Buyer . toBuy (. .)) ;
3 around () : SR1pc () {
4 i f (aC l a s s . t a r g e t . e qua l s (” P r i n t e r ”) && aC l a s s . e n t i t y . e qua l s (” Buyer ”)
5 && aC l a s s . c o n t r o l l e dA c t i o n . e qua l s (” toBuy ”) && aC l a s s . s u b j e c t . e qua l s (” S e l l e r ”)
6 && ! (aC l a s s . e t a t r e s . e t a t . e q u a l s (” r e s e r v e d ”))) {
7 i f E x pR e s u l t 1 = aC l a s s . t ype . e q u a l s (” Au t o r i z a t i o n ”) ;
8 proceed () ;
9 // Updat ing system s t a t e .

10

11 } e l s e {
12 i f E x pR e s u l t 1 = aC l a s s . t ype . e q u a l s (” P r o h i b i t i o n ”) ;
13 system . out . p r i n t l n (”You can not e x e cu t e t h i s a c t i o n . . . ”) ;
14 }
15 }
16 }

MDA-Based Approach for Implementing Secure Mobile Agent Systems 69

Fig. 7. Platform-specific model of AGLETS

8 Related Work

Several research works have been proposed for modeling and enforcing security
policies for mobile agent systems.

Bryce [2] proposes a security framework which supports the specification of the
security policies for mobile agents and their execution systems (host or place).
The framework specification has been preceded by the definition of a conceptual
framework that exhibits the main concepts related to the system structure, and
the different stages of agent life cycle (i.e. creation, communication, migration
and termination). Based on these concepts, the security policy of an agent (mo-
bile agent / host) has been expressed. It’s limited to the control the agent access
rights.

In fact, the rights are assembled into groups and the agent must be associated
to a group to benefit from his rights. The agent may have different trust levels
at each host. Therefore, it must be adaptable to the execution environment and
respond to the trust level of the visited host. This adaptation is expressed by
the change of agent group. After a change of group, the agent must ensure that
it is able to continue its execution on the new host. To check this property it is
necessary to apply logical foundations in the specification of the policy. The use
of such foundations was completely absent in this work.

Moreover, this framework is implemented over a Java-based agent system
called JavaSeal and it can easily be adapted to other systems. However, the
authors do not clearly demonstrate the mapping from models to code. Therefore,

70 S. Kallel et al.

it is extremely difficult to use the models created by using the methodologies to
generate code to another platform.

Beydoun et al. [13] extend the FAML (FAME Agent-oriented Modeling Lan-
guage) [14] to support modeling of security concerns. This work constitutes only
the first step of the model-driven engineering lifecycle. The proposed extension
of FAML consists of two sets of modeling classes (metaclasses): One set to model
the security requirements of a multi-agent system (MAS) and another to model
security actions satisfying the security requirements. On the one hand, the pro-
posed metamodel does not support the modeling of fundamental concepts of mo-
bile agent systems. On the other hand, the security actions have been modeled
in very abstract way. In fact the authors do not explicitly present the possible
kinds of actions to undertake, their applicability context, and on which object
it will be applied.

Ugurlu and al. [1] describe how to protect system-level resources and agents
against unauthorized access. They offer a high level of flexibility for specifying
security policies. In this work, two types of policies were supported: The host
policy protects local resources from a host against the unauthorized actions. The
agent policy determines the aptitude of agent to carry out requests on distant
hosts. In addition, this type of policy protects agent against malicious hosts or
other malicious agents. Each policy is defined by a number of ECA rules. How-
ever, this approach supports only the specification of the access control rules.
The platform SECMAP (Secure Mobile Agent Platform), implements this frame-
work. It is a graphical interface that allows the designer to control its agents and
manually adapt their policies to the security requirements of the new system.
However, the security policies are considered only at the implementation level,
which is not completely automated.

In [15], the authors introduce extensions to the Tropos methodology to enable
it to model security concerns throughout the whole development process. The
authors insert security concepts during the analysis and the design phases. They
identify four main modelling activities: the first one allows the flexibility during
the development stages of a multi agent system, while the second represents a
set of restrictions that do not permit specific actions to prevent certain objec-
tives from being achieved. The third proposed activity involves the analysis of
secure goals, tasks and resources identified in a multi agent system, and finally
the fourth activity guarantees the satisfaction of the security constraints. Com-
pared to our approach, this work do not clearly demonstrate the mapping from
design models to platform specific models and to functional application and se-
curity code. Therefore, this work combines formal and informal specifications of
MAS. In addition, this work cannot be easily applied into different multi-agent
platforms.

Nusrat et al. [16] present a security communication model SAGLET basing
on existing Aglets architecture. They involve protecting the state of the aglets
and their malicious activities. They propose a new service agent along with a
specific policy. This service agent allows the authentication of the visiting agents,
the control of the communication between service agent and visitor agent, and

MDA-Based Approach for Implementing Secure Mobile Agent Systems 71

allocates resource to agent according to the defined policy. This work focuses
only on the modeling of the security of the communication between agents and
does not provide a framework for specifying the security of the agents and the
agent systems as defined in ours. In addition, this work is specific to Aglets and
cannot be implemented on several platforms.

9 Conclusion and Future Work

We presented a model-driven approach for implementing secure mobile agent
systems. We proposed a framework for modeling mobile agent systems and
their security policies. All concepts are formally defined using Z notation. A
formal verification is also performed to check the consistency of the model. This
platform-independent model is automatically translated to another model spe-
cific to AGLETS platform. We proposed also to generate the functional appli-
cation code from the AGLETS model and generate AspectJ aspects to verify at
runtime the specified security constraints. The generated aspects will be inte-
grated in modular way within the functional application code.

Our current work is grounded in applying our approach on other mobile agent
platforms using different security aspect languages. The designer should model
and formally verify the specification of the secure mobile agent systems indepen-
dently on the platform. He should also define all security constraints using OCL
language.

Based on our approach, we offer to the designer the possibility to generate
different platform specific models like Jade, Aglet, Voyager, and Grasshopper
and we can also generate the corresponding functional code based on a set of
templates. For the security code, we offer the possibility to generate aspect code
in different aspect languages, like AspectJ, JAC and JBossAOP.

In this way, the designer can select the mobile agent platform to generate
the corresponding code and he can also select the way of weaving the generated
security aspects (runtime, compile time, etc), which depends on the selected
aspect language.

References

1. Ugurlu, S., Erdogan, N.: A Flexible Policy Architecture for Mobile Agents. In:
Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 538–547. Springer, Heidelberg (2006)

2. Bryce, C.B.: A Security Framework for a Mobile Agent System. In: Cuppens, F.,
Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895,
pp. 273–290. Springer, Heidelberg (2000)

3. Maria, B.A.D., da Silva, V.T., de Lucena, C.J.P.: Developing Multi-Agent Systems
Based on MDA. In: Proceedings of the 17th Conference on Advanced Information
Systems Engineering - CAiSE. CEUR Workshop Proceedings, vol. 161. CEUR-
WS.org (2005)

4. Loulou, M., Jmaiel, M., Mosbah, M.: Dynamic Security Framework for Mobile
Agent Systems: Specification, Verification and Enforcement. International Journal
of Information and Computer Security - IJICS, 321–336 (2009)

72 S. Kallel et al.

5. Acceleo: Effective MDA (2007), http://www.acceleo.org/
6. Loulou, M., Kacem, A.H., Jmaiel, M., Mosbah, M.: A Formal Security Framework

for Mobile Agent Systems: Specification and Verification. In: Proceedings of the
3rd International Conference on Risks and Security of Internet and Systems, pp.
69–76. IEEE (2008)

7. Woodcock, J., Davies, J.: Using Z: Specification Refinement and Proof. Interna-
tional Thomson Computer Press (1996)

8. Meisels, I., Saaltink, M.: The Z/EVES Reference Manual (for Version 1.5). Tech-
nical report, ORA Canada (1997)

9. Rekik, M., Kallel, S., Loulou, M., Kacem, A.H.: Modeling Secure Mobile Agent
Systems. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.)
KES-AMSTA 2012. LNCS, vol. 7327, pp. 330–339. Springer, Heidelberg (2012)

10. IBM: Aglets (1996), http://www.trl.ibm.com/aglets/
11. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)

MoDELS 2005 Workshops. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg
(2006)

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 327–353. Springer, Heidelberg (2001)

13. Beydoun, G., Low, G., Mouratidis, H., Henderson-Sellers, B.: A security-aware
metamodel for multi-agent systems (MAS). Information and Software Technol-
ogy 51, 832–845 (2009)

14. Beydoun, G., Gonzalez-Perez, C., Henderson-Sellers, B., Low, G.: Developing and
Evaluating a Generic Metamodel for MAS Work Products. In: Garcia, A., Choren,
R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005.
LNCS, vol. 3914, pp. 126–142. Springer, Heidelberg (2006)

15. Mouratidis, H., Giorgini, P.: Secure Tropos: a Security-Oriented Extension of the
Tropos Methodology. International Journal of Software Engineering and Knowl-
edge Engineering 17, 285–309 (2007)

16. Nusrat, E., Ahmed, A.S., Rahman, G.M., Jamal, L.: SAGLET- Secure Agent Com-
munication Model. In: Proceedings of 11th International Conference on Computer
and Information Technology - ICCIT, pp. 371–375. IEEE (2008)

http://www.acceleo.org/
http://www.trl.ibm.com/aglets/

Developing Pervasive Agent-Based Applications:

A Comparison of Two Coordination Approaches

Inmaculada Ayala1, Mercedes Amor1, Lidia Fuentes1, Marco Mamei2,
and Franco Zambonelli2

1 Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga, Spain

{ayala,pinilla,lff}@lcc.uma.es
2 Dipartamento di Scienze e Metodi dell’Ingegneria

Università degli studi di Modena e Reggio Emilia, Italy
{marco.mamei,franco.zambonelli}@unimore.it

Abstract. Pervasive computing is concerned with making our lives eas-
ier through digital environments that are sensitive, adaptive, and respon-
sive to human needs. Different approaches have shown the suitability of
the agent paradigm for the development of pervasive applications. How-
ever, so far no dominant approach has been adopted for the development of
agent-based pervasive systems. In particular, two key classes of approaches
exist, based on FIPA interaction protocols and tuple spaces. The contri-
bution of this paper is the comparison and evaluation of tuple spaces and
FIPA-compliant coordination mechanisms for the development of perva-
sive applications. We are therefore going to compare two approaches that
exemplify these agent technologies: MalacaTiny-Sol and SAPERE.

Keywords: Pervasive computing, Agent Platforms, Tuple spaces,
Evaluation, FIPA, Aspect Orientation.

1 Introduction

Pervasive computing is about making our lives easier through digital environ-
ments that are sensitive, adaptive, and responsive to human needs [1]. Pervasive
computing proposes the development of a new generation of advanced systems,
in which cheap, interconnected computing devices are ubiquitous and capable
of helping users in a range of tasks [2]. Different technologies are contributing
to the development of this vision such as distributed computing, mobile com-
puting, human-computer interaction, expert systems or agent technology, just
to mention a few.

Different approaches have demonstrated the suitability of the agent paradigm
for the development of pervasive applications, because of their capacity to be
autonomous, reactive, proactive and social [3,4]. In recent years, pervasive ap-
plications based on agents have become a reality, with different projects that
exploit agent properties to implement adaptive applications. In these projects,
agent technologies have been adapted to these new environments composed of

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 73–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

74 I. Ayala et al.

heterogeneous devices and communication means. Agents have been embedded
in new devices such as smartphones or sensors, and agent middlewares have been
extended to support the heterogeneity, adding new network wireless technolo-
gies, and new communication paradigms to facilitate the development of these
applications. Agents have been used as abstractions to model and implement
both functionality and devices of an Ambient Intelligence systems, to encapsu-
late artificial intelligence techniques, and to coordinate the different elements
that compose the application.

The works presented in [3,4] highlight that a common approach adopted for
the development of pervasive systems based on agents still does not exist. In par-
ticular, one can think of two radically different models to coordinate agents that
compose a pervasive application: indirect coordination based on tuple spaces
and coordination based on FIPA interaction protocols. These two options have
a great impact on the design of the agent and consequently, on the design of
pervasive applications. In tuple-based approaches, agents interact by exchang-
ing tuples, which are ordered collections of information items. Agents commu-
nicate, synchronize and cooperate through tuple spaces by storing, reading, and
consuming tuples in an associative way [5]. In these approaches, agents have a
simpler design because the tuple space embeds most of the logics of coordination.
Contrarily, and in accordance with FIPA [6], agents are fundamental actors of a
domain, which are able to provide a number of services and provide the function-
ality of the application and integrate in their code the coordination strategies
too. In FIPA approaches, agent communication is based on message passing,
where agents communicate by sending individual messages to each other, which
are distributed through the Agent Platform (AP).

The contribution of this paper is a detailed comparison and evaluation of
tuple spaces and FIPA-compliant approaches for the development of pervasive
applications. The goal of this comparison is to illustrate the advantages and
disadvantages of these approaches in the development of these applications, and
where one approach is more advantageous over another. In order to do this, we
are going to use two agent systems that exemplify these agent communication
and coordination models: MalacaTiny-Sol [7] as an example of FIPA-based com-
munication, and SAPERE [8] as an example of tuple-based coordination. Using
both approaches, we are going to design a few case studies in an Intelligent Mu-
seum (IM) in order to compare the resulting systems. In this evaluation we are
going to asses the internal design of the agent system, and in addition other
important properties of pervasive systems such as adaptability, robustness or
privacy. While this paper is grounded on the comparison between MalacaTiny-
Sol and SAPERE, we believe most of our analysis can be extended to other
FIPA based versus tuple space based implementations.

This paper is structured as follows: Section 2 presents the two approaches that
are going to be used in the evaluation, MalacaTiny-Sol and SAPERE. Section
3 describes how to use both approaches to model different scenarios in an IM.
Section 4 accomplishes the comparison and evaluation of both approaches and
the paper finishes with a Conclusions section.

Developing Pervasive Agent-Based Applications 75

2 Background

In this section we present MalacaTiny-Sol and SAPERE. These agent systems
exemplify two radically different models to coordinate agents that compose a
pervasive application: indirect interaction using tuple spaces and direct interac-
tion using interaction protocols. The first one is a traditional coordination model
which allows agents to interact uncoupling communicating agents in both time
and space by allowing agents to communicate without knowing each other’s iden-
tities [5]. In order to communicate in an asynchronous way agents read, consume,
write or create new tuples in the shared tuple space. The rules (or laws) that
govern coordination in the tuple space are defined outside the agents involved.

A large portion of the community considers interaction protocols, i.e. prede-
termined patterns of interactions, as a means to coordinate MAS [9]. It is the
coordination model proposed by FIPA to be supported by FIPA-compliant APs.
Internally, as part of their behavior, interacting agents ensure that the message
exchange complies with the protocol rules. In order to support the social ability
of interacting agents, exchanged messages include the intention of the agent (by
means of the so-called performative). Unlike tuple-based coordination, the ini-
tiator agent needs to know the identity of its counterpart in the interaction. To
support this feature, the AP provides an agent directory facilitator.

Table 1 summarises the main features of MalacaTiny-Sol and SAPERE, show-
ing that they also differentiate in the distribution infrastructure. However, they
have some features in common such as the agent architecture type, and some of
the devices and network technologies they support.

Table 1. Overview of MalacaTiny-Sol and SAPERE

Feature MalacaTiny-Sol Sapere

Agent architecture Reactive Reactive
Model of coordination FIPA Tuple space
Supported devices J2SE-enabled, Android-enabled,

J2ME-enabled, Sun SPOT,
Waspmote

J2SE-enabled,
Android-enabled

Network technologies 802.11, 802.15.1, 802.15.4 802.15.1
Distribution Infrastructure Centralized Distributed

Although the agents of both systems have reactive architectures, their internal
design is quite different. The design principle of MalacaTiny is the enhancement
of the internal agent architecture, by means of separating the domain specific
functionality from other concerns, mainly related with the coordination and
exchange of messages. MalacaTiny agents interact according to the FIPA speci-
fications and standards. In SAPERE, agents have a simpler design because the
tuple space embeds most the of logics of coordination.

Regarding the requirements of pervasive systems, these approaches focus on
different issues. Principally, MalacaTiny-Sol deals with the heterogeneity of de-
vices and communication technologies presented in many pervasive computing

76 I. Ayala et al.

scenarios. While SAPERE provides a natural metaphor to develop applications
that are distributed in a physical space. More details on these technologies are
provided in the following subsections.

2.1 MalacaTiny and Sol

MalacaTiny-Sol is a FIPA compliant agent system, which adapts and extends
standard agent technologies to facilitate the development of pervasive applica-
tions. In this system we can distinguish two parts: MalacaTiny [10], that allows
agents to be developed for lightweight devices; and Sol [7], which is the middle-
ware where these agents are deployed and provides a set of (FIPA) services for
those agents (i.e. the AP).

MalacaTiny is an implementation of the Malaca agent architecture [11] for
lightweight devices. This agent technology is based on component and aspects1,
which promote the separation of application specific functionality from com-
munication related concerns. In general, in Aspect Oriented (AO) approaches,
crosscutting concerns are identified as those concerns that appear to be dispersed
in different components of the system, usually tangled with other functionali-
ties. These crosscutting concerns are encapsulated as independent entities named
aspects. At compilation or runtime, the aspect behavior is again composed at
specific points of the system execution described by the so-called join points in
a process known as weaving.

In MalacaTiny these crosscutting concerns are identified in the context of
a FIPA-compliant interaction, and are related with the specific functions or
tasks that the agent has to perform in order to coordinate with other agents.
The considered crosscutting concerns (which are then encapsulated as aspects)
are: the formatting of messages (Representation aspect), the distribution of the
messages using different communication means (Distribution aspect), and the
coordination, both internal (Context-awareness aspect) and external (Coordina-
tion aspect) for the agent. The join points where these aspects are invoked are
the reception and the sending of a message, and event throwing. Aspects are
composed at runtime by an aspect weaver ruled by a set of explicit composition
rules defined outside of the aspects involved.

The different versions of MalacaTiny are embedded in Android devices, mobile
phones with MIDP profile, desktop computers, Sun SPOTs [12] and Libellium
waspmotes [13]. MalacaTiny agents can be executed on top of different APs
and using different transport protocols, by simply plugging in the correct distri-
bution aspect. For instance, by using the Jade-Leap plug-in, MalacaTiny agents
can communicate with other agents registered in this platform. However, current
APs for lightweight devices are not entirely capable of managing both device and
transport protocol heterogeneity, and have strong limitations to ensure commu-
nication interoperability in pervasive systems. The Sol AP has been created to
cope with these limitations.

1 Aspect-Oriented Software Development http://aosd.net/

http://aosd.net/

Developing Pervasive Agent-Based Applications 77

FIPA-based agents require a set of services from the FIPA AP that are related
with the transportation of messages between agents, and with the discovering of
agents and services. Sol is a FIPA-compliant AP specially well suited to develop
applications in the Internet of Things. This AP acts as an agent-based middle-
ware that provides a set of services for the agents and behaves as a gateway to
support communication heterogeneity. Specifically, the Sol AP supports:

– The registering and discovering of agents (Agent Management Service-AMS).

– The registering and discovering of services (Directory Facilitator-DF).

– The registration and membership of groups (Group Management Service -
GMS).

– The message communication service (MTS), which allows the communica-
tion between agents registered in the AP, extended to facilitate the group-
based communication.

Note that the AMS, DF and MTS are classic services provided by any AP, but
the MTS is extended to support group communication in IoT environments, in
conjuntion with the GMS.

Therefore, the main features of this AP (see Fig. 1) are the support for com-
munication of agents in heterogeneous devices, coping with heterogeneous trans-
port protocols (WiFi, Bluetooth and ZigBee) and group communication often
required by pervasive systems. Additionally, Sol has remote nodes (Sol Clients in
Fig. 1), which communicate with the node in which Sol is running. The develop-
ment of these clients has been necessary for the implementation of applications
distributed in wide areas. Sol clients support devices with low-range communi-
cation technology such as mobile phones that use Bluetooth, Sun SPOTs and
Libellium waspmotes. These clients can run in desktop computers and Meshlium
Xtreme routers [14].

A group is a way to identify a set of agents that are interested in the same
type of information. Forming groups enables the Sol AP to implement multicast
communication efficiently, which facilitates the distribution of the same infor-
mation to clustered components of the system. Groups are defined attending to
the communication needs of the applications, and agents join and leave these
groups at runtime (by the GMS). Groups are usually composed of agents that
share some feature (e.g. they are embedded in the same type of device) or play
the same role in the MAS (e.g. agents that provide the same service).

In summary, MalacaTiny and Sol (MalacaTiny-Sol) combine to form a sys-
tem to deal with the requirements imposed by pervasive computing systems.
MalacaTiny agents can take advantage of using the Sol AP, so that they can
communicate through different transport protocols and send multicast messages
to a group of related agents. With this approach, the functionality of the perva-
sive system is decomposed in a set of MalacaTiny cooperating agents that use the
Sol AP for the location and communication between agents. Sol enables interac-
tion via a centralized registration and discovery services. Agents communicate
via message exchange and concerns are separated by aspect-based programming
via the MalacaTiny framework.

78 I. Ayala et al.

Fig. 1. Schema of the communication in Sol agent platform

2.2 The SAPERE Middleware

SAPERE follows a rather different approach for the development of Multi-Agent
applications. SAPERE models a pervasive service environment as a non-layered
spatial substrate, laid above the actual pervasive network infrastructure. The
substrate embeds the basic laws of nature (or eco-laws) that rule the activities
of the system. It represents the ground on which the components of the pervasive
service ecosystem interact and combine with each other. All “entities” living in
the ecosystem will have an associated semantic representation: Live Semantic
Annotations (LSAs), which is a basic ingredient for enabling dynamic unsu-
pervised interactions between components. From an implementation point of
view, SAPERE relies on lightweight and minimal middleware infrastructure (see
Fig. 2). In particular, it reifies LSAs in the form of tuples, dynamically stored
and updated in a system of highly-distributed tuple spaces spread over the nodes
of the network [15]. Each LSA acts as an observable interface of resources and
service of the components. LSAs of different components can bind with each
other to enable interactions. The eco-laws are the rules driving the dynamics of
the ecosystem. In particular, eco-laws perform pattern matching operations on
the set of LSAs that are in the ecosystem to: (i) create bindings among LSAs,
thus enabling interactions between components, (ii) diffuse LSAs across the spa-
tial substrate, (iii) aggregate LSAs together, to compute summaries of the LSA
population, (iv) delete LSAs that are not useful.

The active components of the ecosystem (whether services, software agents,
or data sources) express their existence via LSAs injected in the local tuple space
associated with their node. Then, they indirectly interact with each other via
the tuple space by observing and accessing their own LSA.

In SAPERE, we enforce a notable separation of concerns between applica-
tion’s computation and interaction. Computation (i.e., the main application

Developing Pervasive Agent-Based Applications 79

Fig. 2. The SAPERE Conceptual Architecture

business logic) is coded in the SAPERE agents using standard software en-
gineering methodologies. Interaction consists of writing the agents’ LSAs and
managing their evolution over time. Specifically, programmers have to specify
the format of agent’s LSAs so that they match with eco-laws, enabling eco-law
functionalities: bonding, spreading, aggregating and decaying. In more detail,
the eco-laws represent sorts of virtual chemical reactions between LSAs, and are
activated by processes embedded in tuple spaces (which make SAPERE tuple
spaces different to traditional tuple spaces). Such processes evaluate the poten-
tial for establishing new chemical bonds between LSAs, the need for breaking
some, or the need for generating new LSAs by combining of existing ones. In
addition, to support distributed spatial interactions, eco-laws can enforce the
diffusion of LSAs to spatially close tuple spaces, e.g., for those tuple spaces that
are neighbor of each other in the network, according to specific propagation
patterns (gradient-based diffusion, broadcast, or multicast).

In summary, in SAPERE agents, interactions are mediated by the set of LSA
spaces where they inject LSA in the system, and subscribe to the arrival of LSAs.
LSAs spread across the network enabling distributed operations.

3 Modeling Pervasive Scenarios

As stated in the introduction, in order to illustrate and evaluate how both ap-
proacheswork in pervasive systems, wewill use an IM, which put together different
case study applications.Modernmuseums’ buildings usually include a considerable
number of displays and sensors distributed in their rooms, with the goal of provid-
ing valuable information to staff and visitors. What characterizes the IM as a per-
vasive system is the use of sensors and personal devices of people to enhance their
experience during the visit. Moreover, the information provided by these devices
can be used to improve the efficiency of the running of museum. Specifically, we are
going to model scenarios of information provision (Subsection 3.1) and emergency
evacuation (Subsection 3.2) in the IM.

80 I. Ayala et al.

Information provision is a very important class of applications used to enrich
the IM experience. In particular we focus on: (i) monitoring of the environmental
conditions of a room; (ii) controlling the number of people that are currently in
the museum; (iii) and the distribution of exhibit information according to a
user profile. The first two scenarios are services of interest for the security staff
members, while the third is service targeted for museum visitors.

In addition, we are going to model a service that contributes to the evacuation
of the building in case of an emergency. This is a a service of great importance in
crowded buildings like museums. This problem can be resolved in very different
ways according to the characteristics of the two approaches used. In order to
illustrate the advantages and disadvantages of both, we are going to consider
two situations: there is just one emergency exit; and in the case there is more
than one emergency exit.

The design of the above scenarios in MalacaTiny and SAPERE has some
points in common. In both systems agents are service providers and consumers
and they interact in order to provide services to the people in the museum.
Another point in common is in both approaches each guard and visitor have
personal agents that are running in their personal devices, and which provide
them with the IM services. Additionally, both designs include an agent that
represents each exhibit in the museum, and provides information about it. The
last point in common is the physical distribution of the middleware because in
both solutions they are distributed throughout the building. However, Sol follows
the schema depicted in Fig. 1 with a main node and multiple clients, SAPERE
follows the schema of Fig. 2 with multiple SAPERE nodes deployed in each room
and interconnected.

The main differences are found in the types of agents considered and in the
internal design of these agents. In addition to the agents previously mentioned,
the MalacaTiny-Sol system incorporates agents to sensors, while the SAPERE
system considers a specific agent for counting the number of visitors around a
SAPERE node. Although the details of the internal design of agents for the
different scenarios will be described in the following subsections, it is important
to emphasize that the design of MalacaTiny agents is based on component and
aspects, which specify the application functionality and interaction with other
agents. So, the description of the architecture of these agents consists of describ-
ing the set of components and aspects that compose an agent, and exactly how
they relate. However, agents in SAPERE have a very simple design (see Fig. 3)
and their behavior emerges from the interactions with the SAPERE node. This
interaction depends on the LSAs that the agent injects into the LSAs space and
the result of the application of eco-laws to these LSAs. So, the description of
these agents is given in terms of injected LSAs and the behavior of the agent
when these are bonded, read, removed or updated.

3.1 Information Provision Scenarios

Information provision is a very important class of applications to enrich the IM ex-
perience. In particular we focus on: (i) monitoring of the environmental conditions

Developing Pervasive Agent-Based Applications 81

GuardUI

+showVisitorNumber(num : int) : void
+updateEnv(var : String, val : String) : void

VisitorUI

+showFavoriteExhibit(l : LSA) : void
+notifyEmergencyExit(l : LSA) : void

Guard

+getVisitorNumber() : void
+getEnvConditions(room : String) : void
+setEmergency() : void

SapereAgent

+init() : void
+onBond(l : LSA) : void
+onUpdate(l : LSA) : void
+onRemove(l : LSA) : void
+inject(l : LSA) : void
+update(l : LSA) : void
+read(l : LSA) : void
+remove(l : LSA) : void

CounterVisitor

...
...

...
...

Visitor

Exhibit

Fig. 3. UML class diagram of SAPERE agents in the Intelligent Museum

of a room; (ii) controlling the number of people that are currently in the museum;
(iii) and the distribution of exhibit information according to a user profile.

Designing Applications with MalacaTiny-Sol. In these scenarios agents
interact to provide information to their corresponding users. In Malacatiny-Sol,
agents exchange messages through the Sol AP. This means that the four types of
agents that compose the MAS have a distribution and a representation aspect to
send and receive messages using the Sol AP named SolPlugin and Representation
(see Figures 4 and 5). To make the interaction between agents more efficient, we
define and use groups (introduced in Subsection 2.1). As stated before, with the
GMS provided by the AP we can register different groups in order to support
the application requirements: one group includes all the visitor agents registered
in the AP; another group comprises all the sensor agents that are deployed in a
specific room (so there is a group formed for each room with sensors installed);
and the last group is for the exhibits that are located in a specific room (so there
is a group formed for each exhibition room).

Environmental Monitoring Application. In order to monitor the environmental
conditions of rooms, several sensors with agents embedded inside are deployed
in them. On initiation, each agent joins the group corresponding to their room.
When a security staff member wants to know the conditions in one of the rooms,
his agent interacts with the group of sensor agents associated with the room, in
order to gather up-to-date information and present the results to the security
guard. The implementation of this scenario requires the addition of two aspects
and one component (see Fig. 4) to the security guard agent: the EnvironmentMo-
nitoring aspect, which requests the information from the sensor group, gathers
the answers and updates the internal knowledge of the agent with it; the UI-
Updater aspect, which updates the user interface with the new environmental
results when it observes a change in the agent knowledge; and the GuardUI
component, which implements the user interface. Components are added to
the agent architecture with an identifier using the method addComponent (see
Fig. 6) and aspects are added by means of aspect composition rules. As stated
before, these rules set how aspects are composed at specific points in the agent
execution.

82 I. Ayala et al.

<<aspect>>
EnvironmentMonitoring

<<aspect>>
EmergencyProtocol

<<component>>
EvacuationPlanning

<<component>>
LocationProvider

<<aspect>>
LocationUpdater

<<aspect>>
Representation

<<aspect>>
VisitorCounter

<<component>>
GuardUI

<<component>>
UIUpdater

<<component>>
Timer

GuardAgent
<<aspect>>
SolPlugin

Fig. 4. UML class diagram of the agent for guards

<<aspect>>
ExhibitRecommeder

<<aspect>>
EmergencyProtocol

<<component>>
LocationProvider

<<aspect>>
LocationUpdater

<<aspect>>
Representation

<<aspect>>
VisitorCounter

<<component>>
VisitorUI

<<component>>
RoutePlanner

<<component>>
Timer

<<component>>
UserProfile

<<aspect>>
RouteMonitor

VisitorAgent

<<aspect>>
SolPlugin

Fig. 5. UML class diagram of the agent for visitors

Visitor Counter Application. In order to determine the number of visitors in
the IM, the agent for guards must interact with each visitor agent. To make
this interaction more efficient, again, we make use of groups. In this case, the
guard agent sends an “is alive” request message to the visitor agents group
previously defined, and it counts the responses over a time span. To accomplish
this task, the security guard agent has to include new components and aspects
in its architecture: the VisitorCounter coordination aspect, which collects the
answers from visitors; and Timer component, which determines the time span
of the collection. On the other hand, the design of the agent for visitors (see
Fig. 5) also includes the aspect VisitorCounter that joins the corresponding
group at initiation, intercepts the “is alive” request and answers the request of
the security agent.

In MalacaTiny, interaction protocol behaviors are implemented as finite state
machines whose transitions are driven by internal events or received messages,
and that cause the execution of plans. In the case of VisitorCounter protocol
(see Fig. 7 left side), transitions are driven by events from the user interface
that indicate that user requests the number of visitors (CounterRequestEvent),
messages from visitor agents and the internal event that indicate the end of the
time span (TimerEvent). Plans of this protocol are: SendGroupMessage that
sends a message to the group of visitors; ReceiveAnswer that processes the an-
swer from visitors and counts the number of visitors (see Fig. 7 right side); and
PresentResults that presents the results to the security guard.

Information Provision According to User Profile Application. This third sce-
nario provides visitors with information about exhibits in the room where they
currently are. The presented information depends on the user personal profile.
This scenario requires the visitor agent to know the room where the user is, in
order to interact with the agents for exhibits located in the room. The location
of the visitor can be obtained internally by the agent using different mechanisms

Developing Pervasive Agent-Based Applications 83

public class GuardAgent extends Agent {
….

 protected void setup(){
 ….
 addComponent(“UI”,guardUI);
 addComponent(“Timer”,new Timer());
 addComponent(“GPS”,new LocationProvider());
 addComponent(“Evacuation”,new EvacuationPlanning());
 }

 protected void compositionRules(){
 addCompositionRule(SND_MSG, Role.REPRESENTATION, ..., AuroraRepresentation.class.getName(),...);
 addCompositionRule(SND_MSG, Role.DISTRIBUTION, …., SolPlugin.class.getName(), true,….);

….
 addCompositionRule(RCV_MSG, Role.REPRESENTATION,..., AuroraRepresentation.class.getName(),….);
 addCompositionRule(RCV_MSG, Role.COORDINATION, …., VisitorCounter.class.getName(),….);
 addCompositionRule(RCV_MSG, Role.COORDINATION, …., EnvironmentMonitoring.class.getName(),….);
 ….
 addCompositionRule(THRW_EVNT,Role.CONTEXT_AWARENESS,…,UIUpdater.class.getName(),….);
 addCompositionRule(THRW_EVNT,Role.CONTEXT_AWARENESS,…,LocationUpdater.class.getName(),….);
 ….
 }
}

Fig. 6. Partial code of the agent for guards in MalacaTiny

such as the communication network [16]. Each time the visitor moves to another
room, the agent changes the group of exhibit agents it has to request the infor-
mation from. For this purpose, the visitor agent sends a message to this group
and when it receives the answers from the exhibit agents, it analyzes the profile
of the visitor, and filters the information received to show the information of
interest to him/her.

This application is implemented in different aspects of the visitor agent (see
Fig. 5): The LocationProvider component provides the current location of the
agent, notifying a change in the user’s position by throwing internal events. The
LocationUpdater aspect takes the location information, processes it and updates
the internal knowledge of the agent with it; and ExhibitRecommender aspect
ensures that each time the user changes the location to a different room, it
interacts with the exhibit agents to gather information and recommend specific
exhibits to the user (according to the information in the UserProfile component).

Designing Applications with SAPERE. The communication of SAPERE
nodes is based on Bluetooth and entities connect to it on a proximity basis.
This means that any non mobile element of the IM, like sensors, is automati-
cally connected to the closest SAPERE node. Additionally, in the case of agents
embedded in mobile personal devices, they are continuously connecting and dis-
connecting nodes depending on their proximity to them.

Environmental Monitoring Application. Using SAPERE, sensors accomplish
the environmental monitoring and provide it via the injection of LSAs in the
SAPERE node that they are connected to. When a guard requests this infor-
mation, his agent injects LSAs to subscribe to information about environmental
conditions. When eco-laws are fired, these LSAs are bonded to the LSAs injected

84 I. Ayala et al.

Visitor Counter Protocol

public class VisitorCounter extends CoordinationAspect{
…

 protected void setup(){
 ProtocolState initial=new ProtocolState(this,"initial");
 ProtocolState reception=new ProtocolState(this,"reception");

 InstancePattern counterRequest=
new InstancePattern(new CounterRequestEvent());

 InstancePattern timerEvent=new InsancePattern(new TimerEvent());
 MessagePattern counterProtocolPattern=new MessagePattern();
 groupProtocolPattern.setProtocol(“VisitorCounterProtocol”);

 registerTransition(counterRequest, initial,
reception,SendGroupMessage.class.getName());

 registerTransition(counterProtocolPattern, reception, reception,
ReceiveAnswer.class.getName());

 registerTransition(timerEvent, reception, initial,
PresentResults.class.getName());

 setInitial_state(initial);
 }
}

Receive answer from visitor

public class ReceiveAnswer{

 protected void setup(){
 ACLMessage msg=(ACLMessage)getInput();
 Integer visitorCounter=(Integer)getAgent().

getKnowledge(“visitorCounter”);
 visitorCounter++;
 }
}

Fig. 7. Partial codes of the VisitorCounter protocol (left) and the ReceiveAnswer plan
(right) in MalacaTiny

by sensors and the results are presented to the guard. This application is mod-
eled differently when the security guard is not in the room of which he wants to
know the environmental conditions. To do this, it is necessary to have specific
agents to gather the conditions and send the information to the remote space
when is requested. This procedure is illustrated in the following scenario, when
the guard agent wants to know the number of visitors in the IM.

Visitor Counter Application. The modeling of this solution in SAPERE requires
the collaboration of three types of agents: security guards, visitors and agents
that count the number of people around a SAPERE node. To count all the visi-
tors in the IM it is necessary to know the number of visitors around a SAPERE
node and later, to add this information. The interaction between agents for visi-
tors and visitor counter agents is used to determine the number of visitors around
a SAPERE node. On the one hand, agents for visitors inject an LSA indicating
the presence of their users around the node (see Fig. 8 left) and on the other
hand, visitor counter agents are subscribed to this information and update an
LSA that contains the current number of visitors around the node (see Fig. 9).
These agents increase the counter when LSAs are bonded (user is in the room
where the SAPERE node is deployed) and decrease it when they are removed
(user leaves the room).

The process for the addition of this information starts with a request of a
security guard. Then, his/her agent injects LSAs to request the information
injected by visitor counter agents, to do so it has to inject an LSA for each
SAPERE node with direct spreading to these nodes (see Fig. 8, left). When
these LSAs arrive at their destination, they are updated with the information

Developing Pervasive Agent-Based Applications 85

Visitor

<LSA name=”visitor” value=”inma”/>

Guard

<LSA name=”museum-visitor” value=”0”/>
<LSA name=”number-visitor” value=”*”/>
<LSA name=”number-visitor” value=”*” …
spread=”direct” destination=”main-hall”
source=”room5” .. />
<LSA name=”number-visitor” value=”*” …
spread=”direct” destination=”room3"
source=”room5” ... />

...

Agent Guard {
…

 int sentLSA,recLSA,visitorCounter;

 onBond(LSA b) {
 if(b.name.equals(“number-visitor”){
 visitorCounter=visitorCounter+b.value;
 recLSA++;
 updateLSA(name=”museum-visitor”,value=counter);
 if(recLSA==sentLSA){
 updateUI(“museum-visitor”,visitorCounter);
 }
 }

...
}

Fig. 8. Injected LSAs (left) of agents for visitors and guards and partial code onBond()
method (right) of the agent for guard in the number of visitors scenario

of the number of visitors and sent back to the node of the guard agent. In this
node the agent for the guard has injected LSAs to add the values and when it
receives all the answers it presents the results to the guard (see Fig. 8, right).

Information Provision According to User Profile Application. The provision of
information according to the user profile in SAPERE has an advantage over the
solution proposed with MalacaTiny-Sol because it does not have to rely on third
components to provide the position of visitors in the IM. When a visitor enters
to a new room, his/her agent injects an LSA in the SAPERE node with the
personal preferences of the user. On the other hand, agents associated with an
exhibit have injected LSAs with information about the exhibit. When eco-laws
are fired, the user’s LSA is bonded to the exhibit LSAs of interest for him/her
and the information is presented to the visitor.

3.2 Scenarios of Emergency Evacuation Planning

In this section, we are going to model a service that contributes to the evacuation
of the building in case of an emergency, in both approaches. In order to illustrate
the advantages and disadvantages of both, we are going to consider two situations
in this scenario: when there is just one emergency exit; and when there is more
than one emergency exit available.

Designing Applications with MalacaTiny-Sol
One Emergency Exit Application. The evacuation starts when a member of the
security staff detects an emergency situation. Firstly, when an emergency is
detected, the security guard agent of the person that detects it, notifies all the
people in the IM that there is an emergency situation. To make this notification
more efficient, group-based communication is once again used. In this case a
message is sent to the group of visitor agents and another to those composed

86 I. Ayala et al.

Agent VisitorCounter {
…

 int numberVisitor;

 onBond(LSA b) {
 if(b.name.equals(“number-visitor”){
 updateLSA(spreading=”direct”,destination=b.origin);
 }else{
 numberVisitor++;
 updateLSA(number-visitor=numberVisitor);
 }
 }

 onRemove(LSA b){
 if(b.name.equals(“number-visitor”){
 numberVisitor--;
 updateLSA(number-visitor=numberVisitor);
 }
 }

...
}

Visitor counter

<LSA name=”user” value=”*”/>
<LSA name=”number-visitor” value=”0”/>

...

Fig. 9. Injected LSAs (left side) of the visitor counter agent and partial code of on-
Bond() and onRemove() methods (right side) of the visitor counter agent

by security agents. With the information provided in the message, visitor agents
plan how to get to the emergency exit while avoiding the site of the emergency.
Security guards agents use this message to inform the security staff of where the
emergency exists and what kind of emergency it is.

In order to implement this behavior in the security guard agent, new aspects
are added (see Fig. 4): the joint work of the LocationProvider component and
the LocationUpdater aspect estimates and updates the user position that is go-
ing to be used in the emergency message; and finally, the EmergencyProtocol
aspect continues with joining the agent to the group of security guard agents,
sending an emergency message to the two groups of agents and also receives
emergency messages. The design of the visitor agent also requires more elements
(see Fig. 5) to manage an emergency situation: the EmergencyProtocol aspect
receives emergency notifications from security guards and updates the internal
knowledge of the agent activating an emergency situation; when this occurs, the
RouteMonitor aspect requests a route from the RoutePlanner component and
when the route to the emergency exit is generated, it guides the user to the exit
using his/her current location.

Multiple Emergency Exits Application. When there is more than one emergency
exit to choose from the situation is similarly handled. As in the previous case, the
corresponding security agent sends the message to the group of security agents
with the same result. Additionally, it has to determine the number of visitors and

Developing Pervasive Agent-Based Applications 87

their position in the IM. In order to get this information, a message requesting
the position of the visitor agents is sent using the group-based communication.
When the security agent receives the information it assigns an emergency exit
to the visitor according to their current position and the number of visitors in
the same room (in order to ensure a speedier evacuation). To implement this
behavior the design of the agent for visitors is not modified, but the security
guard agent needs to change the behavior of the EmergencyProtocol and add a
new component for planning the visitors evacuation (EvacuationPlanning).

Designing Applications with SAPERE
One Emergency Exit Application. The emergency planning in SAPERE uses the
work of the spread and aggregate eco-laws to enable a field-based coordination
mechanism [17] that notifies of the emergency and indicates the exit path si-
multaneously. To trigger this process the agent associated with the guard has to
inject an LSA in the SAPERE node located at the emergency exit. This LSA
is spread to the other nodes hop-by-hop starting with those that are directly
connected to the space in which the LSA was initially injected. When this LSA
is spread to other SAPERE nodes, the attribute field is set to the previous node
and the hop counter is increased. If multiple emergency LSAs are spread to the
same SAPERE node with different origins (i.e. different values of previous at-
tribute), when the aggregate eco-law is fired, only the LSA with the minimum
hop-counter remains (see attribute aggregation in Fig. 10). In order for the visi-
tor to receive the emergency notification, his/her associated agent has to inject
an LSA in order to receive emergency notifications. The bonding of this LSA
enables the planning of the emergency route step by step. Each time the LSA
is bonded, the visitor receives a notification of the next room that he/she has
to reach to get to the exit of the building. When the user reaches the specified
room, the same process is repeated. In this way, visitors find the emergency exit.
The application of the aggregation eco-law ensures that visitors always follow
the path with the minimum number of hops to the exit.

Multiple Emergency Exits Application. In the case of multiple emergency exits,
the security guard agents inject an LSA with the same format as in the pre-
vious case and the path with the minimum number of hops is also ensured by
aggregation eco-law. The problem is that with this schema we cannot control the
number of people that are sent to the different exits. This is because we cannot
ensure, on the one hand the minimum path (applying the aggregation eco-law)
and on the other hand, to have multiple options that can be used for a specific
agent to send a person to one exit or another.

88 I. Ayala et al.

Guard
<LSA name=”emergency” spread=”diffuse” max-
hop=”10" hop_count=”0" aggregation=”min”
previous=”room13”/>

Visitor
<LSA name=”emergency” previous=”*” … />

Agent User {
…

 onBond(LSA b) {
 if(b.name.equals(“emergency”){
 updateUI(“emergency”,b.previous);
 }

...
}

Fig. 10. Injected LSAs (left) of agents for visitors and guards and partial code on-
Bond() method (right) of the agent for visitors in the emergency evacuation

4 Comparison

In this section we are going to evaluate and compare the systems resulting from
the design of the scenarios described in the previous section and modeled using
MalacaTiny-Sol and SAPERE. The reason for this comparison is to measure
the advantages and the benefits of both approaches from a software engineering
point of view. Specifically, this assessment focuses on the design of the security
guards and visitor agents. For the evaluation, we are going to use a combination
of the frameworks provided by [18,19]. On the one hand, the work in [18] provides
an architectural metric suite that is being widely used to measure the separation
of concerns in software systems. On the other hand, the paper [19] presents a
framework for the evaluation of ubiquitous computing systems, which can be
used to evaluate pervasive applications as is our case study. Specifically, we are
going to evaluate:

– Separation of Concerns (SoC) - Subsection 4.1
– Coupling and Cohesion - Subsection 4.2
– Adaptivity - Subsection 4.3
– Robustness - Subsection 4.4
– Scalability - Subsection 4.5
– Privacy - Subsection 4.6

In order to implement the metrics for measuring SoC, coupling and cohesion, we
are going to use common concerns of MalacaTiny and SAPERE. They are repre-
sentation, distribution, coordination, context-awareness, bonding, computation
and spreading. The mapping between them is depicted in Fig. 11.

4.1 Separation of Concerns

SoC is a well-established principle in software engineering which aims to im-
prove the internal modularity and maintainability of the crosscutting concerns
of a software design. A crosscutting concern is a special concern which natu-
rally cuts across the modularity of other concerns. Without the proper means
for separation and modularization, crosscutting concerns tend to be scattered

Developing Pervasive Agent-Based Applications 89

Bonding Spreading DecayAggregation

C
om

pu
ta

tio
n

Application-
Specific

Context-
awareness

Represen
tation

Coordi
nation

Distribution

Fig. 11. Mapping between MalacaTiny (circles) and SAPERE concerns (rectangles)

and tangled up with other concerns. The natural consequences are reduced com-
prehensibility, ease of evolution and reusability of software artifacts, which limit
the adaptability, robustness and scalability of the software system.

A way to measure the degree of SoC is to quantify the diffusion of a concern
over components, interfaces and operations. Concern Diffusion over Architectural
Components (CDAC), Interfaces (CDAI) and Operations (CDAO) measure the
degree of concern scattering at different levels of granularity. These metrics count
the number of components, interfaces and operations which contribute to the
realization of a certain concern and their results are obtained for each concern of
interest in the system. The metrics for computing the separation of architectural
concerns are applied to calculate the degree to which a single concern or property
of the system maps to the architectural components.

The results of the assessment show SAPERE scores better for CDAC and
CDAI, while MalacaTiny is better for CDAO (see Table 2). In SAPERE, the
agent class encapsulates all concerns except bonding and spreading, that are in
the SAPERE node, so their values for CDAC are 0 or 1. In MalacaTiny each
concern is encapsulated as an independent aspect, and there is a coordination
aspect for each interaction in which the agent participates and context aware be-
havior (see Figures 4 and 5). The results for the bonding concern for MalacaTiny
are because this concern includes coordination, context-awareness, distribution
and representation (see Fig. 11). Additionally, the agent interaction is supported
in MalacaTiny by 1 interfaces and in SAPERE by 1.

Finally, the interception point model of MalacaTiny and the number of meth-
ods that use SAPERE to receive results of the eco-laws application explain
CDAO results. MalacaTiny has 3 interception points and each aspect has at
least 1 method to access the aspect behavior. For example, the coordination
aspect requires 3 operations because it is affected by 2 interception points (i.e.
reception and sending of the messages), and has 1 method to access its behavior.
On the other hand, SAPERE agents have 4 methods to receive results from the
SAPERE node, 4 operations to interact with it and additionally, we have to
consider methods in the agent class that call these operations (see Fig. 3). For
example, for the computation concern, the agent for guards scores 10 and the
agent for visitors 8.

90 I. Ayala et al.

Table 2. Mean of the results of agents for guards and visitors for the SoC metric in
MalacaTiny-Sol (M-S) and SAPERE

Concern
CDAC CDAI CDAO

M-S SAPERE M-S SAPERE M-S SAPERE

Context-awareness 2.5 1 2 1 2 9.5
Coordination 2.5 1 2 1 3 9.5
Distribution 1 1 2 1 2 4
Representation 1 1 1 1 2 4

Bonding 7 0 2 0 9 0
Computation 5 1 2 1 5 9.5
Spreading 1 0 2 0 2 0

Average 2.85 0.7 1.85 0.7 3.57 5.2

The results of these metrics describes the main features of the architectures
of agents in FIPA-based and tuple-based approaches. Agents in FIPA have a
more complex design because the negotiation (coordination in tuple-based ap-
proaches) is accomplished inside the agent, so CDAC and CDAI is always higher
in these approaches. The results for CDAO are a consequence of the complex in-
teraction that tuple-based agents have with their middlewares. Therefore, despite
MalacaTiny-Sol scores are good, considering that it is a FIPA-based approach,
SAPERE gets a better SoC.

4.2 Coupling and Cohesion

Coupling and cohesion are two quality attributes of a software design that reflect
the quality of a good modularization. Coupling refers to the level of interdepen-
dency among the modules (e.g. components) and cohesion is the level of uni-
formity of concerns of a single module (i.e. the degree of relatedness among the
elements -attributes, methods- of a component). A high degree of coupling dras-
tically reduces component reuse, which in turn means poor adaptability. Low
cohesion means a concern is spread over different modules, and its evolution as
an independent entity will therefore be very difficult to manage. Consequently, it
is important to minimize coupling and maximize cohesion in the system design.

The coupling metrics measure the number of components connected to each
other. Coupling is evaluated using the Fan in and Fan out metrics for each ele-
ment of the SAPERE and MalacaTiny agents. These metrics count the number
of conventional components which require services from the assessed component
(Fan in metric) and the number of components from which the assessed compo-
nent requires services (Fan out metric).

Developing Pervasive Agent-Based Applications 91

Table 3. Coupling and Cohesion measurements for MalacaTiny-Sol and SAPERE

MalacaTiny-Sol Fan in Fan out LCC

Application specific components 1 0.55 0
Context-awareness aspect 1 1 3
Coordination aspect 1 1 3
Distribution aspect 1 1 2
Representation aspect 1 1 2
Core agent 9 1 0
Average 2.33 0.925 1.66

SAPERE Fan in Fan out LCC

Application specific components 1 1 0
Core agent 1 1 5
Average 1 1 2.5

Percentage difference 80% -7.79% -40%

Table 3 shows the average for coupling and cohesion measurement per com-
ponent for the two architectures (rows labeled “Average”) and the percentage
difference of each metric between MalacaTiny-Sol and SAPERE (row labeled
as “Percentage Difference”). The positive values of the “Percentage Difference”
means lower results for SAPERE, while negative results means lower results for
MalacaTiny-Sol. In this case, SAPERE scores better for Fan in because SAPERE
agents directly perform less functionality than MalacaTiny agents. On the other
hand, MalacaTiny scores better for Fan out because the application specific
components of agents have a lower value for this metric.

Cohesion is measured using the Lack of Concern-based Cohesion (LCC). This
metric counts the number of different system properties addressed by each class
(in SAPERE agents), components and aspects being considered (in MalacaTiny
agents). For this metric MalacaTiny scores better (see Table 3). This is be-
cause the Malaca architecture focuses on the separation of concerns at the agent
level, while SAPERE applies the separation at infrastructure level. So, in the
SAPERE agent class all the concerns used in the evaluation are contained with
the exception of bonding and spreading that are in the SAPERE node.

With these results we can again see reflected, the architectural features of
both types of approaches. MalacaTiny successfully exploits its AO to offer agents
that scores better in Fan out and LCC. The scores of MalacaTiny mean a high
reusability of the internal components and aspects of agents of this scenario.
The good results of SAPERE are supported by the lower number of components
required to develop SAPERE agents. Therefore, on the one hand MalacaTiny-
Sol efficiently handles complex designs, on the other hand, with SAPERE such
designs are not necessary.

92 I. Ayala et al.

4.3 Adaptability

The adaptability metric measures how the system adapts to changes that are
external to the application, i.e. changes in user preferences, devices and in the
physical space where the IM is located.

The recommendations of exhibits of interest for users depending on their
location in the IM (see Subsection 3.1) can be useful for new users and annoying
for users that are already familiar with the exhibition. So, a useful functionality
that the applications can provide is disabling this service when users request it.
To do so, MalacaTiny requires the modification of the aspect composition rules
(see Subsection 2.1) so as not to apply ExhibitRecommender aspect (see Fig. 5).
SAPERE accomplish the same task by not injecting LSAs with user preferences.
These procedures can be applied to disable any service that agents provide or
consume in both systems.

Sol offers the agents deployed on it the possibility of changing the network
interface used for their connection to the AP. As stated before, Sol has support
for multiple network interfaces (see Subsection 2.1). An agent can connect to
Sol using a WiFi connection, but the agent can change the network interface to
Bluetooth in the case of poor coverage. Accomplishing this task does not just
require a change in the composition rules. Additionally, the agent has to interact
with the AP in order to ensure that it remains in the same groups and provides
the same services.

Changes in the museum map have different consequences for the solutions pro-
posed in both approaches. InMalacaTiny, some of the agent services depend on the
componentLocationProvider (see Figures 4 and 5). This component informswhich
room the user currently is in and depending on its implementation, its substitution
could be necessary. SAPERE agents rely on the location to provide services too.
The extension of the museum map requires the addition of new SAPERE nodes
to these new locations and a change of the routing tables of some SAPERE nodes.
The design of the agents remains the same, but the agent for guards has to update
its internal knowledge about the IM (see Subsection 3.1).

The modification of the map affects the emergency evacuation (Subsection 3.2)
inMalacaTiny. In order to ensure the correct planning of the exit route, it is neces-
sary tomodify theRoutePlanner component inside the agent for visitors. If the IM
has a new emergency exit, it is also necessary to change the EvacuationPlanning
component. On the other hand, in SAPERE, with the modified infrastructure, the
implementation of the emergency planning inside agents remains the same.

Table 4 summarizes the main changes in each of the agent systems to adapt
agents and infrastructures. In conclusion, both approaches (FIPA-based and
tuple-based) can easily adapt the set of services provided by their agents. Ma-
lacaTiny offers more possibilities to adapt the agent architecture. Finally, the
adaptation of location-aware services to changes in the physical space requires
an extra effort in MalacaTiny, in the case of SAPERE this effort is made at the
infrastructure level and requires only small modifications in agents.

Developing Pervasive Agent-Based Applications 93

Table 4. Issues to change when adaptation is required in MalacaTiny-Sol and SAPERE

Adapted issue Services provided Network interface Deployment space

MalacaTiny-Sol Composition
rules

Composition rules / in-
teraction with Sol

Components and aspects
that depend on location

SAPERE Injected LSAs Not possible SAPERE nodes

4.4 Robustness

While adaptability measures how the application deals with external changes,
the robustness metric measures how internal events affect the application or the
percentage of faults that are invisible to the user. In the two approaches there
can be faults both at application level and at infrastructure level. In the case
of the application level, if a security guard agent or a visitor agent stops, both
MalacaTiny and SAPERE users notice that something is going wrong. However,
if the agent that fails is an exhibit one, it only results in the information of
the associated exhibit not being presented to the user but the application keeps
running. This can also be applied to sensors (see Subsection 3.1).

The robustness of the visitor counter scenario (see Subsection 3.1) is similar
in both approaches. In the case of MalacaTiny-Sol, the group mechanism sup-
ports the provision of this function. Group communication principally uses IP
multicast, which is based on UDP at the application level and is an unreliable
transport protocol. This means that message reception is not ensured. This issue
can affect the accuracy of the number of visitors obtained in MalacaTiny-Sol.
In the case of SAPERE, counting the visitors depends on the visitor counter
agents deployed in SAPERE spaces. The accuracy of the information provided
by these agents depends on the coverage of the SAPERE spaces and the position
of the visitors in the IM. So, as in the case of MalacaTiny, the security guard
only receives an estimation of the number of visitors. Additionally, in SAPERE
if the visitor counter agent fails, the security guard agent will not receive the
information from the room where this agent is deployed. Therefore, the distri-
bution of the functionality between agents and AP in MalacaTiny-Sol provides
a more robust application.

At infrastructure level, SAPERE is more robust than Sol. The Sol AP usually
runs in a single node with multiple clients that depend on it (see Fig. 1), if the
AP fails then those agents cannot interact, register services and join groups and
the IM cannot offer services to any of its users. The restarting of the Sol AP
affects the entire MAS. However, the distribution of SAPERE nodes means that
the failure of a node only affects users that are in the same room (see Fig. 2).
Additionally, if the node restarts, only the agents associated with this physical
space (agents for sensors, exhibits, to gather environmental conditions and for
counting visitors) are affected.

In conclusion, in the IM scenario the distribution of the functionality between
agents makes the solution based on FIPA more robust. On the other hand,
at infrastructure level both middlewares are special cases. In the case of Sol,

94 I. Ayala et al.

their current implementation does not offer a robust infrastructure, but other
FIPA-approaches, like Jade, handle the eventual failure of the main node of the
middleware. SAPERE is a special case in tuple spaces, given that they usually
present a centralized distribution. Therefore, and in order to enhance the robust-
ness of these approaches, the infrastructure of Sol should be modified to make it
as robust as other FIPA approaches, in the manner that SAPERE offers a more
robust infrastructure, unlike other similar coordination approaches.

4.5 Scalability

The scalability metric measures how the complexity of the system increases
when a feature is extended or the system must meet a new requirement. In
agent approaches, the extension of a system means the addition of new agents
or the modification of an existing one. In this section, we are going to study
the scalability of these two agent systems, then studying the effort required to
extend the system.

The effort required to add a new agent in the MAS is related with the number
of elements that compose the agent and the component reuse. SAPERE agents
requires less elements (a mean of 12.5 in MalacaTiny vs. 2 in SAPERE) but the
component reuse is higher in MalacaTiny (3 in MalacaTiny vs. 0 in SAPERE).

The extension of an agent to meet new requirements is usually related with
the addition of new services to agents other than those which we have initially
considered in our design. In this subsection we are going to consider three kinds
of services: (i) with a single provider, (ii) with multiple providers; and (iii) global
services. Service discovery, invocation and provision is easier in SAPERE because
of the application of the bonding eco-law. What in MalacaTiny-Sol is done in
three steps (query the DF of the Sol AP, request the service and consume the
service) in SAPERE is done in two steps (inject the LSA and receive the service).

In MalacaTiny-Sol, the addition of a service with a single provider requires
the addition of new aspects and components, and the modification of the aspect
composition rules. In SAPERE, this requires the injection of new LSAs and the
modification of the agent class to provide or consume the service. To promote
the code reuse in SAPERE, the class of the initial agent is extended. In both
approaches this extension just implies the modification of the core agent class,
however these modifications are easier in MalacaTiny because it ensures the
code reuse. To the contrary, the code reuse is more problematic in SAPERE,
and consequently so is the extension of the agent. This is because we cannot
extend the agent with services provided by more than one agent because multiple
inheritance is forbidden in Java. Moreover, to directly use the code is difficult
because this is spread between the different methods of the agent (see Table 2).

The addition of a service with multiple providers is different in the two ap-
proaches. In MalacaTiny-Sol, agents need a protocol to select the most adequate
provider according to some criteria (e.g. using a FIPA Contract Net) which
makes the design of the coordination aspect more complex. On the other hand,
the case of SAPERE is simpler because in some cases it is the LSA space which
selects the most adequate service provider. If the selection criteria is numerical

Developing Pervasive Agent-Based Applications 95

and the most adequate service provider is that which has the minimum or the
maximum value, then the LSA space selects the most adequate service provider
by means of the aggregation eco-law. If the criteria is not numerical and only
implies the existence of a specific feature, it is necessary to include this feature
in the LSAs that publish and request the service. If more than one LSA shares
this feature, one of them is randomly selected for bonding.

In the case of global services, i.e. services available in any room of the IM,
the design of the MalacaTiny does not require any special consideration, but the
the SAPERE solution must be modified. This was illustrated in the case of the
visitor counter application, that has to deploy purpose specific agents in each
SAPERE node. These agents gather the information related with the service
and send it (under request) to the interested agents.

The explanations in this section exemplify the work of both coordination ap-
proaches in scalability. Without a proper modularization that promotes the code
reuse, the addition of new agents requires less effort in tuple-based approaches
because the design of agents is simpler. On the other hand, the extension of
agents, which usually implies the addition of new services provided or consumed
by them, is usually easier to design in FIPA approaches, while in tuple-based
approaches the provision and consumption is easier. In the case of these two
agent systems, we can conclude that the solution provided by MalacaTiny-Sol is
more scalable. MalacaTiny offers a uniform solution for the extension of agent
capabilities and promotes software reuse which decreases the development effort.
The strongest point in favor of SAPERE is the development of services based on
local interactions, which are very likely to be found in pervasive environments,
which are provided and consumed by means of the bonding eco-law.

4.6 Privacy

The privacy metric evaluates the type of information that the user has to provide
(and divulge) in order to profit from the application, and the availability of the
user’s information, for other users of the system as third parties. In the scenarios
presented, users share three types of data information: presence, location and
personal profile. Table 5 depicts what kind of user information is shared by the
security guard agents (G) and the visitor agents (V) in the different scenarios.
According to the table, scenarios modeled in MalacaTiny-Sol require less infor-
mation to be shared (user profile remains inside the personal user agent) than
those modeled in SAPERE. Additionally, in the case of MalacaTiny the personal
information of the users is located in their personal devices, while in the case of
SAPERE this information is located in these devices and in SAPERE spaces,
where the information can be accessed (through bonding) by all the agents of
the IM.

Therefore, we can conclude that MalacaTiny-Sol scores better in privacy be-
cause users divulge less information to obtain value from the application and the
availability of the information to other users is lower.These scenarios illustrates the
work of FIPA-based and tuple-based approaches in privacy. Local computation of
FIPA approaches makes it easier to ensure the privacy of users.

96 I. Ayala et al.

Table 5. Type of information shared by agents for guards (G) and for visitors (V) in
scenarios of the IM

Scenario
MalacaTiny-Sol SAPERE

Presence Location Personal Presence Location Personal

Environmental monitoring

Visitor counter V V G

Exhibit information V

Single emergency exit G G,V

Multiple emergency exit G,V G,V

5 Conclusion

In this paper we have presented the modeling of a classic pervasive scenario,
an IM, using two agent systems for pervasive computing, MalacaTiny-Sol and
SAPERE. The first one is based on FIPA interaction protocols and the second
one is based on tuple spaces. The resulting systems have been evaluated using
an architectural metric suite that measures SoC, Coupling and Cohesion, and
additionally, we have discussed other important concerns in pervasive systems
such as adaptability, robustness, scalability and privacy.

Results of the architectural suite are specific to this case study, but these
highlight the architectural features of both agent technologies and also support
the following argument. The benefits from both approaches for the development
of pervasive application come not only from their schemas of interaction, but
also from their mechanisms for ensure SoC (i.e. AO vs. eco-laws) and how they
adapt the agent paradigm to pervasive computing (e.g. groups vs. distributed
tuple spaces).

In MalacaTiny-Sol, the design of the agents is more adaptable, scalable and
can ensure the privacy of users easily. FIPA-based approaches allow the set of
offered services to be modified by enabling or disabling behaviors that perform
such services. MalacaTiny-Sol does this efficiently even at runtime because these
behaviors are encapsulated in aspects whose functionality is driven by a set of
composition rules. Additionally, MalacaTiny agents can utilize the multiple net-
work interfaces offered by Sol because of the AO. This is an advantage for the
development of leisure applications where users with different types of network
technologies in their devices (e.g. Bluetooth or WiFi) can interact with the same
system. In general, FIPA-based approaches offer solutions that are more scalable
because the extension of the system is uniform. Additionally, because the com-
puting is encapsulated inside agents the risk of lateral effect when the system is
extended is lower than in tuple based approaches such as SAPERE. Finally, in
FIPA-based approaches it is easier to ensure the privacy of users, because most
of the computation is performed locally.

SAPERE agents have a good capacity for adaptation too, their service con-
sumption and provision is easier and additionally, the resulting system is more

Developing Pervasive Agent-Based Applications 97

robust. While in FIPA-approaches adaption of services is related to the number
of protocols that agents can handle, in tuple based approaches the relation is
with the number of tuples which are injected in the space. So, the adaptation
of both types of approaches presents a similar difficulty. The distributed nature
of SAPERE applications results in systems that adapt easily to changes in the
physical space where the application is distributed. In tuple based approaches
the service provision and consumption is more efficient than in FIPA ones be-
cause a direct interaction between agents is unnecessary. The negotiation is done
in the tuple space via a pattern matching process that avoids message exchange.
Finally, SAPERE spaces offers a more robust infrastructure thanks to its mul-
tiple SAPERE nodes. This is not a common feature in tuple based approaches
but it is one of the strongest points of SAPERE.

The two approaches can be combined with benefits to both. The AO of Mala-
caTiny agents and its extensible join point model makes the deployment of these
agents in SAPERE nodes possible. In this combination, MalacaTiny becomes a
tuple-based agent. To do this, it is necessary to develop a distribution aspect
for SAPERE and to add 4 interception points in the agent that correspond with
bonding, reading, removing and updating of the LSAs. The main benefits for
MalacaTiny is the usage of an infrastructure which is more robust than Sol and
offers a natural metaphor to develop services that depend on the location of
users. The main benefits for SAPERE would be to enhance the internal modu-
larization of agents deployed in SAPERE nodes, that promote reuse and ease the
adaptation of agents even at runtime. It is interesting to note that these bene-
fits are not related with features of the coordination approaches, but rather with
adaptations of these agent technologies to the pervasive computing environment.
As future work, we plan to study the combination of these approaches.

Acknowledgment. Work supported by the Andalusian regional project
FamWare P09-TIC-5231, the European projects INTER-TRUST FP7-317731
and SAPERE FP7-256873, and the Spanish Ministry Projects RAP TIN2008-
01942 and MAVI TIN2012-34840.

References

1. Saha, D., Mukherjee, A.: Pervasive computing: a paradigm for the 21st century.
Computer 36(3), 25–31 (2003)

2. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in
pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE
2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002)

3. Sadri, F.: Ambient intelligence: A survey. ACM Comput. Surv. 43(4), 36:1–36:66
(2011)

4. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing 5(4), 277–298
(2009)

5. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3), 277–294 (2001)

98 I. Ayala et al.

6. FIPA: The Foundation for Intelligent Physical Agents, http://www.fipa.org/
7. Ayala, I., Amor, M., Fuentes, L.: An agent platform for self-configuring agents in

the internet of things. In: Third International Workshop on Infrastructures and
Tools for Multiagent Systems, ITMAS 2012, pp. 65–78 (2012)

8. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Pervasive middleware goes so-
cial: The sapere approach. In: Fifth IEEE Conference on Self-Adaptive and Self-
Organizing Systems Workshops (SASOW), pp. 9–14 (October 2011)

9. Labrou, Y., Finin, T., Peng, Y.: The current landscape of agent communication
languages. Intelligent Systems 14, 45–52 (1999)

10. Ayala, I., Amor, M., Fuentes, L.: Self-configuring agents for ambient assisted living
applications. Personal and Ubiquitous Computing, 1–11 (2012)

11. Amor, M., Fuentes, L.: Malaca: A component and aspect-oriented agent architec-
ture. Information and Software Technology 51(6), 1052–1065 (2009)

12. Oracle: Sun SPOT world, http://www.sunspotworld.com/
13. Libellium: Waspmote, http://www.libelium.com/products/waspmote
14. Libellium: Meshlium Xtreme, http://www.libelium.com/products/meshlium
15. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-

tions: the tota approach. ACM Trans. Software Engineering and Methodology 18(4)
(2009)

16. Rodriguez, M., Favela, J., Martinez, E., Munoz, M.: Location-aware access to hos-
pital information and services. IEEE Transactions on Information Technology in
Biomedicine 8(4), 448–455 (2004)

17. Mamei, M., Zambonelli, F.: Field-Based Coordination for Pervasive Multiagent
Systems, 1st edn. Springer Publishing Company Incorporated (2010)

18. Sant’Anna, C., Lobato, C., Kulesza, U., Garcia, A., Chavez, C., Lucena, C.: On
the quantitative assessment of modular multi-agent system architectures. NetOb-
jectDays (MASSA) 224 (2006)

19. Scholtz, J., Consolvo, S.: Toward a framework for evaluating ubiquitous computing
applications. IEEE Pervasive Computing 3(2), 82–88 (2004)

http://www.fipa.org/
http://www.sunspotworld.com/
http://www.libelium.com/products/waspmote
http://www.libelium.com/products/meshlium

Agent Perception within CIGA:

Performance Optimizations and Analysis

Joost van Oijen1,2, Han La Poutré1,3, and Frank Dignum1

1 Utrecht University, Utrecht, The Netherlands
{J.vanOijen,J.A.LaPoutre,F.P.M.Dignum}@uu.nl

2 VSTEP, Rotterdam, The Netherlands
3 CWI, Amsterdam, The Netherlands

Abstract. When agents are integrated in a game engine for embodiment
in a virtual environment, perception often leads to performance issues
due to the lack of control over the sensing process. In previous work a
perception framework was proposed within CIGA, a middleware facil-
itating the coupling between a multiagent system and a game engine.
It allowed agents to have control over the flow of sensory information
generated in their embodiment. In this paper we continue this work by
presenting performance optimizations within this framework. Here, the
computational complexity of the sensing process in the game engine can
be controlled by an agent itself, allowing it to deal with more complex
environments. Additionally we provide an overall performance analysis
of the framework.

Keywords: Virtual Agents, Middleware, Perception, Performance.

1 Introduction

In games, simulations or training, virtual environments are becoming increas-
ingly more realistic, complex and dynamic. With this comes the need to populate
these environments with virtual humans. The use of BDI-agents seems a good
fit to realize intelligent behavior for virtual humans.

Using BDI-agents to control the behavior of virtual humans typically involves
coupling a multi-agent system (MAS) to a game engine, where an agent’s action-
selection and perception mechanisms in the MAS have to be connected to the
actuators and sensors of its virtual embodiment in the game engine. Successful
connections have been made before [6,15,5], though usually in an ad-hoc man-
ner employing a primitive sense-act interface. In these connections, one has to
comply to the fixed abstraction level of the sense-act interface, as determined
by the specific game engine that was used. Besides this constraint, perception
is typically a one-directional process: the embodiment of the agent in the game
engine fully controls what kind of percepts are communicated to the agent and
how often. This can lead to two problems: first of all, without any control over
the flow of percepts, an agent can become flooded with sensory information,
stalling its deliberation. Also, the sensing process in the game engine alone is

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 99–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

100 J. van Oijen, H. La Poutré, and F. Dignum

often a costly operation where continuously is decided what can be sensed (e.g.
visual or audible signals depending on the sensor’s modality) (e.g. [9]). These
aspects easily lead to performance issues when considering more complex en-
vironments than typically previously considered. Second, information provided
by the game engine as sensory information may not be suitable for an agent
to reason efficiently: where game engines process data at the geometrical level,
agent deliberation typically takes place at a symbolic level where environment
knowledge is represented at a strategic abstraction level from the actual state of
the virtual environment, better suited for high-level decision-making.

Tackling the above problems related to agent perception, in previous work
[17], a perception framework was proposed within the scope of CIGA1, a general-
purpose middleware designed to facilitate the coupling between MASs and game
engines [18]. The framework was built around two main concepts: First, it in-
troduces a semantic world model as a representation of the virtual environment
defined at a certain abstraction level. This model can be user-defined for a specific
domain. Synchronization with the actual state of the environment (i.e. the game
state) is achieved through user-defined semantic translations to translate ele-
ments from the game state to concepts from the semantic world model. Second,
agents within CIGA are equipped with a subscription-based filtering mechanism
that can be used to fully control their flow of sensory information. Here, a sub-
scription represents an agent’s cognitive interest towards certain environment
information. During an agent’s sensing process these subscriptions can be taken
into account to control its access to the semantic world model.

Based on evaluation results [17], the framework was able to control the flow
of sensory information for an agent using subscription-based filtering, though,
when dealing with heavily populated environments, a performance bottleneck
was seen, caused by the physical sensor processing in the game engine.

In this paper we explore several performance optimizations for the perception
framework within CIGA: We (1) investigate a design approach to limit physical
sensing processing within a game engine taking into account an agent’s percep-
tual demands controlled from a MAS; (2) investigate the use of caching within
the semantic world model to limit the amount of semantic translations to be
made for creating fresh sensory information; (3) provide an analysis of relevant
processes within the framework to identify a next performance bottleneck.

The paper is structured as follows. First, in Section 2 related work is presented.
Following, Section 3 and Section 4 describes the CIGA middleware and outlines
its perception framework respectively. Several optimizations to this framework are
proposed in Section 5. In Section 6 these optimizations are evaluated while in Sec-
tion 7 a final analysis is provided. Finally, in Section 8 we conclude on our findings.

2 Related Work

Our work covers several research areas including sensor modeling in virtual char-
acters, active perception in BDI-agents and the connection between multi-agent

1 Creating Intelligent Games with Agents

Agent Perception within CIGA: Performance Optimizations and Analysis 101

systems and game engines. Our work is novel in the sense that we have not seen
similar work been done combining all of these areas within a general framework
for realizing controlled perception for BDI-agents embodied in a real-time virtual
environment. Therefore, below we describe some related work in specific areas,
partially related to our work.

2.1 Situated Multiagent Systems

Considering agent perception in MASs, Maes pointed out the poor support for
active and goal-driven perception in MASs [10]. This issue has been tackled by
several researchers resulting in different approaches towards active perception.
Weyns et al. [19] present a general model for active perception for situated mul-
tiagent systems in which an agent can direct its perception to relevant aspects in
the environment, related to the agents’ current task. In the model, three stages
are employed: First, the sensing stage maps the environment state to representa-
tions of symbols, influenced by sensor properties denoted as foci (e.g. modality,
resolution or range) and domain-dependent constraints denoted as perceptual
laws (e.g. one cannot perceive objects obscured by other objects). Next, the
interpretation stage maps these representations to higher-level percepts under-
stood by the agent internals (e.g. treat objects near to each other as a group).
Finally, the filtering stage filters these percepts based on specific selection crite-
ria (e.g. only pass percepts related to other agents). In our previous work [17], we
have proposed a subscription-based filtering mechanism that can be compared to
the filtering stage to filter percepts that will be processed by the agent. Further,
the sensing and interpretation stage is related to our sensory processing: per-
ceptual laws and foci are realized by an agent’s virtual sensors (through sensory
queries on the game state based on physical sensor properties); and interpreta-
tion is based on domain-dependent semantic translations to convert game state
representations to ontological percepts.

So and Sonenberg [14] relate their work with Weyns et al. and extend it within
the context of situation awareness (SA) according to Endsley [4]. They present
situation awareness as a process working between perception on one side and
practical reasoning on the other side. Like Weyns et al. they include the notion
of top-down perceptual attention and use event calculus for specifying this focus
of attention, influencing the perception process.

Van der Vecht [16] addresses perceptual attention as adjustable autonomy
which it defines as having a dynamic control over external influences on the
decision-making process based on internal motivations. It separates event pro-
cessing from decision-making and introduces reasoning rules to specify the effects
of external events from the environment on the beliefs and goals of the agent.

In all the above work, cognitive filtering of sensory information takes place in
the MAS agent, after physical sensing and the creation of percepts as symbolic
representations. We state that following such a sequential approach of filter-
ing sensory information can lead to serious performance issues when agents are
embodied in a virtual environment in a game engine. In complex virtual envi-
ronments there can be an enormous amount of information that can be sensed

102 J. van Oijen, H. La Poutré, and F. Dignum

by an agent, risking the violation of real-time performance constraints. We will
propose an approach in which an agent’s cognitive behavior can influence its
physical sensing process in order to deal with the computational complexity of
an agent’s sensor.

2.2 Virtual Human-Like Sensing

Synthetic sensing refers to computational models or techniques employed to
simulate human-like sensory abilities like vision, hearing or touch. Out of the
human-like senses, vision is often regarded as the most important to simulate.
In [11] it is stated that synthetic vision can range from geometrical approaches
to pure synthetic vision where the environment is being rendered from an agent’s
point of view. Geometrical approaches make use of range or collision tests and
ray-casting. For example the use of viewing volumes centered around an agent or
the use of one or more viewing cones originating from the eye’s position allows
one to calculate physical entities within sensory range of an agent (e.g. [12,9]).
Ray-casting techniques are used to determine if an entity can really be seen and
not blocked by other geometry. More advanced models are described in [8], where
sensing is based on key concepts of the Spatial Model of Interaction (SMI), a
successful awareness model, by taking human concepts into account. In our work,
we do not impose strong rules on the implementation of a sensor. This allows
for a range of different sensing techniques to be employed.

To facilitate agents in perceiving their environment several approaches have
been proposed that involve introducing a semantic layer on top of the actual
virtual environment. For example, the cognitive middle layer used in [3]; the
semantic virtual environment introduced in [7]; or the use of state detectors in a
middleware in [13]. In these approaches, little is said on the performance aspects
of maintaining such a layer with respect to the actual game state. Further, the
focus is mainly on the management of the semantic layer and individual agent
perception through virtual sensors is not considered.

2.3 Connecting MASs to Game Engines

Finally we consider the work on the integration of multiagent platforms or
other decision-making systems in virtual environments. In [5], the cognitive BDI-
architecture of CoJACK was used to control characters in VBS2, a 3D training
environment used in military domains. Pogamut [6] is designed as a mediation-
layer between a game engine and an agent’s decision-making system to bridge
the ”representational gap”. In [15], the agent programming language GOAL
was used to integrate BDI agents in the UT game engine using both Pogamut
and EIS. The latter is a proposal for an environment interface standard for MAS
agents and has been advertised for use in agent platforms including 2APL, Jadex
or Jason [2].

In the above work, although performance issues have been recognized for
agent sensing, no approach is presented on how to tackle this issue. This is due
to the fact that the specific game engines that were used (e.g. VBS2, Unreal

Agent Perception within CIGA: Performance Optimizations and Analysis 103

Engine) or the external interface they were dependent on (e.g. Gamebots[1]) did
not offer any facility to control or influence the percept generation process. In
previous work, we have proposed a design approach for interfacing MASs with
game engines and proposed a technique to control the percept generation process
in a game engine [18,17]. Our current work builds on this design approach by
introducing optimizations for agent perception.

3 CIGA Middleware

In this section we describe CIGA, a middleware to facilitate the coupling between
a multiagent system (MAS) and a game engine in order to build intelligent virtual
agents (IVAs) [18]. Its motivation stems from the idea of employing existing
agent technology developed by the MAS community to deal with the decision-
making aspects required for virtual characters (e.g. as BDI-agents). We start
below with a summary of fundamental design issues one is faced with when
connecting MASs to game engines and describe how CIGA facilitates in tackling
these. For the scope of this paper we focus in particular on the issues related to
agent perception. Afterwards, the high-level architecture of CIGA is discussed.

3.1 Design Issues

The first and probably the most significant issue for interfacing MASs to game
engines is to bridge the representational gap between the two system. This gap
is caused by the difference in the primary function of each system. When con-
sidering game engines, these are specialized in realizing physical simulations of
virtual worlds and the human-like entities that populate these worlds. Multia-
gent systems on the other hand are specialized in realizing cognitive simulations
driven by cognitive agents and their interactions. In each system, specialized
components are typically available that have become more or less standard ele-
ments of either technology. In a game engine this is typically a rendering engine
to visualize the current state of the environment; a physical engine to simu-
late the laws of physics; and an animation engine to allow human-like bodily
movements. In a MAS, agent designers often employ specialized techniques and
models related to knowledge inference, planning or communication. Now where
game engine techniques work with data at the more physical and geometrical
level, techniques used in MASs work with data at the more symbolic, social level,
based on human-like notions. This difference in data representation becomes an
issue when one attempts to interface these systems to realize an embodied cog-
nitive agent that can sense and act within a virtual environment. To give an
example, an agent’s concept of a ’closed door’ could be represented in the game
engine by geometry in the shape of a door together with the relative rotation
with respect to adjacent geometry. Instead of making an agent responsible for
interpreting such low-level information, it may be better suited to present an
agent with information at a more strategic abstraction level from the actual
data representations in the virtual environment.

104 J. van Oijen, H. La Poutré, and F. Dignum

The second issue relates to situating a software agent within a real-time vir-
tual environment, embodying a human-like character. MASs are generally not
designed to connect to real-time virtual environments, nor do they typically
require agents to exhibit natural, human-like behavior in these environments.
For example, commonly an agent in a MAS receives information from its envi-
ronment as so-called percepts. In deliberative software agents like BDI-agents
these percepts are generally taken into account during deliberation, updating
an agent’s belief base or triggering a reactive action. The nature of the envi-
ronments in which such software agents are situated is often more discrete and
event-driven. In comparison, in a game engine, the dynamics of an environment
is more continuous, driven by a simulation update cycle (often running at rates of
more than 30 Hz). Now if an agent becomes embodied in such a real-time virtual
environment there can be a huge amount of information that the game engine
can provide to the agent as sensory information (e.g. consider a heavily popu-
lated environment where each object may have dozens of properties). Of course,
for each agent this information should be filtered according to what it can phys-
ically perceive through its virtual sensors, which are presumed to be present in
the game engine. Still, the amount of information that can considered as sensory
information can be enormous, especially in complex and dynamic virtual envi-
ronments. Additionally, such sensory information can be provided to an agent at
each simulation update cycle. The amount of sensory information and the fre-
quency at which this information can be transferred to an agent can put a high
burden on the communication interface between an agent and its embodiment
in a game engine, leading to a potential performance bottleneck in applications
with many agents. Additionally, perception could lead to performance issues for
an agent’s deliberation cycle. Because of the high amount of percepts being re-
ceived continuously, an agent’s inference engine or rule-based decision-making
engine may need to be consulted many times per second, triggered by a contin-
uous stream of up to date information sensed from the environment. This could
stall deliberation where an agent becomes occupied with processing information
rather than actually planning actions.

The CIGA middleware is designed to facilitate designers to tackle the above is-
sues in a structured manner. Concrete design approaches concerning these issues
are described in Section 4. Additional information on the high-level architecture
and technical design of CIGA can be found in [18].

4 Agent Perception Framework

In this section we describe the perception framework which illustrates how CIGA
tackles the design issues described in the previous section. Figure 1 illustrates
the perception framework. To summarize the role of CIGA: on one hand it of-
fers agents access to a global semantic world model which presents an abstract
representation of the actual virtual environment. Such a world model consists of
semantic concepts, used by an agent’s embodiment to create percepts. On the
other hand, it offers agents a way to control percept generation through the use

Agent Perception within CIGA: Performance Optimizations and Analysis 105

of a subscription-based filtering mechanism. Here, a subscription represents an
interest in certain environment information, relating to the concepts available
in the semantic world model. In this approach, agent designers have full control
over the flow of percepts from a game engine to a MAS. Agents can be designed
to adopt or retract subscriptions, dependent on their current task or goal. Im-
portant to note is that although the semantic world model is global within the
system and accessible by agents, agents are not omniscient. Access to the world
model is regulated by one or more agent sensors, controlled on one hand by a
sensor’s physical ability to observe entities in the environment and on the other
hand by an agent’s cognitive interests in certain environment information. Below
we describe the framework in more detail.

Fig. 1. CIGA Agent Perception Framework

4.1 Semantic Layer

CIGA’s Semantic Layer in Figure 1 consists of a semantic world model (SWM)
which agents can access during sensing to obtain sensory information (reflecting
their current view of the environment). The SWM represents the current world
state of the environment at a certain abstraction level from the actual game state
in the game engine. This abstraction level should be defined at a strategic level
for agents to perform efficient decision-making based on meaningful concepts.

The SWM consists of instances based on an ontology of environmental con-
cepts that can be specified at design time for a specific domain. Here one can
define object classes with properties and parameterized events. At runtime, this
model can be accessed by agents during sensing to request semantic object prop-
erties (as will be explained later). Requesting data from the SWM is achieved by
performing a semantic translation which generates the requested property based
on the raw state of an object within the game engine. To give an example, for

106 J. van Oijen, H. La Poutré, and F. Dignum

an agent with the required ability to navigate through doors, one could define
an ontological object class Door with a property status specifying whether the
door is open or closed. At runtime, upon an agent request for this property, a
translation is performed calculating the status of the door based on its geomet-
rical position relative to its surrounding geometry. Since every game object that
should be perceivable by agents is required to register itself within CIGA and
specify the ontological class it represents, CIGA is able to relate concepts in the
SWM to objects in the game engine.

4.2 Embodied Agent Layer

CIGA’s Embodied Agent Layer regulates the sensing process of an agent using
one or more virtual sensors. On the game engine side, it can access the virtual
environment to perform sensory queries. Within CIGA, it can access the Se-
mantic World Model for generating sensory information. On the MAS side, it
interfaces with a Perception Module assumed to be available in the MAS where
received sensory information is processed and perception control messages flow
vice-versa. Next we look into the individual components in more detail.

Sensory Processor. This is where the agent’s update cycle for sensing is con-
trolled from. First individual sensors are given a chance to update, generating
and storing sensory information inside a buffer (the Object Sign Buffer). Next, at
the end of an update cycle, data collected inside this buffer is sent as individual
percepts towards the MAS side.

Interest Manager. This component is part of an agent’s sensory processor and
contains an agent’s interest in environmental data. It manages subscriptions on
certain information from the environment for which sensory information should
be generated. These subscriptions reference ontological concepts defined within
the application’s Ontology Model and can be adopted or dropped from the MAS
side. This subscription-based approach allows an agent to have full control over
the flow of sensory information it generates. A common type of subscription
concerns a frequency-based subscription for an object property. Its states that an
agent has an interest to receive some property (e.g. location) of a certain object
class (e.g. Human) at a fixed rate (e.g. 5 times per second). More information
on this subscription-based technique can be found in [17].

Virtual Sensors. Sensors are based on an abstract class from which concrete
sensors can be created for a certain modality (e.g. visual, auditory). The execu-
tion of a sensor is based on a sensing algorithm which is performed at each sense
cycle. Although the specific algorithm may differ for each sensor, it typically
involves (1) accessing the virtual environment in the game engine to find out
what elements falls within the sensor’s sensory range, (2) accessing the Interest
Manager to consult the currently active subscriptions, (3) accessing the Seman-
tic World Model to request specific semantic object properties and (4) accessing
the Object Sign Buffer to store the requested data as object signs. In this paper
we will only consider visual sensing for retrieving object properties since this is
typically both the most common and most computationally expensive part of

Agent Perception within CIGA: Performance Optimizations and Analysis 107

a perception system. However, optimization approaches proposed in this paper
are not specific for visual sensing and the same concepts can be utilized for other
sensor modalities.

4.3 Subscription-Based Filtering

As described earlier, the representation of sensory information is in accordance
with the concepts available in the semantic world model (SWM). In subscription-
based filtering we employ this model to define subscriptions that represent an
agent’s perceptual interest towards its environment. For example, an agent can
subscribe to specific properties from one or more specific object classes. Here
the hierarchical nature of objects defined in the SWM is taken into account: i.e.
an agent having a subscription for the location of all physical objects indirectly
has a subscription for the location of all object classes defined as a subclass of a
physical object.

A subscription specification consists of two mandatory elements that must
be specified. The first element represents the nature of the semantic interest,
referencing elements from the SWM (e.g. an object property). The second el-
ement refers to an update policy. An update policy specifies at what times or
how often there is a demand for the semantic interest. Different types of up-
date policies are available: a one-time subscription (desires information once), a
frequency-based subscription (desires information at a certain frequency) and a
value-change subscription (desires information when it changes). Finally as an
optional feature, one can provide a conditional source which specifies a specific
source object from which information is desired. Employing above features for
subscriptions provides a powerful mechanism to specify desirable sensory input
for an agent, only limited by the richness of the semantic concepts defined in the
SWM.

More information on subscription-based filtering and an evaluation of its per-
formance gains can be found in [17]. In the remainder of this work we propose
optimization approaches for an agent’s perception process within CIGA.

5 Towards Optimizations

In previous experiments [17] it was seen that although the computational time
required for agent sensing could be decreased based on the introduction of
subscription-based filtering (hereby eliminating the need to create and send ir-
relevant sensory information), still, the system formed a bottleneck caused by
the required processing of the visual sensor in highly populated environments.
In this section optimizations to increase efficiency are investigated.

5.1 Optimizing Visual Sensing

The sensing algorithm of an agent’s visual sensor can be broken down into two
phases: a physical and a cognitive processing phase. The former determines what

108 J. van Oijen, H. La Poutré, and F. Dignum

Fig. 2. Basic Sensory Algorithm

objects in the environment are observable for an agent and acts a physical filter.
The latter is a cognitive filter and generates sensory information only for those
objects that (1) pass the physical filter and (2) contain properties an agent is
subscribed to. This process is shown in Figure 2.

Physical processing must be executed in a game engine and builds a list of
environment objects observable to agent’s visual sensor which means they are
(1) within visual range and (2) not obscured by other objects. A commonly used
implementation is to filter objects first by eliminating those which fall outside a
certain scope (e.g. a viewing frustum) and second performing line-of-sight (LoS)
checks for remaining objects (e.g. using ray casting techniques). In this context,
a lot of irrelevant processing may take place caused by unnecessary LoS checks
being performed: there is no need to perform LoS checks for objects for which
no subscription matches. As an optimization, we propose an alternative visual
sensing algorithm as shown in Figure 3.

Fig. 3. Optimized Sensory Algorithm

This algorithm merges physical and cognitive processing by dividing the for-
mer into two separate sub-processes where retrieved objects within scope are first
filtered on available subscriptions before considering whether the object in scope
is actually visible. Consider an agent presented with 10 boxes and 10 spheres
within visual range which has a subscription on the color property of boxes. In
case of the optimized algorithm, only 10 LoS checks have to be performed (only
for boxes) instead of 20 when using the basic algorithm. A disadvantage of the
optimized algorithm is that we loose a clear conceptual separation between phys-
ical and cognitive processing. Still, it allows an agent to cope with more complex
environments by filtering environment objects in an earlier stage of perception,
based on an agent’s demand for sensory information.

5.2 Caching the Semantic World Model

As described in Section 4.1, an agent can request an object property from the
Semantic World Model (SWM) when the corresponding object has passed the

Agent Perception within CIGA: Performance Optimizations and Analysis 109

Fig. 4. Semantic World Model with Caching

physical and cognitive filters. Such a request is handled by performing a semantic
translation based on the object’s current state to generate ontologically-grounded
data used as sensory information. Now considering the required computations, it
can be seen cumbersome to perform translations for consecutive requests when
the corresponding object’s status remained unchanged. Such redundant opera-
tions can be prevented by caching previously obtained results. A design approach
for employing caching is shown in Figure 4.

In this approach the environment objects themselves have the responsibility
of notifying the SWM about a change in their state related to one or more se-
mantic properties. A Cache is introduced for storing recently performed seman-
tic translations where a cache entry consists of an object identifier, a property
name, a value for this property (result of a translation) and an invalidated field.
Whenever the cache receives an invalidation notification from an environment
object, the invalidated field of the corresponding cache entry will be set to true,
meaning the currently cached value is out-of-sync with the actual state of the
corresponding object.

A request for an object property from the SWM is handled by the procedure
defined as QueryWorldModel. It will search the cache for a corresponding entry
for this property. If found and not invalidated, the property’s value in the cache
is returned. If invalidated or no entry has been found at all, a new semantic
translation is required and the property’s value is created based on the object’s
state in the game engine. The newly created value will be put in the cache (either
by updating or inserting a new cache entry) and marked as not-invalidated.

The advantage of the proposed design is that semantic translations are per-
formed only when necessary caused by an object’s state change. The downside is
the increased burden for a programmer to keep track of changes, relating them
to the object’s semantic properties and correspondingly notifying the SWM. Fur-
ther, bi-directional dependencies are created between a game engine and CIGA
(and thus a MAS), resulting in a more tightly coupled software connection.

6 Experimental Evaluations

Evaluating the optimizations proposed in the previous section, we report on
several experiments that were conducted to analyze the impact on an agent’s

110 J. van Oijen, H. La Poutré, and F. Dignum

sensing process. We start by providing implementation details of the system that
was used after which experimental evaluations are presented.

6.1 System Implementation

As seen in Figure 1, a system implementation involves three architectural com-
ponents, namely a game engine, a multiagent system and the CIGA middleware.
As for the game engine, a company’s in-house developed C++-based game en-
gine was employed in which human-like characters have been designed with basic
abilities for sensing and acting. Although no well-known game engine was em-
ployed, the used engine includes common industry-standard components that
can be expected nowadays from a state-of-the-art game engine (e.g. scene man-
agement, a physics engine and an animation engine).

The multiagent system has been custom built in Java. The reason not to use a
standard agent platform (e.g. Jason, Jadex or JACK) is that our experiments do
not require any advanced decision-making or planning. Further, the environment
interface that such platforms offer is often fairly primitive where there are no
facilities for agents to communicate messages to their embodiment (except for
using actions). Last, since the perception module on the MAS side had to be
programmed separately to interface with the middleware, we decided to program
the complete agent directly in Java as well. This does not mean that standard
agent platforms cannot be used, but rather that the overhead in this case did
not warrant the advantages.

Finally, the CIGA middleware employs a distributed design interfacing with
both the game engine and the MAS in their own language. Internally, TCP/IP
is used for inter-process communication. For our evaluation domain, an ontology
was created for the Semantic World Model in Protégé. This ontology can be
loaded into the middleware and referenced from both the game engine and the
MAS. More technical design details of how the middleware interfaces with the
game engine and the MAS fall outside the scope of this paper, but can be found
in [18]. Next we elaborate on the processes related to agent sensing within the
proposed framework from Figure 1.

6.2 Evaluation Details

For a better understanding of the scope of computational processing within an
agent’s sense cycle, Figure 5 shows a process hierarchy of the relevant processes
involved. Note that we only consider an agent to have a visual sensor. The left
sub-tree denotes the process of updating the visual sensor whose sub-processes
have been explained in Section 5.1. The right sub-tree denotes transporting
sensory information stored in a buffer towards the agent’s perception module on
the MAS side using the IPC. It consists of (1) preparing sensory information for
transport through serialization and (2) transporting the result using TCP/IP
socket communication.

Agent Perception within CIGA: Performance Optimizations and Analysis 111

Fig. 5. Sensing Process Hierarchy

A profiler has been developed which for each process in the hierarchy can
measure the computational time spent on a particular process during one sense
cycle. External influences may affect these measurements (e.g. concurrently run-
ning background processes). For more reliable results, averages are calculated
over measurements from several separate sessions of at least 100 update cycles.
Within the application, scenarios can be designed where the environment can be
populated with different types of geometric shapes (namely boxes and spheres)
which can vary along several dimensions (e.g. location, color). A single agent
is included which can be given subscriptions on one or more dimensions of the
objects. Figure 6 gives an impression of the kind of scenarios that were used.

Fig. 6. Scenario Impressions

To give an example of the actual data communicated between an agent in
a MAS and its embodiment in the game engine below illustrates an agent’s
message to subscribe to an object property and a corresponding percept related
to the subscription.

(sender=john)(receiver=john)(time=153.0)

(content=CommandSubscribeInterest

(interestID:1)

(interest:<InterestObjectAttribute

(interestFrequency:5)

(objectClassHandle:Box)

112 J. van Oijen, H. La Poutré, and F. Dignum

(objectAttributeID:color)>

)

)

(sender=john)(receiver=john)(time=163.0)

(content=ObjectPercept

(objectID:box6)

(object:<Cube

(color:red)>

)

)

Below we will continue with a description of the experimental evaluations.

6.3 Visual Sensing Analysis

This first experiment involves a comparison between the two visual sensing al-
gorithms discussed in Section 5.1, getting insight into the possible performance
gain of using the optimized algorithm. The experiment includes several scenarios
where the environment contains a single box and zero or more spheres (varied
between 5 and 100 across consecutive scenarios). The agent is given a subscrip-
tion on the location property of boxes. By increasing the amount of spheres, the
number of objects the agent will not be interested in is increased where efficiency
can be gained by eliminating irrelevant LoS checks (as done by the optimized
algorithm). Each scenario will be run twice, once for the default visual sens-
ing algorithm and once for the optimized one. Results can be seen in Figure 7,
plotting the measurements recorded for the process UpdateVisualSensor.

Fig. 7. Experimental results for the process UpdateVisualSensor

In the figure, the horizontal axis resembles the different scenarios, increasing
the number of entities in the environment (in this case spheres). The vertical
axis illustrates the computational time for an agent spent on the process Updat-
eVisualSensor for each scenario. This process is shown in the process hierarchy

Agent Perception within CIGA: Performance Optimizations and Analysis 113

in Figure 5 and covers all processes involved in an agent’s sensing algorithm (e.g.
see Figure 3).

One can see that for each consecutive scenario, the basic algorithm takes sub-
stantially more computational time whereas the time measured for the optimized
algorithm stays stable throughout the different scenarios. The difference in com-
putational time is fully caused by the different number of LoS checks that have
to be performed. In the optimized algorithm, only one check has to be performed
throughout all scenarios (for the single box) whereas in the basic algorithm this
ranges from 6 to 101 checks. Of course, since in the optimized algorithm the
same kind of calculations is performed but only less of them, the results may
not be surprising. Still, results do show that performing a LoS check is a com-
putationally expensive operation and one can gain a lot of performance from a
relatively simple mechanism like subscription-based filtering, making sure that
only those checks are performed that are actually relevant to an agent. Con-
cluding, using the optimized algorithm, a substantial performance gain can be
achieved, especially in situations where the number of environmental objects for
which an agent has no cognitive interest in is increased.

6.4 Semantic Cache Analysis

With a second experiment, we analyze the possible performance gain of using
caching as described in Section 5.2. A comparison is made between the compu-
tational times required for retrieving cached object properties versus retrieving
those properties through semantic translation. Two scenarios are performed in
which the agent is presented with 150 boxes visually perceivable. In the first
scenario the agent is subscribed to a single property of a box whereas in the
second scenario the agent is subscribed to 5 different properties. Both scenarios
are run twice, once with caching enabled and once without caching. The state of
all objects remains unchanged through the scenarios, resulting in positive cache
hits in case caching is enabled. The results are illustrated in table 8, showing
computational times for querying the world model and the full update cycle. The
former is shown in Figure 5 as the process QueryWorldModel. A full update cycle
entails the full process hierarchy from this figure (i.e. the root of the hierarchy).

Fig. 8. Experimental Results

Analyzing the results, we can see that for a 1-property subscription (query-
ing 150 properties) the process QueryWorldModel performs 2.96 times better
with caching than without. With a 5-property subscription (querying 750 prop-
erties), it performs 2.2 times better with caching enabled. This difference can be

114 J. van Oijen, H. La Poutré, and F. Dignum

explained by the fact that the time required to perform a semantic translation
can differ between different semantic properties. Generally, a property defined
at a higher abstraction level from the object’s raw state requires a more complex
translation rule, resulting in an increased benefit for employing caching.

Considering the impact of caching on the computational time required for a
full sense cycle, for a 1-property subscription the gain is about 13% whereas for
a 5-property subscription about 14%. Putting these numbers into perspective
requires a full analysis of all processes involved in an update cycle as will be
given in the next section. We can conclude that the use of caching can increase
the performance of querying the world model, though the gain is relatively small
in scope of the overall update cycle. Further, the gain is not always the same
and depends on the complexity of a semantic translation to be made. Last, one
has to remember that such a gain would not be achieved for objects that become
invalidated every game cycle (resulting in invalidated cache entries).

In this experiment we have considered the most ’optimistic’ situation in which
the environment is fully static. Here, a performance gain was measured around
13%-14%. In more dynamic environments, one can expect less gain in perfor-
mance.

7 Framework Performance Analysis

In this section we provide a performance analysis of the perception framework
within a scenario in which an agent increasingly generates more sensory informa-
tion. It is aimed to (1) analyze the computational complexity of the significant
processes within the framework and (2) to investigate the relative computational
times between those processes in order to identify a bottleneck in the system.

To accomplish this, an experiment was conducted in which an agent was pro-
vided with a subscription on the location property of boxes while the number of
boxes within the environment increases across consecutive scenarios. Important
to note is that here one will not benefit from the optimized visual sensing algo-
rithm from Section 5.1, since only objects are used for which sensory information
must be generated (thus requiring LoS checks). Further, the framework was con-
figured to not employ caching within the Semantic World Model, since this design
choice is highly application dependent. Also, by not employing caching, we can
treat the experiment results as if dynamic objects were used: whenever required
by the agent’s subscription, translation rules are being performed independent
of whether or not the objects are static or dynamic. The results from the experi-
ment are shown in Figure 9. It covers the process hierarchy from Figure 5 where
the left side of the figure includes the sub-processes for UpdateVisualSensor and
the right side includes the sub processes for ProcessObjectSignBuffer.

Based on these results, we can see that the LoS checks within the visual
sensor becomes the first bottleneck because of its non-linear nature. The process
QueryWorldModel is not negligible and one may consider employing caching
to further decrease its impact. Considering buffer processing, this also takes a
significant amount of time (approx. 50% of the time of the overall sense cycle

Agent Perception within CIGA: Performance Optimizations and Analysis 115

Fig. 9. Experimental Results for leaf processes of the process hierarchy

when retrieving sensory information for 150 objects). Here, both serialization
and transfer of sensory information contribute significantly. Since we have used
a human-readable format for sensory information, we expect one can decrease
this percentage when considering more efficient serialization techniques (with
better performance and a smaller message size).

Although we have only used a single agent in this experiment, using more
agents would not have an effect on the performance measurements of an individ-
ual agent. Only when caching is employed, agents are able to share the results
of semantic translations made by the Semantic World Model. Though, we have
already seen that this performance gain would be fairly small compared to the
computational time of the LoS checks.

8 Conclusion

In this paper we have proposed optimizations and conducted an analysis of an
agent perception framework employed within CIGA, a middleware mediating
between a game engine and a MAS covering the mind-body interface for agents
embodied in a real-time virtual environment.

Concerning the proposed optimizations, we conclude the following. First of
all, one can gain much performance by having an agent’s cognitive interest in
environmental objects control its physical sensing process in a game engine.
Objects for which no sensory information is requested do not require a full visual
confirmation and this is eliminated when employing the optimized visual sensing
algorithm. This allows an agent to cope with more complex environments by
ignoring ’uninteresting objects’. On the downside, one requires access to more
specialized functionality from the game engine (e.g. LoS queries) which results
in a tighter coupling between a game engine and CIGA (and thus a MAS).

Second, considering the design approach of caching within a semantic world
model, one will gain performance in situations where the state of a perceived

116 J. van Oijen, H. La Poutré, and F. Dignum

object remains unchanged between consecutive observations (eliminating possi-
bly complex semantic translations). Performance gains were measured at about
13-14% for a sense cycle. Looking from a design perspective, the use of caching
imposes specific requirements for a game engine: environmental objects are re-
quired to notify the semantic world model within CIGA during state changes.
Here, a tradeoff is in place between efficiency and design complexity.

Last, concluding on the performance analysis of the overall framework, a bot-
tleneck in the system can emerge when an agent requires many visual confirma-
tions for objects in the environment (i.e. for which a cognitive interest exists).
Thus, although an agent may be able to deal with heavily populated environ-
ments (by employing the optimized sensing algorithm), one still has to be careful
in controlling an agent’s cognitive interest using the subscription-based filtering
mechanism provided by CIGA, as to avoid performance issues.

Putting our contribution in a broader scope, we have seen that performance
issues concerning perception for agents embodied in a real-time environment have
been recognized before. Although optimization approaches have been presented
within the scope of CIGA, conceptually, similar approaches can be applied to
other architectures. These approaches relate to (1) centrally managing a semantic
world model and (2) a subscription-based percept filtering mechanism, employing
the concepts defined in the semantic world model.

As for future work, it was seen that the focus should be on further optimiza-
tion approaches for determining the environmental elements that agents should
physically be able to see within a virtual environment. One can think of ap-
proaches to share sensory computations performed in the game engine between
agents, realized by some central mechanism.

References

1. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S.: Gamebots: A 3d virtual
world test-bed for multi-agent research. In: Proceedings of the Second International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS (2001)

2. Behrens, T., Hindriks, K., Dix, J.: Towards an environment interface standard for
agent platforms. Annals of Mathematics and Artificial Intelligence, 1–35 (2010)

3. Chang, P.H.-M., Chen, K.-T., Chien, Y.-H., Kao, E., Soo, V.-W.: From Reality to
Mind: A Cognitive Middle Layer of Environment Concepts for Believable Agents.
In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS
(LNAI), vol. 3374, pp. 57–73. Springer, Heidelberg (2005)

4. Endsley, M.: Designing for Situation Awareness: An Approach to User-Centered
Design. Taylor & Francis (2003)

5. Evertsz, R., Pedrotti, M., Busetta, P., Acar, H., Ritter, F.: Populating VBS2 with
realistic virtual actors. In: Proceedings of the 18th Conference on Behavior Repre-
sentation in Modeling and Simulation, pp. 1–8 (2009)

6. Gemrot, J., Brom, C., Plch, T.: A periphery of pogamut: From bots to agents and
back again. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS,
vol. 6525, pp. 19–37. Springer, Heidelberg (2011)

7. Grimaldo, F., Lozano, M., Barber, F., Vigueras, G.: Simulating socially intelli-
gent agents in semantic virtual environments. Knowledge Engineering Review 23,
369–388 (2008)

Agent Perception within CIGA: Performance Optimizations and Analysis 117

8. Herrero, P., Greenhalgh, C., Antonio, A.: Modelling the sensory abilities of intelli-
gent virtual agents. Autonomous Agents and Multi-Agent Systems 11(3), 361–385
(2005)

9. Leonard, T.: Building an AI Sensory System: Examining the design of Thief: The
Dark Project. In: Game Developers Conference (GDC 2003) (2003)

10. Maes, P.: Modeling adaptive autonomous agents. Artificial Life 1(1-2), 135–162
(1994)

11. Peters, C., Castellano, G., Rehm, M., André, E., Raouzaiou, A., Rapantzikos, K.,
Karpouzis, K., Volpe, G., Camurri, A., Vasalou, A.: Fundamentals of agent per-
ception and attention modelling. In: Cowie, R., Pelachaud, C., Petta, P. (eds.)
Emotion-Oriented Systems, pp. 293–319. Cognitive Technologies (2011)

12. Reynolds, C.: Interaction with groups of autonomous characters. In: Proceedings of
Game Developers Conference, San Fransisco, CA, pp. 449–460. CMP Game Media
Group (2000)

13. Riedl, M.O.: Towards Integrating AI Story Controllers and Game Engines: Recon-
ciling World State Representations. In: Proceedings of the 2005 IJCAI Workshop
on Reasoning, Representation and Learning in Computer Games (2005)

14. So, R., Sonenberg, L.: The roles of active perception in intelligent agent systems.
In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 139–152. Springer,
Heidelberg (2009)

15. Hindriks, K.V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N.,
Pasman, W., de Rijk, L.: Unreal Goal Bots. In: Dignum, F. (ed.) Agents for
Games and Simulations II. LNCS, vol. 6525, pp. 1–18. Springer, Heidelberg (2011)

16. van der Vecht, B.: Adjustable Autonomy: Controling Influences on Decision Mak-
ing. PhD thesis, University of Utrecht (2009)

17. van Oijen, J., Dignum, F.: Scalable Perception for BDI-Agents Embodied in Vir-
tual Environments. In: Proceedings of the 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology, WI-IAT 2011,
vol. 02, pp. 46–53. IEEE Computer Society, Washington, DC (2011)

18. van Oijen, J., Vanhée, L., Dignum, F.: CIGA: A Middleware for Intelligent Agents
in Virtual Environments. In: Beer, M., Brom, C., Dignum, F., Soo, V.-W. (eds.)
AEGS 2011. LNCS, vol. 7471, pp. 22–37. Springer, Heidelberg (2012)

19. Weyns, D., Steegmans, E., Holvoet, T.: Towards active perception in situated
multi-agent systems. Applied Artificial Intelligence 18(9-10), 867–883 (2004)

Ambient Intelligence with INGENIAS

Jorge J. Gómez-Sanz, José M. Fernández-de-Alba,
and Rubén Fuentes-Fernández

GRASIA Research Group,
Universidad Complutense de Madrid,

Avda. Complutense, 28040 Madrid, Spain
{jjgomez,jmfernandezdealba,ruben}@fdi.ucm.es

Abstract. This paper introduces advances made in the INGENIAS
methodology to deal with Ambient Intelligence (AmI). The work con-
siders the particular features of AmI systems and how an agent-oriented
methodology can help to address their development. Being INGENIAS
a model-driven methodology, a first step has been to compare the con-
cepts used in INGENIAS and those required by AmI developments. This
analysis identifies required changes to be applied in the INGENIAS meta-
model. A case study on a tracking system to locate people illustrates this
discussion.

1 Introduction

Ambient Intelligence (AmI) is a generic name given to the integration of dif-
ferent information technologies that enables artificial environments to react and
advance human actions. Quoting Aarts and Wichert [1] Ambient Intelligence is
about sensitive, adaptive electronic environments that respond to the actions of
persons and objects and cater for their needs. The presence of heterogeneous sen-
sors and actuators, and intelligence (e.g. in form of adaptiveness or awareness)
in AmI systems makes their development very challenging for engineers.

Looking for approaches that facilitate this development, some authors have
considered the use of Agent-Oriented Software Engineering (AOSE) [12]. Agent
technology already offers some of the features required for AmI: agents are intel-
ligent components, heterogeneous and inherently distributed, able to manipulate
other artefacts and collaborate to achieve higher-level goals. This line of work
is suitable for research on AmI focused on intelligence aspects. Nevertheless,
there are other works pursuing complex hardware deployments and lightweight
reasoning apparatus where agent technology is harder to fit.

Despite the potential synergies, the integration of AmI and AOSE is still
quite preliminary. Sadri [12] makes an extensive review of agent systems applied
in AmI. Most of them are introduced as ad-hoc systems, i.e. tailored for specific
domains and developed without following a general process. A possible reason
for this situation, according to Sadri [12], is the trade-off between using generic
approaches and their level of support. A general approach reduces learning and
tool acquisition costs, as it can be applied in multiples contexts and projects.

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 118–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Ambient Intelligence with INGENIAS 119

However, these approaches usually provide little effective guidelines due to het-
erogeneity and constraints in AmI systems. A relevant example of this are the
issues with their hardware.

Sensors and actuators have limited computational capabilities, so not any
software can run into them. Moreover, these devices do not conform to unique
standards regarding aspects such as programming, communications or discovery.
For instance, software running in different ambient devices may find difficulties
to inter-operate. The problem lies frequently in the use of different standards
that were not designed with a general purpose interoperability in mind. As an
example, let us consider Ambient Assisted Living (AAL), the application of AmI
for assisting people. The number of standards involved in this domain is hard to
account [6]. Only for communications, systems frequently use the Open Service
Gateway Initiative (OSGi), the Common Object Request Broker Architecture
(CORBA), web services, and Universal Plug and Play (UPnP), to cite some.
There are also more specific standards in some domains. For instance, the health
sector uses among others: the ISO EN 13606 Electronic Health Record Commu-
nication (EHRcom) for semantically interoperable exchange between electronic
health files; Health Level Seven (HL7) for data exchange between organizations;
or the ISO/IEEE 11073 for data exchange of medical sensor signals and vi-
tal signs from patient-related devices. So, until interoperable AmI hardware is
widely available, software will have to deal with this heterogeneity.

The goal of this paper is to achieve a greater integration between AmI and
AOSE. The main reason is making the development more systematic. With the
support of an agent oriented development process which takes into account needs
and limitations of AmI, necessarily the development will progress more steadily:
there will be tools, identified activities that will drive the development, and
notation/vocabulary to express the different products. This first work focuses in
the vocabulary and notation and pursues enhancing an AOSE modeling language
to capture AmI concerns. There are many existing AmI and AOSE alternatives.
Nevertheless, as it has been pointed out before, synergies between both have not
been studied, yet.

A possible proof-of-concept integration is being addressed within the Soci-
AAL project (TIN2011-28335-C02-01). This project intends to reduce develop-
ment costs can be while keeping technology independence through the use of the
model-driven development paradigm. The method used in the project consists
on capturing the commonalities of AmI into a meta-model, and devising ways in
which this meta-model can be realized into different target platforms. In our case,
the basis of this meta-model is the agent paradigm. The control of AmI systems
will be embodied into software agents built following an agent-oriented method-
ology, INGENIAS [11] in this case. The reason for choosing using INGENIAS
is its support for the model driven paradigm. Unlike other methodologies, IN-
GENIAS was born with model driven tools adapted to a concrete meta-model,
which written using XML format. Also, a researcher could evolve INGENIAS
meta-model while keeping its associated tools updated. This was possible be-
cause of the INGENME framework (http://ingenme.sf.net) that enables the

http://ingenme.sf.net

120 J.J. Gómez-Sanz, J.M. Fernández-de-Alba, and R. Fuentes-Fernández

automatic creation of self-contained visual editors using an XML description of
the meta-model. Other methodologies have just recently acquired this capability
[8] by migrating their facilities to the Eclipse Modelling Framework.

In order to ground this discussion, this paper considers the FAERIE [4,5] AmI
platform, which is an ongoing development in our research group. This initial ex-
perience will provide us the basis to study other platforms [2,12], and determine
what improvements can bring the use of INGENIAS to develop technology inde-
pendent AmI systems. For us, the context will be something our agents connect
to. Once connected, they receive or send information. Devices connect as well to
the context directly, enabling interaction through shared pieces of information,
or through agents, developing wrappers with an API our agents can handle.

The paper is structured as follows. First, there is an introduction to the IN-
GENIAS meta-model in Sect. 2. Next, Sect. 3 explains the integration of AmI
concepts into this meta-model. It is based on the use of the context concept to
model different parts of the system, including its deployment. Section 5 intro-
duces the FAERIE AmI software and shows how the generic meta-model can
be specialized for it. A case study on people tracking in Sect. 6 illustrates the
application of this new meta-model to develop AmI systems. The two final sec-
tions contextualize this research with related work (see Sect.7 and discuss some
conclusions on it (see Sect. 8).

2 A Fragment of INGENIAS Metamodel and Integration
Proposal

The integration of an AmI solution into INGENIAS requires introducing first
the relevant key elements of the INGENIAS meta-model. Figure 1 presents a
selection of actual elements of that meta-model that captures most of the cycle
for information processing.

The meta-model representation follows the GOPRR [9] approach. It considers
entities that can be either a Graph (i.e. a diagram), an Object (i.e. a node in
the diagram), a Property (i.e. an attribute), a Relationship (i.e. an edge), or a
Role (i.e. a connection between an Object and a Relationship). This information
is expressed in Fig. 1 using stereotypes. This meta-model is then processed by
the INGENME http://ingenme.sf.net framework to produce tailored visual
editors.

Regarding the cycle followed by INGENIAS agents, it is based on Newell’s
rationality principle [10]. This principle states that an agent chooses for execu-
tion those actions aimed at satisfying its goals. Hence, the agent behavior can
be described in terms of the goals it pursues, the activities it can use to achieve
those goals, and how it handles the information.

Figure 1 describes this cycle introducing several concepts. An agent pursues a
goal. This goal is in fact a mental entity whose purpose is controlling the agent.
The goal is satisfied when a task is executed and some concrete evidences are
produced. The task uses some applications, which represent the actuators of the
agent. They are conceived as software wrappers that adapt whatever elements

http://ingenme.sf.net

Ambient Intelligence with INGENIAS 121

<<object>>

ControlMentalEntity

<<Object>>

Agent

<<relationship>>

Consumes

<<Object>>

GeneralEvent

<<relationship>>

Pursues

<<relationship>>

Produces

<<Object>>

Task

<<Object>>

Goal

<<object>>

MentalEntity

<<object>>

InformationMentalEntity

<<relationship>>

Satisfies

<<relationship>>

Perceives

<<object>>

Application

<<relationship>>

uses

<<relationship>>

Belongs

Fig. 1. INGENIAS metamodel fragment with elements participating into event
processing

exist in the environment to an API that is accessible by the task. Hence, the task
is able to alter the environment of the agent and stimulate the production of
general events. These events are attended by the agent and treated as a regular
mental entity, e.g. they can be used to trigger other tasks or to consider some
goals as satisfied.

3 Extending the INGENIAS Metamodel

The goal of this work is to integrate AmI concepts into the MAS modeling lan-
guage of INGENIAS. For doing this, it is necessary to understand the role of
the context in AmI, which appears regularly in the AmI literature. The expe-
rience introduced in this paper focuses on how the context appears in Bolchini
[2], which surveys different representations of it. The context is described in [2]
as an active process dealing with the way humans weave their experience within
their whole environment, to give it meaning. The context is a representation of
different pieces of information from the environment, the systems and activities.
It includes attributes dealing, for instance, with space (location of elements),
time (when each piece of information was produced) and relationships. There
are also rules describing reasoning on these attributes, for instance how to up-
date calculated attributes. This information is used by people and applications.

122 J.J. Gómez-Sanz, J.M. Fernández-de-Alba, and R. Fuentes-Fernández

The implementation of the context can be centralized (chosen in most cases)
or decentralized. This context is generally a passive element, so there are en-
tities making it change, but always regarding specific constraints. Most of the
approaches with context modeling and implementation are based on blackboard
approaches.

A context is not expected to be static. For instance, a user may carry its
personal context with him, perhaps in form of wearable devices or mobile phones.
Such personal context changes in several ways. Changes as wearable devices are
put on or discarded. It changes as well as context information is beeing updated.
Also, since the user moves himself, he can meet other contexts along the way with
which interaction may be necessary. Besides, actors involved into other contexts
may request interacting with ours, for instance, to offer customized advertising
or to build a new service for other contexts.

So, a context can be understood as a place where information is stored and
shared. Access to this store is regulated since there are strong concerns about
privacy. Actions within the context would be carried out by the actors accessing
to it, though it is possible the context itself has some built-in operations. In AmI,
the capabilities available in a context are dependent on the kind and number of
sensors and actuators that are already associated to the context.

Starting with the integration, we assume that active entities in the context,
the ones connecting and disconnecting, the ones performing concrete actions and
accessing the information, they are agents. In INGENIAS agents are the active
entities. It makes sense that they are the responsible of interacting with the
context. This context is a container of information capable of event notification
and offering some pre-arranged operations. The association of an INGENIAS
agent with the context is called binding, and one agent can be bound to several
contexts. Figure 2 represents with a state machine the life-cycle that links an
agent and a context.

The cycle starts when the agent receives an event indicating there is a context
available. This event may be generated by some external component following a
given policy (e.g. periodically searching for contexts), or triggered purposely by
the agent through some specific system request.

A context was found

Context bound to the agent

bind action failed

bind action executed

Context unbound from agent Context bind lost

new context found

execute bind

failure evidences are found
success evidences are found

unbind action executed

interact with context

connection lost

connection restored

restore agent state

not interested

Fig. 2. Lyfecicle of the context to agent association

Ambient Intelligence with INGENIAS 123

When the context is found, the agent decides if there is interest in joining in. If
there is, the agent launches a binding action. Since the communication paradigm
for agents is inherently asynchronous, after launching the binding action, the
agent does other tasks, and it processes the obtained results when available.
The collected evidences by the agent may indicate the success or failure of the
action. If the binding has not failed, the agent can interact with the context
from that moment and on. While this binding exists, the agent may loss the
connection with the context, so information exchange actions may suffer some
delays and the participants need to reestablish the connection. The agent to
context binding ends if the connection is not restored or the agent purposely
unbinds. The inclusion of this cycle in the INGENIAS meta-model affects several
elements. These ideas are captured in the metamodel from figure 3.

First, the AmI environment is represented with a context entity. This entity is
associated to a context model and represents a set of pieces of information that
are coherently grouped. One context can have several associated context models,
which is necessary to address the heterogeneity of AmI environment. The context
identifies the elements the agent will interact with. The context model provides
an information model of the kind of information to be found within the context.
This is necessary to define agent’s behavior, as it is described in terms of tasks
and the information they may have as input and produce. Context modeling
is challenging since there are many possible information structure used at this
moment in the literature. At this point, the extension of the meta-model just
considers some context modeling may be required and we provide a concrete
context modeling solution for FAERIE, as section 5 presents.

The interaction between the context and the agent is simplified with an up-
dates/notifies relationship. An update implies an agent pushing information into
the context.Notify is the reverse operation, because it is the context the one push-
ing information to the agent. It serves to provide high level representations of the
problem, as it is done in figure 7. The agent will be aware of the existence of con-
texts either by looking for one actively or assuming there is a mechanism that
enables an agent to be notified when one context appears. Interaction with the
context is delegated to specific task types, namely Bind Context Task, Release
Context Task, and Context Use Task. Using a Bind Context Task (see figure 3),
the agent knows which contexts are available and may request to gain access to
one. When the agent decides to leave a context, it will execute a ReleaseContext-
Task. It may also be the case that the connection with the context is lost, as when
having an agent in a mobile device that gets out of the reach of the context device.
In these cases, a Context Lost Event would be produced. The Context Use Task
exists to deal with general interaction with a context once the agent is inside. For
instance, to request listening to changes in one entity or to perform changes in
another.

As stated in the introduction (see Sect. 1), our work also relies in the context
concept to describe the system deployment. Figure 4 explains this role. The IN-
GENIAS modeling language includes deployment packages to specify collections
of agent instances created using concrete pieces of information. In runtime, each

124 J.J. Gómez-Sanz, J.M. Fernández-de-Alba, and R. Fuentes-Fernández

Fig. 3. INGENIASmetamodel fragment of elements participating into event processing

deployment package is run in a separated Java Virtual Machine. The Deployment
Unit By Type allows creating a number of instances of one agent type without
parameterizing it. The DeploymentUnitByTypeEnumInitMS creates a number of
agent instances using the pieces of information declared in a mental state. The
DeploymentUnitByTypeEnumMSEntity does something similar, but the pieces
of information for the initialization are listed individually, and not as part of an
agent mental state. For AmI, a new deployment unit type is added, the Deploy-
ment Agent with Context. It includes all the information that one agent needs to
access to a Context it is bound. It assumes a context is launched as well within
the deployment package. The context is associated to several Context Models
(see figure 3), so it is required as well to determine how the model is instan-
tiated. This is the role of the Context Model Instantiation entity which uses a
facility of INGENIAS metamodel to express at the modeling level instances of
the model. The name of this facility isMental Instance Specification and is suited
for specifying the attribute values of any instance extending the Mental Entity,
in the INGENIAS meta-model. With these elements, it is possible to create a
JVM where a selected group of agents, probably parameterized, coexist with a
context, which contains the pieces of information determined in design time.

4 The FAERIE AmI Software

FAERIE [4,5] is an AmI framework intended to provide a general infrastructure
to develop this kind of system. It has a particular focus on context management,
and its design looks to integrate different approaches on this issue. Therefore,
it provides a comprehensive starting point to explore the suitability of our inte-
gration approach.

FAERIE considers physical spaces where nodes work. A node is a computa-
tional device and the framework components running on it. These components
implement the system logics. The devices can be sensors and actuators, but also
other computational resources, for instance to provide additional computational
power or storage capabilities. An AmI system includes several nodes, possibly
in different spaces. These nodes communicate and influence each other through

Ambient Intelligence with INGENIAS 125

Fig. 4. INGENIAS metamodel fragment of deployment using a context

their physical spaces, e.g. changing the temperature or turning on the lights, and
using networks.

Among components, FAERIE distinguishes context containers and context ob-
servers. A context container behaves as a blackboard that contains the abstract
representation of the context as context elements. A set of context observers
works on these context elements. When there is a change in the representation
of the context, the involved context elements notify it to the interested (i.e. sub-
scribed) context observers, which are able to modify their behavior accordingly.

Context elements can be of three possible types: Entity, Attribute and Rela-
tionship. Attributes hold information as ContextValues. A ContextValue stores
a data of a primitive type, and information for its management including its
type, producer and creation timestamps. Entities group all the information (i.e.
Attributes) related to a concept or object of the domain. Relationships represent
association between Entities according to certain criteria, e.g. the entities that
describe the profile of a user or the information needed to carry out an activity.

5 Integrating FAERIE with the INGENIAS Modeling
Language

The particularization of the extended INGENIAS meta-model for AmI (see Sect.
3) to FAERIE has two main aspects: the modeling of context information; and
the components that manipulate the context.

Figures 5 and 6 show the elements and their relationships used to model
context in FAERIE. The required elements (see Fig. 5) are a direct representation
of those discussed in Sect. 4. The root of the hierarchy is occupied by FAERIE
Context Element. This element inherits from Frame Fact, which is an INGENIAS
entity used to store information within the agent and with the capability of
defining slots of whatever type. Their relationships are included in Fig. 6. An
agent can update or receive as notification any attribute, entity or relationship.
Relationships define constraints and dependencies among entities. Attributes are

126 J.J. Gómez-Sanz, J.M. Fernández-de-Alba, and R. Fuentes-Fernández

Fig. 5. INGENIAS Meta-model extension to take into account FAERIE entities

Fig. 6. Necessary elements to model the FAERIE context

associated to entities by means of applied to relationships. Entities are expected
to produce values, and these values are associated as well to attributes. The
FAERIE value has been omitted in the meta-model, since it is too low level and
does not contribute much to the general design. The kind of values an entity
can have can be represented equally thanks to the slot representation capability
obtained from Frame Fact.

6 Case Study: Tracking Teachers

The previous meta-models have been tested in several case studies to evaluate
how well they capture the relevant information to build AmI systems. These
meta-models have been fed into the INGENME infrastructure to generate tai-
lored editors that facilitate these studies. This section reports part of a case

Ambient Intelligence with INGENIAS 127

study for a tracking application related with tutorship in a school. It considers
the elements from the FAERIE meta-model introduced in figures 6 and 5.

Students go to tutorships when they need personalized help on some subject.
However, teachers are frequently out of their offices and in some other place
in the building, for instance in a school board meeting or a conference. The
considered AmI application help these students to locate their teachers. It is
assumed there are no in-door location facilities, so it is up to the teacher to
inform the students where is he. In addition, it is expected the teacher to tell
the ambients of the room that he is here. This serves to trigger specific actions,
like turning on the heater or the air conditioned, depending on the preferences
of the teacher.

The problem is depicted in figure 7. There are four agent types involved in
the problem: Time table context updater (responsible of keeping track of the
teacher time table), Location context updater (responsible of deducing current
location of the teacher), Availability context updater (responsible of observing
the teacher location and informing concrete places that the teacher is inside),
and Someone application (which represents a third party application that wants
to know where the teacher is to trigger concrete actions, like turning on the
heater or the air conditioned). The problem involves three context types, two
for representing different kind of places, Classroom context and Office context,
and one representing the personal context of the teacher. Agents do receive
notifications from the contexts and updates them when it makes sense. In this
case, the Time context updater will change the time table to indicate which
activity the teacher is doing now (like lecturing students in room 5), the Location
context updater receives notification of the change in the time table and updates
the current location of the teacher, the Availability context updater is notified
of the change in the current location, and proceeds to modify the information
within the classroom or office contexts. This later change will trigger additional
actions in the third party applications represented by Someone application.

Figure 7 served to depict the general scenario. Now, to understand what is
modified and what is notified, it is necessary to explore the models associated to
the contexts. This is done in figure 8. The models represent dependencies among
the information models which each context contains. The Office and Classroom
contexts only require a piece of information, Teacher availability telling if the
teacher is present. This availability is associated to the teacher into another
model belonging to the Personal context. This context separates on the one side
private information from the user, such as its identify, and public information (at
least during working hours) of the user, such as My location and its timetable. A
timetable is an attribute of the teacher, like the availability. The location, nev-
ertheless is associated as an attribute to the person. The availability will notify
the Someone application agent when a change is triggered by the Availability
context updater agent. The change will start when a modification is notified to
this agent by My location. This entity will be updated by the Location context
Updater, which will be notified by a change in the timetable. Changes in the
timetable are oredered by Timetable context updater.

128 J.J. Gómez-Sanz, J.M. Fernández-de-Alba, and R. Fuentes-Fernández

Fig. 7. Agents association with contexts for the teacher case study

Figure 8 can be troublesome to understand. It is a typical case of information
overload in a diagram. INGENIAS provides in its new versions with facilities to
implode or explode some conflicting entities, like the context models. Figure 9
is the same figure as 8 but with all context models collapsed. The readability is
improved greatly and permits to focus the attention in concrete contexts each
time without having to create separated diagrams.

The deployment of the system requires on the one side identifying the deployed
agents, and, on the other side, the contexts to be created. Figure 10 introduces
three deployment packages representing a node in one office, another node in one
classroom, and a third node representing the user. The user carries one instance
of the Timetable context updater and the Location context Updater. The other
contexts have one instance of the Availability context updater each one. These
instances would be responsible of updated the corresponding instance of the
Teacher Availability entity, which these contexts will hold. The agent will also
request listening to changes in the location through context specific tasks, as
figure 12 will point out. There is also two instances of the third party application
per node. The instantiation of the associated context models is expressed in
figure 11.

The instantiation is expressed in figure 11 as a collection of instances ofMental
entity instances. These entities do refer to a concrete type (it is the entity attribute)
and determine the value of slots previously associated to those entities. Here, it is
appreciated that instances of the availability entities are associated to the same
teacher instance. This is common in this kind of problems and should not be as-
sumed it is exactly the same instance, but an entity with the same information.
If two entities share the same information, they are regarded as the same.
Nevertheless, this is something to be handled by the FAERIE infrastructure.

To conclude, the agents do have tasks dealing with the events that are pro-
duced from the binded contexts. These events will point at changes and will
indicate as well old values. The context where the event originated is mentioned
as well, since the agent may be listening to several contexts. In the figure 12 the
task Register As Observer is a special Context Use Task, which means it has

Ambient Intelligence with INGENIAS 129

Fig. 8. Context models used in the teacher finding problem

Fig. 9. Simplified version of figure 8 with collapsed context models

130 J.J. Gómez-Sanz, J.M. Fernández-de-Alba, and R. Fuentes-Fernández

Fig. 10. Deployment of agents and contexts for the teacher finding problem

access to context facilities, like subscribing to changes in an entity in some re-
mote context. Changes are processed by the Modify Availability In Context task,
which is again a Context Use Task. This time, it uses the context update infor-
mation service to change the values of the Teacher Availability. Similarly, the
Someone application agent has a regular tasks processing events from the con-
text. No special tasks are required in this case since no context specific services
are needed.

7 Related Work

The use of visual modeling languages in AmI to address the integration of dif-
ferent approaches is a novelty of this work to the best of our knowledge. For
instance, there are no examples in the extensive Sadri’s review [12]. However,
formal and visual modeling languages have already been applied in this domain.

Formal non-visual modeling appears in some works, particularly when there is
need to carry out complex reasoning on context information. For instance, Bosse
et al. [3] propose a generic agent framework for monitoring humans when some-
thing more sophisticated than evaluating a threshold is necessary. Their models
are expressed using a Temporal Trace Language (TTL) for the formal speci-
fication and verification of dynamic properties. The framework assumes there
are different agents interacting to combine their information and achieve use-
ful conclusions. As in other works, agents are used to wrap ambient sensors and

Ambient Intelligence with INGENIAS 131

Fig. 11. Instantiation of the context model elements for the teacher finding problem

Fig. 12. Agents association with context for the teacher case study

actuators. Most of the effort is made at the TTL level, which has an important
advantage: it is independent of implementation and permits to ensure some
properties are held.

The use of visual modeling languages is quite popular in AmI, as in other
realms of Software Engineering. Specifically for context, the GraphicalCM [7]
is a visual modeling language that allows mapping abstract models described
with GraphicalCM to implementation models. It is interesting how associations
between elements are labeled with quality parameters. GraphicalCM does not
consider the agent concept, but it can be used with our approach to enrich the
modeling language used for the context.

132 J.J. Gómez-Sanz, J.M. Fernández-de-Alba, and R. Fuentes-Fernández

8 Conclusions

This paper has introduced extensions of the INGENIAS modeling language to
include AmI aspects. In this first try, the focused on the modeling language to
integrate properly with INGENIAS and to address concrete problems identified
in a FAERIE development. As a result, several extensions to the INGENIAS
meta-model have been regarded. These extensions are part of the INGENIAS
editor v1.4 which can be used from the Maven repository or following the in-
structions from http://ingenias.sf.net. These extensions are intended to be
general in the future and need to address other platforms. The first step has
used the FAERIE platform, an ongoing project that already integrates several
works on context-aware applications.

The use of these extensions has been exemplified in this paper with a case
study on a tracking application. It uses different sources of information (e.g.
timetable and location) to locate a teacher within a building and determine if
s/he is available for tutorship. These extensions are not completed yet. There
are important areas that require work, specially privacy and the dynamic of the
context. Privacy is a critic concern in an AmI development which intends to be
open as ours. We have not addressed this problem yet and it may involve dealing
as well with the incorporation of other agents. FAERIE does consider privacy
and authority, but we believe those concerns can be considered in an increment
of the language without modifying existing entities. Another related issue is con-
text dynamics, concretely, the subscription to a context. The cycle depicted in
figure 2 does not regard the possibility of being rejected or the need to meet
some conditions in order to be accepted. Also, the behavior of the agents within
the context ought to be a concern as well. Agents abusing the context services
ought to be expelled. Research in norms, regulations, and institutions may be
very relevant here. To conclude, the modeling language is not informing to which
contexts an agent can have access. In fact, we considered to enrich the agent dec-
laration indicating which context models are known. However, this conflicts the
simplicity of the context notifies/updates approach, which, implicitly, tells the
agent must know the context models used within the updated/notifier context.
This decision will have to be reviewed after some additional experimentation.

Acknowledgements. We acknowledge support from the project “SOCIAL
AMBIENT ASSISTING LIVING - METHODS (SociAAL)”, supported by Span-
ish Ministry for Economy and Competitiveness, with grant TIN2011-28335-C02-
01 and by the Programa de Creación y Consolidación de Grupos de Investigación
UCM-Banco Santander for the group number 921354 (GRASIA group)

References

1. Aarts, E., Wichert, R.: Ambient intelligence. In: Bullinger, H.-J. (ed.) Technology
Guide, pp. 244–249. Springer, Heidelberg (2009)

2. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-
oriented survey of context models. SIGMOD Rec. 36(4), 19–26 (2007)

http://ingenias.sf.net

Ambient Intelligence with INGENIAS 133

3. Bosse, T., Hoogendoorn, M., Klein, M.C.A., Treur, J.: An ambient agent model
for monitoring and analysing dynamics of complex human behaviour. JAISE 3(4),
283–303 (2011)

4. Fernández de Alba, J.M., Pavón, J.: Recognition and interpretation on talking
agents. In: Garćıa-Pedrajas, N., Herrera, F., Fyfe, C., Beńıtez, J.M., Ali, M. (eds.)
IEA/AIE 2010, Part I. LNCS, vol. 6096, pp. 448–457. Springer, Heidelberg (2010)

5. Fernández de Alba, J.M., Pavón, J.: Talking agents in ambient-assisted living. In:
Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part IV. LNCS,
vol. 6279, pp. 328–336. Springer, Heidelberg (2010)

6. German Commssion for Electrical, Electronic and Information Technologies of DIN
and VDE. The German AAL Standardization Roadmap. Technical report, VDE
Association for Electrical, Electronic and Information Technologies (2012)

7. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in
pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE
2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002)

8. Pavón, J., Gomez-Sanz, J.J., Fuentes-Fernández, R.: Understanding agent oriented
software engineering methodologies. In: Agent-Oriented Software Engineering X -
10th International Workshop, AOSE 2011, Taipei, Taiwan (2011)

9. Kelly, S., Lyytinen, K., Rossi, M.: Metaedit+: A fully configurable multi-user and
multi-tool case and came environment. In: Constantopoulos, P., Mylopoulos, J.,
Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg
(1996)

10. Newell, A.: The knowledge level. Artificial Intelligence 18(1), 87–127 (1982)
11. Pavón, J., Gómez-Sanz, J.J.: Agent oriented software engineering with INGENIAS.

In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

12. Sadri, F.: Ambient intelligence: A survey. ACM Computing Surveys (CSUR) 43(4),
36 (2011)

Analysing the Suitability of Multiagent

Methodologies for e-Health Systems

Emilia Garcia1, Gareth Tyson2, Simon Miles3, Michael Luck3, Adel Taweel3,
Tjeerd Van Staa4, and Brendan Delaney3

1 Universitat Politecnica de Valencia, Spain
2 Queen Mary, University of London

3 King’s College London, UK
4 General Practice Research Database, UK

mgarcia@disc.upv.es, gareth.tyson@eecs.qmul.ac.uk,

{simon.miles,michael.luck,adel.taweel,brendan.delaney}@kcl.ac.uk,
tjeerd.vanstaa@gprd.com

Abstract. Online e-health systems are being proposed and developed
at an ever increasing rate. However, the progress relies on the interope-
rability of local healthcare software, and is often hampered by ad hoc
methods leading to closed systems with a multitude of protocols, ter-
minologies, and design approaches. Agent-oriented software engineering
(AOSE) seems intuitively a good approach for developing more open
systems. While agent-based e-health systems have been developed, the
general hypothesis of the suitability of AOSE has not been evaluated. In
this paper, we test that hypothesis, including a case study of applying
a normative agent methodology to a particular real-world e-health sys-
tem, and present an analysis of the strengths and weaknesses of AOSE
for e-health.

Keywords: Health systems, Normative environments, Organisational
Agent Architectures, Contracts, System of Systems.

1 Introduction

Large-scale and flexible systems are increasingly needed to fulfil the emerging
requirements of complex domains. One typical example is healthcare, which is
rapidly becoming more and more dependent on large-scale integrated software
systems. On the one hand, these systems offer new and innovative ways to im-
prove patient care; however, on the other, they also introduce complications and
risks that were never envisaged in the early days of healthcare computerisation.
Clearly, these complications affect the development of related software. A par-
ticular challenge is that the healthcare domain is separated into many disparate
organisations that often fall under different spheres of control. As a result, it is
common for systems to be constructed out of many divergent sub-systems; this
is termed a system of systems (SoS). In this context, interactions can often take
place between components that are managed by parties with conflicting goals,

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 134–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Analysing the Suitability of Multiagent Methodologies for e-Health Systems 135

different policies, incompatible data representations, and so on. Not surprisingly,
this can lead to serious challenges when integrating these different systems in
a trustworthy, consistent manner, leading to the emergence of strict regulatory
controls to manage not only the internal behaviour of organisations, but also the
interactions that may take place between multiple organisations.

While multi-agent technology has emerged over the last decade as a new soft-
ware engineering paradigm for building complex, adaptive systems in distributed,
heterogeneous environments, it is still not mainstream in its domain application.
Nevertheless, it can be observed that many properties of the healthcare domain
fit well with several concepts that arise in the area of multi-agent systems, such
as organisational autonomy, inherent regulatory frameworks, and so on. It thus
seems appropriate that introducing such principles to the development of health-
care systems could offer many benefits. Indeed, there have been several agent-
based e-health systems developed over a period of many years [3,37], but they
rarely employ explicit agent-oriented software engineering (AOSE) methodolo-
gies and, as such, do not directly evaluate the suitability of AOSE to this domain
in particular.

Addressing this omission, in this paper we investigate the suitability of using
AOSE, and the common underlying concepts used in AOSE design and devel-
opment, for the creation of e-health systems. We wish to answer the following
question: To what extent is AOSE an approach that is appropriate for the devel-
opment of e-health systems?

To represent AOSE in testing this hypothesis, we take a specific method-
ology, ROMAS (Regulated Open Multi-agent Systems). ROMAS is an AOSE
methodology that guides developers all the way from the requirements analysis
phase to the actual implementation, taking into account the notions of agents,
organisations, services and contracts. As ROMAS shares many of the same fun-
damental concepts with other existing AOSE methodologies, it can be seen as
an adequate representative for testing the hypothesis. In this paper we apply
the ROMAS methodology to a particular (real) e-health system: ePCRN-IDEA
[47,46]. This system allows us to exemplify the features of healthcare systems,
so as to evaluate the suitability of AOSE in addressing them.

The rest of the paper is organised as follows. Section 2 details the ePCRN-
IDEA case study and summarises the main challenges of the development of
e-health systems. Section 3 introduces some common AOSE design abstractions
that seem useful in the analysis and design of e-health systems. Section 3.2
introduces the ROMAS methodology. Section 4 summarises our proposal for
developing the case study using ROMAS and analyses the benefits that the
ePCRN-IDEA system has obtained by means of using AOSE techniques. Section
5 analyses the suitability and general benefits of using agent methodologies in
the analysis and design of e-health systems. We identify a number of strengths
and weaknesses of AOSE for such systems, as well as suggesting improvements
to better support the needs of the domain. Finally, Section 6 summarises the
results of this work.

136 E. Garcia et al.

2 Case-Study: ePCRN-IDEA System

In this section we present a system architecture for recruiting patients for clinical
trials in real-time. First, Section 2.1 introduces the real-life case study and its
domain context. Second, Section 2.2 discusses the challenges of designing an
e-health system using the case study as example.

2.1 ePCRN-IDEA Overview

Clinical trials are experiments by which the efficacy of medical treatments are
explored. They involve recruiting patients with specific characteristics to undergo
new treatments, so that the effectiveness and safety of those treatments can be
tested. However, a key challenge in this is recruiting sufficient patients to ensure
that the results are meaningful. This has long been a difficult problem as the
requirements for participation are often very strict, making it difficult to locate
eligible patients. ePCRN-IDEA is a new system under deployment in the UK
healthcare system that notifies practitioners in real-time whenever an eligible
patient is in consultation. When a patient visits a clinic, ePCRN-IDEA compares
their details against a database of trials; if the patient is eligible for one or more,
the practitioner is prompted to try to immediately recruit the patient if they
are interested. Further details of the ePCRN-IDEA project can be found in the
presentation by Tyson et al. [46].

2.2 Challenges in ePCRN-IDEA’s Development

Development of the ePCRN-IDEA system [47] has identified a number of core
challenges, which are typical of similar systems in the health domain. In this
light, this section briefly covers the most important of these identified challenges
to gain a better understanding of how AOSE might be able to benefit the devel-
opment process of such systems.

Integration of Independent Systems. In order to recruit eligible patients,
it is necessary for researchers, practitioners, patients, databases and clinics to
interact. This means that several independent institutions, which are completely
autonomous and have their own independent goals, must cooperate to achieve
a common objective. However, the integration of multiple heterogeneous and
autonomous systems can be a complicated and resource-consuming task. Some
of the issues that must be solved are [42,41]:

– Distributed Data: the required data is spread widely across all organisations,
frequently using different schemas;

– Technical Interoperability: different organisations often use different (poten-
tially incompatible) technologies;

– Process Interoperability : different organisations often employ divergent (po-
tentially incompatible) processes to achieve their goals;

Analysing the Suitability of Multiagent Methodologies for e-Health Systems 137

– Semantic Interoperability: different organisations often utilise different vo-
cabularies and coding schemes, making it difficult to understand the data of
others;

– Trustworthiness : little trust exists between different organisations, particu-
larly those with conflicting goals and interests. In consequence, healthcare
systems that consist of multiple organisations must take all these aspects
into account to ensure successful operation.

Regulation of Independent Systems. Healthcare systems must fulfil strict
governmental regulations concerning the privacy and security of personal patient
data. Moreover, each research institute and clinic has its own regulations, specific
goals, priorities and restrictions to regulate the behaviour of each of its members.
Healthcare systems must therefore often take into account several regulatory
environments.

System Evolution. Medical institutions are constantly adapting their systems
to reflect new legislation, software and medical techniques. As these autonomous
organisations often operate with a range of aims and priorities, it is possible
that changes may take place without necessarily propagating to all other parts
of the system. In this respect, a change within one sub-system could result in
violations of responsibilities in another sub-system (e.g. by changing data for-
mats). Healthcare systems that consist of multiple organisations must therefore
ensure some formal procedure by which all parties understand and adhere to
their responsibilities. To enable practical deployment, institutions must also be
contractually obliged to adhere to a standard interaction mechanism and data
format, although their internal process or storage technology changes.

3 Agent-Oriented Software Engineering

Multi-agent systems (MAS) are used in real-industrial applications for devel-
oping complex, adaptive systems in distributed, heterogeneous environments in
different domains. Although there is much current interest in the use of MAS
approaches for the development of healthcare systems, the MAS paradigm is still
not mainstream in this domain. Several agent-based e-health systems have been
developed [27,39], but the use of agent-oriented software engineering (AOSE)
methodologies to analyse and design these kinds of systems has not extensive.

In this section we introduce some common AOSE design abstractions that
seem useful in the analysis and design of e-health systems. We also introduce
the ROMAS methodology in order to analyse and design the case study. Further
details of the ROMAS methodology can be found in [23,24].

The ROMAS methodology is considered an adequate representative for testing
the hypothesis of this paper because it integrates in its development process all
the AOSE design abstractions detailed in Section 3.1. It also offers a set of
guidelines that facilitate the analysis and design process, such as guidelines for

138 E. Garcia et al.

selecting the most suitable social structure, and for identifying and formalising
the normative context of a system. However, it is important to highlight that
the conclusions of this paper are not related to the specific features of ROMAS,
but instead to general features of AOSE methodologies.

3.1 AOSE Design Abstractions

In MAS, agents are entities characterised by their autonomy, reactivity, proac-
tivity, and social ability.

The concept of organisation has become a key concept in MAS research,
since its properties can provide significant advantages when developing agent-
based software, allowing more complex system designs to be built with a reduced
set of simple abstractions [30,31]. Organisations comprise both the integration
of organisational and individual perspectives and the dynamic adaptation of
models to organisational and environmental changes. Relevant organisational
methodologies are: Gaia [49], AML [45], AGR [19], AGRE [20], MOISE [25],
INGENIAS [38], OperA [14], OMACS [10]. A detailed survey of organisational
approaches to agent systems can be found in [48].

Another concept that it is gaining importance in MAS is the integration
of service-oriented architectures into MAS [22]. A service-oriented open MAS
(SOMAS) is a multi-agent system in which the computing model is based on
well-defined, open, loosely-coupled service interfaces such as web services. Such
services can support several applications including: heterogeneous information
management; scientific computing with large, dynamically reconfigurable re-
sources; mobile computing; pervasive computing; etc. Relevant SOMAS pro-
posals are: Tropos [8], Alive [13], GORMAS [1], INGENIAS [21].

Agents that join an organisation usually have to deal with some constraints,
such as the need to play particular roles so as to participate in certain allowed in-
teractions. Other higher-level abstractions are normally employed, such as norms
for keeping agents from unexpected or undesirable behaviour [29]. Currently, the
most developed agent methodologies integrate norms into their meta-models in
order to formalise restrictions on the behaviour of the actors of the systems
[4,11,16,2]. Many of them also allow the specification of organisational systems.
These agent methodologies are able to describe different normative contexts by
means of specifying norms whose scope is limited to one specific organisation of
the system [43,15,7].

Over the last few years, the integration of electronic contracts in MAS is be-
coming increasingly more important to system architectures for agent behaviour
regulation [40,34,32]. Most approaches integrate contracts in order to specify the
contractual agreements between parties [28,7], but few approaches use contracts
to specify the structure of the system and the social relationship among the
system’s entities [6,36,15].

Analysing the Suitability of Multiagent Methodologies for e-Health Systems 139

Role Role

Agent Agent

Organization

Organization

Norm

Norm

S

Service
Product

S

Service
Product

Interchange

Play
s

Contains

Contains

Contains

Plays

SocialRelationship

BulletinBoard

B

C

O
ffe

rs
/ D

em
an

ds

c1

c2

c3

Con
ta

ins

Contains
Objective

Pursues

c1

Fig. 1. Overview of ROMAS architecture

3.2 ROMAS (Regulated Open Multi-agent Systems)

In this section we introduce how ROMAS integrates the common AOSE con-
cepts of agents, roles, organisations, norms and contracts. A complete descrip-
tion of ROMAS can be found in [23,24], so we address only the key aspects
here. In ROMAS, agents, roles and organisations are defined through a formal
social structure based on a service-oriented open MAS architecture, whose main
features are summarised in Figure 1. The graphical notation used in ROMAS
models is based on the notation used in other methodologies like Ingenias [38]
and Anemona [26].

Organisations in ROMAS represent a set of individuals and institutions that
need to coordinate resources and services across institutional boundaries. In this
context, agents represent individual parties who take on roles in the system;
within a given organisation (e.g. a company), they can both offer and consume
services as part of the roles they play. Beyond this, virtual organisations can
also be built to coordinate resources and services across institutional bound-
aries. Importantly, each of these concepts must be strictly defined, alongside
their interrelations. Organisations are conceived as an effective mechanism for
imposing not only structural restrictions on their relationships, but also norma-
tive restrictions on their behaviour. These restrictions are formalised in ROMAS
by means of norms and contracts.

Norms in ROMAS are specified using the model described in [9] which de-
fines norms that control agent behaviour, the formation of groups of agents, the
global goals pursued by these groups and the relationships between entities and
their environment. Specifically, it allows norms to be defined: (i) at different
social levels (e.g. interaction and institutional levels); (ii) with different norm

140 E. Garcia et al.

types (e.g. constitutive, regulative and procedural); (iii) in a structured manner;
and (iv) dynamically, including later derogation. Figure 1 shows two types of
norms: (i) those that are associated with each organisation; and (ii) those that
are associated with each role. Clearly, the former must be complied with by
any organisation member, while the latter must be complied with by all agents
playing that role.

Finally, ROMAS also allows interactions to be formalised by means of con-
tracts. These are necessary when working in an open regulated system, to be able
to specify the expected behaviour of others without compromising their specific
implementation. ROMAS involves two types of contracts: social contracts and
contractual agreements. Social contracts can be defined as statements of intent
that regulate behaviour among organisations and individuals. As shown in Figure
1, such social contracts are used to formalise relationships: (i) between an agent
playing a role and its host organisation (as indicated by the contract labelled c1);
and (ii) between two agents providing and consuming services (as indicated by
c2). Social order thus emerges from the negotiation of contracts over the rights
and duties of participants, rather than being specified in advance. In contrast,
contractual agreements represent the commitments between several entities in
order to formalise an interchange of services or products (c3).

4 Analysis of the Case Study

This section describes the design of the ePCRN-IDEA recruitment system using
the ROMAS methodology. It also analyses how an agent methodology can deal
with the main challenges of the development of this system.

4.1 Designing ePCRN-IDEA Recruitment System with ROMAS

In this section, we present the ePCRN-IDEA system design following the RO-
MAS methodology. Figure 2 shows the main structure of ePCRN-IDEA in terms
of the key concepts of organisations, roles, norms and contracts, detailed below.

Organisations and Processes. Several organisations are involved in the key
processes performed in ePCRN-IDEA, as follows. When a research body wishes
to create a new clinical trial, they can inject it through a service called the Cen-
tral Control Service (CCS), which is hosted at King’s College London (KCL).
The CCS stores trials within a large database in a pre-defined format that all
researchers must adhere to. Associated with each trial is a list of potentially eligi-
ble patients; these lists are generated by the General Practice Research Database
(GPRD), which operates a large data warehouse containing over 12 million up-
to-date patient records in the UK. Following this, the trials and their eligibility
lists are distributed to software agents (called LEPIS agents) that operate on
clinicians’ PCs at each participating clinic. LEPIS agents then listen to the
interactions between the practitioner and their local Electronic Health Record

Analysing the Suitability of Multiagent Methodologies for e-Health Systems 141

ePCRN-IDEA

Researcher
CSSManager LEPISManager GPGPRDManager

King’s CollegeResearch organization

contains contains contains

containscontainscontains

contains

Patient

Patient_Recruitment
Pursues

CSS

Authority

contains

Offers

CreateList

Requires

Offers

AuthorizeGP

Offers

Insert/
ConsultResponses

Offers

UpdateLepis

Offers

RegisterNewTrial

Requires
RequiresRequires

Clinic regulationsGPRD
regulations

Research
Instituton

regulations

Governmental regulation

KCL regulations

Requires

Main structure

Services
interchanged

contains

Related
organizations

contains

GPRD organization
Clinic

contains

Fig. 2. ePCRN-IDEA organisational structure

(EHR) database, which is used to store information about patients (e.g. diag-
noses, treatments, demographic data, etc.). During consultations, LEPIS agents
compare the patient information against the eligibility lists of all known trials.
If a patient is found to be eligible for a trial, the practitioner is notified, and
if the patient is interested, the system loads a Random Clinical Trial (RCT)
website provided by the research body responsible for the trial, allowing the pa-
tient’s recruitment to be completed. Consequently, the following organisations
are involved: KCL, GPRD, the clinics and the research bodies.

Roles. The system is composed of six different roles presented below.

– The GPRD Manager Role is responsible for updating and controlling access
to the GPRD database. It offers a service to pre-compute lists of eligible
patients for individual trials based on complex search criteria (CreateList
service). The role must also offer a service to decide when a GP is authorised
to perform recruitment for each trial (AuthoriseGP service). The agent that
plays the GPRD Manager role must also play a role in the governmental
body (represented as the GPRD organisation), so it must follow the special
governmental legislation related to the management of this kind of data.

– The Researcher Role is responsible for defining the specific features of each
trial under its jurisdiction. Researchers are also responsible for inserting these
trials into the CCS database by means of the service offered by the CCS role
(described below). They are not allowed to directly contact patients unless
they have agreed to participate in a clinical trial under their supervision.

142 E. Garcia et al.

For obvious reasons, each researcher should be part of a specific research
institution and follow its specific normative restrictions.

– The CCS Role is a software application responsible for controlling the CCS
database, which stores data about active clinical trials. It offers three ser-
vices to the other members of the system: (i) a Register New Trial ser-
vice that allows researchers to inject new clinical trials into the database;
whenever a Researcher tries to inject a new trial into the CSS database,
the CSS role must verify that this trial follows the specified standards and
regulations; (ii) an Update LEPIS Database service that allows the clinic’s
local database to update its information about the active clinical trials; and
(iii) an Insert/Consult Patients Response service that allows the response
of each patient to be registered (whether they agree or refuse to participate
in a trial). The current implementation of the CCS role is performed by an
agent that is part of the KCL organisation. Clearly, this agent must comply
with established norms concerning replication of information, privacy and
programmed machine maintenance.

– The CCS Manager Role is responsible for controlling the information in the
CCS (i.e. it has control over the CCS Role). Due to the specific requirements
described by the domain expert, there must be a human responsible for this.
This role must be played by a member of KCL, who must therefore comply
with the restrictions and rules that KCL establishes.

– The LEPIS Manager Role is played by a software application that resides at
a clinic and investigates the eligibility of any present patient. There is thus a
LEPIS agent playing this role for each clinic participating in the recruitment
system. LEPIS agents use the CCS service to acquire information about the
clinical trials related to the type of patients for which its clinic is specialised.
LEPIS agents also provide the GP with a simple interface to notify them of
a patient’s eligibility, as well as the option to launch the RCT website if the
patient is interested.

– The GP Role represents a practitioner working in a clinic. If a GP wants to
recruit patients for trials, they must be previously authorised by the GPRD
Manager. This authorisation involves the acceptance of some norms related
to privacy, and specific restrictions described for each clinical trial. Clearly,
each GP must also comply with the rules of their own clinic. Finally, patients
are considered external entities for the ePCRN-IDEA system because their
interaction with the system is always executed through their GP.

Norms and Contracts. The Governmental regulations related to the privacy
of patient data and clinical trials are described at a system-wide level; i.e., every
agent playing a role inside ePCRN-IDEA should comply with them. At the same
time, each institution and clinic defines its own regulations, so the entities of the
system should follow the general governmental regulations and the restrictions
established by the institution to which they pertain. For instance, each LEPIS
agent should follow both global and clinic-specific regulations. The rights and
duties that any specific agent implementation must fulfil to play a role in ePCRN-
IDEA are formalised by means of a Social Contract. Even though contracts

Analysing the Suitability of Multiagent Methodologies for e-Health Systems 143

CT

Lepis PlayRole
ePCR

NORM ID NORM DESCRIPTION (Deontic,Target,Activation,Expiration,Action,Sanction,Reward)
O.MatchTrial (OBLIGED, Lepis, Event(changesEHR), - , Match_Trial_Historical,-,-)
O.UpdateLepis (OBLIGED, Lepis,DAILY, - , Request(UpdateLepis service),-,-)
P.EHRdb (PERMITTED, Lepis, -,-, Read(EHR database),-,-)
P.TrialDB (PERMITTED, Lepis, -,-, Read(Lepis trial database),-,-)
P.ResponsesDB (PERMITTED, Lepis, -,-, Write(Lepis patient responses database),-,-)
P.consultResponse (PERMITTED, Lepis, -,-, Request(ConsultPatientAnswer service),-,-)
O.insertResponse (OBLIGED, Lepis, GPInsertResponse, - ,Request(InsertPatientResponse service),-,-)
O.clinic (OBLIGED, Lepis, -,-, Pertain(Clinic),-,-)

O.clinic

O.insertResponse

P.consultResponse

P.ResponsesDB

P.TrialDB

P.EHRdb
O.UpdateLepis

O.MatchTrial

SoftClauses
HardClauses

Lepis Manager ePCRN-IDEA

LepisPlayProtocolAlternativeDisputeResolution

Signants

ConflictResolution
Protocol ExecutionProtocol

Fig. 3. Phase 2: Lepis PlayRole social contract template

are dynamic entities that cannot be completely specified at the design stage,
designers can specify the predefined restrictions that all final contracts of a
specific type should follow. These restrictions are defined in a Contract Template,
where Hard Clauses indicates mandatory clauses that any contract of this type
must contain and Soft Clauses indicate more flexible recommendations. Clearly,
due to space constraints, a comprehensive set of norms and contracts in ePCRN-
IDEA cannot be listed; thus, we briefly cover a small number of examples.

Figure 3 describes the LEPIS PlayRole contract template. It specifies that any
agent playing the LEPIS Manager role must detect changes in the EHR database
and after that it must check the suitability of this patient for any trials (Norm
O.MatchTrial). The contract template also recommends that the final contract
includes a norm specifying that the local LEPIS database must be updated with
new clinical trials every day (Norm O.UpdateLepis). This clause is merely a
recommendation so that at runtime, LEPIS agents are able to negotiate with
the ePCRN-IDEA organisation exactly how often they should update their local
database. The remaining clauses relate to the use of the local LEPIS databases
and the service dependencies that LEPIS requires. In this way, each clinic can
implement its own LEPIS agent (if it complies with the required contracts and
norms), allowing each clinic to adapt the behaviour of LEPIS in line with its
own priorities. For example, a clinic could decide that its LEPIS agent should
not increase patient queues; e.g. GPs should not be notified during busy periods.
Similarly, each entity that plays any role in ePCRN-IDEA can be adapted to
the different requirements and restrictions of its own institution. Each institution
would thus maintain its own technology, with different implementations of each
role interacting independently of the technological differences.

144 E. Garcia et al.

4.2 Benefits of Multi-agent Design for ePCRN-IDEA

In this section, we revisit the design challenges listed in Section 2.2 to see how
effective the use of an agent methodology has been.

Integration of Independent Systems. AOSE offers an effective design plat-
form for modelling and integrating the different ePCRN-IDEA systems by enforc-
ing a high level of abstraction, usingmany real-world concepts (e.g. organisations).
First, this helps domain experts, who are typically not familiar with the relevant
technology, to gain a better understanding of the system. Beyond this, it also pro-
vides well defined boundaries between different agents and organisations, allowing
individual objectives and regulations to be specified, as well asmaintaining the pri-
vacy of each institution’s data and processes. Importantly, technical and semantic
interoperability challenges are also addressed bymeans of standardisedweb service
interfaces.

Regulation of Independent Systems. The regulatory needs of ePCRN-
IDEA fit well into the AOSE principles. Specifically, as is shown in the ROMAS
design, AOSE techniques allow different normative environments for each clinic
and research institution to be explicitly described and combined with global
governmental norms. This allows the behaviour of the different entities to be
formally constrained — an extremely important feature in the medical domain.
Furthermore, different vendors and technologies can be used to implement the
agents that play each role. For instance, each clinic could specify and implement
its own LEPIS agents according to its individual aims, restrictions and priorities,
while maintaining the stability of the system through global governmental regu-
lations. This is particularly important when potentially deploying agents across
multiple research institutions and clinics from different countries.

System Evolution. AOSE offers an effective paradigm for assisting in sys-
tem evolution in ePCRN-IDEA. Through norm and contract regulation, each
sub-system can evolve while ensuring that it does not compromise its responsi-
bilities to other parties. Common examples include adaptation to new internal
regulations or to the use of a new software technology. Moreover, global system
evolution can also take place by publishing new contracts and norms, thereby
forcing sub-systems to adapt.

5 Discussion

In the previous sections, we have considered how an existing e-health system
could have been developed using an existing agent methodology, and the benefits
of doing so. We now consider the more general hypothesis presented in Section 1:
that AOSE is highly appropriate for the development of e-health systems. For
the evaluation, we can draw not only on our ePCRN-IDEA example, but also

Analysing the Suitability of Multiagent Methodologies for e-Health Systems 145

on other multi-agent systems in e-health. In general, AI technology including
agent-based systems have been used in healthcare to tackle endemic issues such
as distributed information and expertise, unpredictable dynamics, uncertainty
in reasoning and simulation of systems [39,50].

5.1 Beneficial Features of AOSE

AOSE methodologies commonly include analysis and design based on a few key
ideas: agents as autonomous, pro-active, flexible and social entities; interactions of
a flexible andwell-defined nature between those agents; and organisations inwhich
agents operate, modelled either implicitly or explicitly [12,5,33]. The functional-
ity that agents enact in such designs is sometimes modelled as services [22]. Other
features present in some methodologies, including ROMAS, are the assumptions
of openness in the system, and of regulation to be followed by agents (e.g. norms,
responsibilities, rights, contracts, etc. [11,15,44]). Through the lessons learneddur-
ing the development of ePCRN-IDEA,we nowpresent some features of AOSE that
indicate its suitability for general e-health applications.

Assumption of Autonomy. A critical aspect of e-health systems is that they
are comprised of sub-systems that have their own regulations, privacy issues, lo-
calised authority, localised flexibility, and so on. For instance, in ePCRN-IDEA,
different policies are applied in different clinics and regions in the UK. In this
context, it is clear that e-health systems must also take into account this diver-
sity. This stems from factors such as the need to preserve patient confidentiality,
the commercial sensitivity of drug development, and from government involve-
ment and regulation at a local level. The autonomy of agents and organisations
assumed at the analysis stages in AOSE means that this is a particularly well-
suited approach.

Allowance for Openness. There are tens of thousands of independent sites
involved in healthcare in various capacities worldwide (with varying levels of sys-
tem computerisation). A common feature of large-scale e-health systems, such
as ePCRN-IDEA, is the expectation that more sites will join the system as they
develop the technical capability to do so (e.g. new clinics, research institutes
etc.). This means that methodologies with an assumption of an open system are
well tailored to e-health. In practice, openness is enabled by a design specify-
ing exactly how a new party must behave in order to join the system, such as
through contracts (as in ROMAS) or roles, as well as lower level concerns such
as interfaces and interaction protocols.

Explicit Norms. Due to the confidentiality issues mentioned above, health-
care is highly regulated at all levels, and these regulations must be considered
as a primary influence on any e-health system. Regulations apply both to indi-
vidual clinics and researchers, and across the whole system due to national or

146 E. Garcia et al.

international laws. For instance, in ePCRN-IDEA each clinic and practitioner
must be individually authorised to recruit for each trial. Clearly, e-health also
includes norms of good practice that are not strict regulations but with which it
is preferable to comply. The advantage of a norm-based design approach is that
there is a ready way for developers to specify these regulations explicitly in the
development process, such that they become part of the design. Implementing
the system in a norm-aware platform can ensure their fulfilment, even if the
system has been externally implemented by different providers. For instance,
if the system deals with critical restrictions, a regimented agent platform like
[18] should be used. On the other hand, if the domain of application allows the
violation of norms, an enforcement architecture like [9] should be used.

Domain-Like Concepts. Agents, norms and organisations directly map to the
important features of the healthcare environment at a high level, for the reasons
described above. That is, healthcare specifically concerns people (patients and
clinicians), the organisations they work for, and the regulations they must com-
ply with. This aids discussion with domain experts, thereby easing such things
as requirements elicitation and verification (though there are limits, as discussed
below).

5.2 Other Development Approaches

In theory, an e-health system such as ePCRN-IDEA could be designed by a
single organisation in a centralised manner, following one of the many methodo-
logies tailored to single, non-distributed systems. However, as described above,
the required data and functionality is distributed among clinics, and their auton-
omy makes this unrealistic. Also, for most applications, the number of patients,
clinics, trials, etc., could produce a scalability problem.

Turning to more comparable development views, a service-oriented approach
to development is clearly appropriate in some respects [35,17]. It assumes some
autonomy, in that services can be separately hosted and maintained, and al-
lows for some openness, as existing published interfaces may be implemented
by new services. However, traditional service-oriented applications are generally
controlled ultimately by a single client and the interfaces only partially spec-
ify how a service should behave. Service-oriented architectures do not explicitly
represent the social structure of the system and the institutions involved in the
system. Besides, service-oriented applications do not have explicit social norms
(though service-level agreements can act as contracts for low-level quality of
service demands).

Methodologies based on concepts of objects or components, regardless of the
particularities of the methods themselves, also suffer from having less domain-
like concepts than AOSE. This point is not healthcare-specific, but significant
in any domain in which the requirements relate to user interaction rather than
merely system component interaction. Objects and components will normally
have parallels in the domain, but these will be of less direct concern than the
people, organisations and regulations.

Analysing the Suitability of Multiagent Methodologies for e-Health Systems 147

The comparison above is not to say that services or objects are irrelevant to
developing e-health systems, but are inadequate in themselves compared to an
AOSE approach. Many AOSE methodologies, including ROMAS, utilise service-
oriented and object-oriented specifications of the functionality performed by
agents.

5.3 AOSE Weaknesses

There are two weaknesses of the current approach in applying ROMAS to
ePCRN-IDEA. Although they are weaknesses of ROMAS, we believe them to
apply to current AOSE methodologies more generally.

First, while conceptualising the system in terms of agents, organisations and
norms was found to be intuitive by domain experts, the language itself was
not. There are terms in different areas of healthcare that are commonly used,
and it would help the requirements and analysis process if software engineering
principles could adopt these rather than agent abstractions. For example, when
‘patient’ is so critical a concept to the healthcare domain, modelling them as
abstract ‘agents’ only obfuscates the intention. Similarly, the context in which
the clinical researcher operates may be an organisation, but for medics, such
organisations are quite distinct from the ‘sites’, such as clinics or hospitals, from
which patients are recruited.

Second, while there are explicit regulations in the domain, there are also
many implicit good practices for medicine and healthcare. Capturing these as
part of the engineering process is possible but prone to accidental exclusion.
It is unclear why these need to be captured every time, and could instead be
an embedded part of the methodology. In consequence, in our ongoing work,
we are investigating how to address both weaknesses, and provide an AOSE
methodology tailored more specifically to e-health.

6 Conclusions

This paper explores the suitability of AOSE techniques for the development of
complex systems in the healthcare domain. To investigate this domain, we have
designed a real-time system for the identification of eligible patients for clinical
trials based on an AOSE methodology. The results obtained show that the use of
high level AOSE concepts, such as organisations, roles, norms and contracts, is
beneficial to analyse and design health systems. Furthermore, it has been shown
that the use of AOSE techniques will produce flexible systems that can deal with
the dynamics of the normative and technological environment in the healthcare
domain.

Acknowledgment. This work is partially supported by the TIN2009-13839-
C03-01, TIN2011-27652-C03-01, CSD2007-00022, COST Action IC0801, FP7-
294931 and the FPU grant AP2007-01276

148 E. Garcia et al.

References

1. Argente, E.: GORMAS: Guas para el desarrollo de sistemas multiagente abiertos
basados en organizaciones. PhD thesis, Departamento de Sistemas Informaticos y
Computacion, Universidad Politecnica de Valencia (2008)

2. Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., Rebollo, M.: An Ab-
stract Architecture for Virtual Organizations: The THOMAS approach. Knowledge
and Information Systems, 1–35 (2011)

3. Bajo, J., Fraile, J.A., Pérez-Lancho, B., Corchado, J.M.: The thomas architecture
in home care scenarios: A case study. Expert Systems with Applications 37(5),
3986–3999 (2010)

4. Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S.,
Sichman, J.S., Vázquez-Salceda, J. (eds.): ANIREM and OOOP 2005. LNCS
(LNAI), vol. 3913. Springer, Heidelberg (2006)

5. Bordini, R.H., Dastani, M., Winikoff, M.: Current issues in multi-agent systems
development. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.)
ESAW 2006. LNCS (LNAI), vol. 4457, pp. 38–61. Springer, Heidelberg (2007)

6. Carabelea, C., Boissier, O.: Coordinating agents in organizations using social com-
mitments. Electronic Notes in Theoretical Computer Science 150(3), 73–91 (2006)

7. Lopes Cardoso, H., Oliveira, E.: A contract model for electronic institutions. In:
Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS
(LNAI), vol. 4870, pp. 27–40. Springer, Heidelberg (2008)

8. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Modeling and reasoning
about service-oriented applications via goals and commitments. In: Pernici, B. (ed.)
CAiSE 2010. LNCS, vol. 6051, pp. 113–128. Springer, Heidelberg (2010)

9. Criado, N., Argente, E., Botti, V.: A normative model for open agent organizations.
In: International Conference on Artificial Intelligence, vol. 1, pp. 101–107 (2009)

10. DeLoach, S.A.: Omacs a framework for adaptive, complex systems. In: Handbook
of Research on Multi-AGent Systems: Semantics and Dynamics of Organizational
Models, pp. 76–104. IGI Global (2009)

11. DeLoach, S.A.: Developing a multiagent conference management system using the
O-MaSE process framework. In: Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS,
vol. 4951, pp. 168–181. Springer, Heidelberg (2008)

12. DeLoach, S.A., Padgham, L., Perini, A., Susi, A., Thangarajah, J.: Using three
aose toolkits to develop a sample design. International Journal Agent-Oriented
Software Engineering 3, 416–476 (2009)

13. Dignum, F., Dignum, V., Padget, J., Vázquez-Salceda, J.: Organizing web services
to develop dynamic, flexible, distributed systems. In: International Conference on
Information Integration and Web-based Applications Services, pp. 225–234 (2009)

14. Dignum, V.: A model for organizational interaction: Based on agents, founded in
logic. PhD thesis, Utrecht University (2003)

15. Dignum, V., Meyer, J.-J., Dignum, F., Weigand, H.: Formal specification of in-
teraction in agent societies. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F.,
Rouff, C.A., Gordon-Spears, D.F. (eds.) FAABS 2002. LNCS (LNAI), vol. 2699,
pp. 37–52. Springer, Heidelberg (2003)

16. Dignum, V., Vázquez-Salceda, J., Dignum, F.: OMNI: Introducing social structure,
norms and ontologies into agent organizations. In: Bordini, R.H., Dastani, M., Dix,
J., El Fallah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346,
pp. 181–198. Springer, Heidelberg (2005)

Analysing the Suitability of Multiagent Methodologies for e-Health Systems 149

17. Dustdar, S., Pichler, R., Savenkov, V., Truong, H.-L.: Quality-aware service-
oriented data integration: requirements, state of the art and open challenges. SIG-
MOD Record Journal 41(1), 11–19 (2012)

18. Esteva, M., Rosell, B., Rodriguez, J.A., Arcos, J.L.: AMELI: An agent-based mid-
dleware for electronic institutions. In: International Conference on Autonomous
Agents and MultiAgent Systems, pp. 236–243 (2004)

19. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Orga-
nizational View of Multi-Agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.
(eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

20. Ferber, J., Michel, F., Baez, J.: AGRE: Integrating environments with organiza-
tions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS
(LNAI), vol. 3374, pp. 48–56. Springer, Heidelberg (2005)

21. Fernández, R.F., Magariño, I.G., Gómez-Sanz, J.J., Pavón, J.: Integration of web
services in an agent oriented methodology. Journal International Transactions on
Systems Science and Applications 3, 145–161 (2007)

22. Garcia, E., Giret, A., Botti, V.: Software engineering for Service-oriented MAS. In:
Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180,
pp. 86–100. Springer, Heidelberg (2008)

23. Garcia, E., Giret, A., Botti, V.: Regulated open multi-agent systems based on
contracts. In: Information Systems Development, pp. 243–255 (2011)

24. Garcia, E., Giret, A., Botti, V.: Developing Regulated Open Multi-agent Systems.
In: International Conference on Agreement Technologies, pp. 12–26 (2012)

25. Gateau, B., Boissier, O., Khadraoui, D., Dubois, E.: Moiseinst: An organizational
model for specifying rights and duties of autonomous agents. In: Weyns, D., Van
Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp.
41–50. Springer, Heidelberg (2007)

26. Giret, A., Botti, V.: Engineering holonic manufacturing systems. Computers in
Industry 60, 428–440 (2009)

27. Gonzalez-Velez, H., Mier, M., Julia-Sape, M., Arvanitis, T., Garcia-Gomez, M.R.J.,
Lewis, P., Dasmahapatra, S., Dupplaw, D., Peet, A., Arus, C., Celda, B., Huel, S.V.,
Lluch-Ariet, M.: Healthagents: distributed multi-agent brain tumor diagnosis and
prognosis. Applied Intelligence 30 (2009)

28. Gâteau, B., Boissier, O., Khadraoui, D.: Multi-agent-based support for electronic
contracting in virtual enterprises. In: IFAC Symposium on Information Control
Problems in Manufacturing (INCOM), vol. 150(3), pp. 73–91 (2006)

29. Hermoso, R., Centeno, R., Billhardt, H., Ossowski, S.: Extending virtual organi-
zations to improve trust mechanisms (short paper). In: Proc. 7th INt. Conf. on
Autonomous Agents and Multiagent Systems, pp. 1489–1472 (2008)

30. Huhns, M., Singh, M.: Reseach directions for service-oriented multiagent systems.
IEEE Internet Computing, Service-Oriented Computing Track 9(1) (2005)

31. Isern, D., Sánchez, D., Moreno, A.: Organizational structures supported by agent-
oriented methodologies. Journal of Systems and Software 84(2), 169–184 (2011)

32. Kurtanovic, Z., Schumann, R., Timm, I.J.: Model-driven specification of strategies
for negotiating agents. In: Proceedings of the 13th International Workshop on
Agent-Oriented Software Engineering (AOSE 2012) held at AAMAS 2012 (2012)

33. Lin, C.-E., Kavi, K.M., Sheldon, F.T., Daley, K.M., Abercrombie, R.K.: A method-
ology to evaluate agent oriented software engineering techniques. In: Hawaii Inter-
national Conference on System Sciences, p. 60 (2007)

34. Meneguzzi, F., Modgil, S., Oren, N., Miles, S., Luck, M., Faci, N.: Applying elec-
tronic contracting to the aerospace aftercare domain. Engineering Applications of
Artificial Intelligence 25(7), 1471–1487 (2012)

150 E. Garcia et al.

35. Mora, D., Taisch, M., Colombo, A.W., Mendes, J.M.: Service-oriented architecture
approach for industrial system of systems: State-of-the-art for energy management.
In: 2012 10th IEEE International Conference on Industrial Informatics (INDIN),
pp. 1246–1251 (2012)

36. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.:
Towards a formalisation of electronic contracting environments. In: Hübner, J.F.,
Matson, E., Boissier, O., Dignum, V. (eds.) COIN@AAMAS 2008. LNCS, vol. 5428,
pp. 156–171. Springer, Heidelberg (2009)

37. Paranjape, R., Sadanand, A.: Multi-Agent Systems for Healthcare Simulation and
Modeling: Applications for System Improvement. Information Science Reference -
Imprint of: IGI Publishing (2009)

38. Pavon, J., Gomez-Sanz, J., Fuentes, R.: The ingenias methodology and tools. In:
Agent-Oriented Methodologies, ch. IX, pp. 236–276. Henderson-Sellers (2005)

39. Rammal, A., Trouilhet, S., Singer, N., Pecatte, J.-M.: An adaptive system for
home monitoring using a multiagent classification of patterns. In: International
Conference on Business Process Management, pp. 3:1–3:8 (2008)

40. Singh, M.P.: Commitments in multiagent systems: Some history, some confusions,
some controversies, some prospects. In: The Goals of Cognition. Essays in Honor
of Cristiano Castelfranchi, pp. 1–29. College Publications (2011)

41. Taweel, A., Delaney, B., Speedie, S.: Towards achieving semantic interoperability
in ehealth services. In: Watfa, M. (ed.) E-Healthcare Systems and Wireless Com-
munications: Current and Future Challenges, pp. 388–401. IGI (2012)

42. Taweel, A., Speedie, S., Tyson, G., Tawil, A.R., Peterson, K., Delaney, B.: Service
and model-driven dynamic integration of health data. In: International Workshop
on Managing Interoperability and Complexity in Health Systems, pp. 11–17. ACM
(2011)

43. Telang, P.R., Singh, M.P.: Enhancing Tropos with Commitments. In: Borgida,
A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Founda-
tions and Applications. LNCS, vol. 5600, pp. 417–435. Springer, Heidelberg (2009)

44. Telang, P.R., Singh, M.P.: Comma: A commitment-based business modeling
methodology and its empirical evaluation. In: International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 1073–1080. IFAAMAS (2012)

45. Trencansky, I., Cervenka, R.: Agent modelling language (AML): A comprehensive
approach to modelling mas. Informatica 29(4), 391–400 (2005)

46. Tyson, G., Taweel, A., Miles, S., Luck, M., Van Staa, T., Delaney, B.: An agent-
based approach to real-time patient identification for clinical trials. In: Kostkova,
P., Szomszor, M., Fowler, D. (eds.) eHealth 2011. LNICST, vol. 91, pp. 138–145.
Springer, Heidelberg (2012)

47. Tyson, G., Taweel, A., Zschaler, S., Van Staa, T., Delaney, B.: A model-driven
approach to interoperability and integration in systems of systems. In: Modelling
Foundations and Applications Workshop (2011)

48. Vecht, B., Dignum, F., Meyer, J.-J., Dignum, M.: Handbook of research on multi-
agent systems: Semantics and dynamics of organizational models. In: Autonomous
Agents Adopting Organizational Rules, pp. 314–333. IGI Global (2009)

49. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering Methodol-
ogy 12, 317–370 (2003)

50. Zhang, X., Xu, H., Shrestha, B.: Building a health care multi-agent simulation sys-
tem with role-based modeling. In: MAS for Health Care Simulation and Modeling:
Applications for System Improvement, ch. VI. IGI Global (2009)

How to Extract Fragments from Agent Oriented
Design Processes

Valeria Seidita1,2, Massimo Cossentino2, and Antonio Chella1

1 Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica,
University of Palermo, Italy

{valeria.seidita,antonio.chella}@unipa.it
2 Istituto di Reti e Calcolo ad Alte Prestazioni,

Consiglio Nazionale delle Ricerche, Palermo, Italy
cossentino@pa.icar.cnr.it

Abstract. Using Method Engineering for creating agent oriented design
processes is a challenging task because of the lack of a fragment repos-
itory defined and filled starting from a shared and unique definition of
fragment. The creation of a repository implies the fragmentation of ex-
isting agent design processes. In this paper we propose a set of guidelines
for extracting fragments from agent design processes. The work is based
on a precise definition of fragment and it aims to establish a method for
fragmenting processes and obtaining homogeneous fragments regardless
of how the starting design processes are defined and described.

1 Introduction

When method designer is about to create a new agent oriented design process
using a (Situational) Method Engineering [5] compliant approach she needs a
repository of fragments; she needs to inspect and query the repository in order
to quickly and easily select the fragments that best fit her needs and that she
may assemble in order to compose/create the new agent design process. If the
fragments are correctly identified the result of the assembly phase would be
the design process that best allows to develop the multi-agent system solving a
specific class of problems.

Currently there are several very good approaches to Situational Method En-
gineering (SME) [20][7][21][15], all of them primarily aim to re-use components
that come from other existing design processes, hence they provide solutions
already used and tested. Nevertheless each approach follows its own logic, based
on the specific used definition of fragment, and as a consequence the related
repository has very specific features that make it little reusable. A repository
is created starting from the fragmentation of existing design processes and cur-
rently all the existing ones are created in a naive fashion, often based on the skills
and experience of the method designer. There is not a well-specified technique
to split existing agent design processes and to extract fragments from them.

The fragmentation process basically prescribes to identify some points in
which “to cut” the design process. The problems we are facing are: how to find

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 151–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

152 V. Seidita, M. Cossentino, and A. Chella

these points? How to understand and verify that the identified pieces have a
meaning, are consistent, from a methodological point of view? It is to be re-
membered in fact that the fragment of a process is a process itself, therefore it
should be a component with a meaning in the process perspective; in our case in
an agent oriented process perspective. All this has not found adequate answers
so far because if the method engineer wants to extract fragments she must have
a clear idea of what is a process fragment for an agent oriented process and she
has to highlight the main elements of the fragment that must be sought in the
design process. We can see the fragment as a piece of a puzzle, if we do not
know how the piece of a puzzle is done we cannot find it in the puzzle, we would
always see the puzzle as a whole.

A first and fairly established definition of fragment already exist [9]; on the
basis of this definition several research groups broke down their own agent design
process into pieces and extracted several fragments that today form a first pro-
totype of agent fragment repository1. Despite that, each fragmentation process
is not replicable and repeatable on another agent design process and above all it
can be done only by (or with the tight assistance of) the design process experts.
Moreover, the fragmentation obtained without the aid of specific guidelines has
led to fragments that are different in granularity and in the representation. They
are not homogeneous even if they are based on the same definition; this fact
makes their assembly very difficult.

What we propose in this work is a mean for answering to the previous reported
questions. The first question is met by considering the improved definition of
fragment we introduce in this paper; above all the granularity of the fragment and
the work product lead to the identification of what we call the “cutting points”.
The granularity and the work product are strictly related to our definition of
fragment. The answer to the second question is guaranteed by the use of the
multi-agent system (MAS) metamodel during the extraction process. The multi-
agent system metamodel is the core of the fragment definition and it is one of the
most important concepts in agent oriented software engineering. Moreover, MAS
metamodel strongly distinguishes our approach from the others by providing the
key point for applying our SME approach.

In the remainder of this paper, we first illustrate the background on (situ-
ational) method engineering and the motivations of our work (section 2). In
section 3 we define the concept of process fragment that is the basis of our ap-
proach on SME and in section 4 we introduce the guidelines for fragmentation
also reporting examples of application to an agent design process and a classical
design process. Finally in sections 5 and 6 some discussions and conclusions are
drawn.

1 In http://www.pa.icar.cnr.it/passi/ and in http://www.pa.icar.cnr.it/
cossentino/fragrep/ fragments from PASSI [8], Tropos [4] and Adelfe
[3] can be found. Fragments from INGENIAS [22] can be found in
http://grasia.fdi.ucm.es/main/fr/node/241.

http://www.pa.icar.cnr.it/passi/
http://www.pa.icar.cnr.it/cossentino/fragrep/
http://www.pa.icar.cnr.it/cossentino/fragrep/
http://grasia.fdi.ucm.es/main/fr/node/241

How to Extract Fragments from Agent Oriented Design Processes 153

2 Background and Motivation

Method Engineering is the “engineering discipline to design, construct and adapt
methods, techniques and tools for the development of systems”, this is the def-
inition generally accepted since [5]. Method Engineering (ME) and Situational
Method Engineering (SME), which is the part of ME dealing with the creation
of method(ologies) for specific situations, is the answer to the historical problem
of the lack of a one-size-fits-all methodology [20][28][27].

Several approaches to situational method engineering are present in litera-
ture, they all descend from the assumptions made by Brinkkemper in [5] and
then by Gupta and Prakash in [14] that a method(ology) engineering process
is composed of three main phases: method requirements engineering, method
design and method construction. More in details Brinkkemper highlights the
following steps: characterization of the project, selection of the method frag-
ments, assembly of the method fragments. The method fragment is a piece of
existing method(ology), an optimized method(ology) for specific situation may
be constructed by reusing relevant method fragments.

Literature emphasized two different modus operandi for applying situational
method engineering; one is called assembly based method engineering, the other
may be called method engineering by configuration. The assembly based method
engineering mainly focuses on assembling method fragments. Recently Ralyté et
al. [23] developed a generic process model for situational method engineering.
This is an assembly based process model implying the specification of method
requirements, the selection of method fragments and finally the assembly of
method fragments. Method engineering by configuration prescribes to adapt one
particular method to different situations [19].

In any of the previous cases situational method engineering does not princi-
pally focus on obtaining method fragments but all the approaches assume to have
an already filled repository from which to select method fragments. Experiments
of fragmentation and of repository creation have been made in (see [11][12]) but
none of them provide guidelines for fragmenting, infact these repositories are
only based on the experiences made that in most cases are not repetable.

We think that we cannot be exempt from considering the criticality of this part
of SME. How might we create a repository of fragments to be used for creating
specific agent oriented design processes? Therefore the lack of an agent oriented
fragment repository, structured in a way that makes easy reusing fragments and
fosters the interoperability of the existing approaches, severely limits and affects
the use of the SME. It is in fact still considered too difficult to apply.

Having guidelines for fragmentation is very important because one way to
break up can lead to homogeneous fragments in which the interfaces are easily
identified; this can make the selection of the fragments and their assembly faster
and easier. This problem is difficult to tackle because there are many agent
oriented design processes from which we can extract fragments but each of them
presents features strongly tied to the type of multi-agent system they are devoted
to develop. Often there is no proper or standard documentation, sometimes
the elements that are highlighted in one design process are not dealt with in

154 V. Seidita, M. Cossentino, and A. Chella

another one or have different definitions. The substantial difference between
design processes, which reflects the intrinsic difference of the different types of
agents treated, makes fragmentation very difficult; especially if this process needs
to be done by a person who is not fully aware of every detail of the design process.

The fragmentation method we propose overcomes this limitation because of
the use we make of an important element of agent design processes, the multi
agent system metamodel. In our approach the system metamodel is a fundamen-
tal part of the fragment definition and it is also the core for fragments selection,
for assembling them [26] and, as it will be illustrated later, for extracting frag-
ments from existing design processes.

3 The Adopted Fragment Definition

The most important concept in the Situational Method Engineering approach
is the method fragment, thus it is mandatory to have a repository of fragments
and techniques for selecting and assembling them. Moreover a relevant part of
the method designers’ work concerning the population of fragments repository
notably influences the whole SME process. From the experiences made in con-
structing agent design processes we learnt that the techniques for selecting and
assembling fragments, for extracting them from existing design processes and
then for storing in the repository strongly depend on the definition of fragment
the method designer uses during his work.

Although the focus of this paper is on the fragmentation guidelines, it is
important to introduce the definition of fragment that forms the basis of our
approach to SME. We already defined the concept of fragment [9] (from now on
it will be referred to as process fragment for reasons that will be clear later in the
section), and now we give an overview on the process fragment definition and
the improvement introduced to the first version. The notions here introduced
are necessary for understanding the guidelines, how they were created and why
some steps are present.

We agree on the general statement that the process fragment is a reusable
portion of a design process. Let us dwell on the terms “reusable” and “design
process": reusable, we want to create a mean for the method engineer to quickly
and easily select and then reuse process fragments for creating new agent design
processes. Design process, Fuggetta in [13] defined the software development
design process as “the coherent set of policies, organizational structures, tech-
nologies, procedures, and artifacts that are needed to conceive, develop, deploy
and maintain (evolve) a software product”.

We adopt this definition of design process. In plain terms, we could say that
design process includes components devoted to make explicit what is the work to
be done for pursuing an objective, hence delivering some kind of artefact, who has
to do this work and how. The process fragment may be seen as a complete portion
of a design process constructed in such a way it can be profitably (and rather
easily) reused in a new design process creation. The name we chose to adopt
(process fragment) is a direct consequence of that. Most commonly in literature

How to Extract Fragments from Agent Oriented Design Processes 155

the reader can find names like method fragment or chunk. As it will be evident
later on, the proposed definition of process fragment is near to the chunk concept
[2][21], while the method fragment definition [20][6][17] addresses a smaller item,
pragmatically speaking a process fragment can be built by assembling several
method fragments. Up to now, it can be said that design process, and process
fragment, ground on three principal components: activities, artefacts or work
products and stakeholders or roles.

The principal difference of our approach against the others is that we add to
this triad another very important concept that is crucial in the agent oriented
software engineering, the multi-agent system metamodel. The system metamodel
is the representation of constructs needed for creating system models.

used for developing

composes

Process Fragment

Agent Design
Process

Multi-Agent
System

Activity

Work
Product

Role

MAS
Metamodel

constraints

Fig. 1. An Overview on Process Fragment

Fig. 1 shows an overview of the process fragment concept and its use in our
approach. The process fragments compose an agent oriented design process and
are mainly composed of activities, work products, roles, and multi-agent system
(MAS) metamodel. The MAS metamodel contains constructs to be instantiated
during the design activities and constraints the multi-agent system. In the fol-
lowing a detailed list of all the elements of our process fragment definition is
reported:

– specification of the workflow, the work to be done (activities, tasks or steps2),
the roles performing it and the work products produced;

– a list of constructs of the multi-agent system metamodel to the defined (or
refined) through the fragment workflow;

– a description of the fragment goal, for providing the reader with a quick un-
derstanding of the design objective pursued by the process fragment work-
flow; for instance “the aim of this fragment is to identify the agents involved
in the system”;

2 See SPEM 2.0 specification [1] for a definition of these items.

156 V. Seidita, M. Cossentino, and A. Chella

– a description of the fragment origin and its granularity. This part lets the
method designer have a quick idea on the focus and the domain in which
the fragment might work, this can also allow a sort of automatic or semiau-
tomatic selection of the fragments;

– a set of guidelines that are divided in enactment guidelines and reuse guide-
lines, the first helps the designer while she is using the fragment for producing
a portion of the multi-agent system, the second is used by the method de-
signer while creating a new design process for having means for carrying on
the selection and the assembly phases;

– a glossary of terms used in the fragment; this prevents misunderstandings if
the fragment is reused in a context that is different from the original one.

As regard the granularity, our SME approach does not require to establish a
length for the portion of process in the process fragment; it is only needed that
it can manage some specific elements. Therefore we can have process fragments
at three different levels of granularity: phase fragment, composed fragment and
atomic fragment as defined below.
Phase Process Fragment. A phase process fragment delivers a set of work prod-
ucts belonging to the same design abstraction level of the design flow. An ex-
amples of phase-level work product may be a system analysis document; it is
composed of several work products (diagrams, text documents, . . .) all belong-
ing to the same design abstraction level (system analysis).

Composed Process Fragment. A composed (process) fragment delivers a work
product (or a set of instances of the same work product). Composed process frag-
ments may be nested. This is an obvious choice to allow the maximum flexibility
for representing whatever size of fragment. For instance a composed fragment
delivering a composite work product may be composed by composed fragments
delivering non-composite work products (free text, structured text, diagram,. . .)
or even atomic fragments (see below). An example of composed fragment may
consists in a portion of a process where the designer models use cases. This
fragment delivers a work product (use case diagrams and a description text doc-
ument) that is part of the System Analysis document produced by the System
Analysis phase fragment.

Atomic Fragment. An atomic (process) fragment delivers a portion of a work
product and/or a set of system model constructs (in terms of their instantiation
or refinement). A portion of a work product is here intended never to be a
whole work product; in other words, atomic fragments never deliver entire work
products. An atomic fragment may also not deliver a portion of work product
but rather it may deliver a portion of the system model. An example of atomic
fragment may be the identification of actors to be used for modeling use cases
by starting from the analysis of some text describing system behavior.

Finally, as regard the MAS metamodel we performed an extended experi-
mentation with some existing agent design processes. We realized that different
types of metamodel may also be considered from the point of view of the set of
constructs included in them:

How to Extract Fragments from Agent Oriented Design Processes 157

Complete System Metamodel. It includes all the system metamodel constructs
(elements and relationships) that are managed by the designers using a specific
design process. This also includes all the constructs that are accepted as external
inputs in the process.

Definable System Metamodel. It includes all the system metamodel constructs
that are instantiated during the design process enactment. This is a subset of
the complete system metamodel.

Workproduct System Metamodel. It only includes all the complete system meta-
model constructs that are reported and drawn in the design processwork products.

4 The Proposed Fragmentation Approach

Basing on the previous definition of process fragment and on the assumption
that the MAS metamodel has a central role in designing multi-agent systems,
we established guidelines for extracting process fragments from existing design
processes. Let us suppose to have an agent design process anyway described and
documented; it is not important if we have text documentation, produced in a
formal way, or an oral representation of the design process. What is important
is to have a complete description of the process in form of activities to be per-
formed, work products to be delivered, stakeholders to be involved, the system
metamodel to be instantiated and enactment guidelines (illustrating how to per-
form activities and to produce work products). These latter are often referred
to as techniques.

The key idea is to consider the design process as a workflow of activities which
bring to some kind of results; this can be done both with a mere sequential design
process and an iterative and incremental one. In both the cases we can see the
whole process as a temporal line where at each time ti a portion of work (a set of
activities) produces an outcome, a work product, a diagram or an entire model
(see Fig. 2).

The first step in the fragmentation process consists in analyzing the whole
design process. This activity let us identify a set of portions of the process. Each
portion of the process is composed of activities that begin at the time tn−1 and
end at the time tn, when it can be thought that a specific identifiable portion of
the system has been designed; the time tn is one of the cutting points we may
identify.

This is the general rule for recognized cutting points; going into more details,
the cutting points depend on the granularity of process fragment we want to
extract, hence three different case may be pointed out:

– while extracting phase process fragment - the time ti occurs when we can
identify a set of work products representing a complete model of the system;

– while extracting composed process fragment - the time ti occurs when we
can identify a complete work product modeling a portion of the system;

158 V. Seidita, M. Cossentino, and A. Chella

t1

tn

t2

nth portion of process

MAS
metamodel

work
product

role
goal

......

task

2nd portion
of process

1st portion
of process

ti-1 ti

Fig. 2. The Design Process seen as a Temporal Line

– while extracting atomic process fragment - the time ti occurs when during the
hypothetical enactment process we complete the definition or the refinement
of one element of the system model or we produce a consistent portion of a
work product.

Once the cutting point has been identified the portion of process it delimits has
to be investigated in order to identify the main elements that constitutes process
fragment. The steps we ought to follow include:

1. identifying the main outcome, likely a work product or a portion of it or the
definition of a MAS metamodel construct for atomic fragments.;

2. identifying the portion of the multi-agent system metamodel which elements
are instantiated in the portion of work;

3. identifying all the elements (work product and/or MAS metamodel con-
structs) needed as input for carrying on the selected portion of work;

4. identifying for this portion of work all the elements that will form the process
fragment: roles, tasks, goals of the fragment, etc.

4.1 The Details about the Guidelines

Fig. 3 sketches the work the method designer does when she uses our guidelines.
In order to better illustrate the guidelines let us follow an example for their
application. Suppose the method designer wants to extract process fragments
from the PASSI design process [8] and that she chooses the composed level of
granularity.

PASSI (Process for Agent Societies Specification and Implementation) [8] is
an agent oriented design process for designing peer-agents and covers all the
phases from the requirements analysis to the code of the multi-agent system.
PASSI includes five phases arranged in an iterative/incremental process mode.
Each phase produces a document that is usually composed aggregating UML

How to Extract Fragments from Agent Oriented Design Processes 159

Process Portion
Analysis

2. Output Work
Product of the
Process Portion 3.

WP Metamodel

Reverse
Engineering

4.
Set of Input

WPs

Analysis of origin of
MMM constructs

6.
Process Frag�

ment MAS
Metamodel

5.
Input MMMC

Reverse
Engineering

Output MMMC

Is part of

Is part of

1. Cutting
Points

7.
Process Fragment

Elements

Guidelines for
Portion of Process

Enactment

Guidelines for
Portion of Process

Enactment

Guidelines for
Portion of Process

Enactment

Granularity

List of WP used
in the Euristics

Fig. 3. The Guidelines for the Fragmentation Process

models, text descriptions, tables, code, and so on produced during the related
activities. Each phase is composed of one or more activities each one responsible
for designing or refining one or more artefacts that are part of the corresponding
model. For instance, the System Requirements model includes an agent identi-
fication diagram that is a kind of UML use case diagrams and also some text
documents like a glossary and the system user scenarios.

After a first analysis the method designer may identify fifteen cutting points
(remember that she is looking for composed process fragments), each of them
corresponds to the time ti when a work product is delivered (see Fig. 4).

Starting from the beginning, consider the portion of process before the time
t1, the work product of this first portion is the Domain Requirements Description
(DRD) diagram, a functional description of the multi-agent system using UML
use case diagrams with their textual description.

The method engineer analyzes this work product (Step 2. Output Work
Product of the Process Portion in Fig. 3) and through a reverse engineering
process identifies the MAS metamodel construct (MMMC) here reported.

This activity is very simple when the work product is only in form of diagrams,
in fact each graphical element of the diagram corresponds to one construct of
the metamodel, the only thing to do is finding the mutual relationships among
constructs. This descends from the assumption (section 3) we made about meta-
modeling: every element in the whole model of the system, in a work product
or in a document specifying the system, is an instance of one construct of the
MAS metamodel.

160 V. Seidita, M. Cossentino, and A. Chella

In the case of the DRD, when we draw the use case we instantiate a func-
tional requirement, when we draw the “actor" we instantiate an actor and the
associations are instance of generalize, include, extend and association relations.

t1
t2

t3
t4

t5

t6

t15 t14

t13

t12
t11

t7

t8

t9

t10

DRD
AId RI

TSp

DOD

COD

SASD

MASD

MABD
RD

PD

SABD

CR

CP

DC

T1

T2

T3T4

T5

DRD: Domain Requirements Descr.
AId: Agents Identification
RId: Roles Identification
TSp: Task Specification
DOD: Domain Ontology Descr.
COD: Communication Ontological Descr.
RD: Roles Description
PD: Protocol Description
MASD: Multi Agent Structure Descr.
MABD: Multi Agent Behaviour Descr.
SASD: Single Agent Structure Descr.
SABD: Single Agent Behaviour Descr.
CR: Code Reuse
CP: Code Production
DC: Deployment Configuration

PASSI

Fig. 4. The Cutting Points for PASSI

Figures 5.a) and 5.b) show an excerpt of the DRD diagram and the related
work product MAS metamodel (Step 3. WP Metamodel).

The next step is to identify all the WPs that serve as inputs for carrying on the
work in this first portion of process. In performing this activity the method engi-
neer needs to consult the design process enactment guidelines. Roughly speaking,
the work done during a process activity aims to define elements that the designer
reports in the work product, for doing that she makes some kind of reasoning,
above all on other elements of the system domain. For instance, in order to elicit
requirements of the system, the analyst often uses textual scenarios for gaining
the interaction between the system and the users and the related functional re-
quirements. This is the case of the DRD, by looking at the enactment guidelines
the method engineer may deduce that the elements in the DRD work product
are designed by managing the concept of Scenario.

Hence the set of input WPs (Step 4.Set of Input WPs) includes two text
documents, the Problem Statement and Scenarios ; the input MAS metamodel
is only composed of the construct User Scenario (Step 5. Input MMMC). The
constructs of the input MAS metamodel are identified in the same way of the
step 3, through a reverse engineering process. Often, part of the constructs of
the input MAS metamodel are reported, hence quoted, in the work product of
the portion of work.

At this point the method designer has all the elements useful for establishing
the complete MAS metamodel (Step 6. Process Fragment MAS Metamodel),
indeed it is the sum of the previous two ones. In the case of our example the
complete MAS metamodel is shown in Fig. 6.

How to Extract Fragments from Agent Oriented Design Processes 161

<<MMMR>>
Generalize

<<MMMR>>
Include

<<MMMR>>
Extend

<<MMMR>>
UC_Relationship

<<MMMR>>
Association

<<MMMR>>
Constraint

<<MMME>>
Functional Requirement

<<MMME>>
Actor

<<MMME>>
Non Functional Requirement

<<include>>

<<include>>

sonarReader

sensorFusion

laserReader

pathPlanningTLengControl <<include>>

<<include>>

Environment

Use Case: laserReader

Actors: Environment

Flow of events:

Pseudo Requirements:
............

a)

b)

Fig. 5. a) An Excerpt of the DRD Work Product; b) The Work Product MAS Meta-
model

After the sixth step, the extraction of the first composed process fragment
is complete, the method designer must now (Step 7. Process Fragment Ele-
ments) identify the other elements in the fragment; first of all activities, roles
and work products and then all the others such as goals, reuse guidelines, and
so on. Now that the first fragment has been identified and extracted the method
designer may consider the rest of design process and she may extract all the
other composed fragments.

162 V. Seidita, M. Cossentino, and A. Chella

Fig. 6. The Complete MAS Metamodel for the DRD Process Portion

The same guidelines may be applied for extracting phase or atomic fragments;
in the case of a phase fragment for PASSI, the time T1 (see Fig. 4) is when the
set of work products dealing with the problem domain description has been
delivered; from the definition a phase fragment is the one delivering a set of
work products that belong to the same design abstraction level.

In the PASSI example the method designer can find five different cutting
points, they are illustrated in capital letter in the Fig. 4 and correspond to the
five main phases PASSI is composed of.

Once the method designer has found the cutting points, she can perform the
same activities done for obtaining the composed process fragments. The number
of work products to analyze is greater than one in fact one phase fragment can
be considered a composition of composed process fragments.

Some differences are present when the method designer wants to extract an
atomic fragment. An atomic fragment is different from the other two in the
outcome, it has been conceived for representing the smaller piece of work the de-
signer may perform. For instance all those situations in which the designer makes
some kind of reasoning, sometimes without producing concrete outcome and fol-
lowing for instance some heuristics, for designing a specific MAS metamodel
construct. Other times atomic fragments deliver portions of work products.

The cutting points can be identified following the process workflow and stop-
ping it when a portion of work product is completed, in the sense that one
element of the system model is completely defined. For instance, if a work prod-
uct aims at defining the agents involved in the system and their goals, a part of
the work product may be the one listing or representing all the agents, supposing
that the flow of work for producing that work product implies firstly to find all
the involved agents and then to identify their goals.

How to Extract Fragments from Agent Oriented Design Processes 163

In the PASSI example, the first part of the design process prescribes that the
system analyst and the domain expert collaborates in identifying use cases and
then they describe them in order to produce the previous said DRD diagram.
The first part of the work does not imperatively result in a work product, the
analyst and the designer might list the use cases in a document or they might
keep them in their mind and then represent them in the diagram (in a following
portion of work that will be part of another atomic fragment).

Whatever is the result, the work done aims to instantiate several times the
functional requirement construct in order to obtain use cases; this portion of
work can represent an atomic fragment and has to be described and represented
as the others two.

We claim that the proposed guidelines can be applied for extracting process
fragments from agent design processes also described in an informal or not well
structured way; the work to be done in this cases could be a little more demand-
ing but it leads anyway to good results. The best result is obtained if the agent
design processes were documented using the FIPA IEEE standard template [18].

This specification requires to emphasize the main elements of design process
we shown in Fig. 1 by means of SPEM [1] activity and class diagrams thus provid-
ing dynamic and structural views of the design process parts, metamodels, tables
for representing input/output workproduct, input/output MAS metamodel con-
structs and other elements that allow a quick and a complete view on the overall
design process. Using this kind of representation leads to a very quick and easy
application of the guidelines since the cutting points can be rapidly identified
and then all the information is visible and identifiable3.

It is worth to note that basing on our experience the best way for extracting
fragments from a design process is using a top-down approach, hence we suggest
starting with the extraction of all the phase process fragments and then the
composed process fragments.

4.2 Applying the Guidelines to OpenUP

The proposed guidelines was born in the context of agent oriented design pro-
cesses but the system metamodel concepts we use led us to consider the possibil-
ity of applying our approach to all kinds of design process. In the last months, in
collaboration with a great part of the agent research community, we worked in
representing some agent design processes using the IEEE-FIPA standard docu-
mentation template [18]. During this experience we also documented the OpenUp
(http://epf.eclipse.org/wikis/openup/) design process and we obtained good re-
sults in terms of the applicability of the standard.

OpenUP is an iterative process composed of four main phases: Inception,
Elaboration, Construction, and Transition, through which each iteration is per-
formed. Depending on a series of factors like, for instance, the technology used,
the architectural complexity and the project size, each phase may present many

3 The specification can be found in
http://fipa.org/specs/fipa00097/index.html

http://fipa.org/specs/fipa00097/index.html

164 V. Seidita, M. Cossentino, and A. Chella

iterations of a variable length. OpenUP also provides work breakdown structure
(WBS) templates for each iteration, and a WBS template for an end-to-end
process. Applying the standard allowed us to identify, for each phase, all the
activities, the roles, the work products and the complete system metamodel of
the overall process.

Afterwards, we tried to apply the guidelines for fragmentation to OpenUp.
We firstly identified the phase process fragments and then all the composed
process fragment; for each of them the applicability of steps 3, 4 and 5 of the
guidelines were guaranteed by the complete description of the activity work flow
provided by the standard documentation. OpenUp has a peculiarity, it is an
iterative and incremental design process; during each phase the same activities
are performed each time with a different emphasis over the course of the project.
Given this fact, we found in a particular situation, we extracted the first phase
process fragment, the Inception Fragment, and all its inner composed process
fragments (see http://www.pa.icar.cnr.it/cossentino/fragrep/ for a tentative list
of OpenUp process fragments), then we identified the second phase fragment,
Elaboration Fragment, where the most part of the workflow perfectly follow the
first phase process fragment workflow, only a little part is refined. Going on to
the composed process fragments we found a lot of fragments exactly alike to the
composed fragments of the first phase and only some new more.

The same happened for the other phases, until the end of the whole OpenUP;
this is due to the fact that OpenUp is iterative and incremental. Therefore,
two considerations, in this case the extraction of phase fragments goes out the
window and it makes sense to extract all the composed process fragments in
their most complete form, as we had extracted at their latest iteration. It is up
to the method designer, during the process composition phase, to cut and adapt
them to his needs and to the features of the process she is creating. What is
important is that we could populate our repository with fragments coming from
OpenUp by using our guidelines that revealed to be usefully applicable also to
a not agent, iterative and incremental design processes.

5 Discussions

The guidelines for extracting process fragments we illustrated in the previous
section are only a part of the whole approach to Situational Method Engineering
we developed; it includes the creation of the repository [25], the formalization of
a SME process phases (selection, retrieval and assembly of fragments) [26] and,
the most important, the definition of the process fragment, what it is composed
of and the best way to document it [9][24]. These guidelines was created in a
way that lets the method engineer have all the elements for documenting the
process fragments and respect the improved definition we gave in this paper and
the template we proposed in [24]. Documenting the process fragment using this
template aims to mainly put to evidence the process and the product part of the
fragment.

One of the major advantages introduced by the proposed method for fragment-
ing agent design processes, and then extracting process fragments from them, is

How to Extract Fragments from Agent Oriented Design Processes 165

simplifying the part of situational method engineering devoted to the creation
of fragment repositories. Until now, this topic has not been widely considered,
indeed commonly the work of the method designer is thought to start from an
already filled repository. It is worth to note that the proposed method fragment
definition gives the possibility of creating an agent fragments repository where
all the fragments are homogeneous because they share the same definition and
above all they are structured basing on a core concept, the multi-agent system
metamodel for which in [10] we illustrated how it is constructed and all the rules
for extracting knowledge on the process.

Moreover, we decided to apply the fragmentation guidelines to OpenUp in
order to test our approach upon a “not-agent” oriented design process and above
all upon a design process we are not skilled to; we well know PASSI, we used
it in several projects and our level of knowledge could have twisted the results
on the applicability of the guidelines. For sure, having OpenUp described in the
standard way IEEE-FIPA prescribes was of great help but we can say that the
applicability of our guidelines is guaranteed by the particular process fragment
definition we use. Without the standard description we would have spent more
time in identifying the main elements fragment is composed of but the result
would be the same. The fragment definition underlying the guidelines together
with looking at the design process workflow let us easily retrieve all the fragment
elements.

With this work we, now, have all the ingredients for increasing the fragment
reusability, hence selection and then assembly and for establishing the basis of
a formal approach to SME for (agent) design process creation. Besides having
a well specified set of data regarding the process fragment (the metamodel, the
activities, the role and the work products, all represented in a well defined fash-
ion) gives the possibility of automatically supporting the overall SME approach
and making some kind of reasoning that might lead, for instance, to automatic
selection or assembly of fragments.

6 Conclusions and Future Works

In this paper we propose guidelines for fragmenting and then extracting frag-
ments from agent oriented design processes. The guidelines are based on a defi-
nition of process fragment that has been improved from the previous one [9].

Our aim is to handle a part of the Situational Method Engineering that, in
all the existing approaches, has not been treated with the right details. Indeed,
in most cases, applying a SME approach means to start from an already filled
repository; how to construct the repository has not been sufficiently investigated
yet. Every existing SME approach implies a selection phase from a repository,
we claim that if this one is not realized in such a way that the fragments were
homogeneous and with easily identifiable interfaces, it would be very difficult to
select and to assemble the right fragments meeting the method engineer needs.

It is anyway difficult to extract process fragments from existing agent oriented
design processes because of the lack of a proper documentation highlighting

166 V. Seidita, M. Cossentino, and A. Chella

the elements characterizing the process fragment, they are: activities, roles and
work product, hence the work to be done for obtaining a design result and
the stakeholder performing the work. A fourth element, very important in our
fragment definition, is the multi-agent system metamodel; by using it we are
able to overcome all the limitations said before and to provide guidelines for
extracting fragments thus obtaining process fragments of the same granularity.

In the future we plan to develop a tool for aiding the method designer in au-
tomatically (or semi-automatically) selecting and assembling process fragments;
this will be done exploiting the structure of the fragments and the fact that a
lot of important information inside the process can be inferred by means of the
system metamodel.

References

1. Software Process Engineering Metamodel. Version 2.0. Final Adopted Specification
ptc/07-03-03

2. Backlund, P., Ralyté, J., Jeusfeld, M., Kühn, H., Arni-Bloch, N., Goossenaerts,
J., Lillehagen, F.: An interoperability classification framework for method chunk
repositories. In: Advances in Information Systems Development, pp. 153–166 (2007)

3. Bernon, C., Camps, V., Gleizes, M.-P., Picard, G.: Engineering adaptive multi-
agent systems: the adelfe methodology. In: Agent Oriented Methodologies, ch. VII,
pp. 172–202. Idea Group Publishing (2005)

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An
agent-oriented software development methodology. Autonomous Agent and Multi-
Agent Systems 3(8), 203–236 (2004)

5. Brinkkemper, S.: Method engineering: engineering the information systems devel-
opment methods and tools. Information and Software Technology 37(11) (1996)

6. Brinkkemper, S., Lyytinen, K., Welke, R.: Method engineering: Principles of
method construction and tool support. International Federational for Information
Processing 65, 336 (1996)

7. Brinkkemper, S., Welke, R., Lyytinen, K.: Method Engineering: Principles of
Method Construction and Tool Support. Springer (1996)

8. M. Cossentino. From requirements to code with the PASSI methodology. In: Agent
Oriented Methodologies [16], ch. IV, pp. 79–106

9. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE) 1(1), 91–121 (2007)

10. Cossentino, M., Seidita, V.: Metamodeling: Representing and modeling system
knowledge in design processes. In: Proceedings of the 10th European Workshop on
Multi-Agent Systems, EUMAS 2012, pp. 103–117 (2012)

11. Esfahani, H.C., Yu, E.: A repository of agile method fragments. In: Münch, J.,
Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 163–174. Springer,
Heidelberg (2010)

12. Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-
duction. Addison-Wesley (2002)

13. Fuggetta, A.: Softaware process: a roadmap. In: Proceedings of the Conference on
the Future of Software Engineering, Limerick (Ireland), June 4-11, pp. 25–34. ACM
Press, New York (2000)

How to Extract Fragments from Agent Oriented Design Processes 167

14. Gupta, D., Prakash, N.: Engineering Methods from Method Requirements Specifi-
cations. Requirements Engineering 6(3), 135–160 (2001)

15. Henderson-Sellers, B.: Method engineering: Theory and practice. In: Karagian-
nis, D., Mayr, H.C. (eds.) Information Systems Technology and its Applications,
pp. 13–23 (2006)

16. Henderson-Sellers, B., Giorgini, P.: Agent Oriented Methodologies. Idea Group
Publishing, Hershey (2005)

17. Henderson-Sellers, B., Ralyté, J.: Situational method engineering: State-of-the-art
review. J. UCS 16(3), 424–478 (2010)

18. IEEE Foundation for Intelligent Physical Agents. Design Process Documentation
Template, Document number XC00097A-Experimental (2011)

19. Karlsson, F., Agerfalk, P.: Method configuration: adapting to situational character-
istics while creating reusable assets. Information and Software Technology 46(9),
619–633 (2004)

20. Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific
methodology construction. In: Challenges and Strategies for Research in Systems
Development, pp. 257–269 (1992)

21. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirements Engineering 11(1), 58–78 (2006)

22. Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: Agent Oriented Methodologies [16], ch. IX pp. 236–276

23. Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for situational
method engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681,
pp. 95–110. Springer, Heidelberg (2003)

24. Seidita, V., Cossentino, M., Chella, A.: A proposal of process fragment definition
and documentation. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds.)
EUMAS 2011. LNCS, vol. 7541, pp. 221–237. Springer, Heidelberg (2012)

25. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. In: Proc. of the Workshop on Objects and Agents, WOA 2006 (2006)

26. Seidita, V., Cossentino, M., Hilaire, V., Gaud, N., Galland, S., Koukam, A., Gaglio,
S.: The metamodel: a starting point for design processes construction. International
Journal of Software Engineering and Knowledge Engineering 20(4), 575–608 (2010)

27. Slooten, K., Brinkkemper, S.: A method engineering approach to information sys-
tems development. In: Proceedings of the IFIP WG8. 1 Working Conference on
Information System Development Process, pp. 167–186. North-Holland Publishing
Co. (1993)

28. ter Hofstede, A.H.M., Verhoef, T.F.: On the feasibility of situational method engi-
neering. Information Systems 22(6/7), 401–422 (1997)

Forward Self-combined Method Fragments

Noélie Bonjean, Marie-Pierre Gleizes, Christine Maurel, and Frédéric Migeon

IRIT, Université Paul Sabatier
F-31062 Toulouse cedex 9, France

Firstname.Name@irit.fr

Abstract. Developing complex systems is generally simplified if de-
signer is guided by method from Software Engineering. However a single
engineering process is often not enough to cover all the possible require-
ments due to different levels of expertise and systems to design. Cur-
rently, Agent Oriented Software Engineering methods aim at providing
an adaptive engineering process. The method processes have been bro-
ken up into different parts called fragments, enabling the mix of different
engineering processes’ parts to get better adequacy between the system
to be done and the process. But some difficulties still remain concern-
ing the expertise needed to compose these fragments when the amount
of fragments prevents the composition to be done by hand. This paper
presents an Adaptive Multi-Agent Systems (AMAS) to deal with a new
paradigm of automated fragments combining. This process is made from
both the characteristics of users and system and the known fragments.
Thanks to their information, agents of the AMAS self-organise and de-
sign a tailored method process. The developed system is described and
then usual tests are depicted.

1 Introduction

Software reuse is generally considered as one of the most effective ways of
increasing productivity and improving quality of software. To make software
reuse happens, however, there is a change in the way engineers develop software:
software is currently developed for reuse and with reuse. Component-based soft-
ware engineering [1] is a software engineering paradigm in which applications
are developed by integrating existing components. Reuse of software engineer-
ing is becoming more and more important in a variety of aspects of software
engineering.

In the same way, in Agent-Oriented Software Engineering (AOSE), a lot of
different methods, each with its advantages and its drawbacks [2]. Methods have
to deal with these characteristics and capabilities of agents or systems. An at-
tempt is to benefit from different methods by combining their particular features.
For example, attempts have been made to combine requirements analysis in
TROPOS and self-adaptation in ADELFE [3].

Coming from Situational Method Engineering, decomposing processes into
pieces has interested the AOSE community because of the expected benefits of
flexibility. The aim is to adapt the process to the characteristics of the business

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 168–178, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Forward Self-combined Method Fragments 169

problem and to the level of expertise of engineer teams by proposing to assemble
pieces of methods, named fragments, of various processes. In a first step, several
teams have to split up methods into fragments and provide a precise description
of them (ADELFE[4], INGENIAS [5], PASSI [6], TROPOS [7] ...). Two main
results have been obtained from this step: (i) a means to precisely compare the
different methods and (ii) a potential repository of fragments that will serve the
community to compose new processes [8]. This kind of work is mainly done in
the Foundation for Intelligent Physical Agents1 (FIPA) context.

Currently some propositions to combine fragments have been already made,
but they are mainly based on the know-how of the method engineer. In this
paper, we propose a first step forward an automatic way to design a method
process based on MAS technology. The process is constructed by combining
fragments ”on the fly” to be adapted to the specific situations of the projects
at hand. The new process is based on both fragment compatibility and user
characteristics. In order to respond to this need, the presented work details the
use of an Adaptive Multi-Agent Systems (AMAS) which relies the cooperation
of its agents to work together, making this approach especially suited to deal
with highly dynamic systems such as the design of an interactive and adaptive
Software Engineering Process (SEP) [4]. In this work, an AMAS is built by
modelling fragments as autonomous entities.

This paper is organized as follows. First, section 2 explain the aim of this
system. Then, section 3 introduces the system of Self-Combining fRagments
(SCoRe) and details the behaviour of the involved agents as well as their inter-
actions. Section 4 focuses on some usual tests and explain the results obtained.
Finally, section 5 describes related works before concluding in section 6.

2 Why Such a System?

Request of Tailored Method. While the demand for specific, complex and
varied system continues to grow, current methods in the MAS domain remain
limited and sometimes not well adapted. For example, in order to propose
a simulation-based process for the development of MASs which incorporates
a simulation phase for the prototyping of the MAS being developed and for
functional and non-functional validation, PASSIM was obtained by integrating
method fragments from the PASSI for carrying out the analysis, design and cod-
ing phases, and the Distilled State Charts (DSC)-based simulation method for
supporting the simulation phase [9]. The need for well-defined guidelines that
will make the development process more efficient and more effective has become
crucial. Currently, there is no single methodology that can be uniquely pointed
as ”the best”. Until now methodology adjustments to the specific requirements
and constraints are mixed in ”local” adaptations and modifications. In order to
succeed in creating good situational methodologies, i.e., methodologies that best
fit given situations, fragment representation and cataloguing are very important

1 http://www.fipa.org

http://www.fipa.org

170 N. Bonjean et al.

activities. In particular, the fragments (sometimes addressed as process frag-
ments, method fragments or chunks) have to be represented in a uniform way
that includes all the necessary information that may influence their retrieval and
assembling.

Fragment Standardisation. Method fragments are first identified by examin-
ing existing methods. These method fragments are made according to templates
defined by repository designers. Therefore the choice of fragments granularity re-
lies on designers. According to the RUP [10], the methods are defined following
different levels of granularity: phase, activity and step. The granularity issue of
these method fragments poses important challenges. The ”step” level involves a
specific and fiddly task but also requires perfect knowledge of methods and long
work. This fragmentation is very fine-grained and provides a greater number of
fragments. For instance, in ADELFE, the analysis phase is composed of four
activities, the first of which is Analysis of domain. Analysis of domain consists
of two steps: Identify the active and passive entities and Study interactions be-
tween the entities. These steps are related and interdependent. This low level
of granularity is therefore useless and inaccurate in this situation. On the other
hand, the ”phase” level of granularity could form huge complete fragments. The
coarse-grained granularity promotes the redundancy issue. The duplication of
activities or steps may occur with high granularity. An activity or step may be
included in different fragments. The risk that happens grows up with the level
of granularity. In addition, the joining possibilities are therefore minimized.

Amount of Fragments. Currently, ten AOSE methods are fragmented, each
one composed of approximately twenty fragments. Such fragments constitute
the root constructs of the methodology itself and they have been extracted by
considering a precise granularity criterion: each group of activities (composing
the fragment) should significantly contribute to the production/refinement of
one of the main artefacts of the methodology (for instance, a diagram or a set
of diagrams of the same type). Following this assumption, fragments obtained
from different methodologies are based on a similar level of granularity.

Besides, to design a process manually means studying for the compatibility
of each fragment with the others i.e. approximately twenty thousand possible
combinations. Although this number can be decreased by the knowledge and
the know-how of process engineers, the work remains long and irksome. It is
why we propose the automated combining of fragments.

Assist Designer. In our approach, a new complete process is firstly self-
designed contingent on situation. The complete process enables engineers to
visualise all activities and to have a whole view of the process. Then, we focus
on adaptation during process execution. In every step the development team is
advised on its next fragment choice according to the running features. If the fea-
tures evolve, this advice may therefore differ from the following fragment initially
suggested.

Forward Self-combined Method Fragments 171

The studied solution resides in fragments agentification in order to design an
adaptive process. This choice is justified by the problem complexity which is
mainly due to the huge number of fragments. Indeed, a complex system cannot
currently be designed without bugs from designers. Assist the designer during
the system utilization would reduce the number of bugs and make the system
most suitable to the current situation. The adaptation is therefore required.
As components assembling, fragments assembling needs assembling features. In
our approach, a fragments assembling is based on MAS Metamodel Elements
(MMME). Two fragments are therefore assembling if one produces the MMMEs
required by another.

3 Combining Method Fragments with an Adaptive
Multi-agent System

The general structure of the Self-Combined method fRagments system (SCoRe)
proposed is described in this section, before detailing the behaviours and the
interactions of the agents composing it.

3.1 General Structure of SCoRe

We consider a method process as a set of assembled method fragments which are
linked through their own required or produced MMMEs. Establishing a method
process consists in linking some of the fragments toward user-defined objectives
and knowledge. So, the main goal of SCoRe is to suggest a tailored process. For
that, SCoRe learns the context to apply on fragments, in order to sustain this
evolution. SCoRe has to act without relying on a model of the processes, meaning
that it is only able to take into account the users’ knowledge and needs, and to
observe the evolution of the running process on which MMMEs are available, in
order to decide on the fragments to add. The best possible running process is
therefore designing according to a situation and the best adapted fragment has
to be found at any moment.

SCoRe is composed of four distinct kinds of agents following a perception-
decision-action lifecycle which cooperate according to the AMAS theory de-
scribed in [11]. The basic idea underlying this cooperation consists, for every
agent in an AMAS, in always trying to help the agent which encounters the
most critical situation from its own point of view. Figure 1 gives the structure
of a SCoRe system designing a method process. The different types of agents in-
volved are shown, as well as the links modelling the existing interactions between
them. Actually, our system is made up of:

• MAS Metamodel Element (MMME): required or produced by a Run-
ning Fragment, its aim is to decide fragments whom it will be linked.

• Waiting Fragment (WF): its purpose is to be integrate in a process once
it is in an adequate situation.

• Running Fragment (RF): it aims at finding its place inside the running
process.

172 N. Bonjean et al.

• Context (C): related to a fragment, it aims at evaluate its pertinence ac-
cording to the MMMEs already involved in the running process and the
users’ needs and knowledge.

Next sections will provide a more in-depth description of these agents and
interactions.

Fig. 1. Example of agents and their relationships in SCoRe

3.2 Behaviour of Agents

MMME Agents. The MMME agents represent the links between the running
fragment agents. Their goal is to be incorporated in the running process. The
MMMEs behaviour is represented by an automaton with two states: non incor-
porated and incorporated. The non incorporated state corresponds to a MMME
linked to at least one running fragment which produces or consumes it. In this
state, it requests fragments (consumer or producer). It is looking for a fragment
at which it can be linked. It receives some answers from fragments with their
relevancy. The most relevant fragment will be single out by the MMME agent
for being put it forward as a candidate to be added in the running process. Fur-
thermore, these agents are able to evaluate their own criticality. This criticality
estimates the difference between the current and expected designed process and
represents the degree of satisfaction of an agent. Therefore, the MMME agents
cooperate on the selection of the most relevant fragment among the ones sug-
gested according to their own criticality.

The incorporated state is reached when the MMME agent is linked with at
least two fragments: one consumer and one producer. The given or required
MMMEs by the designer have only to be linked respectively to at least one
consumer and one producer.

Forward Self-combined Method Fragments 173

Waiting Fragment Agents. The waiting fragment agents are reactive agents.
Actually their goal is to notify the other agents of any requests from MMMEs.
They receive messages from MMMEs which are looking for a fragment. If the
waiting fragment agent considers himself as a potential solution then it forward
the request to his context agents. It waits the answer from their context agent
and answers his relevancy to the MMME. Should the opposite occur, the waiting
fragment agent sends an answer to MMME with no relevance. Besides, when the
waiting fragment agent receive a message from the MMME to inform it that it
is selected, it transmits the information to the context agents. Then the waiting
fragment agent spreads to create a running fragment agent.

Running Fragment Agents. The running fragment agent is created by the
waiting fragment agent which represents in the running process. It is introduced
on time in the process. His aim is to be incorporated in the method process.
His behaviour changes according to his current state and his perception. The
current state of a running fragment agent corresponds to non incorporated and
incorporated. Actually, a running fragment agent is said incorporated when all the
required MMMEs are in the incorporated state and at least one of the provided
MMMEs is incorporated. Otherwise his state is non incorporated and the running
fragment agent makes links with each MMME agent existing in the running
process on which a link is physically possible. If some MMME agents are missing
in the running process, the running fragment agent adds them. Furthermore,
these agents are able to evaluate their own criticality. This criticality estimates
the difference between the current and expected method process. It is calculated
from the criticality of required or produced MMME(s) and their current state.

Context Agents. The context agents have the most complex behaviour in the
SCoRe system. Their goal is to represent a situation leading to a specific method
process. They do not aim to model what is happening inside the system, but
rather aim at selecting the fragment to add in the current situation to reach the
objectives. When such an agent finds itself in its triggering situations, it notifies
the waiting fragment agent, by submitting its confidence according to its own
knowledge.

In order to know when the fragment is relevant, a context agent relies on two
different sets of information. First, a collection of input values represents the set
of user and system characteristics. This element enables the context agent to
know if it has to be triggered or not. Then, a context agent possesses a set of
forecasts, which describes the impact of the action proposed on the criticality
of the different variables of the system. Then, a context agent possesses a set
of metrics, which describes the impact of the action proposed on the running
process [12]. Those input values are modified during the life of a context agent.
According to its behaviour, a context agent therefore adjusts its confidence from
different feedback that it receives.

174 N. Bonjean et al.

Finally, the behaviour of a context agent is represented by an automaton.
Each state relates its current role in the MAS. A total of three different states
exist: disabled, enabled and selected. The context agent can switch from a state
to another thanks to the messages it receives from other agents in the system. A
disabled context agent considers itself non-relevant in this specific situation. An
enabled context agent thinks that it is relevant and potentially deserves to be
selected. It then computes its confidence and sends them to the corresponding
waiting fragment agent. Finally, a selected context agent is validated by a waiting
fragment agent and its associated fragment is added in the running process. This
selected context agent has then to observe the consequences of its action in order
to reinforce or update its confidence.

4 Usual Tests

Considering the large number of existing method fragments, the volume of sup-
porting studies and the users’ profile, the need arises for a designed method. The
designed method is conceived of not as a single interdependent entity but as a
set of disparate fragments. Therefore, in order to show the rightness of a new
method process, the method process has to be evaluated by several engineers
for some specific system. The experience results of empirical studies that have
been conducted by many practitioners and researchers. This kind of experience
is complex and can take a long time to obtain sufficient results. Therefore, we
firstly focus on the functional adequacy and the dynamic adaptation to specific
situation.

We defined test sets corresponding on the one hand to the feasibility of this
system and on the other hand to the specific situations encountered and solved
by cooperation between agents. The first test is based on a set of fragments
from current methods such as ADELFE2, INGENIAS3 and PASSI4. Fragments
description can be found respectively on corresponding research team site. This
first test aims at verifying that the system self-designs and proposes a complete
method process. The sets of fragments from ADELFE, INGENIAS and PASSI
enables to show the accurate behaviour of agents and their right assembling. In
this case, at the set-up, all fragments are provided without order and the process
is built up again. According to the users and system characteristics, one of them
is therefore built up and suggested to the designer. The system is therefore able
to propose the known processes.

The following test set uses fictive fragments to highlight accurate configura-
tions. Two processes named A and B are defined. A is broken in four fragments
a1, a2, a3, a4 where all fragments are sequential except for a2 and a3 which are
alternative. The process B is broken in four sequential fragments b1, b2, b3 and
b4. Moreover, the two processes are totally disjointed (except for last test case).
They do not share MMMEs. For these tests, we chose to provide few fragments

2 ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/RAPPORTS/
3 http://grasia.fdi.ucm.es/main/node/241
4 http://www.pa.icar.cnr.it/cossentino/FIPAmeth/docs/

ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/RAPPORTS/
http://grasia.fdi.ucm.es/main/node/241
http://www.pa.icar.cnr.it/cossentino/FIPAmeth/docs/

Forward Self-combined Method Fragments 175

Fig. 2. Test Cases: Context Adaptation (left); Dynamic Adaptation (middle); Pro-
cesses Combination (right)

for better readability and to show the system adaptation by cooperation between
agents which are in particular situations. Moreover, in the following tests, the
both processes are shown but the most accurate method process is only designed.

The second test verifies adaptation according to users and system charac-
teristics. Indeed, in any situation, it controls that the system advises the most
adapted process. In this case, the waiting fragment agents represent only the
fragments from the independent fictive processes A and B. As a result, one is
chosen as the most adapted for the specified situation. This test is showed in the
figure 2 (left). The double borderline around a fragment shows the process A as
being the most accurate process.

The third test is about dynamic adaptation. Considering open systems, wait-
ing fragment agents are added or removed in system during runtime. The system
has to take into account these modifications and reorganises itself according to
its new state. The initial conditions are the same as in the previous test. A
new waiting fragment agent named b3a is then introduced in the system. This
fragment more accurate for the situation is an alternative fragment to b3. It is
therefore included in the running process and a new process is defined. Figure 2
(middle) shows system adaptation after the introduction of a new fragment.

The last test case shows combining processes. In this case, fragments from dif-
ferent processes are assembled in order to obtain a new process more adapted.
In this test case, we supposed that the provided fragments from A and B are
compatible. The required MMMEs are also provided by a fragment from another
process. The system is therefore able to produce a new process based on frag-
ments from both initial processes in addition to processes already known. Figure
2 (right) shows this test where the new process composed of a1, b2, a3 and b4
is advised as the most accurate.

176 N. Bonjean et al.

5 Related Works

In the MAS community, the first works on fragments, their definition and their
composition have been started by the working group ”Methodology Technical
Committee” in 2003 [8]. Currently, the working group named ”Design Process
Documentation and Fragmentation Working Group” aims at providing IEEE
FIPA specification of fragments. The working group approach is based on SPEM
extension of OMG [13], and tailored to needs of agents and MAS.

The objective of SME approach in agent oriented engineering field is to pro-
pose the most accurate process in development context. The PRoDe (PRocess
for the Design of Design PRocesses) [14] approach proposes to use the MAS
metamodel as a central element for selecting and assembling fragments. PRoDe
contains three phases: process analysis, process design and process deployment.
The analysis phase elicits requirements and leads to MAS metamodel definition.
The design phase helps designer to select fragments to assemble in a new pro-
cess. Finally in the process deployment phase, the new process is used to solve
a specific problem.

Based on PRoDe approch, MEnSA5 project dissents to it from analysis phase.
Indeed, in this phase, requirements are used to chose fragments and fragments
contribute to metamodel definition [15]. The fragments repository includes frag-
ments from the following agent oriented methods: PASSI, GAIA, TROPOS and
SODA.

The OPEN framework [16] is object oriented method based on reusable meth-
ods components. It was extend to take into account agent oriented methods and
come to FAME (Framework for Agent-oriented Method) conception. FAME is
an agent oriented methods repository containing for example GAIA, TROPOS
or PROMOTHEUS [17].

Tools are also developed in order to make easier the methods designing by
combination of fragments, as MetaMeth [18]. It is a computer-aided process
engineering tool (CAPE tool) and plug-ins to assist designer during process
design from available fragments included data base.

As presented approaches, ours is based on current data base of fragments
and on MAS metamodel. On the other hand, it is original because it proposes
an automation of fragments composition. The designer is less called upon than
ProDe or MEnSA approach because the most accurate fragments are presented
to him already placed in the process. Moreover, in running development, our
approach can take into account process adaptation according to development
context.

6 Conclusion and Future Works

This paper presented an Adaptive Multi-Agent System to design a tailored pro-
cess by linking fragments together. Each agent composing the AMAS follows a
local and cooperative behaviour, driven by the use of their confidence. The four

5 http://apice.unibo.it/xwiki/bin/view/MEnSA/

http://apice.unibo.it/xwiki/bin/view/MEnSA/

Forward Self-combined Method Fragments 177

different kinds of agents composing SCoRe were designed in order to self-design
a tailored method process without relying on the method engineer. The resulting
behaviour of SCoRe is the ability to design a process and adjust the proposed
process according to the characteristics of application domain and users profile.
This first prototype allowed to enhance our experience about practical problems
such as metamodel compatibility, parameters composition or fragments adapta-
tion to specific field.

However, there is still room from improvements in some aspects of this ap-
proach. For example, the inter-operability and the semantic matching of frag-
ments from different methods are still missing. In this problem, some works
axis on standardisation of fragments notion and of their description. The meta-
model definition or ontologies for software process could be used. Another ap-
proach from model-driven engineering is the Model Transformation By Example
(TTBE). The concept is to make easier model transformation writing without
generic model in favour of requested generated transformation. Thus fragments
drawing on similar metamodels could be made up automatically.

Moreover, another important point is the evaluation of the designed process.
Actually, despite the proposal of elaborate tailored method processes, methods
are built intuitively by adopting some fragments from different methods. It is
therefore difficult to evaluate and compare methods. In order to made a right
choice, it is necessary to evaluate the method.

Finally, this SCoRe system will be confronted to real users’ problems with
known method fragments, in order to allow its comparison with existing methods.

References

[1] CBSE: Component-based software engineering, 13th international symposium,
Prague, Czech Republic (June 2010)

[2] Bergenti, F., Gleizes, M., Zambonelli, F.: Methodologies and Software Engineering
for Agent Systems: The Agent-oriented Software Engineering Handbook. Kluwer
Academic Pub. (2004)

[3] Morandini, M., Migeon, F., Gleizes, M.P., Maurel, C., Penserini, L., Perini, A.:
A goal-oriented approach for modelling self-organising MAS. In: Aldewereld, H.,
Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 33–48. Springer,
Heidelberg (2009)

[4] Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering Adaptive Multi-
Agent Systems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini,
P. (eds.) Agent-Oriented Methodologies, pp. 172–202. Idea Group Pub, NY (2005)
ISBN 1-59140-581-5

[5] Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: Agent Oriented Methodologies, pp. 236–276.

[6] Cossentino, M.: From requirements to code with the PASSI methodology. In:
Agent Oriented Methodologies, pp. 79–106.

[7] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An agent-oriented software development methodology. Autonomous Agent and
Multi-Agent Systems 8(3), 203–236 (2004)

178 N. Bonjean et al.

[8] Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent Oriented Software Engineering 1(1), 91–121 (2007)

[9] Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: A simulation-
based process for the development of multi-agent systems. International Journal
on Agent Oriented Software Engineering, IJAOSE (2008)

[10] Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

[11] Capera, D., Georg, J.P., Gleizes, M.P., Glize, P.: The AMAS Theory for Complex
Problem Solving Based on Self-organizing Cooperative Agents. In: International
Workshop on Theory And Practice of Open Computational Systems (TAPOCS at
IEEE 12th International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2003) (TAPOCS), Linz, Austria, June 9-11,
pp. 389–394. IEEE Computer Society (2003), http://www.computer.org

[12] Bonjean, N., Chella, A., Cossentino, M., Gleizes, M.P., Migeon, F., Seidita, V.:
Metamodel-Based Metrics for Agent-Oriented Methodologies (regular paper). In:
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), June 4-6, Valencia (2012)

[13] OMG: Software Process Engineering Metamodel. Version 2.0. Object Management
Group (March 2007)

[14] Seidita, V., Cossentino, M., Galland, S., Gaud, N., Hilaire, V., Koukam, A., Gaglio,
S.: The metamodel: a starting point for design processes construction. Interna-
tional Journal of Software Engineering and Knowledge Engineering 20(4), 575–608
(2010)

[15] Puviani, M., Cossentino, M., Cabri, G., Molesini, A.: Building an agent method-
ology from fragments: the mensa experience. In: SAC, pp. 920–927 (2010)

[16] Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-
duction. Addison-Wesley (2002)

[17] Henderson-Sellers, B.: Evaluating the feasibility of method engineering for the
creation of agent-oriented methodologies. In: Pěchouček, M., Petta, P., Varga, L.Z.
(eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 142–152. Springer, Heidelberg
(2005)

[18] Cossentino, M., Sabatucci, L., Seidita, V.: A collaborative tool for designing and
enacting design processes. In: Shin, S.Y., Ossowski, S., Menezes, R., Viroli, M.
(eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009), vol. 2,
pp. 715–721. ACM, Honolulu (December 8, 2009)

http://www.computer.org

“Engineering” Agent-Based Simulation Models?

Franziska Klügl

School of Science and Technology
Örebro University, Örebro, Sweden
franziska.klugl@oru.se

Abstract. Multiagent simulation emerges to be one of the “killer applications”
of multiagent system technology. For several reasons, there is a serious lack of
engineering approaches in developing simulation models, so connecting AOSE
with Multiagent Simulation seems to end in a win-win situation. A basic pre-
requisite is hereby to understand the current state and challenges of developing
multiagent simulations. This is the objective of this contribution.

1 Introduction

Not just with the growing interest in multiagent simulation applied in domains beyond
social science, the systematic development of high quality models for various objec-
tives got into the focus of research. Multiagent simulation is a not so new simulation
paradigm in which the basic metaphor of the model is the concept of a multiagent sys-
tem. Active entities in the original system are mapped to agents in the simulated system.
A multiagent model consists not just of agents, but also has an explicitly simulated en-
vironment and explicit treatment of simulated time. The environment can take different
forms: often it forms an abstraction of a spatial environment. It may be also populated
by other entities than the agents that co-exist and interact with the them.

There is a basic dilemma in multiagent simulation: on one side it is perceived as very
intuitive because of the ontological correspondence between the observable, original
actors and the active agents in the simulation [15]. Structure and dynamics of models
can be easily understood and (informally) explained: The abstraction step between orig-
inal system and simulated system is smaller compared to other simulation paradigms in
which for example a group of persons is reduced to a density value. In multiagent sim-
ulation the original dynamics are reduced to activities and interactions of lower level
units that explicitly generate the overall dynamics. In other paradigms, dynamics are
describing and advancing during simulation e.g. based on formula that have been taken
from a library and calibrated using data.

On the other side it is meanwhile common knowledge that the actual development of
a useful simulation model is everything but trivial. This refers to all phases that might
be identified for a development process [36]: Analysis and model design, model im-
plementation, validation, etc. Too often, development is affected by adhoc approaches
instead of a principled proceeding. The question is why this is the case? Especially,
if considering the accessibility of the models and the available tools that support im-
plementation of multiagent simulations. Thus, the objective of this contribution is to

J.P. Müller and M. Cossentino (Eds.): AOSE 2012, LNCS 7852, pp. 179–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

180 F. Klügl

give a review of methodologies and approaches for developing multiagent simulations
together with an analysis of the problematic issues.

The remainder of the contribution is structured as follows: First we describe the core
issues that we identified for developing multiagent simulations as experience from more
than 15 years of modelling self or supporting others. This is followed by a review of liter-
ature on engineering approaches to multiagent simulation model development. We then
discuss considerations what would be useful together with an analysis why this has not
been yet accomplished. The contribution ends with a short summary of the conclusions.

2 Issues in Multiagent Simulation Development

Multiagent simulation as a generic paradigm is extremely successful. N. Gilbert [15]
even stated that meanwhile most microscopic simulation in social science is done
in an agent-based way. Several introductory text books have been recently published
([35],[15], [40] to name just the more general ones. As indicated in the introduction,
there are mainly two reasons for this triumph: the intuitiveness and the flexibility of
the paradigm. The ontological correspondence between agents and original actors fa-
cilitates understanding of the model. The unit of description is the active entity in the
model: Real pedestrians are mapped to agents in crowd simulation or households in
demographic models. The second major advantage is the freedom of design. Hetero-
geneous entities, heterogeneous spatial environments, arbitrary complex agent decision
making ranging from so-called “zero-intelligence” agents (as in [38]) to agents using
complex cognitive architectures (such as SOAR [47]) can be found in multiagent simu-
lation models. In other simulation paradigms, heterogeneity of entities or space, struc-
tural variation (entities leaving or entering the system) or context-dependent and flexible
individual decision making are hard to achieve in a direct way [29].

2.1 Understanding and Design

Considering the different system/model representations in the general phases of devel-
opment1, one can identify why and where issues occur. Figure 1 illustrates these phases
starting from the “original system”, the system that the modelling and simulation en-
deavour is about. The starting point for the modelling process is the representation that
the modeller2 has about the original system. This forms some kind of hypothesis about
how the original system behaves or works. As it represents how the modeller under-
stands the original system, it is framed already by the tools that the modeller uses to
analyse the original system and thus by the experience of the modeller. Starting from
this rather vague system hypothesis representation, a model concept is developed that
relates elements of the original system – as seen through the glasses of the analysed
picture – to elements in the model. These are the conceptual design activities in which

1 We are ignoring for now other phases of a full simulation study as given for example in [31].
2 In [6] different participants in a multiagent simulation study are introduced, see below. We just

use the “modeller” here for all responsible persons, either resembling the modelling group or
the person who unites all capabilities.

“Engineering” Agent-Based Simulation Models? 181

the modeller decides about the level of detail of the model; here the modeller formu-
lates, abstracts or concretises, selects the elements that form the core of the model.
This conceptual model is then further substantiated and implemented for generating the
executable model that is used for simulation runs.

��������	
�
��
������
�
	�	��
��	

�����
�

����	������

��������	����	�	
����������

����
������� ���������	�
���
!�������	�
���
"�����������

#��$�������
!
����

����
�������
%��������

������&�����

�����
�

#���������

Fig. 1. Different system representations in the early phases of a simulation study in general

In each of these transitions, there are particular issues. For multiagent simulation in
general the glasses with which to look at the original system provide a high ontolog-
ical correspondence between the original system – if there is something like situated
actors as in many scientific or complex industrial domains – and model concept com-
pared to other modelling paradigms. For example for a System Dynamics model the
modeller needs to has to see the flows between variables or for a Queueing System,
the metaphor with which the system is looked at consists of queues and servers – that
means a bigger abstraction need for the basic system understanding. So for the design
activities, we assume that a form of understanding of the system containing a multia-
gent system as a central part is given. Issues start with the design steps in which a rather
vague understanding of the original system needs to be pinned down to more concrete
model representations. Other metaphors require a bigger step in understanding, but can
be more directly formulated in a more precise way. In the following we shortly discuss
the most important issues.

2.2 Micro-macro Link

A basic reason for its attractiveness for particular domains, is the generative nature of
the multiagent simulation paradigm. The structure and dynamics of the overall system
are not directly described, but generated from behaviour and interactions of simulated,
individual situated actors (see also [8] introducing the multiagent simulation approach
as “generative social science”). So, there are at least two levels of modelling and ob-
servation: the low-level agents and the aggregate system level. “Running” the low level
produces the structure and behaviour on the aggregate level; in case of models involving
institutional effects, the macro level may be explicitly defined in addition and influence
the agent-level behaviour. In general, a formal priori analysis before simulating the sys-
tem is hardly possible, only by running the simulation, the what, where and when of a
social phenomenon “emerging” from the low-level agents, can be fully determined.

182 F. Klügl

In many applications a certain macro level phenomenon in the original system is to be
reproduced or optimized. As it is generated by the interaction of micro-level behaviours,
the micro-level rules3 determining the behaviour have to be adapted in a way that the
intended aggregate phenomenon is produced. As, the connection between both is not
always clear or may even not exist, the intended macro level phenomenon cannot be
used to systematically derive the appropriate agent rules. Whether it works or not, can
only be tested via simulation. This makes the adaptation of the lower level behaviour
bound to experience-based exploratory procedures and to a somewhat arbitrary try and
error procedure (as already discussed in [44]). This is insofar problematic, as the devel-
opment of multiagent simulations as computational approach should be performed with
sufficient rigour to generate useful and reliable models. Exploratory, experience-based
procedures can hardly be coined as principled. Such a procedure can also integrate doc-
umentation and advanced testing approaches, yet the basic question on how to come up
with the appropriate low-level behaviour is left to individual creativity and experience.

2.3 Level of Detail/Abstraction

As stated above, the multiagent paradigm imposes only little constraints beyond the
basic conceptualization. Yet, such constraints could serve as a kind of guideline how
the model can be substantiated during model design. A modeller is left with the idea
that everything can be included in the agent behaviour or as environmental process. It
is not a priori clear whether to include a simulation of rain cleaning the surface or just
a random process that from time to time deletes all pheromone trails at once. There is
a temptation to formulate behaviour that the modeller thinks is “reasonable”, ignoring
that every aspect of decision making and behaviour is an assumption that needs to be
justified. If there is a formally captured underlying theory (as e.g. in Physics), the ques-
tion which processes to include can be clearly decided on. Unfortunately, the existence
of such a theory is not given in many application domains for multiagent simulation.
Although following the value of “Keep It Simple” is clearly comprehensible in the-
ory, it is not easily implementable: It often remains unclear, what is the most simple
model. The modeller may be trapped between interpreting something that is produced
by hardly more than random behaviour, or on the other extreme is adding unnecessary
complexities to the overall model using complex cognitive models for actually simple
decision making. [7] argued against over-simplified models, but demanded compre-
hensiveness for all levels of agent behaviour. This forms a good starting point for an
iterative procedure involving model abstraction techniques [10]. Deciding on the level
of abstraction means deciding on what entities are explicitly populating the simulated
world and what processes govern, what information is used in the decision making
of the agents. Replacing complex processes with a random distribution is a standard
abstraction technique. Describing decision making behaviour in a form of rules may
replace the use of complex cognitive processes. Simple state automata may represent a

3 The word “rules” is used as a placeholder for all kinds of agent-level programs determining
the action of the agent from its perception and internal beliefs, plan schemata,... There is
no restriction on the underlying architecture. Flexible elements such as tune-able parameters,
optimize-able plan schemata, automata, etc. can be found in any architecture.

“Engineering” Agent-Based Simulation Models? 183

wealth of lower level metabolistic processes. There are many abstraction techniques for
simplifying model while mostly maintaining the validity of the model .

2.4 Critical Parameter Structures

Depending on the complexity of the multiagent simulation model, a huge number of
parameters need to be filled with appropriate values4. These parameters may be factors
in formulas or thresholds for decision making. Basically everything with absolute value
in the model can be seen as a parameter. Also the initial values for state variables of all
entities are parameters. Sometimes, the model is intentionally designed to have many
parameters for serving as some form of information storage for a huge amount of data,
yet in principle the more parameter, the more difficult the justification of assumptions
and the calibration becomes.

Not only the sheer number of parameters may be critical, but also the nature of the
parameter themselves. A single parameter in the agent behaviour can have an enor-
mous effect on the overall aggregated behaviour. Practically, the modeller just sets one
value in the behaviour description that is then instantiated to many agents using that
value. Effects are even worse, if there are non-linear feedback loops or if the parame-
ter is not just regulating some process such as energy consumption during a particular
agent activity, but serves as a decision threshold. Izquierdo and Polhill [24] call them
“knife-edge parameter”, if the behaviour of the agent changes depending on this pa-
rameter. An example is, if the energy level of the agent is higher than a threshold, the
agent starts to reproduce; below the threshold, it just performs some random search
for food. Setting such a parameter homogeneously for all agents may cause dramatic
effects such as a whole population exhibiting the same behaviour change within short
time. Even if there are not so obvious artefacts, such threshold parameter can cause
chaotic behaviour: small changes in the parameter values result in completely different
phenomena. Simulations with such parameters are highly sensitive, and thus hard to
calibrate. This is also the case, if parameter values are not independent from each other.

Thus, agent-based models are often very sensitive to parameter changes. It is prob-
lematic for model stability and also for model reliability if the discussed outcome of
the model can be only produced with a small range of parameter values. The problem
worsens because a high level of detail comes also with a high number of parameter.

Besides the problem of many parameters and complex calibration, there is a much
more essential issue related to parameters: If there are enough of them, a model cannot
be falsified any more. That means, that a modeller cannot show that the model is not
corresponding to the original system, as with sufficient parameters, there can be always
a combination that produces any overall, aggregate behaviour. This is critical as such a
model is basically useless if the objective of the simulation study is to better understand
the original system by generating hypothesis about which or whether at a there is low
level agent behaviour that can produce the observed overall output.

4 This process of determining the set of parameter values for producing the most valid behaviour
of model is called calibration. In general, it has clear similarities to model optimization [9]

184 F. Klügl

2.5 Technical Aspects

Besides those principled problems, there are also hardly surprising challenges in the
technical design and implementation. Understanding of the modelled system may be
increased by the modelling procedure alone, yet, if an analysis of the dynamics of the
system is to be made, implementation is necessary. This is challenging in a way similar
to multiagent systems. Simulated multiagent systems are also consisting of distributed
intelligent decision makers, each with its own thread of control, its local beliefs and
interacting and acting in parallel. In addition to these aspects that also form practical
challenges when programming of multiagent systems, some additional particularities
have to be considered.

– There are extended design choices about the environmental model as well, as the
simulated environment is fully5 controlled by the modeller. That means, for facil-
itating the design of the agents, the environmental model can be adapted. Many
simulations are using these ideas. A prominent example are crowd simulations us-
ing grid environments for carrying gradient field data or navigation graphs sup-
porting the path finding of the agents. Thus, information is explicitly stored in the
environment that does not have a correspondence in the original system, but is just
put there to facilitate the agent implementation. This is acceptable depending on
the objective of the simulation. Questions, of how and where information that the
agents need for decision making is represented are not so easy to decide upon, effi-
cient solutions might be preferable to solutions that reproduce complex perception
processes on a one-to-one basis.

– During simulation, virtual time is advanced to express the dynamics of the model.
As environment and time are artificial, the modeller needs a way for explicitly han-
dling artificial parallelism of the agent’s update. In principle, every agent could run
in its own software process, but for simple agents introducing artificial parallelism
is a more efficient option. There are several ways to handle virtual parallelism. De-
pending on used infrastructure, the modeller has to take care about these low-level
aspects of simulation implementation and has to fully understand the con sequences
of his choice.

– As a consequence of artificial shared time and environment, there are additional
ways of coordination and synchronization of agent activities such as implicit co-
ordination based on stigmergic interaction. Similar concepts were introduced to
the multiagent software community, the most prominent is the Agents & Artefacts
(A&A) framework [42]. This increased richness of expressible, explicit and implicit
coordination may also form a challenge for modellers in case the original coordi-
nation cannot be directly mapped to the simulation or the approach just tackles an
abstract form of interaction on the conceptual level.

– Scalability also forms an issue on the technical level. Multiagent simulations need
to be run with appropriate numbers of agents. If the development of the load of a
highway network is to be shown over time, only a small number of agents is not
sufficient (see [41] for a simulation of complete Switzerland with several million

5 At least in all simulation without a participatory component, that means without involving
interaction between agents and real humans.

“Engineering” Agent-Based Simulation Models? 185

non-trivial agents). To implement such models forms a challenge for a modeller,
especially if there is no supercomputer hardware accessible. Issues of conceptual
scalability have been discussed above.

Considering these issues, one can understand why developing a multiagent simula-
tion model is not trivial, neither for persons with training in abstract conceptualization
and the usage of programming languages, nor for domain experts that deeply under-
stand the original systems. If multiagent simulation shall be sustainably successful,
principle-guided development is essential. Engineering approaches are inevitable for
reliable and useful models and lift teaching multiagent simulation from simple training
in using a simulation platform. Tackling similar problems should lead to similar models
independent from the particular modeller. In the following section, we will give a short
overview over existing suggestions for supporting the modelling and model implemen-
tation activities.

3 Engineering Approaches to Multiagent Simulation

The failure of producing equivalent results from models tackling similar phenomena
[2] indicated quite early that there is a problem in principled development of multiagent
simulations. Since then, many suggestions have been made to tackle this problem and
introduce systematic development into multiagent simulation model construction and
usage. Yet, one can still read statements such as: “Current practice is that most ABMs
are developed from scratch and that the choice of model structure and process repre-
sentation is more or less ad hoc” ([19], p. 362, Emphasis in the original). Nevertheless,
there are a number of works that aim at improving this situation. We categorized them
into a) general guidelines often developed from standard simulation engineering, b)
works proposing adapted methodologies that aim at giving further, specific support for
the design of multiagent simulations.

In our analysis, we ignore that there are hundreds of platforms and tools for mul-
tiagent simulation. A wikipedia page6 lists 78 tools that can be used for multiagent
simulation. Heath et al. [22] show in their survey that the variety of tools used in pub-
lished multiagent simulation is huge: in the 279 publications that they included in their
survey, the usage of 68 different tools was listed – although about a third did not state
what platform they used for implementation. Considering introductory textbooks and
announced course, the variety of tools introduced is much more restricted. Railsback
and Grimm [40] exclusively use NetLogo7; also a course in Spring 2013 at the Cen-
tre for Policy Modelling at Manchester Metropolitan University was using NetLogo8.
There are many more courses given by the developers of platforms, such as Repast9.

As platforms and software for multiagent simulation have been already surveyed suffi-
ciently, we focus on methodologies, clearly the meta-models underlying those platforms

6 http://en.wikipedia.org/wiki/
Comparison_of_agent-based_modeling_software , accessed at 2013-04-12

7 ccl.northwestern.edu/netlogo/, accessed at 2013-04-12
8 http://cfpm.org/simulationcourse/, accessed at 2013-04-12
9 http://repast.sourceforge.net, see http://www.dis.anl.gov/
conferences/abms/info.html (accessed 2013-04-12) for a course in May 2013

http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software
http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software
ccl.northwestern.edu/netlogo/
http://cfpm.org/simulationcourse/
http://repast.sourceforge.net
http://www.dis.anl.gov/conferences/abms/info.html
http://www.dis.anl.gov/conferences/abms/info.html

186 F. Klügl

are helpful to convey how a model should be basically structured, yet they are much to
implementation-specific to help with the most urgent issues given above. Thus, in the
following we will give a short review of works in the two above mentioned categories.

3.1 General Guidelines and Best Practices

Most literature aiming at guiding modellers and introducing systematic approaches to
multiagent simulation suggests processes similar to what can be found in general, intro-
ductory simulation literature such as [31]. A simulation study usually starts with prob-
lem formulation, fixing the objective of the simulation study, this is followed by system
analysis and data gathering activities. This results in a conceptual model or model de-
sign that is then implemented using appropriate infrastructure. Pilot runs and sensitivity
analysis are used to test the simulation, experiments are designed and performed, data
is analysed and the results documented, presented and used. Validation (testing whether
the right model is used) and verification (testing whether the translation between the
different phases is correct) are mandatory activities throughout the simulation study.
Such a sequence of activities – with more or less explicit conceptual modelling phases
– can be found in basically all general texts on simulation. This sequence of activities
forms also the basis for works aiming at engineering multiagent simulation:

Richiardi et al. [43] suggest a methodological protocol to follow with those activities
explained in the context of social science agent-based simulation. Drogoul et al. [6] also
give a generic process model. For that, they identify different roles that participants may
play in that study. There is the “Thematician” who is basically the stakeholder who is
responsible on the domain and problem side, the “Modeller” who does a careful spec-
ification of the model and the “computer scientist” who basically implements. Starting
from these different roles and thus expertise, Galan et al. [12] analyse what errors and
artefacts may be generated in the different activities and when communicating between
each other. They define errors as “mismatches between what the developer believes a
model is and what the model actually is” (paragraph 4.2 in [12]), artefacts relate to as-
sumptions with significant effects which are considered as not important. Based on that
analysis Galan et al. develop some guidelines embedded into a process model showing
how to avoid these errors. These activities mostly consist of advanced testing and re-
formulating and re-implementing (parts of) the model using other languages and tools
– which is clearly a useful experience but is often practically impossible in restricted
project times. Yilmaz and Oren [48] connect agent-based simulation with relevant sys-
tems engineering approaches, unfortunately staying on a very general level. North and
Macal [35] is an introduction on agent-based simulation from a practical point of view.
They give extensive background on the concepts behind agents and multiagent systems,
but methodological guidelines are restricted to information on toolkits and simulation in-
frastructure, verification and validation. Descriptions are extensive and on a level that is
broadly understandable and based on many examples. Interestingly, they use UML dia-
grams for presenting examples in concise way10. Also Gilbert in [15] - a small, condensed

10 Standard UML (still 1.0 then) is suggested for describing and specifying multiagent simulation
models also by [37], [5] or [4]. Interestingly one cannot observe a similar tendency to extend
UML as in the AOSE community.

“Engineering” Agent-Based Simulation Models? 187

introductory booklet - introduced to agent-based modelling focussing on particular con-
cepts and examples. He also gives advice on verification and validation as well as on
implementation infrastructure, yet in general not more formal and engineering-oriented.
A more full life cycle is given in Abdou et al. [1] yet in a generic way, but enriched
with examples. In their general social science simulation book, Gilbert and Troitzsch
[16] include a chapter on how to develop multiagent agent models containing a mixture
of general steps shown with an example. The design starts with the structures of agent
types, adding dynamics and interaction to their behaviour. They shortly show how to use
UML as language to describe the example. Also, Railsback and Grimm [40] embed their
overall systematic way of developing and describing multiagent Simulation models in a
general life cycle. Their main contribution to the development of multiagent simulation
models has two particular elements: the ODD protocol for describing models and the
Pattern-oriented Modelling approach. Both will be described in the next subsection.

Norling et al. [34] suggest a completely different “process model” containing basi-
cally two phases: exploration and consolidation. They argue that systematic approaches
derived from software engineering are not appropriate for social science simulation.
For the type of simulations they address, the objective is to understand a particular phe-
nomenon or process by creating a model that generates it. To their view, social science
modelling is mainly a creative endeavour, not an engineering one. Understanding what
the modeller is actually formulating and what the model actually does is central, as
grounded statements have to be derived from the model. Thus, the consolidation phase
contains activities such as extensive checking or documentation. Also, for the more
creative exploratory phase of their informal approach, Norling et al. give a set of best
practices. They do not tackle how the creative process can be supported, but focus on
how to keep control “despite of” the creative process.

Helbing and Balietti [23] elaborate on how to do agent-based simulation giving prin-
ciples as a set of fairly general and informal “you should” statements, such as that
assumptions should be documented. A similar list of best practices can be found in the
annex of Miller and Page [33]. Examples are “Keep the model simple”, “Avoid Black
Boxes” or “Write good code”. Yet, these are statements that in their generality are true
for all forms of simulation and do not address the particularities of multiagent simula-
tion development.

Summarizing, introductory tests and also courses (including my own at the Univer-
sity of Örebro) are using many examples for illustrating also the underlying concepts
and how to proceed when constructing an agent-based model. Systematic life cycle
or process models taken from general simulation engineering or standard software en-
gineering processes are useful per se, as they show how to systematically end up in
a documented, understood model. However, with the issues presented above in mind,
would it not be better to have more specific approaches? A few specific methodological
approaches have been suggested, they will be reviewed in the next section.

3.2 Specific Methodologies

Only few approaches have been proposed that were specifically adapted to the develop-
ment of multiagent simulation models. Some only consider single steps of the overall life

188 F. Klügl

cycle, such as validation [26]. [27] summarizes different abstract approaches to model
design, yet without giving any language to support the different design strategies.

As mentioned above, Railsback and Grimm made two major contributions to the
development of multiagent simulations: The establishment of the ODD protocol (orig-
inally published in [17]) and the Pattern-Oriented Modelling approach (first published
in [18]). The ODD protocol for documenting multiagent simulation models was de-
veloped in reaction to the frequent failure of describing models in a way that they
can be replicated or fully understood. It gives a standard structure of what elements
to tackle when documenting an agent-based model. The basic idea behind is to describe
a model from overview to details. A central part is the characterization of a model in
terms of design concepts such as Adaptation, Emergence, Interaction, etc. These design
concepts also give the modeller a guideline what questions to ask when conceptual-
izing and designing a multiagent model. Thus the overall approach is not just helpful
in documenting, but more general for conceiving models. The second contribution, the
Pattern-Oriented Modelling gives an abstract guideline for some form of iterative de-
velopment of simulation models in general. Starting point is a set of data patterns, such
as a particular height distribution or spatial distribution of a phenomena – in social
science literature these would correspond to stylized facts. These patterns are used to
determine whether model development must be continued or not. Also, mainly applied
in individual- and agent-based simulation, this forms a very generic procedure. A few
more specific methodologies have been suggested during the last years:

MAIA ([14]) is a recent suggestion of a meta-model that supports conceptualization
of a multiagent simulation based on (scientifically grounded) institutional analysis with
different views on the overall system. A particular focus is put social structure involving
also norms, explicit modelling of dependencies or plans. The usage of the meta-model
is supported by web-based interface and tools for code generation. MAIA per se is
designed to support creation of complex social simulation models, whether the provided
tools actually scale with institutional and behavioural complexity needs to be shown.

IODA ([30] focusses on reactive agents. Analysis starts from the interactions of the
different agent categories which are interpreted in a wider sense including also actions
thus capturing also stigmergic interactions. Also treating agents and non-agent objects
in the similar way, allows an overall uniform approach formulating the model design.
From the specification of interactions, the behaviour description of the reactive agents
can be directly derived and corresponding code is generated.

Fuentes-Fernandez et al. [11] show how the INGENIAS meta-model is apt for model-
driven development of multiagent simulations. They illustrate the different steps for
using the meta-model, mapping domain concepts to element of the meta-model such
as agents, roles, goals, interactions or society. With the refinement of interactions, the
domain expert or “thematician” has produced a model specification that then can be
transformed into executable code. The meta-model does not explicitly tackle time or
space, so it seems to be apt more for complex social models in which only direct inter-
action between agents is relevant.

A methodology that proposes a similar proceeding from system analysis based a quite
traditional meta-model, subsequent model design steps that then lead directly to ex-
ecutable code is easyABM [13]. The meta-model contains particular perspectives for

“Engineering” Agent-Based Simulation Models? 189

agents, artefacts and the societal level and is refined for code generation. Explicit treat-
ment of time is missing, representation of space is only present on the design level. Garro
and Russo [13] give container transshipment management as the example which could
be also result in a working multiagent system, not a simulation model. Also other AOSE
methodologies have been successfully applied to multiagent simulation. For example,
the Adelfe approach seems to be particular apt for domains in which the conceptual
model is not fully clear [3] or in which self-organization plays a particular role [20].

The MABLe methodology [25] is build on the hypothesis that it is easier for a mod-
eller to describe what is good behaviour than to specify and implement the agent-level
behaviour. The modeller gives an objective function characterizing valid behaviour, an
environmental model and a specification of the agent interfaces. The agents then use
agent learning techniques to generate their behaviour model which is then evaluated by
the modeller.

A methodology that allows capturing complex (social) scenarios using an appropri-
ate not too technical meta-model, enables the development of richer simulations, es-
pecially if the models need to scale with respect of behavioural and social complexity.
Clearly, methodologies originating from AOSE approaches in which the organization
of agents forms the central starting point from which institutions, behavioural norms,
agent goals and interactions are derived, enable the development of such complex so-
cial models. Yet, they start from a structural point of view. Can they really help with
the issues given above? Can they help to discriminate between agent rules that need
to be included or not? What about agent behaviour that only indirectly contributes to
the overall organization and in which the agent is not interacting with others? What
about temporal aspects, such as durations of activities or actions? On the other hand, it
is quite obvious that really specific and concrete approaches such as IODA or MABLe
hardly scale to more complex models. Yet they focus on the dynamics and not so much
on structures. How shall an appropriate meta-model for multiagent simulations look
like? In [28], we started to develop a very basic meta-model for multiagent simulation
containing no social constructs up to now. But, environmental structures are given that
can capture a wide variety of spatial representations. There is also a clear distinction
between agents and resources which are entities on their own right corresponding to
non-active entities in the real world. As being so basic, the meta-model does not scale
with increasing complexity of the agents and social structures they are embedded with.
So, an essential next step is to merge the basic simulation-oriented meta-model with an
appropriate AOSE meta-model.

3.3 What do We Need for “Engineering” Multiagent Simulations?

If all these guidelines and advices would be taught and used in practice, this would be
a huge improvement, also on the reputation of multiagent simulation. Models would be
developed with the same rigour as in other computational simulation approaches. Yet,
is this sufficient? Sufficient for teaching multiagent simulation, so that a novice might
be not as efficient as an experienced modeller, but the result would possess substantial
quality?

For answering these questions, we have a look at what it would mean to have a full
engineering approach to multiagent simulation. This leads to the basic question, do we

190 F. Klügl

have the knowledge to do engineering as done in other engineering domains. For that
aim, we have a look at the seminal work of Vincenti [45] who analysed different cases
from aeronautics for identifying what is knowledge is involved in engineering. Follow-
ing the findings of [45], there is particular engineering knowledge that is distinct from
scientific knowledge, showing that the engineering of an artefact is not just applying
its underlying scientific principles, but needs additional skills. Vincenti identified the
following categories of engineering knowledge:

– Knowledge about the fundamental design concepts
– Criteria and specifications
– Theoretical tools
– Quantitative data
– Practical considerations
– Design instrumentalities

Can we identify knowledge that fills these categories for multiagent simulation as a pre-
requisite for successful multiagent simulation engineering? Is this knowledge already
existing or does it need to be generated? In the following we will tackle each of the
categories examining the state of available knowledge.

Knowledge about Fundamental Design Concepts. There are two dimensions in
which design concepts are relevant for multiagent simulation development: 1) concepts
that govern the dynamics of multiagent systems and 2) concepts that help with the mod-
elling and simulation, that guide how to develop a high-quality, useful simulation study.
For both of these categories, there are suggestions: As mentioned above, [17] list a set
of design concepts for multiagent simulation for structuring documentation. These con-
cepts can be also used for guiding the design of a model: Emergence (which phenomena
emerge, which are imposed?), Adaptation (how do individuals adapt for improving po-
tential fitness?), Fitness (how fitness-seeking is modelled?), Prediction (do individuals
predict their future?), Sensing (What information can the individuals access internally
and in the environment for decision making?), Interaction (What kind of interactions
are assumed?), Stochasticity (why the model has stochastic elements?), Collectives (are
the individuals grouped to some form of collective or group?), Observation (what data
is collected for testing, understanding, analysing the model?). These list of design con-
cepts was updated [39] adding Basic Principles and Learning. Fitness was generalized
to Objectives. Yet, these design principles have two problematic aspects: This is an in-
coherent list: there are concepts that tackle the internals of the model, others describe
the model from outside. This should not be mixed. The second issue is that it is not clear
which concepts are relevant for which type of model. The authors suggest to tackle just
the relevant ones and ignore the others. One could clearly see that the original proposal
was developed for ecological multiagent simulations, in which organization and social
aspects are not so important. We would expect that the next revision of the ODD pro-
tocol design concepts will put more emphasis on cognitive processes of the agents, on
feedback loops between the social, organizational level and the individual. For future
research, a categorization of models with respect to relevant design concepts would
be a good starting point advancing the knowledge on what is relevant for multiagent
simulations.

“Engineering” Agent-Based Simulation Models? 191

The second level of design concepts refers to modelling and simulation in general.
What is a good model and what activities have to be done for developing a good model?
On that level, there is already a lot of knowledge coming from more technical ap-
proaches to simulation, starting with the seminal book by Zeigler [49]. Books such as
[31] have accompanied generations of students and practitioners. Modelling and simu-
lation are standard activities when it comes to plant design or technical systems. This
knowledge must not be ignored, although original systems are not so well understood,
reliable data is not available to a similar extend and the objective behind multiagent sim-
ulation studies is often more oriented towards theory building. All the approaches given
in Section 3.1 are grounded on this established knowledge from technical simulation.
However, these differences are not emphasized, general modelling process models for
multiagent simulation should focus more on iterative, agile approaches as this fits more
to the uncertainties on the original system. Interestingly, Willemain [46] could empir-
ically demonstrate that experienced modellers in general do not follow the systematic
design processes, but apply a more prototype-oriented, exploratory development. Spe-
cially important are validation and verification techniques. These must be developed
to use informal knowledge in a systematic way instead of being mainly based on em-
pirical data that is neither available nor easily generate-able for the typical domains of
multiagent simulation. Suggestions such as [32] are just a first step to that.

Knowledge on Criteria and Specifications. What is a good multiagent simulation
model? Besides standards on the technical level, there is not much to determine how
good a model is, independent from the objective: A good model is the one that is suf-
ficiently valid for satisfying the objectives of the simulation study. Validity is not just
an aspect of quality, but an essential prerequisite for model usage. On a technical level,
additional features characterizing a model of high quality are associated with the clar-
ity of the model design, implementation and documentation that make the model and
its results understandable to many people, maintainable and reusable. This aspects are
quite obvious and rooted in general simulation engineering. Yet, how to address these
general criteria for the specific case is not fully clear. Some of them relate to good soft-
ware development that can be taught as the basic form of handicraft. On a design level,
developing templates for particular domains or problem categories could be a starting
point. In lectures on multiagent systems, students learn algorithms for task allocation
or agent strategies for negotiation that are good solutions for particular problems. In
multiagent simulation, the algorithms that the simulated agents use must be derived
from the original system. So for central aspects of the model, only algorithms can be
used if they sufficiently correspond to the original system, not if they are proven to
work. Developing such model design templates could be possible for particular do-
mains, such as ecology. The chances are high there due to long history and experience
in modelling and simulation. For example for mathematical, macroscopic simulation in
biology, Haefner [21] gives a library of functions with information for which type of
phenomenon a formula can be used and which parameters have to be estimated from
data. Agent behaviour or interaction patterns could be a starting point, if it is clear for
what type of domains, for what kind of agents, addressing which design concept, they
could be used.

192 F. Klügl

Theoretical Tools. Theoretical tools for the type of engineering that Vincenti consid-
ered are related to mathematics toolsets or even to modelling and simulation. These
theoretical tools can be used for evaluating a design or predicting its properties without
actually implementing it, also for deriving a part of the design from the other settled ele-
ments. Considerations what would be the corresponding theoretical tools for multiagent
simulation, could lead to current meta-modelling approaches, to modelling on different
levels of abstraction with automatic or systematic connection between the levels. These
tools form the basis for model-driven development of multiagent simulation models
(see current developments given in Section 3.2). Other research that can contribute to
the advancement of theoretic tools is related to model checking of multiagent systems.
There is still a lot of research necessary to make these tools applicable for modelling
problems of realistic size.

Quantitative Data. Quantitative data is basically related to constants that can be used
or have to be considered during model development. This cannot be tackled in general
for multiagent simulation, but only for particular domains. For some domains, known
constants exist, e.g. the mean speed of a pedestrian (depending on the appropriate cul-
tural background and activity), for others such constants need to be found. This is a
problem of the underlying research area.

Practical Considerations. Practical considerations refer to heuristics, on when to use
a particular approach or solution for practical reasons. An example are considerations
to trade correctness against transparency in algorithms dealing with virtual parallelism.
One needs to fully understand the way how models are used, what are the require-
ments from a practical point of view and what can be actually traded. To capture this
knowledge explicitly, is hard. Mature and experienced modellers can make practical
considerations, yet to our knowledge this is not formally written down. Best practices
as given in [33] are guidelines for building good models. That means these are more
like design principles rather than knowledge that allows reasoning with respect to the
relation between design and practical usage of the models.

Design Instrumentalities. As mentioned above, there is a broad variety of platforms
and tools that can be used for implementing multiagent simulations. Platforms such
as NetLogo, Repast or Mason are all based on a more or less explicit meta-models
which are actually quite low level. They add basic agent concepts to programming lan-
guages. Also, tools that support visual development, such as SeSAm, are not much
more elaborated considering the underlying meta-models. Tools provided with recent
methodologies provide a more appropriate instrument enabling more complex models.
Yet, their meta-models must be derived from theories in the prevailing domain in which
the platform is to be applied. The meta-model cannot be simply derived from concepts
in AOSE, nor shall be adhoc. They form an important basic (hidden) assumptions for
the model development. The more restrictive and the richer the underlying meta-model
is, the more assumptions have to be taken and justified.

A clear identification of particular types of models and meta-models, probably sep-
arately for different domains, is important for identifying similarities and difference of

“Engineering” Agent-Based Simulation Models? 193

needed instruments. Based on that analysis appropriate instruments for model design
can be proposed, for example for models with a focus on organization and multi-level
interactions, for models with discrete choice agents or for models in which agents just
share a common environment.

Conclusion. In the same way as there is not a unique type of multiagent systems, mul-
tiagent simulations are used in too many domains for admitting a uniform point of view
on them. One can identify many dimensions according to which one can characterize
such models. One of the most important is the objective that the modeller pursues when
building the model as from that requirements are put on the model. Also, the empirical
embeddedness and level of abstraction are important categories, as they also define re-
quirements and the type of data which is available for validating the model. Yet, these
dimensions are on a meta level, they do not tackle the contents of the model. Here the
role of the environment, the type of interactions used, etc. would be relevant. These are
the aspects that are actually tackled when designing a multiagent simulation model. The
issues on that level are the actually challenging ones. So, summarizing our findings, one
can identify the following steps for research advancing towards engineering multiagent
simulations:

1. Identify sub-categories of multiagent models with corresponding sets of different
design concepts,

2. Develop a shared meta-model for multiagent simulation models generalizing over
clearly identified types of models and providing a clear terminological basis. This
terminology should be very clear on what are elements of the model and what
belongs to the infrastructure necessary to run the model.

3. Adapt engineering approaches to the identified sub-categories and provide specific
instruments, starting from the general simple meta-model.

Clearly, there is still a lot to do to create a true engineering approach to multiagent
simulation model development and usage. It is even not clear whether this can be really
accomplished. These three steps are just the first tasks, but with their success, we would
be a big step further.

References

1. Abdou, M., Hamil, L., Gilbert, N.: Designing and building an agent-based model. In: Hep-
penstall, A.J., Crooks, A., See, L.M., Batty, M. (eds.) Agent-based Models in Geographical
Systems, pp. 141–166. Springer (2012)

2. Axtell, R., Axelrod, R., Epstein, J.M., Cohen, M.D.: Aligning simulation models: A case
study and results. Computational and Mathematical Organization Theory 1, 123–141 (1996)

3. Bernon, C., Capera, D., Mano, J.-P., Videau, S., Regis, C.: Towards Self-Modelling of
Metabolic Pathways. Journal of Biological Physics and Chemistry 9(1), 43–50 (2009)

4. Bersini, H.: UML for ABM. Journal of Artificial Societies and Social Science 15(9) (2012)
5. Bommel, P., Müller, J.-P.: An introduction to UML for modelling in the human and social sci-

ences. In: Phan, D., Amblard, F. (eds.) Agent-Based Modeling and Simulation in the Human
an Social Sciences, pp. 273–294. Bardwell Press, Oxford (2007)

194 F. Klügl

6. Drogoul, A., Vanbergue, D., Meurisse, T.: Multi-agent based simulation: Where are the
agents? In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI),
vol. 2581, pp. 1–15. Springer, Heidelberg (2003)

7. Edmonds, B., Moss, S.: From KISS to KIDS - an ’anti-simplistic’ modelling approach.
In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415,
pp. 130–144. Springer, Heidelberg (2005)

8. Epstein, J.M.: Generative Social Science: Studies in Agent-Based Computational Modeling.
Princeton University Press (2007)

9. Fehler, M., Klügl, F., Puppe, F.: Techniques for analysis and calibration of multi-agent sim-
ulations. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. LNCS (LNAI),
vol. 3451, pp. 305–321. Springer, Heidelberg (2005)

10. Frantz, F.K.: A taxonomy of model abstraction techniques. In: Proceedings of the 27th Con-
ference on Winter Simulation, WSC 1995, pp. 1413–1420. IEEE Computer Society (1995)

11. Fuentes-Fernandez, R., Galan, J.M., Hassan, S., Lopez-Paredes, A., Pavon, J.: Application of
model driven techniques for agent-based simulation. In: Advances in Practical Applications
of Agents and Multiagent Systems, PAAMS 2010, Salamanca, Spain (April 2010)

12. Galan, J.M., Izquierdo, L.R., Izquierdo, S.S., Santos, J.I., del Olmo, R., Lopez-Paredes, A.,
Edmonds, B.: Infrastructures and tools for multaigent systems for the new generation of
distributed systems. Engineering Applications of Artificial Intelligence 27(7), 1095–1097
(2011)

13. Garro, A., Russo, W.: easyABM: A domain-expert oriented methodology for agent-based
modeling and simulation. Simulation Modelling Practice and Theory 18, 1453–1467 (2010)

14. Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: MAIA: a framework for developing agent-
based social simulations. Journal of Artificial Societies and Social Simulation 16(2), 9 (2013)

15. Gilbert, N.: Agent-based Models. In: Quantitative Applications in Social Science. Sage Pub-
lications (2007)

16. Gilbert, N., Troitzsch, K.G.: Simulation for the social scientist, 2nd edn. Open University
Press (2005)

17. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J.,
Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jøorgensen, C., Mooij, W.M.,
Müller, B., Peer, G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossmanith,
E., Rüger, N., Strand, E., Souissi, S., Stillman, R.A., Vabøo, R., Visser, U., DeAngelis, D.L.:
A standard protocol for describing individual-based and agent-based models. Ecological
Modelling 198, 115–126 (2006)

18. Grimm, V., Railsback, S.F.: Individual-Based Modeling and Ecology. Princeton University
Press (2005)

19. Grimm, V., Railsback, S.F.: Designing, formulating, and communicating agent-based mod-
els. In: Heppenstall, A.J., Crooks, A., See, L.M., Batty, M. (eds.) Agent-based Models in
Geographical Systems, pp. 361–378. Springer (2012)

20. Gürcan, O., Bernon, C., Türker, K.S.: Towards a self-organized agent-based simulation
model for exploration of human synamptic connections. In: CoRR 2012 (2012)

21. Haefner, J.W.: Modeling Biological Systems – Principles and Applications, 2nd edn.
Springer, New York (2005)

22. Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modeling practices (january 1998
to july 2008). Journal of Artificial Societies and Social Simulation 12(4), 9 (2009)

23. Helbing, D., Balietti, S.: Agent-based modeling. In: Helbing, D. (ed.) Social Self-
Organization: Understanding Complex Systems, pp. 25–70. Springer (2012)

24. Izquierdo, L.R., Polhill, J.G.: Is your model susceptible to floating-point errors? Journal of
Artificial Societies and Social Simulation 9(4), 4 (2006)

“Engineering” Agent-Based Simulation Models? 195

25. Junges, R., Klügl, F.: How to design agent-based simulation models using agent learning.
In: Rose, O., Uhrmacher, A.M. (eds.) Winter Simulation Conference, WSC 2012, Berlin,
Germany, December 9-12, p. 239 (2012)

26. Klügl, F.: A validation methodology for agent-based simulations. In: Proc. of the ACM SAC
Symposium “Advances in Computer Simulation, Ceara, Brasil (2008)

27. Klügl, F.: Multiagent simulation model design strategies. In: Proceedings of the Second
Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW),
Turin, Italy, September 7-10. CEUR Workshop Proceedings, vol. 494 (2009)

28. Klügl, F., Davidsson, P.: First steps towards a meta-model for mabs. In: 10th European Work-
shop on Multiagent Systems, Dublin (December 2012)

29. Klügl, F., Oechslein, C., Puppe, F., Dornhaus, A.: Multi-agent modelling in comparison to
standard modelling. Simulation News Europe 40, 3–9 (2004)

30. Kubera, Y., Mathieu, P., Picault, S.: IODA: An interaction-oriented approach for multi-agent
based simulations. Autonomous Agents and Multi-Agent Systems 23(3), 303–343 (2011)

31. Law, A.M.: Simulation Modeling & Analysis, International Edition, 4th edn. McGraw-Hill
(2007)

32. Louloudi, A., Klügl, F.: Immersive face validation: A new validation technique for agent-
based simulation. In: Proc. of the 6th Workshop on Multiagent Systems and Simulation
(MAS&S), at FEDCIS 2012 (2012)

33. Miller, J.H., Page, S.E.: Complex Adaptive Systems – an introduction to computational mod-
els of social life. Princeton University Press (2007)

34. Norling, E., Edmonds, B., Meyer, R.: Informal approaches to developing simulation models.
In: Edmonds, B., Meyer, R. (eds.) Simulating Social Complexity, Understanding Complex
Systems, pp. 39–55. Springer (2013)

35. North, M.J., Macal, C.M.: Managing Business Complexity: Discovering Strategic Solutions
with Agent-Based Modeling and Simulation. Oxford University Press (2007)

36. Oechslein, C.: Vorgehensmodell mit integrierter Spezifikations- und Implemen-
tierungssprache für Multiagentensimulationen (Process Model with Integrated Specification
and Implemenatation Language for Multiagent Simulations). PhD thesis, Institute of
Computer Science, Universität Würzburg (2004)

37. Oechslein, C., Klügl, F., Herrler, R., Puppe, F.: Uml for behavior-oriented multi-agent
simulations. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS (LNAI),
vol. 2296, pp. 217–226. Springer, Heidelberg (2002)

38. Palit, I., Phelps, S., Ng, W.L.: Can a zero-intelligence plus model explain the stylized facts
of financial time series data? In: Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2012, Richland, SC, vol. 2, pp. 653–660.
IFAAMAS (2012)

39. Polhill, J.G.: Odd updated. Journal of Artificial Societies and Social Simulation 13(4), 9
(2010)

40. Railsback, S., Grimm, V.: Agent-Based and Individual-Based Modeling - A Practical Intro-
duction. Princeton University Press (2012)

41. Raney, B., Voellmy, A., Çetin, N., Vrtic, M., Nagel, K.: Towards a microscopic traffic simu-
lation of all of switzerland. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.)
ICCS-ComputSci 2002, Part I. LNCS, vol. 2329, pp. 371–380. Springer, Heidelberg (2002)

42. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an
artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23, 158–192
(2011)

43. Richiardi, M., Leombruni, R., Saam, N.J., Sonnessa, M.: A common protocol for agent-based
social simulation. Journal of Artificial Societies and Social Simulation 9(1), 15 (2006)

44. Taylor, C.E., Jefferson, D.: Artificial life as a tool for biological inquiry. Artificial Life 1(1-2),
1–14 (1994)

196 F. Klügl

45. Vincenti, W.G.: What Engineers Know and How They Know it. John Hopkins University
Press (1990)

46. Willemain, T.: Insights on modeling from a dozen experts. Operations Research 42(2),
213–222 (1994)

47. Wray, R.E., Jones, R.M.: An introduction to Soar as an agent architecture. In: Sun, R.
(ed.) Cognition and Multi-agent Interaction: From Cognitive Modeling to Social Simulation,
pp. 53–78. Cambridge University Press (2005)

48. Yilmaz, L., Ören, T.: Agent-Directed Simulation and Systems Engineering. Wiley (2009)
49. Zeigler, B.P.: Theory of Modeling and Simulation. John-Wiley (1976)

Author Index

Amor, Mercedes 73
Ayala, Inmaculada 73

Bonjean, Noélie 168

Chella, Antonio 151
Cossentino, Massimo 22, 151

Delaney, Brendan 134
Dignum, Frank 99

Fernández-de-Alba, José M. 118
Fischer, Klaus 1
Fuentes, Lidia 73
Fuentes-Fernández, Rubén 118

Garcia, Emilia 134
Gleizes, Marie-Pierre 168
Gómez-Sanz, Jorge J. 118

Hilaire, Vincent 22

Kacem, Ahmed Hadj 56
Kallel, Slim 56
Klügl, Franziska 179
Kurtanovic, Zijad 40

La Poutré, Han 99
Lodato, Carmelo 22
Lopes, Salvatore 22
Loulou, Monia 56
Luck, Michael 134

Mamei, Marco 73
Maurel, Christine 168
Migeon, Frédéric 168
Miles, Simon 134

Rekik, Molka 56
Ribino, Patrizia 22

Schumann, René 40
Seidita, Valeria 22, 151

Taweel, Adel 134
Timm, Ingo J. 40
Tyson, Gareth 134

van Oijen, Joost 99
Van Staa, Tjeerd 134

Warwas, Stefan 1

Zambonelli, Franco 73

	Preface
	Organization
	Table of Contents
	Model-Driven Approaches to AOSE
	A Methodological Approach to Model DrivenDesign of Multiagent Systems
	1 Introduction
	2 TheBochica Framework
	3 Related Work on Agent-Oriented Design Methodologies
	4 Extending
	4.1 Evolution Process of BOCHICA
	4.2 Stakeholders in MAS Design
	4.3 Collaboration
	4.4 Views and Viewpoints
	4.5 Integration of Methodology Artefacts

	5 Case Study
	5.1 Intelligent ISReal Agents
	5.2 ISReal Viewpoints
	5.3 Example Adaptation

	6 Conclusion
	References

	A Norm-Governed Holonic Multi-agent SystemMetamodel
	1 Introduction
	2 Theoretical Background
	3 A Norm-Governed Holonic MAS Metamodel
	3.1 Problem Domain Metamodel
	3.2 Agency Domain Metamodel
	3.3 Conceptual Mapping in a Solution Domain

	4 Case Study: Virtual Enterprise for Logistics
	5 Conclusions
	References

	Specification of Trade-Off Strategies for Agents:A Model-Driven Approach
	1 Introduction
	2 Related Work
	3 A Meta Model for Trade-Off Strategies
	3.1 Trade-Off Strategies
	3.2 Meta Model
	3.3 Specification of Trade-off Strategies
	3.4 Model Transformation

	4 Automating Negotiations: A Case Study
	4.1 Negotiation Model
	4.2 Specification of Trade-off Strategies for the Example

	5 Conclusion
	References

	MDA-Based Approach for Implementing SecureMobile Agent Systems
	1 Introduction
	2 Our Proposed Approach
	3 Formal Model for Secure Mobile Agent Systems
	3.1 Formal Specification
	3.2 Formal Verification

	4 Modeling Secure Mobile Agent Systems
	5 AGLETS Specific Modeling
	6 Code Generation
	7 Case Study
	8 Related Work
	9 Conclusion and Future Work
	References

	Engineering Pervasive and Ubiquitous MultiagentSystems
	Developing Pervasive Agent-Based Applications:A Comparison of Two Coordination Approaches
	1 Introduction
	2 Background
	2.1 MalacaTiny and Sol
	2.2 The SAPERE Middleware

	3 Modeling Pervasive Scenarios
	3.1 Information Provision Scenarios
	3.2 Scenarios of Emergency Evacuation Planning

	4 Comparison
	4.1 Separation of Concerns
	4.2 Coupling and Cohesion
	4.3 Adaptability
	4.4 Robustness
	4.5 Scalability
	4.6 Privacy

	5 Conclusion
	References

	Agent Perception within CIGA:Performance Optimizations and Analysis
	1 Introduction
	2 Related Work
	2.1 Situated Multiagent Systems
	2.2 Virtual Human-Like Sensing
	2.3 Connecting MASs to Game Engines

	3 CIGA Middleware
	3.1 Design Issues

	4 Agent Perception Framework
	4.1 Semantic Layer
	4.2 Embodied Agent Layer
	4.3 Subscription-Based Filtering

	5 Towards Optimizations
	5.1 Optimizing Visual Sensing
	5.2 Caching the Semantic World Model

	6 Experimental Evaluations
	6.1 System Implementation
	6.2 Evaluation Details
	6.3 Visual Sensing Analysis
	6.4 Semantic Cache Analysis

	7 Framework Performance Analysis
	8 Conclusion
	References

	Ambient Intelligence with INGENIAS
	1 Introduction
	2 A Fragment of INGENIAS Metamodel and Integration Proposal
	3 Extending the INGENIAS Metamodel
	4 TheFAERIEAmISoftware
	5 Integrating FAERIE with the INGENIAS Modeling Language
	6 Case Study: Tracking Teachers
	7 Related Work
	8 Conclusions
	References

	AOSE Methodologies
	Analysing the Suitability of MultiagentMethodologies for e-Health Systems
	1 Introduction
	2 Case-Study: ePCRN-IDEA System
	2.1 ePCRN-IDEA Overview
	2.2 Challenges in ePCRN-IDEA’s Development

	3 Agent-Oriented Software Engineering
	3.1 AOSE Design Abstractions
	3.2 ROMAS (Regulated Open Multi-agent Systems)

	4 Analysis of the Case Study
	4.1 Designing ePCRN-IDEA Recruitment System with ROMAS
	4.2 Benefits of Multi-agent Design for ePCRN-IDEA

	5 Discussion
	5.1 Beneficial Features of AOSE
	5.2 Other Development Approaches
	5.3 AOSE Weaknesses

	6 Conclusions
	References

	How to Extract Fragments from Agent OrientedDesign Processes
	1 Introduction
	2 Background and Motivation
	3 The Adopted Fragment Definition
	4 The Proposed Fragmentation Approach
	4.1 The Details about the Guidelines
	4.2 Applying the Guidelines to OpenUP

	5 Discussions
	6 Conclusions and Future Works
	References

	Forward Self-combined Method Fragments
	1 Introduction
	2 Why Such a System?
	3 Combining Method Fragments with an Adaptive Multi-agent System
	3.1 General Structure of SCoRe
	3.2 Behaviour of Agents

	4 Usual Tests
	5 Related Works
	6 Conclusion and Future Works
	References

	“Engineering” Agent-Based Simulation Models?
	1 Introduction
	2 Issues in Multiagent Simulation Development
	2.1 Understanding and Design
	2.2 Micro-macro Link
	2.3 Level of Detail/Abstraction
	2.4 Critical Parameter Structures
	2.5 Technical Aspects

	3 Engineering Approaches to Multiagent Simulation
	3.1 General Guidelines and Best Practices
	3.2 Specific Methodologies
	3.3 What doWe Need for “Engineering”Multiagent Simulations?

	References

	Author Index

