

Programming C# 4.0

SIXTH EDITION

Programming C# 4.0

Ian Griffiths, Matthew Adams, and Jesse Liberty

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Programming C# 4.0, Sixth Edition
by Ian Griffiths, Matthew Adams, and Jesse Liberty

Copyright © 2010 Ian Griffiths and Matthew Adams. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Hendrickson and Laurel Ruma
Production Editor: Adam Zaremba
Copyeditor: Audrey Doyle
Proofreader: Stacie Arellano

Indexer: Jay Marchand
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2001: First Edition.
February 2002: Second Edition.
May 2003: Third Edition.
February 2005: Fourth Edition.
December 2007: Fifth Edition.
August 2010: Sixth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming C# 4.0, the image of an African crowned crane, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-15983-2

[M]

1280338225

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xv

1. Introducing C# . 1
Why C#? Why .NET? 1
The .NET Framework Class Library 2
Language Style 3

Composability 4
Managed Code 5
Continuity and the Windows Ecosystem 6

C# 4.0, .NET 4, and Visual Studio 2010 7
Summary 9

2. Basic Programming Techniques . 11
Getting Started 11
Namespaces and Types 14
Projects and Solutions 19
Comments, Regions, and Readability 24

Bad Comments 26
XML Documentation Comments 26

Variables 28
Variable Types 28

Expressions and Statements 35
Assignment Statements 38
Increment and Decrement Operators 38

Flow Control with Selection Statements 39
if Statements 40
switch and case Statements 45

Iteration Statements 47
foreach Statements 48
for Statements 50
while and do Statements 52

v

Breaking Out of a Loop 53
Methods 55
Summary 58

3. Abstracting Ideas with Classes and Structs . 59
Divide and Conquer 59

Abstracting Ideas with Methods 59
Abstracting Ideas with Objects and Classes 62

Defining Classes 64
Representing State with Properties 64
Protection Levels 66
Initializing with a Constructor 68
Fields: A Place to Put Data 72
Fields Can Be Fickle, but const Is Forever 75
Read-only Fields and Properties 76

Related Constants with enum 79
Value Types and Reference Types 82
Too Many Constructors, Mr. Mozart 88
Overloading 88

Overloaded Methods and Default Named Parameters 89
Object Initializers 92
Defining Methods 95

Declaring Static Methods 98
Static Fields and Properties 99

Static Constructors 101
Summary 102

4. Extensibility and Polymorphism . 103
Association Through Composition and Aggregation 104
Inheritance and Polymorphism 106
Replacing Methods in Derived Classes 109

Hiding Base Members with new 109
Replacing Methods with virtual and override 112

Inheritance and Protection 114
Calling Base Class Methods 116
Thus Far and No Farther: sealed 118
Requiring Overrides with abstract 121
All Types Are Derived from Object 127

Boxing and Unboxing Value Types 127
C# Does Not Support Multiple Inheritance of Implementation 132
C# Supports Multiple Inheritance of Interface 132
Deriving Interfaces from Other Interfaces 135

Explicit Interface Implementation 136

vi | Table of Contents

The Last Resort: Checking Types at Runtime 141
Summary 142

5. Composability and Extensibility with Delegates . 143
Functional Composition with delegate 150
Generic Actions with Action<T> 156
Generic Predicates with Predicate<T> 160
Using Anonymous Methods 162
Creating Delegates with Lambda Expressions 163
Delegates in Properties 165
Generic Delegates for Functions 167
Notifying Clients with Events 171

Exposing Large Numbers of Events 180
Summary 183

6. Dealing with Errors . 185
When and How to Fail 191
Returning Error Values 194

Debugging with Return Values 200
Exceptions 201

Handling Exceptions 207
When Do finally Blocks Run? 214
Deciding What to Catch 215
Custom Exceptions 218

Summary 220

7. Arrays and Lists . 221
Arrays 221

Construction and Initialization 222
Custom Types in Arrays 225
Array Members 230
Array Size 236

List<T> 243
Custom Indexers 247
Finding and Sorting 253

Collections and Polymorphism 254
Creating Your Own IEnumerable<T> 258

Summary 264

8. LINQ . 265
Query Expressions 265

Query Expressions Versus Method Calls 267
Extension Methods and LINQ 268

Table of Contents | vii

let Clauses 271
LINQ Concepts and Techniques 271

Delegates and Lambdas 271
Functional Style and Composition 273
Deferred Execution 274

LINQ Operators 275
Filtering 275
Ordering 276
Concatenation 279
Grouping 280
Projections 282
Zipping 288
Getting Selective 289
Testing the Whole Collection 291
Aggregation 292
Set Operations 294
Joining 295
Conversions 296

Summary 297

9. Collection Classes . 299
Dictionaries 299

Common Dictionary Uses 301
IDictionary<TKey, TValue> 308
Dictionaries and LINQ 309

HashSet and SortedSet 310
Queues 311
Linked Lists 312
Stacks 313
Summary 314

10. Strings . 315
What Is a String? 316
The String and Char Types 317
Literal Strings and Chars 318

Escaping Special Characters 319
Formatting Data for Output 322

Standard Numeric Format Strings 323
Custom Numeric Format Strings 329
Dates and Times 332
Going the Other Way: Converting Strings to Other Types 336
Composite Formatting with String.Format 337

Culture Sensitivity 338

viii | Table of Contents

Exploring Formatting Rules 340
Accessing Characters by Index 341
Strings Are Immutable 341
Getting a Range of Characters 343
Composing Strings 344

Splitting It Up Again 346
Upper- and Lowercase 347

Manipulating Text 348
Mutable Strings with StringBuilder 349

Finding and Replacing Content 353
All Sorts of “Empty” Strings 355
Trimming Whitespace 357
Checking Character Types 360
Encoding Characters 360

Why Encodings Matter 362
Encoding and Decoding 363
Why Represent Strings As Byte Sequences? 370

Summary 370

11. Files and Streams . 371
Inspecting Directories and Files 371
Examining Directories 374
Manipulating File Paths 375

Path and the Current Working Directory 376
Examining File Information 377
Creating Temporary Files 381
Deleting Files 381
Well-Known Folders 383
Concatenating Path Elements Safely 387
Creating and Securing Directory Hierarchies 388
Deleting a Directory 394
Writing Text Files 396

Writing a Whole Text File at Once 396
Writing Text with a StreamWriter 397

When Files Go Bad: Dealing with Exceptions 400
Finding and Modifying Permissions 404

Reading Files into Memory 409
Streams 413

Moving Around in a Stream 419
Writing Data with Streams 421

Reading, Writing, and Locking Files 422
FileStream Constructors 423

Stream Buffers 423

Table of Contents | ix

Setting Permissions During Construction 424
Setting Advanced Options 425

Asynchronous File Operations 425
Isolated Storage 428

Stores 429
Reading and Writing Text 430
Defining “Isolated” 431
Managing User Storage with Quotas 436
Managing Isolated Storage 436

Streams That Aren’t Files 439
An Adapting Stream: CryptoStream 443
In Memory Alone: The MemoryStream 444
Representing Binary As Text with Base64 Encoding 444

Summary 447

12. XML . 449
XML Basics (A Quick Review) 449

Elements 450
XHTML 451

X Stands for eXtensible 452
Creating XML Documents 452

XML Elements 455
XML Attributes 456
Putting the LINQ in LINQ to XML 459

Searching in XML with LINQ 461
Searching for a Single Node 465
Search Axes 466
Where Clauses 466

XML Serialization 467
Customizing XML Serialization Using Attributes 469

Summary 471

13. Networking . 473
Choosing a Networking Technology 473

Web Application with Client-Side Code 474
.NET Client and .NET Server 477
.NET Client and External Party Web Service 479
External Client and .NET Web Service 480

WCF 481
Creating a WCF Project 481
WCF Contracts 482
WCF Test Client and Host 483
Hosting a WCF Service 486

x | Table of Contents

Writing a WCF Client 493
Bidirectional Communication with Duplex Contracts 501

HTTP 511
WebClient 512
WebRequest and WebResponse 516

Sockets 522
IP, IPv6, and TCP 523
Connecting to Services with the Socket Class 528
Implementing Services with the Socket Class 531

Other Networking Features 536
Summary 537

14. Databases . 539
The .NET Data Access Landscape 539

Classic ADO.NET 540
LINQ and Databases 544
Non-Microsoft Data Access Technologies 545
WCF Data Services 546
Silverlight and Data Access 546
Databases 547

The Entity Data Model 548
Generated Code 551
Changing the Mapping 554
Relationships 555
Inheritance 562

Queries 563
LINQ to Entities 563
Entity SQL 568
Mixing ESQL and LINQ 570
The EntityClient ADO.NET Provider 571

Object Context 571
Connection Handling 571
Creating, Updating, and Deleting 574
Transactions 576
Optimistic Concurrency 581
Context and Entity Lifetime 583

WCF Data Services 584
Summary 588

15. Assemblies . 589
.NET Components: Assemblies 589

References 590
Writing Libraries 593

Table of Contents | xi

Protection 595
Naming 598

Signing and Strong Names 599
Loading 601

Loading from the Application Folder 602
Loading from the GAC 603
Loading from a Silverlight .xap File 603
Explicit Loading 604

Summary 605

16. Threads and Asynchronous Code . 607
Threads 609

Threads and the OS Scheduler 611
The Stack 613
The Thread Pool 620
Thread Affinity and Context 622
Common Thread Misconceptions 623
Multithreaded Coding Is Hard 629
Multithreading Survival Strategies 632

Synchronization Primitives 634
Monitor 634
Other Lock Types 645
Other Coordination Mechanisms 649
Events 649
Countdown 650
BlockingCollection 650

Asynchronous Programming 651
The Asynchronous Programming Model 652
The Event-Based Asynchronous Pattern 655
Ad Hoc Asynchrony 656

The Task Parallel Library 656
Tasks 657
Cancellation 663
Error Handling 665

Data Parallelism 666
Parallel For and ForEach 667
PLINQ: Parallel LINQ 669

Summary 670

17. Attributes and Reflection . 671
Attributes 671

Types of Attributes 672
Custom Attributes 673

xii | Table of Contents

Reflection 677
Inspecting Metadata 678
Type Discovery 679
Reflecting on a Specific Type 681
Late Binding 683

Summary 686

18. Dynamic . 687
Static Versus Dynamic 687

The Dynamic Style and COM Automation 689
The dynamic Type 690

Object Types and dynamic 693
dynamic in Noninterop Scenarios? 703
Summary 706

19. Interop with COM and Win32 . 707
Importing ActiveX Controls 707

Importing a Control in .NET 708
Interop Assemblies 711

No PIA 712
64-bit Versus 32-bit 713
P/Invoke 716
Pointers 720
C# 4.0 Interop Syntax Enhancements 725

Indexed Properties 725
Optional ref 726

Summary 727

20. WPF and Silverlight . 729
Xaml and Code Behind 731

Xaml and Objects 735
Elements and Controls 738

Layout Panels 739
Graphical Elements 748
Controls 755
User Controls 760

Control Templates 761
Styles 764
The Visual State Manager 766

Data Binding 767
Data Templates 769

Summary 773

Table of Contents | xiii

21. Programming ASP.NET Applications . 775
Web Forms Fundamentals 775

Web Forms Events 776
Web Forms Life Cycle 778

Creating a Web Application 779
Code-Behind Files 780
Adding Controls 781
Server Controls 783

Data Binding 784
Examining the Code 789
Adding Controls and Events 790

Summary 794

22. Windows Forms . 795
Creating the Application 796

Adding a Binding Source 797
Controls 800

Docking and Anchoring 805
Data Binding 806
Event Handling 811
Summary 813

Index . 815

xiv | Table of Contents

Preface

Microsoft unveiled the .NET Framework in 2000, and in the decade that followed, it
became an extremely popular choice for developing software for Windows.
While .NET supports many programming languages, it is most strongly associated with
the language designed specifically for the platform: C#.

C# has grown considerably since its launch. Each new version enabled new program-
ming techniques—C# 2.0 added generics and enhanced functional programming ca-
pabilities, then integrated query features and yet more powerful functional capabilities
arrived in C# 3.0, and now C# 4.0 adds new dynamic language capabilities.

The .NET Framework has grown with the language. Back in .NET 1.0, the class libraries
offered relatively patchy coverage of the underlying Windows capabilities. Moreover,
the library features that were unique to .NET, rather than being wrappers for something
else, were relatively modest. Now, as well as more comprehensive platform coverage
we have a GUI framework (WPF), much stronger database capabilities, powerful sup-
port for concurrent execution, and an extensive set of communication services (WCF),
to name just a few of the available features. And the features that have been there since
version 1.0, such as web support (ASP.NET), have been fleshed out substantially.

.NET is no longer limited to running just on Windows. Some people recognized its
potential for platform independence early on, but for years, Microsoft supported C#
just on Windows, leaving open source projects to offer the only way to run C# on other
systems. But in 2008, the release of Silverlight 2 saw C# code running with Microsoft’s
full support on non-Windows platforms such as the Mac for the first time.

The C# language has come a long way since 2000, in both reach and size. Our goal
with Programming C# 4.0 is to show how to use C#.

How This Book Is Organized
The book begins by looking at the details of the C# language that you will use in
everyday programming. We then look at the most common parts of the .NET Frame-
work class library that you will also use very regularly. Next, we move into some more

xv

specialized areas of the framework. Finally, we look at some of the application frame-
works for building Windows and web applications in .NET.

Chapter 1, Introducing C#
This chapter talks about the nature of C# and its relationship with the .NET
Framework.

Chapter 2, Basic Programming Techniques
In this chapter, we show the core elements of C# code—the steps required to get
up and running, and fundamental features such as variables, flow control, loops,
and methods.

Chapter 3, Abstracting Ideas with Classes and Structs
C# supports object-oriented programming, and this chapter describes the lan-
guage features dedicated to these techniques.

Chapter 4, Extensibility and Polymorphism
This chapter continues the discussion from the preceding chapter, illustrating how
C# supports inheritance, interfaces, and related concepts.

Chapter 5, Composability and Extensibility with Delegates
C# isn’t limited to object-oriented programming—it also supports some very
powerful functional programming idioms. This chapter shows how these can
sometimes be more flexible and also simpler than OO techniques.

Chapter 6, Dealing with Errors
All programs encounter failures, whether due to programming errors, unexpected
input, network failures, or a host of other eventualities. This chapter shows the
options for detecting and responding robustly to errors.

Chapter 7, Arrays and Lists
This chapter shows the tools C# offers for representing simple collections of
information.

Chapter 8, LINQ
It’s not enough merely to be able to represent collections, so this chapter shows
how you can use the integrated query features in C# to process your collections of
data.

Chapter 9, Collection Classes
This chapter shows some of the more specialized classes for working with collec-
tions in particular ways.

Chapter 10, Strings
Text is a particularly important data type for most applications, so this chapter
shows how text is represented, and how you can format data into textual form.

Chapter 11, Files and Streams
This chapter shows how to store information on disk and read it back in, and how
to perform other filesystem operations. It also shows how some of the abstractions
used when working with files can be applied in other scenarios.

xvi | Preface

Chapter 12, XML
This chapter shows the classes offered by the .NET Framework for processing
XML, and how these can work in conjunction with the LINQ features in C#.

Chapter 13, Networking
In this chapter, we look at the various techniques for communicating over a
network.

Chapter 14, Databases
This chapter shows how to access a database from C#.

Chapter 15, Assemblies
In this chapter, we show how to compile code into libraries for reuse, and how
programs made up from multiple components work.

Chapter 16, Threads and Asynchronous Code
Many programs need to deal with concurrency, and this chapter shows the tools
and techniques available.

Chapter 17, Attributes and Reflection
C# has the ability to inspect the structure of code, which makes it easier to auto-
mate certain kinds of tasks. This chapter shows the API for doing this, and how
you can extend the structural information through attributes.

Chapter 18, Dynamic
One of the new features in C# 4.0 is support for dynamic binding. This is partic-
ularly useful in certain interop scenarios, as we discuss in this chapter.

Chapter 19, Interop with COM and Win32
Sometimes it’s necessary for C# code to communicate with components not de-
signed to be used from .NET. This chapter shows how to do this with both COM
components and Win32-style DLLs.

Chapter 20, WPF and Silverlight
WPF and Silverlight offer very similar programming models for building user in-
terfaces. This chapter shows how to use that model from C#.

Chapter 21, Programming ASP.NET Applications
This chapter shows how to use ASP.NET, the part of the .NET Framework de-
signed for building web applications.

Chapter 22, Windows Forms
This chapter shows how to use Windows Forms, which is a wrapper around the
classic Windows user interface mechanisms. While it is less flexible than WPF, it
can offer an easier way to integrate with old components such as ActiveX controls.

Where to Find Features New in C# 4.0 and .NET 4
Although this book is written to be read as a whole, we expect that some readers will
want to look for the features new to C# 4.0, and also to .NET 4. Since our goal is to
show how the C# language is used today, we have avoided structuring the book around

Preface | xvii

the history of the language, because you will use language features of varying ages in
combination. As it happens, one of the new features in C# 4.0 serves a very specific
purpose, so it gets its own chapter, but for the most part, new language features are
spread throughout the book, because we aim to mention them where you need to know
about them. We cannot point you at a particular set of chapters, so instead, here’s a
quick guide to where we discuss these features.

Chapter 1 talks about the broad goals behind the new features in C# 4.0. Chapter 3
shows the use of default values and named arguments (and these come up again very
briefly in Chapters 11 and 17). Chapter 7 describes variance, a rather technical feature
of the type system that has some useful implications for collection types. Chapter 16
talks about the extensive new multithreading support added in .NET 4. Chapter 18 is
dedicated entirely to a new language feature: support for dynamic programming.
Chapter 19 describes the new no-PIA feature, and some features that allow more elegant
code in some interop scenarios.

Who This Book Is For
If you have some basic knowledge of C# but want to brush up your skills, or if you are
proficient in another programming language such as C++ or Java, or even if C# is your
first programming language, this book is for you.

What You Need to Use This Book
To make the best use of this book, please obtain the latest release of Visual Studio 2010.
Any edition will do, including the free Express edition for C#, which can be
downloaded from http://www.microsoft.com/express/.

For Chapter 14 you will need a copy of SQL Server or SQL Server Express. Some editions
of Visual Studio will install SQL Server Express for you by default, so you may already
have this.

The example source code for this book is available through the O’Reilly site at http://
oreilly.com/catalog/9780596159832/.

Conventions Used in This Book
The following font conventions are used in this book:

Italic is used for:

• Pathnames, filenames, and program names

• Internet addresses, such as domain names and URLs

• New terms where they are defined

xviii | Preface

http://www.microsoft.com/express/
http://oreilly.com/catalog/9780596159832/
http://oreilly.com/catalog/9780596159832/

Constant Width is used for:

• Command lines and options that should be typed verbatim

• Names and keywords in program examples, including method names, variable
names, and class names

Constant Width Italic is used for:

• Replaceable items, such as variables or optional elements, within syntax lines or
code

Constant Width Bold is used for:

• Emphasis within program code

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Programming C# 4.0, Sixth Edition, by
Ian Griffiths, Matthew Adams, and Jesse Liberty. Copyright 2010 Ian Griffiths and
Matthew Adams, 978-0-596-15983-2.”

Preface | xix

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com/?portal=oreilly.

Acknowledgments

From Ian Griffiths
I want to thank the technical reviewers, whose feedback helped to improve this book:
Nicholas Paldino, Chris Smith, Chris Williams, Michael Eaton, Brian Peek, and
Stephen Toub.

Everyone at O’Reilly has provided a great deal of support and patience throughout the
project, so many thanks to Mike Hendrickson, Laurel Ruma, Audrey Doyle, and Sumita
Mukherji. Thanks also to John Osborn for getting things started in the early days of
this project, and for getting Matthew and me on board as O’Reilly authors in the first
place, all those years ago.

Thank you to my coauthor for not learning his lesson from the last book and agreeing
to write another with me. And finally, thank you to Jesse Liberty for asking us to take
over his book.

From Matthew Adams
I’d like to add my thanks to those of my coauthor to all those at O’Reilly whose patience,
help, and support have made this book possible, and to all our reviewers whose feed-
back has been invaluable.

In addition, I’d like to add a nod to Karolina Lemiesz, coffee wizard at the Starbucks
where most of my text was written, for the constant supply of ristretto, and an education
in coffee tasting when work got too much.

xx | Preface

http://my.safaribooksonline.com/?portal=oreilly

As always, my partner Una provided the necessary foundation of love and support
(despite her own book deadlines). And finally, anyone who tells you that squeezing a
book out of an author is a breeze is clearly deluded, but my coauthor makes it look
easy. My thanks go to him especially for his forbearance, wit, and friendship. And good
dinners.

Preface | xxi

CHAPTER 1

Introducing C#

C#—pronounced “See Sharp”—is a programming language designed for Micro-
soft’s .NET platform. Since its first release in 2002, C# has found many roles. It is
widely used on the server side of websites, and also on both the client and server in
line-of-business Windows desktop applications. You can write smartphone user inter-
faces and Xbox 360 games in C#. More recently, Microsoft’s Silverlight platform has
made C# an option for writing Rich Internet Applications that run in a web browser.

But what kind of language is C#? To understand a language well enough to use it
effectively, it’s not enough to focus purely on the details and mechanisms, although
we’ll be spending plenty of time on those in this book. It is equally important to un-
derstand the thinking behind the details. So in this chapter, we’ll look at what problems
C# was built to solve. Then we’ll explore the style of the language, through aspects
that distinguish it from other languages. And we’ll finish the chapter with a look at the
latest step in the evolution of C#, its fourth version.

Why C#? Why .NET?
Programming languages exist to help developers be more productive. Many successful
languages simplify or automate tedious tasks that previously had to be done by hand.
Some offer new techniques that allow old problems to be tackled more effectively, or
on a larger scale than before. How much difference C# can make to you will depend
on your programming background, of course, so it’s worth considering what sorts of
people the language designers had in mind when they created C#.

C# is aimed at developers working on the Windows platform, and its syntax is instantly
familiar to users of C or C++, or other languages that draw from the same tradition,
such as JavaScript and Java. Fundamental language elements such as statements, ex-
pressions, function declarations, and flow control are modeled as closely as possible
on their equivalents in C family languages.

1

A familiar syntax is not enough of a reason to pick a language, of course, so C# offers
productivity-enhancing features not found in some of its predecessors. Garbage col-
lection frees developers from the tyranny of common memory management problems
such as memory leaks and circular references. Verifiable type safety of compiled code
rules out a wide range of bugs and potential security flaws. While C or C++ Windows
developers may not be accustomed to those features, they will seem old hat to Java
veterans, but Java has nothing to compete with the “LINQ” features C# offers for
working with collections of information, whether in object models, XML documents,
or databases. Integrating code from external components is remarkably painless, even
those written in other languages. C# also incorporates support for functional pro-
gramming, a powerful feature previously most commonly seen in academic languages.

Many of the most useful features available to C# developers come from the .NET
Framework, which provides the runtime environment and libraries for C#, and all
other .NET languages, such as VB.NET. C# was designed for .NET, and one of the
main benefits of its close relationship with the .NET Framework is that working with
framework features such as the class library feels very natural.

The .NET Framework Class Library
Working in C# means more than using just the language—the classes offered by
the .NET Framework are an extremely important part of the C# developer’s everyday
experience (and they account for a lot of this book’s content). Most of the library func-
tionality falls into one of three categories: utility features written in .NET, wrappers
around Windows functionality, and frameworks.

The first group comprises utility types such as dictionaries, lists, and other collection
classes, as well as string manipulation facilities such as a regular expression engine.
There are also features that operate on a slightly larger scale, such as the object models
for representing XML documents.

Some library features are wrappers around underlying OS functionality. For example,
there are classes for accessing the filesystem, and for using network features such as
sockets. And there are classes for writing output to the console, which we can illustrate
with the obligatory first example of any programming language book, shown in
Example 1-1.

Example 1-1. The inevitable “Hello, world” example

class Program
{
 static void Main()
 {
 System.Console.WriteLine("Hello, world");
 }
}

2 | Chapter 1: Introducing C#

We’ll examine all the pieces shown here in due course, but for now, note that even this
simplest of examples depends on a class from the library—the System.Console class in
this case—to do its job.

Finally, the class library offers whole frameworks to support building certain kinds of
applications. For example, Windows Presentation Foundation (WPF) is a framework
for building Windows desktop software; ASP.NET (which is not an acronym, despite
appearances) is a framework for building web applications. Not all frameworks are
about user interfaces—Windows Communication Foundation (WCF) is designed for
building services accessed over the network by other computer systems, for instance.

These three categories are not strict, as quite a few classes fit into two. For example,
the parts of the class library that provide access to the filesystem are not just thin wrap-
pers around existing Win32 APIs. They add new object-oriented abstractions, provid-
ing significant functionality beyond the basic file I/O services, so these types fit into
both the first and second categories. Likewise, frameworks usually need to integrate
with underlying services to some extent—for example, although the Windows Forms
UI framework has a distinctive API of its own, a lot of the underlying functionality is
provided by Win32 components. So the three categories here are not strict. They just
offer a useful idea of what sorts of things you can find in the class libraries.

Language Style
C# is not the only language that runs on the .NET Framework. Indeed, support for
multiple languages has always been a key feature of .NET, reflected in the name of its
runtime engine, the CLR or Common Language Runtime. As this name implies, .NET
is not just for one language—numerous languages have access to the services of
the .NET Framework class library. Why might you choose C# over the others?

We already mentioned one important reason: C# was designed specifically for .NET.
If you are working with .NET technologies such as WPF or ASP.NET, you’ll be speaking
their language if you work in C#. Compare this with C++, which supports .NET
through extensions to the original language. The extensions are carefully thought out
and work well, but code that uses .NET libraries just looks different from normal
C++, so programs that bridge the worlds of .NET and standard C++ never feel com-
pletely coherent. And the dual personality often presents dilemmas—should you use
standard C++ collection classes or the ones in the .NET class library, for example? In
native .NET languages such as C#, such questions do not emerge.

But C# is not unique in this respect. Visual Studio 2010 ships with three languages
designed for .NET: C#, VB.NET, and F#. (Although VB.NET follows on from its
non-.NET Visual Basic predecessors, it was radically different in some important ways.
It is a native .NET language with a VB-like syntax rather than VB 6 with .NET capa-
bilities bolted on.) The choice between these languages comes down to what style of
language you prefer.

Language Style | 3

F# is the odd one out here. It’s a functional programming language, heavily influenced
by a language called ML. Back in 1991, when your authors were first-year students, our
university’s computer science course chose ML for the first programming language
lectures in part because it was so academic that none of the students would previously
have come across anything like it. F# is still at the academic end of the spectrum despite
having climbed far enough down the ivory tower to be a standard part of a mainstream
development environment. It excels at complicated calculations and algorithms, and
has some characteristics that can help with parallel execution. However, as with many
functional languages, the cost of making some hard problems easier is that a lot of
things that are easy in more traditional languages are remarkably hard in F#—
functional languages are adept at complex problems, but can be clumsy with simple
ones. It seems likely that F# will mostly be used in scientific or financial applications
where the complexity of the computation to be performed dwarfs the complexity of
the code that needs to act on the results of those calculations.

While F# feels distinctly other, VB.NET and C# have a lot of similarities. The most
obvious factor in choosing between these is that VB.NET is easier to learn for someone
familiar with Visual Basic syntax, while C# will be easier for someone familiar with a
C-like language. However, there is a subtler difference in language philosophy that goes
beyond the syntax.

Composability
A consistent theme in the design of the C# programming language is that its creators
tend to prefer general-purpose features over specialized ones. The most obvious ex-
ample of this is LINQ, the Language INtegrated Query feature added in C# 3.0. Su-
perficially, this appears to add SQL-like query features to the language, providing a
natural way to integrate database access into your code. Example 1-2 shows a simple
query.

Example 1-2. Data access with LINQ

var californianAuthors = from author in pubs.authors
 where author.state == "CA"
 select new
 {
 author.au_fname,
 author.au_lname
 };
foreach (var author in californianAuthors)
{
 Console.WriteLine(author);
}

Despite appearances, C# doesn’t know anything about SQL or databases. To enable
this syntax, C# 3.0 added a raft of language features which, in combination, allow code
of this sort to be used not just for database access, but also for XML parsing, or working

4 | Chapter 1: Introducing C#

with object models. Moreover, many of the individual features can be used in other
contexts, as we’ll see in later chapters. C# prefers small, composable, general-purpose
features over monolithic, specialized ones.

A striking example of this philosophy is a feature that was demonstrated in prototype
form in C#, but which eventually got left out: XML literals. This experimental syntax
allowed inline XML, which compiled into code that built an object model representing
that XML. The C# team’s decision to omit this feature illustrates a stylistic preference
for generality over highly specialized features—while the LINQ syntax has many ap-
plications, XML literal syntax cannot be used for anything other than XML, and this
degree of specialization would feel out of place in C#.*

Managed Code
The .NET Framework provides more than just a class library. It also provides services
in subtler ways that are not accessed explicitly through library calls. For example, earlier
we mentioned that C# can automate some aspects of memory management, a notori-
ous source of bugs in C++ code. Abandoning heap-allocated objects once you’re done
with them is a coding error in C++, but it’s the normal way to free them in .NET. This
service is provided by the CLR—the .NET Framework’s runtime environment. Al-
though the C# compiler works closely with the runtime to make this possible, provid-
ing the necessary information about how your code uses objects and data, it’s ultimately
the runtime that does the work of garbage collection.

Depending on what sorts of languages you may have worked with before, the idea that
the language depends heavily on the runtime might seem either completely natural or
somewhat disconcerting. It’s certainly different from how C and C++ work—with
those languages, the compiler’s output can be executed directly by the computer, and
although those languages have some runtime services, it’s possible to write code that
can run without them. But C# code cannot even execute without the help of the run-
time. Code that depends entirely on the runtime is called managed code.

Managed compilers do not produce raw executable code. Instead, they produce an
intermediate form of code called IL, the Intermediate Language.† The runtime decides
exactly how to convert it into something executable. One practical upshot of managed
code is that a compiled C# program can run on both 32-bit and 64-bit systems without
modification, and can even run on different processor architectures—it’s often possible

* VB.NET supports XML literals. Since C# 2.0 shipped, the C# and VB.NET teams have operated a policy of
keeping the feature sets of the two languages similar, so the fact that VB.NET picked up a feature that C#
abandoned shows a clear difference in language philosophy.

† Depending on whether you read Microsoft’s documentation, or the ECMA CLI (Common Language
Infrastructure) specifications that define the standardized parts of .NET and C#, IL’s proper name is either
MSIL (Microsoft IL) or CIL (Common IL), respectively. The unofficial name, IL, seems more popular in
practice.

Language Style | 5

for code that runs on an ARM-based handheld device to run unmodified on Intel-based
PCs, or on the PowerPC architecture found in the Xbox 360 game console.

As interesting as CPU independence may be, in practice the most useful aspect of man-
aged code and IL is that the .NET runtime can provide useful services that are very hard
for traditional compilation systems to implement well. In other words, the point is to
make developers more productive. The memory management mentioned earlier is just
one example. Others include a security model that takes the origin of code into account
rather than merely the identity of the user who happens to be running the code; flexible
mechanisms for loading shared components with robust support for servicing and ver-
sioning; runtime code optimization based on how the code is being used in practice
rather than how the compiler guesses it might be used; and as already mentioned, the
CLR’s ability to verify that code conforms to type safety rules before executing it, ruling
out whole classes of security and stability bugs.

If you’re a Java developer, all of this will sound rather familiar—just substitute byte-
code for IL and the story is very similar. Indeed, a popular but somewhat ignorant “joke”
among the less thoughtful members of the Java community is to describe C# as a poor
imitation of Java. When the first version of C# appeared, the differences were subtle,
but the fact that Java went on to copy several features from C# illustrates that C# was
always more than a mere clone. The languages have grown more obviously different
with each new version, but one difference, present from the start, is particularly im-
portant for Windows developers: C# has always made it easy to get at the features of
the underlying Windows platform.

Continuity and the Windows Ecosystem
Software development platforms do not succeed purely on their own merits—context
matters. For example, widespread availability of third-party components and tools can
make a platform significantly more compelling. Windows is perhaps the most striking
example of this phenomenon. Any new programming system attempting to gain ac-
ceptance has a considerable advantage if it can plug into some existing ecosystem, and
one of the biggest differences between C# and Java is that C# and the .NET Framework
positively embrace the Windows platform, while Java goes out of its way to insulate
developers from the underlying OS.

If you’re writing code to run on a specific operating system, it’s not especially helpful
for a language to cut you off from the tools and components unique to your chosen
platform. Rather than requiring developers to break with the past, .NET offers con-
tinuity by making it possible to work directly with components and services either built
into or built for Windows. Most of the time, you won’t need to use this—the class
library provides wrappers for a lot of the underlying platform’s functionality. However,
if you need to use a third-party component or a feature of the operating system that
doesn’t yet have a .NET wrapper, the ability to work with such unmanaged features
directly from managed code is invaluable.

6 | Chapter 1: Introducing C#

While .NET offers features to ease integration with the underlying plat-
form, there is still support for non-Windows systems. Microsoft’s Sil-
verlight can run C# and VB.NET code on Mac OS X as well as Windows.
There’s an open source project called Mono which enables .NET code
to run on Linux, and the related Moonlight project is an open source
version of Silverlight. So the presence of local platform integration fea-
tures doesn’t stop C# from being useful on multiple platforms—if you
want to target multiple operating systems, you would just choose not
to use any platform-specific features.

So the biggest philosophical difference between C# and Java is that C#
provides equal support for direct use of operating-system-specific
features and for platform independence. Java makes the former dispro-
portionately harder than the latter.

The latest version of C# contains features that enhance this capability further. Several
of the new C# 4.0 features make it easier to interact with Office and other Windows
applications that use COM automation—this was a weak spot in C# 3.0. The relative
ease with which developers can reach outside the boundaries of managed code makes
C# an attractive choice—it offers all the benefits of managed execution, but retains the
ability to work with any code in the Windows environment, managed or not.

C# 4.0, .NET 4, and Visual Studio 2010
Since C# favors general-purpose language features designed to be composed with one
another, it often doesn’t make sense to describe individual new features on their own.
So rather than devoting sections or whole chapters to new features, we cover them in
context, integrated appropriately with other, older language features. The section
you’re reading right now is an exception, of course, and the main reason is that we
expect people already familiar with C# 3.0 to browse through this book in bookstores
looking for our coverage of the new features. If that’s you, welcome to the book! If you
look in the Preface you’ll find a guide to what’s where in the book, including a section
just for you, describing where to find material about C# 4.0 features.

That being said, a theme unites the new language features in version 4: they support
dynamic programming, with a particular focus on making certain interoperability sce-
narios simpler. For example, consider the C# 3.0 code in Example 1-3 that uses part
of the Office object model to read the Author property from a Word document.

Example 1-3. The horrors of Office interop before C# 4.0

static void Main(string[] args)
{
 var wordApp = new Microsoft.Office.Interop.Word.Application();

 object fileName = @"WordFile.docx";
 object missing = System.Reflection.Missing.Value;

C# 4.0, .NET 4, and Visual Studio 2010 | 7

 object readOnly = true;
 Microsoft.Office.Interop.Word._Document doc =
 wordApp.Documents.Open(ref fileName, ref missing, ref readOnly,
 ref missing, ref missing, ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing);

 object docProperties = doc.BuiltInDocumentProperties;
 Type docPropType = docProperties.GetType();
 object authorProp = docPropType.InvokeMember("Item",
 BindingFlags.Default | BindingFlags.GetProperty,
 null, docProperties,
 new object[] { "Author" });
 Type propType = authorProp.GetType();
 string authorName = propType.InvokeMember("Value",
 BindingFlags.Default |BindingFlags.GetProperty,
 null, authorProp,
 new object[] { }).ToString();

 object saveChanges = false;
 doc.Close(ref saveChanges, ref missing, ref missing);

 Console.WriteLine(authorName);
}

That’s some pretty horrible code—it’s hard to see what the example does because the
goal is lost in the details. The reason it is so unpleasant is that Office’s programming
model is designed for dynamic languages that can fill in a lot of the details at runtime.
C# 3.0 wasn’t able to do this, so developers were forced to do all the work by hand.

Example 1-4 shows how to do exactly the same job in C# 4.0. This is a lot easier to
follow, because the code contains only the relevant details. It’s easy to see the sequence
of operations—open the document, get its properties, retrieve the Author property’s
value, and close the document. C# 4.0 is now able to fill in all the details for us, thanks
to its new dynamic language features.

Example 1-4. Office interop with C# 4.0

static void Main(string[] args)
{
 var wordApp = new Microsoft.Office.Interop.Word.Application();

 Microsoft.Office.Interop.Word._Document doc =
 wordApp.Documents.Open("WordFile.docx", ReadOnly: true);
 dynamic docProperties = doc.BuiltInDocumentProperties;
 string authorName = docProperties["Author"].Value;
 doc.Close(SaveChanges: false);

 Console.WriteLine(authorName);
}

8 | Chapter 1: Introducing C#

This example uses a couple of C# 4.0 features: it uses the new dynamic keyword for
runtime binding to members. It also uses the support for optional arguments. The
Open and Close methods take 16 and 3 arguments, respectively, and as you can see from
Example 1-3, you need to provide all of them in C# 3.0. But Example 1-4 has only
provided values for the arguments it wants to set to something other than the default.

Besides using these two new features, a project containing this code would usually be
built using a third new interop feature called no-PIA. There’s nothing to see in the
preceding example, because when you enable no-PIA in a C# project, you do not need
to modify your code—no-PIA is essentially a deployment feature. In C# 3.0, you had
to install special support libraries called primary interop assemblies (PIAs) on the target
machine to be able to use COM APIs such as Office automation, but in C# 4.0 you no
longer have to do this. You still need these PIAs on your development machine, but the
C# compiler can extract the information your code requires, and copy it into your
application. This saves you from deploying PIAs to the target machine, hence the name,
“no-PIA”.

While these new language features are particularly well suited to COM automation
interop scenarios, they can be used anywhere. (The “no-PIA” feature is narrower, but
it’s really part of the .NET runtime rather than a C# language feature.)

Summary
In this chapter we provided a quick overview of the nature of the C# language, and we
showed some of its strengths and how the latest version has evolved. There’s one last
benefit you should be aware of before we get into the details in the next chapter, and
that’s the sheer quantity of C# resources available on the Internet. When the .NET
Framework first appeared, C# adoption took off much faster than the other .NET
languages. Consequently, if you’re searching for examples of how to get things done,
or solutions to problems, C# is an excellent choice because it’s so well represented in
blogs, examples, tools, open source projects, and webcasts—Microsoft’s own docu-
mentation is pretty evenhanded between C# and VB.NET, but on the Web as a whole,
you’re far better served if you’re a C# developer. So with that in mind, we’ll now look
at the fundamental elements of C# programs.

Summary | 9

CHAPTER 2

Basic Programming Techniques

To use a programming language, you must master the fundamentals. You need to un-
derstand the elements required to construct a working program, and learn how to use
the development tools to build and run code. You also need to become familiar with
the everyday features for representing information, performing calculations, and mak-
ing decisions. This chapter will introduce these core features of the C# language.

Getting Started
We’ll be working in Visual Studio, the Microsoft development environment. There are
other ways to build C# programs, but Visual Studio is the most widely used and it’s
freely available, so we’ll stick with that.

If you don’t have Visual Studio, you can download the free Express
edition from http://www.microsoft.com/express/.

In the first part of this chapter, we’ll create a very simple program so that you can see
the bare minimum of steps required to get up and running. We’ll also examine all of
the pieces Visual Studio creates for you so that you know exactly what the development
environment is doing for you. And then we’ll build some slightly more interesting ex-
amples to explore the C# language.

To create a new C# program, select the File→New Project menu option, or just use the
Ctrl-Shift-N shortcut. This will open Visual Studio’s New Project dialog, shown in
Figure 2-1, where you can pick the kind of program you want to build. In the Installed
Templates list on the lefthand side, ensure that the Visual C# item is expanded, and
inside that, select the Windows item—applications that run locally on Windows are
the easiest to create. We’ll get into other kinds of programs such as web applications
later in the book.

11

http://www.microsoft.com/express/

In the dialog’s center, select the Console Application template. This creates an old-
fashioned command-line application that runs in a console window. It might not be
the most exciting kind of program, but it’s the easiest to create and understand, so
that’s where we’ll start.

You need to pick a name for your program—by default, Visual Studio will suggest
something unimaginative such as ConsoleApplication1. In the Name field near the bot-
tom of the dialog, type HelloWorld. (OK, so that’s equally unimaginative, but at least
it’s descriptive.) Visual Studio also wants to know where you’d like to put the project
on your hard disk—put it wherever you like. It can also create a separate “solution”
directory. That’s something you’d do in a larger program made up of multiple com-
ponents, but for this simple example, you want the “Create directory for solution”
checkbox to be unchecked.

When you click the OK button, Visual Studio will create a new project, a collection of
files that are used to build a program. C# projects always contain source code files, but
they often include other types of files, such as bitmaps. This newly created project will
contain a C# source file called Program.cs, which should be visible in Visual Studio’s
text editor. In case you’re not following along in Visual Studio as you read this, the
code is reproduced in Example 2-1. By the way, there’s no particular significance to the
filename Program.cs. Visual Studio doesn’t care what you call your source files; by
convention, they have a .cs extension, short for C#, although even that’s optional.

Figure 2-1. Visual Studio’s New Project dialog

12 | Chapter 2: Basic Programming Techniques

Example 2-1. The code in a freshly created console application

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

This program doesn’t do anything yet. To turn it into the traditional first example,
you’ll need to add one line of code. This will go in between the two lines that contain
the most-indented pair of braces ({ and }). The modified version is shown in Exam-
ple 2-2, with the new line in bold.

Example 2-2. The traditional first example, “Hello, world”

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, world");
 }
 }
}

This example is now ready to run. From the Debug menu select the Start Without
Debugging item, or just press Ctrl-F5. The program will run, and because you’ve writ-
ten a console application, a console window will open. The first line of this window
will contain the text “Hello, world” and this will be followed by a prompt saying “Press
any key to continue...” Once you’ve finished admiring the fruits of your creation, press
a key to dismiss the window.

Don’t use Debug→Start Debugging or F5—this will run the application
in Visual Studio’s debugging mode, which doesn’t keep the window
open once the application has finished. That’s not helpful for this ex-
ample, which will most likely run to completion and then close the
window before you’ve had a chance to see the output.

Getting Started | 13

Now that we have a complete program, let’s look at the code to see what each part is
for—all of the pieces are things you’ll deal with every time you write in C#. Starting
from the top, Program.cs has several lines beginning with using:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

These using directives help the C# compiler work out what external code this particular
source file will be using. No code is an island—to get any useful work done, your
programs will rely on other code. All C# programs depend on the .NET Framework
class library, for example: the one line of code we added to our program uses the class
library to display a message. Using directives can declare an intent to use classes from
any library—yours, Microsoft’s, or anyone’s. All the directives in our example start
with System, which indicates that we want to use something from the .NET Framework.
This text that follows the using keyword denotes a namespace.

Namespaces and Types
The .NET Framework class library is big. To make it easier to find your way around
the many services it offers, the library is split into namespaces. For example, the
System.IO namespace offers I/O (Input/Output) services such as working with files on
disk, while System.Data.SqlClient is for connecting to a SQL Server database.

A namespace contains types. A type typically represents either a kind of information or
a kind of object. For example, there are types that provide the core forms of information
used in all programs, such as System.String which represents text, or the various nu-
meric types such as System.Double or System.Int32. Some types are more complex—
for example, the System.Net.HttpWebRequest class represents an HTTP request to be
sent to a web server. A few types do not represent any particular thing, but simply offer
a set of services, such as the System.Math class, which provides mathematical functions
such as Sin and Log, and constants such as π or the base of natural logarithms, e. (We
will explore the nature of types, objects, and values in much more detail in the next
chapter.)

All types in the .NET Framework class library belong to a namespace. The purpose of
a using directive is to save you from typing the namespace every single time you need
to use a class. For example, in a file that has a using System; directive you can just write
Math.PI to get the value of π, instead of using the full name, System.Math.PI. You’re not
required to write using directives, by the way—if you happen to enjoy typing, you’re
free to use the fully qualified name. But since some namespaces get quite long—for
example, System.Windows.Media.Imaging—you can see how the shorthand enabled by
a using directive can reduce clutter considerably.

You might be wondering why namespaces are needed at all if the first thing we usually
do is add a bunch of using directives to avoid having to mention the namespace

14 | Chapter 2: Basic Programming Techniques

anywhere else. One reason is disambiguation—some type names crop up in multiple
places. For example, the ASP.NET web framework has a type called Control, and so
do both WPF and Windows Forms. They represent similar concepts, but they are used
in completely different contexts (web applications versus Windows applications). Al-
though all of these types are called Control, they are distinct thanks to being in different
namespaces.

This disambiguation also leaves you free to use whatever names you want in your own
code even if some names happen to be used already in parts of the .NET class library
you never knew existed. Since there are more than 10,000 types in the framework, it’s
entirely possible that you might pick a name that’s already being used, but namespaces
make this less of a problem. For example, there’s a Bold class in .NET, but if you happen
not to be using part of the library it belongs to (WPF’s text services) you might well
want to use the name Bold to mean something else in your own code. And since .NET’s
own Bold type is hidden away in the System.Windows.Documents namespace, as long as
you don’t add a using directive for that namespace you’re free to use the name Bold
yourself to mean whatever you like.

Even when there’s no ambiguity, namespaces help you find your way around the class
library—related types tend to be grouped into one namespace, or a group of related
namespaces. (For example, there are various namespaces starting with System.Web con-
taining types used in ASP.NET web applications.) So rather than searching through
thousands of types for what you need, you can browse through the namespaces—there
are only a few hundred of those.

You can see a complete list of .NET Framework class library namespa-
ces, along with a short description of what each one is for, at http://msdn
.microsoft.com/library/ms229335.

Visual Studio adds four namespace directives to the Program.cs file in a new console
project. The System namespace contains general-purpose services, including basic data
types such as String, and various numeric types. It also contains the Console type our
program uses to display its greeting and which provides other console-related services,
such as reading keyboard input and choosing the color of your output text.

The remaining three using directives aren’t used in our example. Visual Studio adds
them to newly created projects because they are likely to be useful in many applications.
The System.Collections.Generic namespace contains types for working with collec-
tions of things, such as a list of numbers. The System.Linq namespace contains types
used for LINQ, which provides convenient ways of processing collections of informa-
tion in C#. And the System.Text namespace contains types useful for working with text.

The using directives Visual Studio adds to a new C# file are there just to save you some
typing. You are free to remove them if you happen not to be using those namespaces.
And you can add more, of course.

Namespaces and Types | 15

http://msdn.microsoft.com/library/ms229335
http://msdn.microsoft.com/library/ms229335

Removing Unwanted Using Directives
There’s a quick way to remove unwanted using directives. If you right-click anywhere
on your C# code, the context menu offers an Organize Usings item. This opens a
submenu that includes a Remove Unused Usings item—this works out which using
directives are surplus to requirements, and removes them. The submenu offers another
option designed to appeal to those who like to keep their source code tidy—its Remove
and Sort entry can remove unused using statements and then sort the rest into alpha-
betical order. This menu is shown in Figure 2-2.

Figure 2-2. Tidying up using directives

The using directives are not the end of our simple program’s encounter with name-
spaces. In fact, the very next line of code after these directives is also concerned with
namespaces:

namespace HelloWorld
{
 ...
}

While using directives declare which namespaces our code consumes, this namespace
keyword tells the compiler what namespace we plan to provide—the types we write in
our programs belong to namespaces just like the types in the class library.* Here, Visual
Studio has presumed that we’d like to put our code into a namespace named after the
project we created. This is a common practice, although you’re free to use whatever

* Strictly speaking, you can leave out the namespace, in which case your types will end up in the so-called
global namespace. But this is considered a poor practice—you’ll normally want your own code to reap the
same benefits that class libraries get from namespaces.

16 | Chapter 2: Basic Programming Techniques

names you like for your namespaces—there’s no requirement that the namespace name
match the program name.

The C# compiler will even let you put your own code into namespaces
whose names begin with System, but you should not do this (at least,
not unless you work for Microsoft and are adding types to some future
version of .NET’s class library). You’re likely to cause confusion if you
break the convention that System namespaces contain .NET Framework
types.

Notice that the namespace is followed by an open brace ({). C# uses braces to denote
containment—here, everything inside these braces will be in our HelloWorld name-
space. Since namespaces contain types, it should come as no great surprise that the
next line in the file defines a type. Specifically, it defines a class.

The .NET Framework class library isn’t the only thing that gets to define classes—in
fact, if you want to write any code at all in C# you must provide a type to contain that
code. Some languages (such as C++) do not impose this constraint, but C# is an object-
oriented (OO) programming language. We’ll explore OO concepts in the next chapter,
but the main impact on our “Hello, world” example is that every bit of C# code must
have a type that it calls home.

There are a few different ways to define types in C#, which we’ll get to in the next few
chapters, but for the present simple example, the distinctions are not yet relevant. So
we use the most common, a class:

class Program
{
 ...
}

Again, note the braces—as with the namespace contents, the class’s contents are de-
lineated by a pair of braces.

We’re still not quite at the code yet—code lives inside a class, but more specifically, it
must live inside a particular method inside a class. A method is a named block of code,
which may optionally return some data. The class in our example defines a method
called Main, and once again we use a pair of braces to show where it starts and ends:

static void Main(string[] args)
{
 ...
}

The first keyword here, static, tells C# that it’s not necessary to create a Program object
(Program being the class that contains this method, remember) in order to use this
method. As you’ll see in the next chapter, a lot of methods require an object, but our
simple example doesn’t need one.

Namespaces and Types | 17

The next keyword is void. This tells the compiler that our method doesn’t return any
data—it just does some work. Many methods return information. For example, the
System.Math class’s Cos method calculates the cosine of its input, and since it doesn’t
know what you want to do with that result, it provides it as a return value—the output
of the method. But the code in this example is rather more proactive than that—it
decides to show a message on the screen, so there’s nothing for it to return.† On meth-
ods that return data, you’d write the type of data being returned here, but since there’s
nothing to return in this case, the nothingness is denoted by the void keyword.

The next part, Main, is the name of the method. This happens to be a special name—
the C# compiler will expect your program to provide one static method called Main,
and it’ll run that method when the program is launched.

The method name is followed by a parameter list, which declares the input the method
requires. This particular example’s parameter list is (string[] args), which says that
it expects just a single input and that the code will refer to it using the name args. It
expects this input to be a sequence of text strings (the square brackets indicating that
multiple strings may be passed instead of just one). As it happens, this particular pro-
gram doesn’t use this input, but it’s a standard feature of the specially named Main
method—command-line arguments are passed in here. We’ll return to this later in the
chapter when we write a program that makes use of command-line arguments, but for
now, our example doesn’t use it. So we’ll move on to the final part of the example—
the code inside the Main method that was the one part we added to Visual Studio’s
contributions and which represents the only work this program does:

Console.WriteLine("Hello, world");

This shows the C# syntax for invoking a method. Here we’re using a method provided
by the Console class, which is part of the .NET Framework class library, and it is defined
in the System namespace. We could have written the fully qualified name, in which case
the code would look like this:

System.Console.WriteLine("Hello, world");

But because of the using System; directive earlier, we can use the shorter version—it
means the same thing, it’s just more concise. The Console class provides the ability to
display text in a console window and to read input typed by the user in an old-fashioned
command-line application. In this case, we’re invoking the class’s WriteLine method,
passing it the text "Hello, world". The WriteLine method will write whatever text we
provide out to the console window.

† This is the essential difference between the so-called functional and procedural approaches to coding, by the
way. Code that just performs a computation or calculation and returns the result is called “functional”
because it’s similar in nature to mathematical functions such as cosine, and square root. Procedural code
tends to perform a sequence of actions. In some languages, such as F#, the functional style dominates, but
C# programs typically use a mixture of both styles.

18 | Chapter 2: Basic Programming Techniques

You’ll have noticed that the dot (.) is being used to mean different things
here. We can use it to delineate the namespace name and the type name;
for example, System.Console means the Console type in the System
namespace. It can also be used to break up a namespace name, as in
System.IO. Our example also uses it to indicate that we want to use a
particular method provided by a class, as in Console.WriteLine. And as
you’ll see, the dot turns up in a few other places in C#.

Broadly speaking, the dot signifies that we want to use something that’s
inside something else. The C# compiler works out from context exactly
what that means.

Although we picked over every line of code in this simple example, we haven’t quite
finished exploring what Visual Studio did for us when we asked it to create a new
application. To fully appreciate its work, we need to step out of the Program.cs source
file and look at the whole project.

Projects and Solutions
It’s rare for a useful program to be so simple that you would want all of its source code
in one file. You may occasionally stumble across horrors such as a single file containing
tens of thousands of lines of code, but in the interest of quality (and sanity) it’s best to
try to keep your source code in smaller, more manageable chunks—the larger and more
complex anything gets the more likely it is to contain flaws. So Visual Studio is built to
work with multiple source files, and it provides a couple of concepts for structuring
your programs across those files: projects and solutions.

A project is a collection of source files that the C# compiler combines to produce a
single output—typically either an executable program or a library. (See the sidebar on
the next page for more details on the compilation process.) The usual convention in
Windows is that executable files have an .exe extension while libraries have a .dll ex-
tension. (These extensions are short for executable and dynamic link library, respec-
tively.) There isn’t a big difference between the two kinds of file; the main distinction
is that an executable program is required to have an entry point—the Main function. A
library is not something you’d run independently; it’s designed to be used by other
programs, so a DLL doesn’t have its own entry point. Other than that, they’re pretty
much the same thing—they’re just files that contain code and data. (The two types of
file are so similar that you can use an executable as though it were a library.) So Visual
Studio projects work in much the same way for programs and libraries.

Projects and Solutions | 19

Source Code, Binary, and Compilation
The .exe and .dll files produced by Visual Studio do not contain your source code. If
you were to look at the HelloWorld.exe file produced by our example, it would not
contain a copy of the text in the Program.cs file. C# is a compiled language, meaning
that during the development process, the source is converted into a binary format that
is easier for the computer to execute. Visual Studio compiled your code automatically
when you ran the program earlier.

Not all languages work this way. For example, JavaScript, a language used to add dy-
namic behavior to web pages, does not need to be compiled—your web browser down-
loads the source for any JavaScript required and runs it directly. But there are a few
disadvantages with this.

First, source code tends to be rather verbose—it’s important that source code be mean-
ingful to humans as well as computers, because when we come to modify a program,
we need to understand the code before changing it. But a computer can work with very
dense binary representations of information, which makes it possible for compiled code
to be much smaller than the source, thus taking up less space on disk and taking less
time to download.

Second, human-readable representations are relatively hard work for computers to
process—computers are more at home with binary than with text. Compilation pro-
vides the opportunity to convert all the human-readable text into a form more con-
venient for the computer in advance. So compiled code tends to run faster than a system
that works directly with the source. (In fact, although JavaScript was not designed to
be compiled, modern JavaScript engines have taken to compiling script after down-
loading it to speed things up. This still leaves it at a disadvantage to a language such as
C# where compilation happens during development—when a script runs for the first
time with such a system, the user of the web page has to wait while the script is down-
loaded and compiled.)

Some languages compile code into native machine language—the binary code that can
be executed directly by a computer’s CPU. This offers a performance benefit: code
compiled in this way doesn’t require any further processing to run. However, .NET
languages don’t do this, because it limits where a compiled program can execute. As
we mentioned in the first chapter, .NET languages compile into a so-called Intermediate
Language (IL for short). This is a binary representation, so it’s compact and efficient
for computers to process, but it’s not specific to any particular CPU type, enabling .NET
programs to run on either 32-bit or 64-bit machines, or on different CPU architectures.
The .NET Framework converts this IL into native machine language just before running
it, a technique referred to as JIT (Just In Time) compilation. JIT compilation offers the
best of both worlds: it’s much faster than compiling from the source, but it still retains
the flexibility to target different machine types.

20 | Chapter 2: Basic Programming Techniques

Some project types produce neither libraries nor executables. For ex-
ample, there’s a project type for building .msi (Windows Installer) files
from the outputs of other projects. So strictly speaking, a project is a
fairly abstract idea: it takes some files and builds them into some kind
of output. But projects containing C# code will produce either an EXE
or a DLL.

A solution is just a collection of related projects. If you are writing a library, you’ll
probably want to write an application that uses it—even if the library is ultimately
destined to be used by other people, you’ll still want to be able to try it out for testing
and debugging purposes, so it’s useful to be able to have one or more applications that
exercise the library’s functionality. By putting all of these projects into one solution,
you can work with the DLL and its test applications all at once. By the way, Visual
Studio always requires a solution—even if you’re building just one project, it is always
contained in a solution. That’s why the project’s contents are shown in a panel called
the Solution Explorer, shown in Figure 2-3.

Figure 2-3. HelloWorld project in the Solution Explorer

The Solution Explorer is usually visible on the righthand side of Visual Studio, but if
you don’t see it you can open it with the View→Solution Explorer menu item. It shows
all the projects in the solution—just the HelloWorld project in this example. And it
shows all the files in the solution—you can see the Program.cs file we’ve been examining
near the bottom of Figure 2-3. Farther up is an extra file we haven’t looked at, called
AssemblyInfo.cs. If you open this you’ll see that Visual Studio puts version number and
copyright information in that file—users will see this information if they view the com-
piled output’s properties in Windows Explorer.

Projects and Solutions | 21

You might find that on your system, the Solution Explorer doesn’t show
the Solution node that’s visible at the top of Figure 2-3, and just shows
the HelloWorld project. Visual Studio can be configured to hide the sol-
ution when it contains just a single project. If you don’t see the solution
and would like to, select the Tools→Options menu item, and in the
Options dialog that opens select the Projects and Solutions item. One
of the options will be the “Always show solution” checkbox—check this
if you want to see the solution in the Solution Explorer even when you’ve
got only one project.

Besides the C# source files, the Solution Explorer as shown in Figure 2-3 also has a
References section. This contains a list of all the libraries your project uses. By default,
Visual Studio populates this with a list of DLLs from the .NET Framework class library
that it thinks you might find useful.

You might be experiencing déjà vu right now—didn’t we already tell the compiler
which bits of the library we want with using directives? This is a common cause of
confusion among developers learning C#. Namespaces are not libraries, and neither
one is contained by the other. These facts are obscured by an apparent connection. For
example, the System.Data library does in fact define a load of types in the System.Data
namespace. But this is just a convention, and one that is only loosely followed. Libraries
are often, but not always, named after the namespace with which they are most strongly
associated, but it’s common for a library to define types in several different namespaces
and it’s common for a namespace’s types to be distributed across several different li-
braries. (If you’re wondering how this chaos emerged, see the sidebar below.)

Namespaces and Libraries
The distribution of types across DLLs in the class library is driven by a combination of
efficiency requirements and history. The System.Core library is a good example of the
latter. There is no System.Core namespace—this library defines types in numerous
namespaces including System, System.IO, and System.Threading. But you’ll also find
types in these same three namespaces in the System library and also a library called
mscorlib. (All .NET programs have a reference to mscorlib, and since it’s mandatory,
Visual Studio doesn’t show it in the Solution Explorer. It’s where critical types such as
System.String and System.Int32 are defined.) One of the reasons System.Core exists as
a separate DLL is that it first appeared in version 3.5 of .NET. With versions 3.0 and
3.5 of .NET, Microsoft chose to put completely new functionality into new DLLs rather
than altering the DLLs that were provided in version 2.0. This packaging decision—
choosing which types go in which DLLs—was independent from the conceptual deci-
sion of which types belong in which namespaces.

History doesn’t explain the whole story, though. Even the very first version of .NET
split its namespaces across multiple libraries. One common reason for this was to avoid
loading code that is never used. You wouldn’t want a desktop application to waste time
and memory by loading the libraries for building web applications. In some cases,

22 | Chapter 2: Basic Programming Techniques

namespaces are actually a pretty good guide to partitioning—chances are good that if
you use one type from one of the System.Web namespaces, you’re going to be using lots
of them. But there are a few cases in which namespaces are not the best way to determine
packaging. For example, the System.Printing namespace is split across two libraries:
the System.Printing library contains general print-related classes, but the ReachFrame
work library adds extra types to the namespace that you may need if you’re working
with a particular kind of printable document called an XPS file. If you’re not using that
feature, you don’t need a reference to that specialized DLL.

This raises a question: how do you know where to find things? It’s frustrating when
adding a reference to the System.Printing library fails to give you access to the types in
the System.Printing namespace that you were looking for. Fortunately, the help pages
for each type tell you both the namespace and the library file (assembly) containing the
type.

The upshot is that the C# compiler cannot work out which libraries you want from
your using directives, because in general it’s not possible to deduce which libraries are
required from the namespaces alone. So a project needs to list which libraries it uses,
and then individual source files in that project can declare which namespaces they are
using. Visual Studio provides you with a set of references that it hopes will be useful,
and for this very simple example, we’re not actually using most of them.

Visual Studio notices when your code doesn’t use all of the libraries your
project references, and automatically omits references to any unused
libraries. This makes your binary slightly smaller than it would be if
unnecessary references were left in.

You can add or remove references to suit whatever program you’re building. To remove
a reference, you can just select the library in the Solution Explorer and press the Delete
key. (As it happens, our program is so simple that it depends only on the mandatory
mscorlib library, so you could remove every DLL shown, and as long as you also remove
any unused using directives from the source code, the program will still work.) To add
a reference to a library, you can right-click on the References item and choose the Add
Reference menu item. We’ll explore all of this in more detail in Chapter 15.

It’s almost time to move on from “Hello, world” and start to explore more of the core
language features, but first let’s recap what we’ve seen. The one line of executable code
in our program invokes the WriteLine method of the System.Console class to print a
message. This code lives inside a method whose special name, Main, marks it out as the
method to run when the program starts. That method is contained by a class called
Program, because C# requires all methods to belong to a type. This class is a member
of the HelloWorld namespace, because we chose to follow the convention of having our
namespace match the name of the compiled binary. Our program uses the using di-
rectives supplied by Visual Studio to be able to refer to the Console class without needing
to specify its namespace explicitly. So if you take one more look at the program, you

Projects and Solutions | 23

now know what every single line is for. (It is reproduced in Example 2-3, with the
unused using directives removed.)

Example 2-3. “Hello, world” again (with fewer using directives)

using System;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, world");
 }
 }
}

With the whole example in one place, you can see clearly that the code is indented to
reflect the structure. This is a common practice, but it’s not strictly necessary. As far
as the C# compiler is concerned, when it comes to the space between elements of the
language, there’s no difference between a single space, multiple spaces or tabs, or even
blank lines—the syntax treats any contiguous quantity of whitespace as it would a
single space.‡ So you are free to use space in your source code to improve legibility.
This is why C# requires the use of braces to indicate containment, and it’s also why
there’s a semicolon at the end of the line that prints out the message. Since C# doesn’t
care whether we have one statement of code per line, split the code across multiple
lines, or cram multiple statements onto one line, we need to be explicit about the end
of each instruction, marking it with a ; so that the compiler knows where each new
step of the program begins.

Comments, Regions, and Readability
While we’re looking at the structure and layout of source code, we need to examine a
language feature that is extremely important, despite having precisely no effect on the
behavior of your code. C# lets you add text to your source file that it will completely
ignore. This might not sound important, or even useful, but it turns out to be vital if
you want to have any hope of understanding code you wrote six months ago.

There’s an unfortunate phenomenon known as “write-only code.” This is code that
made some kind of sense to whoever wrote it at the time, but is incomprehensible to
anyone trying to read it at a later date, even if the person reading it is its author. The
best defense against this problem is to think carefully about the names you give the

‡ With the odd exception: in a string constant such as the “Hello, world” text in this example, whitespace is
treated literally—C# presumes that if you put, say, three spaces in some text enclosed in double quotes, you
really want three spaces.

24 | Chapter 2: Basic Programming Techniques

features of your code and the way you structure your programs. You should strive to
write your code so that it does what it looks like it does.

Unfortunately, it’s sometimes necessary to do things in a nonobvious way, so even if
your code is sufficiently clear that it’s easy to see what it does, it may not be at all clear
why it does certain things. This tends to happen where your code meets other code—
you might be interacting with a component or a service that’s idiosyncratic, or just plain
buggy, and which works only if you do things in a particular way. For example, you
might find that a component ignores the first attempt to do something and you need
to add a redundant-looking line of code to get it to work:

Frobnicator.SetTarget("");
Frobnicator.SetTarget("Norfolk");

The problem with this sort of thing is that it’s very hard for someone who comes across
this code later on to know what to make of it. Is that apparently redundant line delib-
erate? Is it safe to remove? Intrigue and ambiguity might make for engaging fiction, but
these characteristics are rarely desirable in code. We need something to explain the
mystery, and that’s the purpose of a comment. So you might write this:

// Frobnicator v2.41 has a bug where it crashes occasionally if
// we try to set the target to "Norfolk". Setting it to an empty
// string first seems to work around the problem.
Frobnicator.SetTarget("");
Frobnicator.SetTarget("Norfolk");

This is now less mysterious. Someone coming across this code knows why the appa-
rently redundant line was added. It’s clear what problem it solves and the conditions
under which that problem occurs, which makes it possible to find out whether the
problem has been fixed in the most recent version of the offending component, making
it possible to remove the fix. This makes it much easier to maintain code in the long run.

As far as C# is concerned, this example is identical to the one without comments.
The // character sequence tells it to ignore any further text up to the end of the line.
So you can either put comments on their own line as shown earlier, or tack them onto
the end of an existing line:

Frobnicator.SetTarget(""); // Workaround for bug in v2.41

Like most of the C-family languages, C# supports two forms of comment syntax. As
well as the single-line // form, you can write a comment that spans multiple lines,
denoting the start with /* and the end with */, for example:

/* This is part of a comment.
 This continues to be part of the same comment.
 Here endeth the comment. */

Comments, Regions, and Readability | 25

Bad Comments
While comments can be very useful, many, sadly, are not. There are a couple of
particularly common mistakes people make when writing comments, and it’s worth
drawing attention to them so that you know what to avoid. Here’s the most common
example:

// Setting target to empty string
Frobnicator.SetTarget("");
// Setting target to Norfolk
Frobnicator.SetTarget("Norfolk");

These comments just repeat what the code already said. This is clearly a waste of space,
but it’s surprisingly common, particularly from inexperienced developers. This may be
because they’ve been told that comments are good, but they have no idea what makes
a good comment. A comment should say something that’s not obvious from the code
and which is likely to be useful to anyone trying to understand the code.

The other common form of bad comment looks like this:

// Setting target to Norfolk
Frobnicator.SetTarget("Wiltshire");

Here, the comment contradicts the code. It seems like it shouldn’t be necessary to say
that you shouldn’t do that, but it’s surprising how often you see this sort of thing in
real code. It usually happens because someone modified the code without bothering
to update the comment. A quick review of the comments after a code change is always
worth doing. (Not least because if you’ve not paid enough attention to detail to notice
that the comments are no longer accurate, chances are there are other problems you’ve
not noticed.)

XML Documentation Comments
If you structure your comments in a certain way, Visual Studio is able to present the
information in those comments in tool tips whenever developers use your code. As
Example 2-4 shows, documentation comments are denoted with three slashes, and they
contain XML elements describing the target of the comment—in this case, there’s a
description of a method, its parameters, and the information it returns.

Example 2-4. XML documentation comments

/// <summary>
/// Returns the square of the specified number.
/// </summary>
/// <param name="x">The number to square.</param>
/// <returns>The squared value.</returns>
static double Square(double x)
{
 return x * x;
}

26 | Chapter 2: Basic Programming Techniques

If a developer starts writing code to invoke this method, Visual Studio will show a pop
up listing all available members matching what she’s typed so far, and also adds a tool
tip showing the information from the <summary> element of the selected method in the
list, as Figure 2-4 shows. You’ll see similar information when using classes from
the .NET Framework—documentation from its class libraries is provided as part of
the .NET Framework SDK included with Visual Studio. (The C# compiler can extract
this information from your source files and put it in a separate XML file, enabling you
to provide the documentation for a library without necessarily having to ship the source
code.)

Figure 2-4. Summary information from XML documentation

The <param> information shows up as you start to type arguments, as Figure 2-5 shows.
The <returns> information doesn’t appear here, but there are tools that can build doc-
umentation from this information into HTML files or help files. For example, Microsoft
provides a tool called Sandcastle, available from http://www.codeplex.com/Sandcastle,
which can generate documentation with a similar structure to the documentation for
Microsoft’s own class libraries.

Figure 2-5. Parameter information from XML documentation

We’re moving on from “Hello, world” now, so this is a good time to create a new project
if you’re following along in Visual Studio as you read. (Select File→New Project or press
Ctrl-Shift-N. Note that, by default, this will create a new solution for your new project.
There’s an option in the New Project dialog to add the new project to the existing
solution, but in this case, let it create a new one.) Create another console application
and call it RaceInfo—the code is going to perform various jobs to analyze the perform-
ance of a race car. Let Visual Studio create the project for you, and you’ll end up with
much the same code as we had in Example 2-1, but with the Program class in a name-
space called RaceInfo instead of HelloWorld. The first task will be to calculate the average
speed and fuel consumption of the car, so we need to introduce the C# mechanism for
holding and working with data.

Comments, Regions, and Readability | 27

http://www.codeplex.com/Sandcastle

Variables
C# methods can have named places to hold information. These are called variables,
because the information they contain may be different each time the program runs, or
your code may change a variable while the program runs. Example 2-5 defines three
variables in our program’s Main method, to represent the distance traveled by the car,
how long it has been moving, and how much fuel it has consumed so far. These variables
don’t vary at all in this example—a variable’s value can change, but it’s OK to create
variables whose value is fixed.

Example 2-5. Variables

static void Main(string[] args)
{
 double kmTravelled = 5.14;
 double elapsedSeconds = 78.74;
 double fuelKilosConsumed = 2.7;
}

Notice that the variable names (kmTravelled, elapsedSeconds, and fuelKilosConsumed)
are reasonably descriptive. In algebra it’s common to use single letters as variable
names, but in code it is a good practice to use names that make it clear what the variable
holds.

If you can’t think of a good descriptive name for a variable, that’s often
a symptom of trouble. It’s hard to write code that works if it’s not clear
what information the code is working with.

These names indicate not just what the variables represent, but also their units. This is
of no significance to the compiler—we could call the three variables tom, dick, and
harry for all it cares—but it’s useful for humans looking at the code. Misunderstandings
about whether a particular value is in metric or imperial units have been known to cause
some extremely expensive problems, such as the accidental destruction of spacecraft.
This particular race team seems to use the metric system. (If you’re wondering why the
fuel is in kilograms rather than, say, liters, it’s because in high-performance motor
racing, fuel is typically measured by weight rather than volume, just like it is in aviation.
Fuel tends to expand or contract as the temperature changes—you get better value for
your money if you refill your car in the morning on a cold day than in the middle of a
hot day—so mass is more useful because it’s a more stable measure.)

Variable Types
All three of the variable declarations in Example 2-5 start with the keyword double.
This tells the compiler what kind of information the variable holds. For this example,
we’re clearly working with numbers, but .NET offers several different numeric types.
Table 2-1 shows the complete set, and it may look like a bewildering assortment of

28 | Chapter 2: Basic Programming Techniques

options, but in practice the choice usually goes one of three ways: int, double, or
decimal, which represent integers, floating-point, or decimal floating-point numbers,
respectively.

Table 2-1. Numeric types

C# name .NET name Purpose

float System.Single Whole numbers and a limited range of fractions, with a wide range of values thanks to
“floating point.” Occupies 32 bits of space.

double System.Double Double-precision version of float—same idea, but using 64 bits.

byte System.Byte Non-negative integer. Occupies 8 bits. Represents values from 0 to 255.

sbyte System.SByte Signed integer. Occupies 8 bits. Represents values from −128 to 127.

short System.Int16 Signed integer. Occupies 16 bits. Represents values from −32,768 to 32,767.

ushort System.UInt16 Non-negative integer. Occupies 16 bits. Represents values from 0 to 65,535.

int System.Int32 Signed integer. Occupies 32 bits. Represents values from −2,147,483,648 to
2,147,483,647.

uint System.UInt32 Nonnegative integer. Occupies 32 bits. Represents values from 0 to 4,294,967,295.

long System.Int64 Signed integer. Occupies 64 bits. Represents values from −9,223,372,036,854,775,808
to 9,223,372,036,854,775,807.

ulong System.UInt64 Nonnegative integer. Occupies 64 bits. Represents values from 0 to
18,446,744,073,709,551,615.

(none) System.Numer
ics.BigInteger

Signed integer. Grows in size as required. Value range limited only by available memory.

decimal System.Decimal Supports whole numbers and fractions. Slightly less efficient than double, but provides
more predictable behavior when using decimal fractions.

Integers

The int type (short for integer) represents whole numbers. That’s clearly no use for our
example, because we’re dealing with numbers such as 5.14, and the closest that an
int can get to that value is 5. But programs often deal with discrete quantities, such as
the number of rows returned by a database query or the number of employees reporting
to a particular manager. The principal advantage of an integer type is that it’s exact:
there’s no scope for wondering if the number is really 5, or maybe just a number quite
close to 5, such as 5.000001.

Table 2-1 lists nine types capable of representing integers. The ninth, BigInteger, is a
special case that we’ll get to later. The other eight support four different sizes, with a
choice between the ability and inability to represent negative numbers.

Unsigned numbers may seem less flexible, but they are potentially useful if you need
to represent values that should never be negative. However, the unsigned integer types
are not widely used—some programming languages don’t support them at all, and so
you’ll find that the .NET Framework class library tends to use the signed types even

Variables | 29

when the unsigned ones might make more sense. For example, the Count property
available on most collection types is of type int—a signed 32-bit integer—even though
it does not make sense for a collection to contain a negative number of items.

Unsigned integers can also represent larger numbers than their signed
equivalents. They don’t need to use up a bit to represent the sign, so
they can use that to extend the range instead. However, this is something
you should be wary of depending on. If you’re so close to the limits of
a type’s range that one more bit makes a difference, you’re probably in
danger of overflowing the type’s range in any case, and so you should
consider a larger type.

Besides the signed/unsigned distinction, the various types offer different sizes, and a
correspondingly different range of values. 32 bits is a popular choice because it offers
a usefully wide range of values and is efficient for a 32-bit processor to work with. 64-
bit types are used for the (fairly rare) occasions when you’re dealing with large enough
quantities that a 32-bit representation’s range of a couple of billion is insufficient. 16-
bit values are rarely used, although they occasionally crop up when having to deal with
old programming interfaces, file formats, or network protocols.

The 8-bit byte type is important because binary I/O (e.g., working with files or network
connections) is mostly byte-oriented. And for reasons of historical convention, bytes
buck the trend in that the unsigned type is used more widely than the signed sbyte type.
But outside of I/O, a byte is usually too small to be useful.

So in practice, int is the most widely used integer type. The fact that C# even offers
you all these other choices can seem a little archaic—it harks back to the time when
computers had so little memory that 32-bit numbers looked like an expensive choice.
It gets this from its C-family connections, but it does turn out to be useful to have this
control when you need to work directly with Windows APIs, as you’ll see in Chapter 19.

Notice that most of the types in Table 2-1 have two names. C# uses names such as
int and long, but the .NET Framework calls these types by longer names such as
System.Int32 and System.Int64. The shorter C# names are aliases, and C# is happy to
let you use either. You can write this:

int answer = 42;

or this:

System.Int32 answer = 42;

or, if your C# source file has a using System; directive at the top, you can write this:

Int32 answer = 42;

30 | Chapter 2: Basic Programming Techniques

All of these are equivalent—they produce exactly the same compiled output. The last
two are equivalent simply because of how namespaces work, but why does C# support
a completely different set of aliases? The answer is historical: C# was designed to be
easy to learn for people who are familiar with the so-called C family of languages, which
includes C, C++, Java, and JavaScript. Most of the languages in this family use the same
names for certain kinds of data types—most use the name int to denote a conveniently
sized integer, for example. So C# is merely following suit—it allows you to write code
that looks like it would in other C-family languages.

By contrast, the .NET Framework supports many different languages, so it takes the
prosaic approach of giving these numeric data types descriptive names—it calls a 32-
bit integer System.Int32. Since C# lets you use either naming style, opinion is divided
on the matter of which you should use.§ The C-family style (int, double, etc.) seems to
be the more popular.

Version 4 of the .NET Framework introduces an extra integer type that works slightly
differently from the rest: BigInteger. It does not have a C-style name, so it’s known
only by its class library name. Unlike all the other integer types, which occupy a fixed
amount of memory that determines their range, a BigInteger can grow. As the number
it represents gets larger, it simply consumes more space. The only theoretical limit on
range is the amount of memory available, but in practice, the computational cost of
working with vast numbers is likely to be the limiting factor. Even simple arithmetic
operations such as multiplication can become rather expensive with sufficiently vast
numbers. For example, if you have two numbers each with 1 million decimal digits—
each number occupies more than 400 kilobytes of memory—multiplying these together
takes more than a minute on a reasonably well-specified computer. BigInteger is useful
for mathematical scenarios when you need to be able to work with very large numbers,
but in more ordinary situations, int is the most popular integer type.

Integers are all very well for countable quantities, but what if you need the ability to
represent something other than a whole number? This is where floating-point types
come in.

Floating point

The double and float types both offer the ability to support numbers with a fractional
component. For example, you can represent the value 1.5 with either of these types,
which you can’t do with any of the integer types. The only difference between double
and float is the level of precision available: since floating-point numbers have a fixed
size, they can offer only a limited amount of precision. This means that they cannot
represent any fraction—the limited precision means floating-point numbers can only
represent most numbers approximately.

§ Whenever more than one way of doing something exists in a programming system, a schism inevitably forms,
offering the opportunity for long and pointless arguments over which is “better.”

Variables | 31

Floating Point
If you’re wondering why these are called floating-point types, the name is a technical
description of how they work internally. These numbers contain a fixed number of
binary digits to hold the value, and then another number that says where the . should
go. So the point is a binary point, the binary equivalent of a decimal point. It’s float-
ing because it can move around.

A float offers about seven decimal places of precision, whereas a double offers about
17. (Strictly speaking, they offer 23 and 52 binary places of precision, respectively.
These are binary formats, so their precision does not correspond to an exact number
of decimal places of precision.) So the following code:

double x = 1234.5678;
double y = x + 0.0001;
Console.WriteLine(x);
Console.WriteLine(y);

prints out what you’d expect:

1234.5678
1234.5679

If instead we use the float type:

float x = 1234.5678f;
float y = x + 0.0001f;
Console.WriteLine(x);
Console.WriteLine(y);

we get this:

1234.568
1234.568

This often surprises new developers, but it’s normal, and is by no means unique to C#.
If only a limited amount of space is available, you simply cannot represent all possible
numbers with complete accuracy. Floating point, approximate as it is, is the standard
way to represent noninteger numbers in most programming languages, and you’ll see
this sort of inaccuracy anywhere.

32 | Chapter 2: Basic Programming Techniques

Notice that when modifying the code to use float instead of double, we
added the letter f to the end of the constants—0.0001f instead of just
0.0001, for example. This is because C# treats a number with a decimal
point as a value of type double, and if we try to store this in a variable
of type float, we risk losing data due to the lower precision. Such code
is treated as an error, hence the need to explicitly tell C# that we know
we’re working with single-precision floating-point values, with the f
suffix. If you have a double you really would like to turn into a float,
and you are prepared to tolerate the loss of precision, you can tell C#
this with a cast operator. For example:

double x = 1234.5678;
double y = x + 0.0001;
float impreciseSum = (float) (x + y);

The (float) syntax here is a cast, an explicit instruction to the compiler
that we want to convert the type. Since we are being explicit, the com-
piler does not treat this as an error.

For a lot of applications, limited precision is not too big a problem as long as you’re
aware of it, but there’s a slightly subtler problem that afflicts double and float. They
are both binary representations, because that’s the most efficient way of packing pre-
cision into the space available. However, it means that you can get some surprising-
looking results when working in decimal. For example, the number 0.1 cannot be rep-
resented accurately as a finite-length binary fraction. (For much the same reason that
1/9 cannot accurately be represented as a finite-length decimal fraction. In either case,
you end up with a recurring [i.e., infinitely long] number: 1/9 in decimal is 0.1111
recurring; 1/10 in decimal is 0.1, but in binary it’s 0.00011001100110011 recurring.)
Take the following example:

float f1 = 0.1f;
float f2 = f1 + 0.1f;
float f3 = f2 + 0.1f;
float f4 = f3 + 0.1f;
float f5 = f4 + 0.1f;
float f6 = f5 + 0.1f;
float f7 = f6 + 0.1f;
float f8 = f7 + 0.1f;
float f9 = f8 + 0.1f;
Console.WriteLine(f1);
Console.WriteLine(f2);
Console.WriteLine(f3);
Console.WriteLine(f4);
Console.WriteLine(f5);
Console.WriteLine(f6);
Console.WriteLine(f7);
Console.WriteLine(f8);
Console.WriteLine(f9);

Variables | 33

(We’ll see how to avoid such highly repetitive code when we get to loops later in the
chapter, by the way.) This shows the following rather suspect output:

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8000001
0.9000001

The inability to represent 0.1 accurately is not initially obvious, because .NET rounds
the numbers when displaying them, masking the problem. However, as we keep adding
numbers together, the inaccuracies add up and eventually start to become visible. As
you can imagine, accountants don’t like this sort of thing—if those numbers happened
to represent fund transfers measured in billions of dollars, having $0.0000001 billion
($100) suddenly appear out of nowhere every eight transactions would be considered
a bad practice. This is why there’s a special numeric type just for working in decimal.

Decimal floating point

The decimal type (or System.Decimal, as .NET calls it) is superficially very similar to
double and float, except its internal representation is adapted to decimal representa-
tions. It can represent up to 28 decimal digits of precision, and unlike the two binary
floating-point types, any number that can be written as a 28-digit (or fewer) decimal
can be represented completely accurately as a decimal variable. The value 0.1 fits com-
fortably into 28 digits with room to spare, so this would fix the problem in the previous
example. The decimal type still has limited precision; it just has less surprising behavior
if you’re looking at all your numbers in decimal.

So if you are performing calculations involving money, decimal is likely to be a better
choice than double or float. The trade-off is that it’s slightly less efficient—computers
are more at home in binary than decimal. For our race information application, we
don’t have any particular need for decimal fidelity, which is why we’re using the
double type in Example 2-5.

Getting back to that example, recall that we defined three variables that hold the dis-
tance our car has traveled, how long it took, and how much fuel it burned in the process.
Here it is again so that you don’t have to flip back to it:

static void Main(string[] args)
{
 double kmTravelled = 5.141;
 double elapsedSeconds = 78.738;
 double fuelKilosConsumed = 2.7;
}

34 | Chapter 2: Basic Programming Techniques

Now that we’ve looked at the numeric types, the structure of these lines is pretty clear.
We start with the type of data we’d like to work with, followed by the name we’d like
to use, and then we use the = symbol to assign a value to the variable. But assigning
constant values isn’t very exciting. You can get the computer to do more useful work,
because you can assign an expression into a variable.

Expressions and Statements
An expression is a piece of code that produces a value of some kind. We’ve actually
seen several examples already, the most basic being the numbers we’re assigning into
the variables. So in our example, a number such as:

5.141

is an expression. Expressions where we just tell C# what value we want are called
literal expressions. More interestingly, expressions can perform calculations. For ex-
ample, we could calculate the distance traveled per kilogram of fuel consumed with the
expression in Example 2-6.

Example 2-6. Dividing one variable by another

kmTravelled / fuelKilosConsumed

The / symbol denotes division. Multiplication, addition, and subtraction are done with
*, +, and -, respectively.

You can combine expressions together too. The / operator requires two inputs—the
dividend and the divisor—and each input is itself an expression. We were able to use
variable names such as kmTravelled because a variable name is valid as an expression—
the resultant value is just whatever that variable’s value is. But we could use literals, as
Example 2-7 shows. (A trap awaits the unwary here; see the sidebar on the next page.)

Example 2-7. Dividing one literal by another

60 / 10

Or we could use a mixture of literals and variable names to calculate the elapsed time
in minutes:

elapsedSeconds / 60

or a multiplication expression as one of the inputs to a division expression to calculate
the elapsed time in hours:

elapsedSeconds / (60 * 60)

Expressions and Statements | 35

Integer Versus Floating-Point Division
There’s a subtle difference between how division works in Examples 2-6 and 2-7. Since
the two literals in Example 2-7 do not contain decimal points, the compiler treats them
as integers, and so it will perform an integer division. But since the kmTravelled and
fuelKilosConsumed variables are both floating-point, it will use a floating-point division
operation. In this particular case it doesn’t matter, because dividing 60 by 10 produces
another integer, 6. But what if the result had not been a whole number? If we had written
this, for example:

3/4

the result would be 0, as this is an integer division—4 does not go into 3. However,
given the following:

double x = 3;
double y = 4;

the value of x/y would be 0.75, because C# would use floating-point division, which
can deal with nonwhole results. If you wanted to use floating-point calculations with
literals, you could write:

3.0/4.0

The decimal point indicates that we want floating-point numbers, and therefore float-
ing-point division, so the result is 0.75.

(The parentheses ensure that we divide by 60 * 60. Without the parentheses, this ex-
pression would divide by 60, and then multiply by 60, which would be less useful. See
the sidebar on the next page.) And then we could use this to work out the speed in
kilometers per hour:

kmTravelled / (elapsedSeconds / (60 * 60))

Expressions don’t actually do anything on their own. We have described a calculation,
but the C# compiler needs to know what we want to do with the result. We can do
various things with an expression. We could use it to initialize another variable:

double kmPerHour = kmTravelled / (elapsedSeconds / (60 * 60));

or we could display the value of the expression in the console window:

Console.WriteLine(kmTravelled / (elapsedSeconds / (60 * 60)));

Both of these are examples of statements.

Whereas an expression describes a calculation, a statement describes an action. In the
last two examples, we used the same expression—a calculation of the race car’s speed—
but the two statements did different things: one evaluated the expression and assigned
it into a new variable, while the other evaluated the expression and then passed it to
the Console class’s WriteLine method.

36 | Chapter 2: Basic Programming Techniques

Order of Evaluation
C# has a set of rules for working out the order in which to evaluate the components of
an expression. It does not necessarily work from left to right, because some operators
have a higher precedence than others. For example, imagine evaluating this:

1.0 + 3.0 / 4.0

from left to right. Start with 1.0, add 3.0 which gets you to 4.0, and then divide by 4.0—
the result would be 1.0. But the conventional rules of arithmetic mean the result should
be one and three quarters. And that’s just what C# produces—the result is 1.75. The
division is performed before the addition, because division has higher precedence than
division.

Some groups of operators have equal precedence. For example, multiplication and
division have equal precedence. When expressions contain multiple operations with
the same precedence, mathematical operations are evaluated from left to right. So 10.0 /
2.0 * 5.0 evaluates to 25.0. But parentheses trump precedence, so 10.0 / (2.0 * 5.0)
evaluates to 1.0.

Some programming books go into great depths about all the details of precedence, but
it makes for exceptionally tedious reading—C# has 15 different levels of precedence.
The details are important for compiler writers, but of limited value for developers—
code that relies heavily on precedence can be hard to read. Using parentheses to make
evaluation order explicit can often improve clarity. But if you would like the gory details,
you can find them at http://msdn.microsoft.com/en-us/library/aa691323.

An expression’s type matters. The examples we just looked at involve
numbers or numeric variables, and are of type double or int. Expressions
can be of any type, though. For example, ("Hello, " + "world") is an
expression of type string. If you wrote an assignment statement that
tried to assign that expression into a variable of type double, the compiler
would complain—it insists that expressions are either of the same type
as the variable, or of a type that is implicitly convertible to the variable’s
type.

Implicit conversions exist for numeric types when the conversion won’t
lose information—for example, a double can represent any value that
an int can, so you’re allowed to assign an integer expression into a
double variable. But attempting the opposite would cause a compiler
error, because doubles can be larger than the highest int, and they can
also contain fractional parts that would be lost. If you don’t mind the
loss of information, you can put a cast in front of the expression:

int approxKmPerHour = (int) kmPerHour;

This casts the kmPerHour (which we declared earlier as a double) to an
int, meaning it’ll force the value to fit in an integer, possibly losing
information in the process.

Expressions and Statements | 37

http://msdn.microsoft.com/en-us/library/aa691323

A variable doesn’t have to be stuck with its initial value for its whole life. We can assign
new values at any time.

Assignment Statements
The previous section showed how to assign an expression’s value into a newly declared
variable:

double kmPerHour = kmTravelled / (elapsedSeconds / (60 * 60));

If at some later stage in the program’s execution new information becomes available,
we could assign a new value into the kmPerHour variable—assignment statements aren’t
required to declare new variables, and can assign into existing ones:

kmPerHour = updateKmTravelled / (updatedElapsedSeconds / (60 * 60));

This overwrites the existing value in the kmPerHour variable.

C# offers some specialized assignment statements that can make for slightly more suc-
cinct code. For example, suppose you wanted to add the car’s latest lap time to the
variable holding the total elapsed time. You could write this:

elapsedSeconds = elapsedSeconds + latestLapTime;

This evaluates the expression on the righthand side, and assigns the result to the vari-
able specified on the lefthand side. However, this process of adding a value to a variable
is so common that there’s a special syntax for it:

elapsedSeconds += latestLapTime;

This has exactly the same effect as the previous expression. There are equivalents for
the other mathematical operators, so -= means to subtract the expression on the right
from the variable on the left, *= does the same for multiplication, and so on.

Increment and Decrement Operators
While we’re looking at how to update values, we should also look at the increment and
decrement operators. If we want to maintain a lap count, we could add one each time
the car completes a lap:

lapCount += 1;

The C programming language’s designers considered adding one to be a sufficiently
important case to devise an even more special syntax for it, called the increment oper-
ator, which C# duly offers:

lapCount++;

There’s also a decrement operator, --, which subtracts one. This example is a state-
ment, but you can also use the increment and decrement operators in the middle of an
expression:

int currentLap = lapCount++;

38 | Chapter 2: Basic Programming Techniques

But be careful. The expression on the right of this assignment statement means “eval-
uate the current value of lapCount and then increment lapCount after getting its current
value.” So if lapCount was 3 before executing this statement, currentLap would be 3
and lapCount would be 4 after executing it. If you want to use the updated value, you
put the increment (or decrement) operator before its target:

int currentLap = ++lapCount;

You could write a program that consisted entirely of variable declaration, assignment,
increment, and method invocation statements. However, such a program wouldn’t be
very interesting—it would always execute the same sequence of statements just once
in the same order. Fortunately, C# provides some more interesting statements that
allow a program to make decisions that dynamically change the flow of execution
through the code. This is sometimes referred to as flow control.

Flow Control with Selection Statements
A selection statement selects which code path to execute next, based on the value of
an expression. We could use a selection statement to work out whether the race car is
likely to run out of fuel in the next few laps, and display a warning if it is. C# offers
two selection statements: if statements and switch statements.

To illustrate selection in action, we need to make a slight change to the program. Right
now, our example hardcodes all of its data—the distance traveled, fuel consumed, and
time elapsed are compiled into the code as literals. This makes selection statements
uninteresting—the program would make the same decision every time because the data
would always be the same. For the decision to be meaningful, we need to modify the
program to accept input. Since we’re writing a console application, we can supply the
necessary information as command-line arguments. We could run the program passing
in the total distance, elapsed time, and fuel consumed, for example:

RaceInfo 20.6 312.8 10.8

We can write a modified version of the program that picks up these command-line
values instead of hardcoding them, as shown in Example 2-8.

Example 2-8. Reading command-line inputs

static void Main(string[] args)
{
 double kmTravelled = double.Parse(args[0]);
 double elapsedSeconds = double.Parse(args[1]);
 double fuelKilosConsumed = double.Parse(args[2]);
}

There are a few interesting features to point out here before we add a selection state-
ment. First, recall from earlier that the Main method, our program’s entry point, is
passed a sequence of strings representing the command-line arguments in a variable
called args. This sequence is an array, a .NET construct for holding multiple items of

Flow Control with Selection Statements | 39

a particular type. (You can make arrays of anything—numbers, text, or any type. The
string[] syntax indicates that this method expects an array of strings.) In an expression,
we can retrieve a particular item from an array by specifying a number in square brackets
after the array variable’s name. So the first three lines in our method here use args[0],
args[1], and args[2] to get the first, second, and third items in the array—the three
command-line arguments in this case.

C-family languages tend to number things from zero, and C# follows
suit. This may seem a little idiosyncratic, but it makes sense to the com-
puter. You can think of it as saying how far into the array you want to
look. If you want to look at the thing right at the start of the array, you
don’t need to go any distance at all, so an offset of zero gets you the first
item. If you’re British, you’ll recognize this logic from floor
numbering—the first floor in a building in Great Britain is not the one
at street level; you have to go up one flight of stairs to get to the first floor.

Also notice the use of double.Parse. Command-line arguments are passed as text, be-
cause the user can type anything:

RaceInfo Jenson Button Rocks

But our program expects numbers. We need to do something to convert the strings
into numbers, and that’s what double.Parse does: it expects the text to contain a dec-
imal number, and converts it into a double-precision floating-point representation of
that number. (If you’re wondering what it would do if the text wasn’t in fact a number,
it’ll throw an exception. Chapter 6 explains what that means and how to deal with it
gracefully, but for now it means our program would crash with an error.)

This example illustrates that method invocations can also be expressions—the
double type’s Parse method returns a value of type double, meaning we can use it to
initialize a variable of type double.

But that’s all by the by—the point here is that our program now gets data that could
be different each time the program runs. For example, a race engineer in the pit lane
could run the program with new distance, timing, and fuel information each time the
car completes a lap. So our program can now usefully make decisions based on its input
using selection statements. One such statement is the if statement.

if Statements
An if statement is a selection statement that decides whether to execute a particular
piece of code based on the value of an expression. We can use this to show a low-fuel
warning by adding the code in Example 2-9 at the end of our example’s Main method.
Most of the code performs calculations in preparation for making the decision. The
if statement toward the end of the example makes the decision—it decides whether
to execute the block of code enclosed in braces.

40 | Chapter 2: Basic Programming Techniques

Example 2-9. if statement

double fuelTankCapacityKilos = 80;
double lapLength = 5.141;

double fuelKilosPerKm = fuelKilosConsumed / kmTravelled;
double fuelKilosRemaining = fuelTankCapacityKilos - fuelKilosConsumed;
double predictedDistanceUntilOutOfFuel = fuelKilosRemaining / fuelKilosPerKm;
double predictedLapsUntilOutOfFuel =
 predictedDistanceUntilOutOfFuel / lapLength;

if (predictedLapsUntilOutOfFuel < 4)
{
 Console.WriteLine("Low on fuel. Laps remaining: " +
 predictedLapsUntilOutOfFuel);
}

To test this, we need to run the program with command-line arguments. You could
open a command prompt, move to the directory containing the built output of your
project, and run it with the arguments you want. (It’ll be in the bin\Debug folder that
Visual Studio creates inside your project’s folder.) Or you can get Visual Studio to pass
arguments for you. To do that, go to the Solution Explorer panel and double-click on
the Properties icon. This will open the project’s properties view, which has a series of
tabs on the lefthand side. Select the Debug tab, and in the middle you’ll see a “Com-
mand line arguments” text box as shown in Figure 2-6.

Figure 2-6. Passing command-line arguments in Visual Studio

If you run the program with arguments corresponding to just a few laps (e.g., 15 238
8) it won’t print anything. But try running it with the following arguments: 141.95
2156.2 75.6. It’ll predict that the car has about 1.6 laps of fuel remaining. The if state-
ment in Example 2-9 tests the following expression:

predictedLapsUntilOutOfFuel < 4

The < symbol means “less than.” So the code in braces following the if statement runs
only if the number of predicted laps of fuel is less than 4. Clearly, 1.6 is less than 4, so
in this case it’ll run that code, printing out the following:

Low on fuel. Laps remaining: 1.60701035044548

Flow Control with Selection Statements | 41

You need to use the right kind of expression in an if statement. In this case, we’ve
performed a comparison—we’re testing to see if a variable is less than 4. There are only
two possible outcomes: either it’s less than 4 or it isn’t. So this expression is clearly
different in nature to the expressions performing mathematical calculations. If you were
to modify the program so that it prints the value of that expression:

Console.WriteLine(predictedLapsUntilOutOfFuel < 4);

it would display either True or False. The .NET Framework has a special type to rep-
resent such an either/or choice, called System.Boolean, and as with the numeric types,
C# defines its own alias for this type: bool.‖ An if statement requires a Boolean ex-
pression. So if you try to use an expression with a numeric result, such as this:

if (fuelTankCapacityKilos - fuelKilosConsumed)

the compiler will complain with the error “Cannot implicitly convert type ‘double’ to
‘bool’.” This is its way of saying that it expects a bool—either true or false—and you’ve
given it a number. In effect, that code says something like “If fourteen and a half then
do this.” What would that even mean?

The C language decided to answer that question by saying that 0 is
equivalent to false, and anything else is equivalent to true. But that was
only because it didn’t have a built-in Boolean type, so its if statement
had to be able to work with numeric expressions. This turned out to be
a frequent cause of bugs in C programs. Since C# does have a built-in
bool type, it insists that an if statement’s expression is always of type
bool.

C# defines several operators which, like the < operator we used in Example 2-9, can
compare two numbers to produce a Boolean true/false answer. Table 2-2 shows these.
Some of these operators can be applied to non-numeric types too. For example, you
can use the == and != operators to compare strings. (You might expect the other com-
parison operators to work too, telling you whether one string would come before or
after another when sorted alphabetically. However, there’s more than one way to sort
strings—it turns out that the method used varies based on language and culture. And
rather than have an expression such as text1 < text2 mean different things in different
contexts, C# simply doesn’t allow it. If you want to compare strings, you have to call
one of the methods provided by the String class that lets you say how you’d like the
comparison to work.)

‖ The Boolean type is named after George Boole, who invented a branch of mathematical logic that uses just
two values: true and false. His system is fundamental to the operation of all digital electronics, so it’s a shame
that C# doesn’t see fit to spell his name properly.

42 | Chapter 2: Basic Programming Techniques

Table 2-2. Comparison operators

C# operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

Just as you can combine numeric expressions into more complex and powerful ex-
pressions, C# provides operators that let you combine Boolean expressions to test
multiple conditions. The && operator combines two Boolean expressions into a single
expression that’s true only if both conditions are true. In our race example, we might
use this to hide the low-fuel warning if we’re near the end of the race and the car has
enough fuel to make it to the finish line. Imagine that we added an extra argument to
pass in the number of remaining laps in the race, and an additional variable to hold
that value; we could write:

if ((predictedLapsUntilOutOfFuel < 4) &&
 (predictedLapsUntilOutOfFuel < remainingLapsInRace))
{
 Console.WriteLine("Low on fuel. Laps remaining: " +
 predictedLapsUntilOutOfFuel);
}

This has the same effect as the following slightly more verbose code:

if (predictedLapsUntilOutOfFuel < 4)
{
 if (predictedLapsUntilOutOfFuel < remainingLapsInRace)
 {
 Console.WriteLine("Low on fuel. Laps remaining: " +
 predictedLapsUntilOutOfFuel);
 }
}

Only if both conditions are true will the message be displayed. There’s also a || oper-
ator. Like &&, the || operator combines two Boolean expressions, but will be true if
either of them is true.

Flow Control with Selection Statements | 43

if...else

The if statement examples we’ve looked at so far just decide whether to execute some
optional code, but what if we want to choose between two actions? An if statement
can optionally include an else section that runs if the condition was false, as in this
hypothetical post-race example:

if (weWonTheRace)
{
 Sponsors.DemandMoreMoney();
}
else
{
 Driver.ReducePay();
}

One type of if/else test comes up often enough that C-family languages have a special
syntax for it: sometimes you want to pick between one of two values, based on some
test. You could write this:

string messageForDriver;
if (weWonTheRace)
{
 messageForDriver = "Congratulations";
}
else
{
 messageForDriver = "You're fired";
}

Sometimes it’s more convenient to be able to put this inside an expression. This can be
done with the ternary operator, so called because it contains three expressions: a Boo-
lean test expression, the expression to use if the test is true, and the expression to use
if the test is false. The syntax uses ? and : characters to separate the expressions, so the
basic pattern is test ? resultIfTrue : resultIfFalse. We can collapse the previous
if...else example to a single assignment statement by using the ternary operator in the
expression on the righthand side of the assignment:

string messageForDriver = weWonTheRace ?
 "Congratulations" :
 "You're fired";

You don’t have to space it out like this, by the way—we put the two options on separate
lines to make them easy to see. But some people like to use the ternary operator to
condense as much logic as possible into as little space as possible; this is either admir-
able conciseness or impenetrable terseness, depending on your personal tastes.

You can string multiple if...else tests together. To see how that might be useful in our
example, consider how in motor racing, incidents or weather conditions may cause the
race stewards to initiate certain safety procedures, such as temporarily disallowing
overtaking maneuvers while wreckage is cleared from the track, releasing the safety car
for the drivers to follow slowly if the wreckage is particularly spectacular, or in extreme

44 | Chapter 2: Basic Programming Techniques

cases “red-flagging” the race—a temporary complete halt followed by a restart. Each
of these has its own appropriate response, which can be dealt with by a chain of
if...else if...else statements, as shown in Example 2-10.

Example 2-10. Testing multiple conditions with if and else

string raceStatus = args[3];
if (raceStatus == "YellowFlag")
{
 Driver.TellNotToOvertake();
}
else if (raceStatus == "SafetyCar")
{
 Driver.WarnAboutSafetyCar();
}
else if (raceStatus == "RedFlag")
{
 if (ourDriverCausedIncident)
 {
 Factory.OrderNewCar();
 Driver.ReducePay();
 if (feelingGenerous)
 {
 Driver.Resuscitate();
 }
 }
 else
 {
 Driver.CallBackToPit();
 }
}
else
{
 Driver.TellToDriveFaster();
}

While this works, there’s an alternative. This pattern of choosing one option out of
many is sufficiently common that C# has a special selection statement to handle it.

switch and case Statements
A switch statement lets you specify a list of expected values, and what to do for each
value. The values can be either strings or integral types. (Integral types include int,
short, etc.—you cannot switch on floating-point numbers. Enumeration types, which
are discussed in Chapter 3, are considered to be integral types for the purposes of a
switch statement.) We can use this to rewrite Example 2-10 as shown in Example 2-11.

Flow Control with Selection Statements | 45

Example 2-11. Testing multiple conditions with switch and case

string raceStatus = args[3];
switch (raceStatus)
{
case "YellowFlag":
 Driver.TellNotToOvertake();
 break;

case "SafetyCar":
 Driver.WarnAboutSafetyCar();
 break;

case "RedFlag":
 if (ourDriverCausedIncident)
 {
 Factory.OrderNewCar();
 Driver.ReducePay();
 if (feelingGenerous)
 {
 Driver.Resuscitate();
 }
 }
 else
 {
 Driver.CallBackToPit();
 }
 break;

default:
 Driver.TellToDriveFaster();
 break;

}

The break keyword you can see at the end of each case is present mainly
for consistency with other C-like languages. In C and C++, if you leave
off the break, the code will “fall” out of one case through to the next.
So if we left off the break in the YellowFlag case, we’d end up telling
drivers not to overtake and then warning them about the safety car. This
would be a bug—and in general, you almost always don’t want fall-
through. It’s unfortunate that in C and C++ fall-through was the default.
C# changes this: if you want fall-through you must ask for it explicitly
by writing goto case "SafetyCar". But despite fall-through no longer
being the implicit default, you still need to write the same break state-
ment as you would in other C-family languages when you don’t want
fall-through—if you leave it out you’ll get an error.

You might be wondering what is the point—this does exactly the same as Exam-
ple 2-10, so why do we need a different syntax? As it happens, we don’t—there’s noth-
ing you can do with switch and case that you can’t do with if and else. But switch and

46 | Chapter 2: Basic Programming Techniques

case offer one useful advantage: they make it clear what we’re doing—we’re looking
at a single expression (raceStatus) and we’re choosing one of a number of options based
on the value of that expression. A developer familiar with C# can look at this code and
understand the structure of the decision-making process at a glance. With the previous
example, you would need to look at each else if statement in turn to make sure it
wasn’t doing something more complex—chained else if statements are more flexible
than switch statements, because each new link in the chain is allowed to test a com-
pletely different expression, but that flexibility comes at the cost of making it harder to
understand the code. Sometimes a self-imposed constraint can make code easier to read
and maintain, and a switch statement is a good example of that.

Selection statements make programs considerably more useful than they would oth-
erwise be—they enable programs to make decisions. But our examples are still rather
straightforward—they run just once, from start to finish, with the odd variation in the
execution flow. The amount of work that is done is pretty trivial. So there’s another
kind of statement that plays to a computer’s greatest strength: the ability to perform
simple repetitive tasks many times over.

Iteration Statements
An iteration statement allows a sequence of other statements to be executed several
times. (Repeated execution is also often known as a loop because, like the race car, the
code goes round and round again.) This seems like it could be useful in our race data
analysis—race cars usually complete many laps, so we will probably have multiple sets
of data to process. It would be annoying to have to write the same code 60 times just
to process all the data for a 60-lap race. Fortunately, we don’t have to—we can use one
of C#’s iteration statements.

Imagine that instead of passing in timing or fuel information as command-line argu-
ments, the data was in files. We might have a text file containing one line per lap, with
the elapsed time at the end of each lap. Another text file could contain the remaining
fuel at the end of each lap. To illustrate how to work with such data, we’ll start with a
simple example: finding the lap on which our driver went quickest.

Since this code is a little different from the previous example, start a new project if you
want to follow along. Make another console application called LapAnalysis.

To be able to test our code we’ll need a file containing the timing information. You can
add this to your Visual Studio project. Right-click on the LapAnalysis project in the
Solution Explorer and select Add→New Item from the context menu. (Or just press
Ctrl-Shift-A.) In the Installed Templates section on the left, select the General category
under Visual C# Items, and then in the central area select Text File. Call the file
LapTimes.txt and click Add. You’ll need this file to be somewhere the program can get
to. Go to the Properties panel for the file—this is usually below the Solution Explorer
panel, but if you don’t see it, right-click on LapTimes.txt in the Solution Explorer and

Iteration Statements | 47

select Properties. In the Properties panel, you should see a Copy to Output Directory
property. By default, this is set to “Do not copy”. Change it to “Copy if newer”—Visual
Studio will ensure that an up-to-date copy of the file is available in the bin\Debug folder
in which it builds your program. You’ll need some data in this file. We’ll be using the
following—these numbers represent the elapsed time in seconds since the start of the
race at the end of each lap:

78.73
157.2
237.1
313.8
390.7
470.2

The program is going to read in the contents of the file. To do this, it’ll need to use
types from the System.IO namespace, so you’ll need to add the following near the top
of your Program.cs file:

using System.IO;

Then inside the Main method, use the following code to read the contents of the file:

string[] lines = File.ReadAllLines("LapTimes.txt");

The File type is in the System.IO namespace, and its ReadAllLines method reads in all
the lines of a text file and returns an array of strings (string[]) with one entry per line.
The easiest way to work through all these entries is with a foreach statement.

foreach Statements
A foreach statement executes a block of statements once for every item in a collection
such as an array. For example, this:

foreach (string line in lines)
{
 Console.WriteLine(line);
}

will display every line of text from the lines array we just built. The block to execute
each time around is, as ever, delimited by a { } pair.

We have to provide the C# compiler with two things at the start of a foreach loop: the
variable we’d like to use to access each item from the collection, and the collection
itself. The string line part declares the first bit—the so-called iteration variable. And
then the in lines part says that we want to iterate over the items in the lines array. So
each time around the loop, line will contain the next string in lines.

We can use this to discover the fastest lap time, as shown in Example 2-12.

48 | Chapter 2: Basic Programming Techniques

Example 2-12. Finding the fastest lap with foreach

string[] lines = File.ReadAllLines("LapTimes.txt");
double currentLapStartTime = 0;
double fastestLapTime = 0;
foreach (string line in lines)
{
 double lapEndTime = double.Parse(line);
 double lapTime = lapEndTime - currentLapStartTime;
 if (fastestLapTime == 0 || lapTime < fastestLapTime)
 {
 fastestLapTime = lapTime;
 }
 currentLapStartTime = lapEndTime;
}
Console.WriteLine("Fastest lap time: " + fastestLapTime);

The currentLapStartTime begins at zero, but is updated to the end time of the previous
lap each time around the loop—we need this to work out how long each lap took,
because each line of the file contains the total elapsed race time at each lap. And the
fastestLapTime variable contains the time of the fastest lap yet found—it’ll be updated
each time a faster lap is found. (We also update it when it’s zero, which it will be the
first time we go around.)

This finds the fastest lap time—76.7 seconds in the example data we’re using. But it
doesn’t tell us which lap that was. Looking at the numbers, we can see that it happens
to be the fourth, but it would be nice if the program could tell us. One way to do this
is to declare a new variable called lapNumber, initializing it to 1 outside the loop, and
adding one each time around, to keep track of the current lap. Then we can record the
lap number on which we found the fastest time. Example 2-13 shows a modified ver-
sion, with the additional code in bold.

Example 2-13. Fastest lap including lap number

string[] lines = File.ReadAllLines("LapTimes.txt");
double currentLapStartTime = 0;
double fastestLapTime = 0;
int lapNumber = 1;
int fastestLapNumber = 0;
foreach (string line in lines)
{
 double lapEndTime = double.Parse(line);
 double lapTime = lapEndTime - currentLapStartTime;
 if (fastestLapTime == 0 || lapTime < fastestLapTime)
 {
 fastestLapTime = lapTime;
 fastestLapNumber = lapNumber;
 }
 currentLapStartTime = lapEndTime;
 lapNumber += 1;
}
Console.WriteLine("Fastest lap: " + fastestLapNumber);
Console.WriteLine("Fastest lap time: " + fastestLapTime);

Iteration Statements | 49

If you’re trying this out, this might be a good opportunity to acquaint yourself with
Visual Studio’s debugging features—see the sidebar below.

The Debugger
When your code includes flow control statements that can vary the sequence of oper-
ations, or how many times code runs, it can be useful to inspect the execution. If your
code doesn’t work quite how you expect, you can watch what it does one line at a time
by using Visual Studio’s built-in debugger.

If instead of running the program normally you run it with the Debug→Step Into menu
item (or the F11 keyboard shortcut if you’re using the C# profile for Visual Studio), it
will run the code one line at a time—each time you choose Step Into, it will run one
more line of code. And if you hover your mouse pointer over a variable, it will show
you the current value, allowing you to see the current state of your program, as well as
its current position.

You can also arrange for the program to stop in the debugger when it reaches a particular
point by setting a breakpoint, either by clicking in the left margin of the code editor or
by putting the cursor on the line in question and selecting Debug→Toggle Breakpoint.
A red dot appears in the margin to indicate that the code will stop when it reaches this
point. Breakpoints are active only if you run the program from within the debugger, so
you need to make sure you start with Debug→Start Debugging (or press F5) if you want
breakpoints to work.

Visual Studio’s debugger is a powerful and flexible system—these simple techniques
barely scratch its surface, but they are very useful when trying to diagnose troublesome
behavior in a program.

Example 2-13 works well enough, but there’s an alternative iteration statement you
can use for this sort of scenario: a for statement.

for Statements
A for statement is a loop in which some variable is initialized to a start value, and is
modified each time around the loop. The loop will run for as long as some condition
remains true—this means a for loop does not necessarily have to involve a collection,
unlike a foreach loop. Example 2-14 is a simple loop that counts to 10.

Example 2-14. Counting with a for loop

for (int i = 1; i <= 10; i++)
{
 Console.WriteLine(i);
}
Console.WriteLine("Coming, ready or not!");

The for keyword is followed by parentheses containing three pieces. First, a variable
is declared and initialized. Then the condition is specified—this particular loop will

50 | Chapter 2: Basic Programming Techniques

iterate for as long as the variable i is less than or equal to 10. You can use any Boolean
expression here, just like in an if statement. And finally, there is a statement to be
executed each time around the loop—adding one to i in this case. (As you saw earlier,
i++ adds one to i. We could also have written i += 1, but the usual if arbitrary con-
vention in C-style languages is to use the ++ operator here.)

Earlier we recommended using variable names that are long enough to
be descriptive, so you might be raising an eyebrow over the use of i as
a variable name. There’s a convention with for loops where the iteration
variable just counts up from zero—short variable names such as i, j, k,
x, and y are often used. It’s not a universal convention, but you’ll see it
widely used, particularly with short loops.

We’re using this convention in Example 2-14 only because you will
come across it sooner or later, and so we felt it was important to show
it. But it’s arguably not an especially good way to write clear code, so
feel free to choose more meaningful names in your own code.

We could use this construct as an alternative way to find the fastest lap time, as shown
in Example 2-15.

Example 2-15. Finding the fastest lap with for

string[] lines = File.ReadAllLines("LapTimes.txt");
double currentLapStartTime = 0;
double fastestLapTime = 0;
int fastestLapNumber = 0;
for (int lapNumber = 1; lapNumber <= lines.Length; lapNumber++)
{
 double lapEndTime = double.Parse(lines[lapNumber - 1]);
 double lapTime = lapEndTime - currentLapStartTime;
 if (fastestLapTime == 0 || lapTime < fastestLapTime)
 {
 fastestLapTime = lapTime;
 fastestLapNumber = lapNumber;
 }
 currentLapStartTime = lapEndTime;
}
Console.WriteLine("Fastest lap: " + fastestLapNumber);
Console.WriteLine("Fastest lap time: " + fastestLapTime);

This is pretty similar to the foreach example. It’s marginally shorter, but it’s also a little
more awkward—our program is counting the laps starting from 1, but arrays in .NET
start from zero, so the line that parses the value from the file has the slightly ungainly
expression lines[lapNumber - 1] in it. (Incidentally, this example avoids using a short
iteration variable name such as i because we’re numbering the laps from 1, not 0—
short iteration variable names tend to be associated with zero-based counting.) Argu-
ably, the foreach version was clearer, even if it was ever so slightly longer. The main

Iteration Statements | 51

advantage of for is that it doesn’t require a collection, so it’s better suited to Exam-
ple 2-14 than Example 2-15.

while and do Statements
C# offers a third kind of iteration statement: the while loop. This is like a simplified
for loop—it has only the Boolean expression that decides whether to carry on looping,
and does not have the variable initialization part, or the statement to execute each time
around. (Or if you prefer, a for loop is a fancy version of a while loop—neither for nor
foreach does anything you couldn’t achieve with a while loop and a little extra code.)
Example 2-16 shows an alternative approach to working through the lines of a text file
based on a while loop.

Example 2-16. Iterating through a file with a while loop

static void Main(string[] args)
{
 using (StreamReader times = File.OpenText("LapTimes.txt"))
 {
 while (!times.EndOfStream)
 {
 string line = times.ReadLine();
 double lapEndTime = double.Parse(line);
 Console.WriteLine(lapEndTime);
 }
 }
}

The while statement is well suited to the one-line-at-a-time approach. It doesn’t require
a collection; it just loops until the condition becomes false. In this example, that means
we loop until the StreamReader tells us we’ve reached the end of the file.# (Chap-
ter 11 describes the use of types such as StreamReader in detail.) The exclamation mark
(!) in front of the expression means not—you can put this in front of any Boolean
expression to invert the result. So the loop runs for as long as we are not at the end of
the stream.

We could have used a for loop to implement this one-line-at-a-time
loop—it also iterates until its condition becomes false. The while loop
happens to be a better choice here simply because in this example, we
have no use for the variable initialization or loop statement offered by
for.

#You’ll have noticed the using keyword on the line where we get hold of the StreamReader. We use this construct
when it’s necessary to indicate exactly when we’ve finished with an object—in this case we need to say when
we’re done with the file to avoid keeping operating system file handles open.

52 | Chapter 2: Basic Programming Techniques

The approach in Example 2-16 would be better than the previous examples for a par-
ticularly large file. The code can start working straight away without having to wait for
the entire file to load, and it will use less memory because it doesn’t build the array
containing every single line—it can hold just one line at a time in memory. For our
example lap time file with just six lines of data, this won’t make any difference, but if
you were processing a file with hundreds of thousands of entries, this while-based
example could provide noticeably better performance than the array-based examples.

This does not mean that while is faster than for or foreach. The per-
formance difference here is a result of the code working with the file in
a different way, and has nothing to do with the loop construct. In gen-
eral, it’s a bad idea to focus on which language features are “fastest.”
Performance usually depends on the way in which your code solves a
problem, rather than which particular language feature you use.

Note that for and while loops might never execute their contents at all. If the condition
is false the first time around, they’ll skip the loop entirely. This is often desirable—if
there’s no data, you probably want to do no work. But just occasionally it can be useful
to write a loop that is guaranteed to execute at least once. We can do this with a variation
on the while loop, called the do while loop:

do
{
 Console.WriteLine("Waiting...");
}
while (DateTime.Now.Hour < 8);

The while keyword and condition come at the end, and we mark the start of the loop
with the do keyword. This loop always executes at least once, testing the condition at
the end of each iteration instead of the start. So this code will repeatedly show the
message “Waiting...” until the current time is 8:00 a.m. or later. If it’s already past 8:00
a.m., it’ll still write out “Waiting...” once.

Breaking Out of a Loop
It can sometimes be useful to abandon a loop earlier than its natural end. In the case
of a foreach loop, this might mean stopping before you’ve processed every item in the
collection. With for or while loops, you get to write the loop condition so that you can
stop under whatever conditions you like, but it can sometimes be more convenient to
put the code that makes a decision to abandon a loop somewhere inside the loop body
rather than in the condition. For these eventualities, C# provides the break keyword.

Iteration Statements | 53

We saw break already in a switch statement in Example 2-11—we used it to say that
we’re done with the switch and want to break out of that statement. The break keyword
does the same thing in a loop:

using (StreamReader times = File.OpenText("LapTimes.txt"))
{
 while (!times.EndOfStream)
 {
 string line = times.ReadLine();
 if (line == "STOP!")
 {
 break;
 }
 double lapEndTime = double.Parse(line);
 Console.WriteLine(lapEndTime);
 }
}

This is the loop from Example 2-16, modified to stop if it comes across a line in the
input file that contains the text “STOP!” This breaks out immediately, abandoning the
rest of the loop and leaping straight to the first line of code after the enclosing loop’s
closing brace. (In that case, this happens to be the enclosing using statement’s closing
brace, which will close the file handle.)

Some people regard this use of break as bad practice. It makes it harder
to understand the loop. When a loop contains no break statements, you
can understand its lifetime by looking at the while (or for, or foreach)
part. But if there are break statements, you need to look at more of the
code to get a complete understanding of when the loop will finish.

More generally, flow control that jumps suddenly out of the middle of
a construct is frowned upon, because it makes it much harder for some-
one to understand how execution flows through a program, and pro-
grams that are hard to understand tend to be buggy. The computer
scientist Edsger Dijkstra submitted a short letter on this topic in 1968
to an academic journal, which was printed under a now infamous head-
ing, “Go-to statement considered harmful”. If you’re interested in iconic
pieces of computing history, or if you’d like a detailed explanation of
exactly why this sort of jumpy flow control is problematic, you can find
the original letter at http://www.cs.utexas.edu/users/EWD/ewd02xx/
EWD215.PDF.

To recap what we’ve explored so far, we’ve seen how to work with variables to hold
information, how to write expressions that perform calculations, how to use selection
statements that decide what to do, and how to build iteration statements that can do
things repeatedly. There’s one more basic C# programming feature we need to look at
to cover the most important everyday coding features: methods.

54 | Chapter 2: Basic Programming Techniques

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF

Methods
As we saw earlier, a method is a named block of code. We wrote a method already—
the Main method that runs when our program starts. And we used methods provided
by the .NET Framework class library, such as Console.WriteLine and File.ReadAll
Lines. But we haven’t looked at how and why you would introduce new methods other
than Main into your own code.

Methods are an essential mechanism for reducing your code’s complexity and enhanc-
ing its readability. By putting a section of code into its own method with a carefully
chosen name that describes what the method does, you can make it much easier for
someone looking at the code to work out what your program is meant to do. Also,
methods can help avoid repetition—if you need to do similar work in multiple places,
a method can help you reuse code.

In our race car example, there’s a job we may need to do multiple times: reading in
numeric values from a file. We did this for timing information, but we’re going to need
to do the same with fuel consumption and distance. Rather than writing three almost
identical bits of code, we can put the majority of the code into a single method.

The first thing we need to do is declare the method—we need to pick a name, define
the information that comes into the method, and optionally define the information that
comes back out. Let’s call the method ReadNumbersFromFile, since that’s what it’s going
to do. Its input will be a text string containing the filename, and it will return an array
of double-precision floating-point numbers. The method declaration, which will go
inside our Program class, will look like this:

static double[] ReadNumbersFromFile(string fileName)

As you may recall from the discussion of Main earlier, the static keyword indicates that
we do not need an instance of the containing Program type to be created for this method
to run. (We’ll be looking at nonstatic methods in the next chapter when we start dealing
with objects.) C# follows the C-family convention that the kind of data coming out of
the method is specified before the name and the inputs, so next we have double[],
indicating that this method returns an array of numbers. Then we have the name, and
then in parentheses, the inputs required by this method. In this example there’s just
one, the filename, but this would be a comma-separated list if more inputs were
required.

After the method declaration comes the method body—the statements that make up
the method, enclosed in braces. The code isn’t going to be quite the same as what we’ve
seen so far—up until now, we’ve converted the text to numbers one at a time imme-
diately before processing them. But this code is going to return an array of numbers,
just like File.ReadAllLines returns an array of strings. So our code needs to build up
that array. Example 2-17 shows one way of doing this.

Methods | 55

Example 2-17. A method for reading numbers from a file

static double[] ReadNumbersFromFile(string fileName)
{
 List<double> numbers = new List<double>();
 using (StreamReader file = File.OpenText(fileName))
 {
 while (!file.EndOfStream)
 {
 string line = file.ReadLine();
 // Skip blank lines
 if (!string.IsNullOrEmpty(line))
 {
 numbers.Add(double.Parse(line));
 }
 }
 }
 return numbers.ToArray();
}

This looks pretty similar to the example while loop we saw earlier, with one addition:
we’re creating an object that lets us build up a collection of numbers one at a time—
a List<double>. It’s similar to an array (a double[]), but an array needs you to know
how many items you want up front—you can’t add more items onto an existing array.
The advantage of a List<double> is that you can just keep adding new numbers at will.
That matters here because if you look closely you’ll see we’ve modified the code to skip
over blank lines, which means that we actually don’t know how many numbers we’re
going to get until we’ve read the whole file.

Once you’re done adding numbers to a list, you can call its ToArray() method to get an
array of the correct size. This list class is an example of a collection class. .NET offers
several of these, and they are so extremely useful that Chapters 7, 8, and 9 are related
to working with collections.

Notice the return keyword near the end of Example 2-17. This is how we return the
information calculated by our method to whatever code calls the method. As well as
specifying the value to return, the return keyword causes the current method to exit
immediately, and for execution to continue back in the calling method. (In methods
with a void return type, which do not return any value, you can use the return keyword
without an argument to exit the method. Or you can just let execution run to the end
of the method, and it will return implicitly.) If you’re wondering how the method re-
members where it’s supposed to go back to, see the sidebar on the next page.

With the ReadNumbersFromFile method in place, we can now write this sort of code:

double[] lapTimes = ReadNumbersFromFile("LapTimes.txt");
double[] fuelLevels = ReadNumbersFromFile("FuelRemainingByLap.txt");

56 | Chapter 2: Basic Programming Techniques

The Call Stack
When you invoke a method, the CLR allocates some memory to keep track of that
method’s state. This state includes incoming arguments and local variables. When a
method calls out to another method, the method state also remembers where we were
in the calling method’s code to be able to carry on later.

If you have nested method calls—if a first method calls a second method which calls a
third method, for example—you end up with a sequence of method states, and this
sequence is often referred to as the call stack. In general, a stack is a sequence of items
where you can add or remove items only at the end of the sequence; by convention, we
use the terms push and pop to describe adding and removing stack items. So when C#
code invokes a new method, it pushes a new method state record onto the call stack.
When the method returns, either because execution reaches the end or because we’ve
hit a return statement, the current method state is popped from the call stack, and then
execution resumes from where the previous method state record says the calling
method had reached.

You can look at the call stack in the Visual Studio debugger. The Debug→Win-
dows→Call Stack menu item displays a window showing a list of all the current methods
in the call stack. You can double-click on any of these items to see the current location,
and if you’ve opened any of the debug windows that show local variable state from the
Debug→Windows menu, these will show local variables for the method you select.

It doesn’t take a lot of effort to understand that this code is reading in numbers for lap
times and fuel levels from a couple of text files—the code makes this aspect of its
behavior much clearer than, say, Example 2-12. When code does what it says it does,
you make life much easier for anyone who has to look at the code after you’ve written
it. And since that probably includes you, you’ll make your life easier in the long run by
moving functionality into carefully named methods.

This idea of moving code out of the middle of one method and into a
separate method is very common, and is an example of refactoring.
Generally speaking, refactoring means restructuring code without
changing its behavior, to either simplify it, make it easier to understand
and maintain, or avoid duplication. There are so many ways to refactor
code that whole books have been written on the topic, but this particular
refactoring operation is so useful that Visual Studio can automate it. If
you select some code and then right-click on the C# editor window, it
offers a Refactor→Extract Method menu item that does this for you. In
practice, it’s not always that straightforward—you might need to re-
structure the code a little first, before you’re in a position to factor out
the pieces you’d like to move into a method. Example 2-17 had to work
slightly differently from any of the previous examples to package the
code into a reusable method. But while it may require some work, it’s
a useful technique to apply.

Methods | 57

Summary
In this chapter, we looked at some of the most important concepts involved in the
everyday writing of C#. We saw how to create and run projects in Visual Studio. We
saw how namespaces help us work with the .NET Framework class library and other
external code, without getting lost in the thousands of classes on offer. We used vari-
ables and expressions to store and perform calculations with data. We used selection
statements to make decisions based on input, and iteration statements to perform re-
petitive work on collections of data. And we saw how splitting your code into well-
named methods can enhance the reusability and readability of your code. In the next
chapter, we’ll step outside the world of methods and look at C#’s support for object-
oriented programming.

58 | Chapter 2: Basic Programming Techniques

CHAPTER 3

Abstracting Ideas with Classes and
Structs

In the previous couple of chapters, we looked at some basic programming techniques
such as loops and conditions, and used some of the data types built into the language
and platform, such as int and string.

Unfortunately, real programs—even fairly simple ones—are much, much more com-
plicated than the examples we’ve built so far. They need to model the behavior of real-
world objects like cars and planes, or ideas like mathematical expressions, or behaviors,
like the transaction between you and your favorite coffee shop when you buy a double
espresso and a brownie with your bank card.

Divide and Conquer
The best way to manage this complexity is to break a system down into manageable
pieces, where each piece is small enough for us to understand completely. We should
aim to craft each piece so that it fits neatly into the system as a whole with a small
enough number of connections to the other pieces that we can comprehend all of those
too.

Abstracting Ideas with Methods
We’ve already seen one tool for dividing our code into manageable pieces: methods. A
method is a piece of a program that encapsulates a particular behavior completely. It’s
worth understanding the benefits of methods, because the same principles apply to the
classes and structs that are this chapter’s main subject.

59

You will often see the term function used instead of method; they’re
related, but not identical. A function is a method that returns something.
Some methods just do some work, and do not return any value. So in
C#, all functions are methods, but not all methods are functions.

Methods offer a contract: if we meet particular conditions, a method will do certain
things for us. Conditions come in various forms: we might need to pass arguments of
suitable types, perhaps with limits on the range (e.g., negative numbers may not be
allowed). We may need to ensure certain things about the program’s environment—
maybe we need to check that certain directories exist on disk, or that there’s sufficient
free memory and disk space. There may be constraints on when we are allowed to call
the method—perhaps we’re not allowed to call it if some related work we started earlier
hasn’t completed yet.

Likewise, there are several ways in which a method can hold up its side of the bargain.
Perhaps it will just return a string or a number that is the result of a calculation involving
the method’s inputs. It might change the state of some entity in our system in some
way, such as modifying an employee’s salary. It may change something about the sys-
tem environment—the method might install a new device driver, or change the current
user’s color scheme, for example. Some methods interact with the outside world by
sending messages over the network.

Some aspects of the contract are formalized—a method’s parameter list defines the
number and type of arguments we need to pass, for example, and its return type tells
us what, if anything, to expect as a return value. But most of the contract is informally
specified—we rely on documentation (or sometimes, conversations with the developer
who wrote the method) to understand the full contract. But understand it we must,
because the contract is at the heart of how methods make our lives easier.

Methods simplify things for us in two ways. If we are the user of a method, then, as
long as its internal implementation conforms to the contract, we can treat it as a “black
box.” We call it, we expect it to work as described, and we don’t need to worry about
how it worked. All its internal complexity is hidden from us, freeing us to think about
ideas like “increase this employee’s salary,” without getting bogged down by details
such as “open a connection to the database and execute some SQL.”

If, on the other hand, we are the developer of a method, we don’t need to worry about
who might call us, and why. As long as our implementation works as promised, we can
choose any means of implementation we like—perhaps optimizing for speed, or size,
or (more often than not) simplicity and maintainability. We can concentrate on details
like whether we’re using the right connection string, and whether the SQL query modi-
fies the database as intended, without needing to ask ourselves questions like “should
we even be adjusting this particular employee’s salary at all?”

So, one objective of good design is to hide distracting details and expose a simple
model to your client. This practice is called encapsulation, and it’s harder than it looks.

60 | Chapter 3: Abstracting Ideas with Classes and Structs

As is so often the case in life, making something look easy takes years of practice and
hard work. It can also be a thankless task: if you devise a contract that is a model of
clarity, people will probably think it was easy to design. Conversely, unnecessary com-
plexity is often mistaken for cleverness.

While methods are essential for achieving encapsulation, they do not
guarantee it. It’s all too easy to write methods whose contract is unclear.
This often happens when developers do something as an afterthought—
it can be oh so tempting to add a bit of extra code to an existing method
as a quick solution to a problem, but this risks making that’s method’s
responsibilities less clear.

A method’s name is often a good indicator of the clarity of the contract—
if the name is vague, or worse, if it’s an inaccurate description of what
the method does, you’re probably looking at a method that does a bad
job of encapsulation.

One of the great things about methods is that we can use them to keep breaking things
into smaller and smaller pieces. Suppose we have some method called PlaceOrder,
which has a well-defined responsibility, but which is getting a bit complicated. We can
just split its implementation into smaller methods—say, CheckCustomerCredit,
AllocateStock, and IssueRequestToWarehouse. These smaller methods do different bits
of the work for us.

This general technique, sometimes called functional decomposition, has a long history
in mathematics. It was explored academically in computing applications as early as the
1930s. Bearing in mind that the first working programmable computers didn’t appear
until the 1940s, that’s quite a pedigree. In fact, it has been around for so long that it
now seems “obvious” to most people who have had anything to do with computer
programming.

That’s not the end of the story, though. Methods are great for describing the dynam-
ics of a system—how things change in response to particular input data (the method
arguments), and the results of those changes (a function’s return value, or a method’s
side effects). What they’re not so good at is describing the current state of the system.
If we examine a set of functions and a load of variables, how can we work out which
pieces of information are supposed to be operated on by which functions? If methods
were the only tool available for abstraction, we’d have a hard time telling the difference
between the double that describes my blood pressure, and can be operated on by this
method:

void LowerMyBloodPressure(double pressureDelta)

and the double that describes my weight and can be affected by this method:

void EatSomeDonuts(int quantityOfDonuts)

As programs get ever larger, the number of system state variables floating around in-
creases, and the number of methods can explode exponentially. But the problems aren’t

Divide and Conquer | 61

just about the sheer number of functions and variables you end up with. As you try to
model a more complex system, it becomes harder to work out which functions and
variables you actually need—what is a good “decomposition” of the system? Which
methods relate to one another, and to which variables?

Abstracting Ideas with Objects and Classes
In the 1960s, two guys called Dahl and Nygaard (they’re Norwegian) were working on
big simulation systems and were struggling with this problem. Because they worked
on simulating real things, they realized that their code would be easier to understand
if they had some clear way to group together all of the data and functions related to a
particular type of real thing (or a particular object, we might say).

They designed a programming language that could do this, called Simula 67 (after the
year of its birth), and it is generally recognized as the grandmother of all the languages
we’d call object-oriented, which (of course) includes C#.

They had hit upon two important concepts:

• The class: a description of a collection of data and the functions that operate on
them

• The object: an instance of a collection of data and the functions that operate on
them (i.e., an instance of a class)

With these simple ideas, we can remove all doubt over which functions operate on
which data—the class describes for us exactly what goes with what, and we can handle
multiple entities of the same kind by creating several objects of a particular class.

Object-oriented analysis

As an example, let’s think about a very simple computer system that maintains the
information for an air traffic control (ATC) operation. (Safety notice: if you happen to
be building an ATC system, I strongly recommend that you don’t base it on this one.)

How does (this particular, slightly peculiar) ATC system work? It turns out that we’ve
got a bunch of people in a big room in Washington, tracking a large number of planes
that buzz around the airport in Seattle. Each plane has an identifier (BA0049, which flies
in from London Heathrow, for instance). We need to know the plane’s position, which
we’ll represent using three numbers: an altitude (in feet); the distance from the airport
control tower (in miles); and a compass heading (measured in degrees from North),
which will also be relative to the tower. Just to be clear, that’s not the direction the
aircraft itself is facing—it’s the direction we’d have to face in order to be looking at the
plane if we’re standing in the tower. We also need to know whether the aircraft is
coming in to us, or away from us, and how fast. This, apparently, is quite important.
(A more comprehensive model might include a second compass heading, representing

62 | Chapter 3: Abstracting Ideas with Classes and Structs

the exact direction the plane is facing. But to keep this example simple, we’ll just track
whether planes are approaching or departing.)

As the planes come in, the controllers give them permission to take off or land, and
instruct them to change their heading, height, or speed. The aim is to avoid them hitting
each other at any point. This, apparently, is also quite important.

At present they have a system where each controller is responsible for a particular piece
of airspace. They have a rack which contains little slips of plastic with the aircraft’s ID
on it, ordered by the height at which they are flying. If they are coming in to the airport,
they use a piece of blue plastic. If they are going away, they use white plastic. To keep
track of the heading, distance, and speed, they just write on the slip with a china graph
pencil.* If the plane moves out of their airspace, they hand the plane over to another
controller, who slips it into his own rack.

So that’s our specification.

In reality, a safety-critical system such as ATC would have a more robust
spec. However, when lives are not at stake, software specifications are
often pretty nebulous, so this example is, sadly, a fair representation of
what to expect on your average software project.

Armed with this brilliant description we need to come up with a design for a program
which can model the system. We’re going to do that using object-oriented techniques.

When we do an object-oriented analysis we’re looking for the different classes of object
that we are going to describe. Very often, they will correspond to real things in the
system. For a class to represent these real objects properly, we need to work out what
information it is going to hold, and what functions it will define to manipulate that
information. In general, any one piece of information will belong to exactly one object,
of exactly one class.

Not all of your classes will represent real-world objects. Some will relate
to more abstract concepts like collections, or commands. However, de-
signs that wander too far into the realms of the wholly abstract are often
“clever” but not necessarily “good”.

In our ATC example, it’s clear that we have a whole lot of different planes buzzing
round the airport. It would therefore seem logical that we would model each one as an
object, for which we would define a class called Plane.

Because C# is a language with object-oriented features, we have a simple and expressive
way of doing that.

* A special kind of crayon, designed for writing on glossy surfaces such as plastic.

Divide and Conquer | 63

Defining Classes
We can start out with the simplest possible class. It will have no methods, and no data,
so as a model of a plane in our system, it leaves something to be desired, but it gets us
started.

If you want to build your own version as you read, create a new Console Application
project just as we did in Chapter 2. To add a new class, use the Project→Add Class
menu item (or right-click on the project in the Solution Explorer and select Add→Class).
It’ll add a new file for the class, and if we call it Plane.cs, Visual Studio will create a new
source file with the usual using directives and namespace declaration. And most im-
portantly, the file will contain a new, empty class definition, as shown in Example 3-1.

Example 3-1. The empty Plane class

class Plane
{
}

Right; if we look back at the specification, there’s clearly a whole bunch of information
we’ve got about the plane that we need to store somewhere. C# gives us a handy
mechanism for this called a property.

Representing State with Properties
Each plane has an identifier which is just a string of letters and numbers. We’ve already
seen a built-in type ideal for representing this kind of data: string. So, we can add a
property called Identifier, of type string, as Example 3-2 shows.

Example 3-2. Adding a property

class Plane
{
 string Identifier
 {
 get;
 set;
 }
}

A property definition always states the type of data the property holds (string in this
case), followed by its name. By convention, we use PascalCasing for this name—see
the sidebar on the next page. As with most nontrivial elements of a C# program, this
is followed by a pair of braces, and inside these we say that we want to provide a get-
ter and a set-ter for the property. You might be wondering why we need to declare
these—wouldn’t any property need to be gettable and settable? But as we’ll see, these
explicit declarations turn out to be useful.

64 | Chapter 3: Abstracting Ideas with Classes and Structs

PascalCasing and camelCasing
Most programming languages, including C#, use whitespace to separate elements of
the code—it must be clear where one statement (or keyword, variable, or whatever)
ends and the next begins, and we often rely on spaces to mark the boundaries. But this
gives us a problem when it comes to naming. Lots of features of a program have
names—classes, methods, properties, and variables, for example—and we might want
to use multiple words in a name. But we can’t put a space in the middle of a name like
this:

class Jumbo Jet
{
}

The C# compiler would complain—the space after Jumbo marks the end of the name,
and the compiler doesn’t understand why we’ve put a second name, Jet, after that. If
we want to use multiple words in a name, we have to do it without using spaces. C#
programmers conventionally use two styles of capitalization to put multiple words in
a name:

• PascalCasing, where each word starts with a capital letter. This is used for types,
properties, and methods.

• camelCasing, where the first word starts with a lowercase letter and all subsequent
words get a capital. This is used for parameters and fields.

Pascal casing takes its name from the fact that it was a popular style among Pascal
programmers. It’s not a widely used language today, but lots of developers cut their
teeth on it a decade or three ago when drainpipe trousers, trilby hats, and black-and-
white print T-shirts were the latest in fashion (or at least, they were in parts of Europe).
And, by no coincidence whatsoever, Anders Hejlsberg (a key figure in the C# design
team) also designed Borland’s Turbo Pascal.

As for camel casing, that name comes from the fact that uppercase letters only ever
appear in the middle of the name, meaning you get one or more humps in the middle,
like a camel.

There’s a wrinkle in these conventions. Acronyms generally get treated as though they
are words, so if you had a class for an RGB color you might call it ColorRgb, and a color
with an alpha channel might be ColorArgb. (The .NET Framework class libraries include
types that refer to Argb, and people often mistakenly think that the “Arg” is short for
“argument” rather than Alpha, Red, Green, and Blue.)

There’s an exception to this exception: two-letter acronyms are usually capitalized. So
a person’s intelligence quotient might be recorded as PersonIQ.

These naming conventions are optional, but strongly recommended to help people
understand your code. MSDN offers an extensive set of guidelines for these sorts of
conventions at http://msdn.microsoft.com/library/ms229042.

Defining Classes | 65

http://msdn.microsoft.com/library/ms229042

If we create an instance of this class, we could use this Identifier property to get and
set its identifier. Example 3-3 shows this in a modified version of the Main function in
our Program.cs file.

Example 3-3. Using the Plane class’s property

static void Main(string[] args)
{
 Plane someBoeing777 = new Plane();

 someBoeing777.Identifier = "BA0049";

 Console.WriteLine(
 "Your plane has identifier {0}",
 someBoeing777.Identifier);

 // Wait for the user to press a key, so
 // that we can see what happened
 Console.ReadKey();
}

But wait! If you try to compile this, you end up with an error message:

'Plane.Identifier' is inaccessible due to its protection level

What’s that all about?

Protection Levels
Earlier, we mentioned that one of the objectives of good design is encapsulation: hiding
the implementation details so that other developers can use our objects without relying
on (or knowing about) how they work. As the error we just saw in Example 3-3 shows,
a class’s members are hidden by default. If we want them to be visible to users of our
class, we must change their protection level.

Every entity that we declare has its own protection level, whether we specify it or not.
A class, for example, has a default protection level called internal. This means that it
can only be seen by other classes in its own assembly. We’ll talk a lot more about
assemblies in Chapter 15. For now, though, we’re only using one assembly (our ex-
ample application itself), so we can leave the class at its default protection level.

While classes default to being internal, the default protection level for a class member
(such as a property) is private. This means that it is only accessible to other members
of the class. To make it accessible from outside the class, we need to change its protec-
tion level to public, as Example 3-4 shows.

Example 3-4. Making a property public

class Plane
{
 public string Identifier
 {

66 | Chapter 3: Abstracting Ideas with Classes and Structs

 get;
 set;
 }
}

Now when we compile and run the application, we see the correct output:

Your plane has identifier BA0049

Notice how this is an opt-in scheme. If you don’t do anything to the contrary, you get
the lowest sensible visibility. Your classes are visible to any code inside your assembly,
but aren’t accessible to anyone else; a class’s properties and methods are only visible
inside the class, unless you explicitly choose to make them more widely accessible.

When different layers specify different protection, the effective accessibility is the low-
est specified. For example, although our property has public accessibility, the class of
which it is a member has internal accessibility. The lower of the two wins, so the
Identifier property is, in practice, only accessible to code in the same assembly.

It is a good practice to design your classes with the smallest possible public interface
(part of something we sometimes call “minimizing the surface area”). This makes it
easier for clients to understand how they’re supposed to be used and often cuts down
on the amount of testing you need to do. Having a clean, simple public API can also
improve the security characteristics of your class framework, because the larger and
more complex the API gets, the harder it generally gets to spot all the possible lines of
attack.

That being said, there’s a common misconception that accessibility modifiers “secure”
your class, by preventing people from accessing private members. Hence this warning:

It is important to recognize that these protection levels are a convenient
design constraint, to help us structure our applications properly. They
are not a security feature. It’s possible to use the reflection features de-
scribed in Chapter 17 to circumvent these constraints and to access these
supposedly hidden details.

To finish this discussion, you should know that there are two other protection levels
available to us—protected and protected internal—which we can use to expose (or
hide) members to developers who derive new classes from our class without making
the members visible to all. But since we won’t be talking about derived classes until
Chapter 4, we’ll defer the discussion of these protection levels until then.

We can take advantage of protection in our Plane class. A plane’s identifier shouldn’t
change mid-flight, and it’s a good practice for code to prevent things from happening
that we know shouldn’t happen. We should therefore add that constraint to our class.
Fortunately, we have the ability to change the accessibility of the getter and the setter
individually, as Example 3-5 shows. (This is one reason the property syntax makes use
declare the get and set explicitly—it gives us a place to put the protection level.)

Defining Classes | 67

Example 3-5. Making a property setter private

class Plane
{
 public string Identifier
 {
 get;
 private set;
 }
}

Compiling again, we get a new error message:

The property or indexer 'Plane.Identifier' cannot be used in this context because
the set accessor is inaccessible

The problem is with this bit of code from Example 3-3:

someBoeing777.Identifier = "BA0049";

We’re no longer able to set the property, because we’ve made the setter private (which
means that we can only set it from other members of our class). We wanted to prevent
the property from changing, but we’ve gone too far: we don’t even have a way of giving
it a value in the first place. Fortunately, there’s a language feature that’s perfect for this
situation: a constructor.

Initializing with a Constructor
A constructor is a special method which allows you to perform some “setup” when you
create an instance of a class. Just like any other method, you can provide it with pa-
rameters, but it doesn’t have an explicit return value. Constructors always have the
same name as their containing class.

Example 3-6 adds a constructor that takes the plane’s identifier. Because the construc-
tor is a member of the class, it’s allowed to use the Identifier property’s private setter.

Example 3-6. Defining a constructor

class Plane
{
 public Plane(string newIdentifier)
 {
 Identifier = newIdentifier;
 }

 public string Identifier
 {
 get;
 private set;
 }
}

68 | Chapter 3: Abstracting Ideas with Classes and Structs

Notice how the constructor looks like a standard method declaration, except that since
there’s no need for a return type specifier, we leave that out. We don’t even write
void, like we would for a normal method that returns nothing. And it would be weird
if we did; in a sense this does return something—the newly created Plane—it just does
so implicitly.

What sort of work should you do in a constructor? Opinion is divided on the subject—
should you do everything required to make the object ready to use, or the minimum
necessary to make it safe? The truth is that it is a judgment call—there are no hard and
fast rules. Developers tend to think of a constructor as being a relatively low-cost op-
eration, so enormous amounts of heavy lifting (opening files, reading data) might be a
bad idea. Getting the object into a fit state for use is a good objective, though, because
requiring other functions to be called before the object is fully operational tends to lead
to bugs.

We need to update our Main function to use this new constructor and to get rid of the
line of code that was setting the property, as Example 3-7 shows.

Example 3-7. Using a constructor

static void Main(string[] args)
{
 Plane someBoeing777 = new Plane("BA0049");

 Console.WriteLine(
 "Your plane has identifier {0}",
 someBoeing777.Identifier);

 Console.ReadKey();
}

Notice how we pass the argument to the constructor inside the parentheses, in much
the same way that we pass arguments in a normal method call.

If you compile and run that, you’ll see the same output as before—but now we have
an identifier that can’t be changed by users of the object.

Be very careful when you talk about properties that “can’t be changed”
because they have a private setter. Even if you can’t set a property, you
may still be able to modify the state of the object referred to by that
property. The built-in string type happens to be immune to that be-
cause it is immutable (i.e., it can’t be changed once it has been created),
so making the setter on a string property private does actually prevent
clients from changing the property, but most types aren’t like that.

Speaking of properties that might need to change, our specification requires us to know
the speed at which each plane is traveling. Sadly, our specification didn’t mention the
units in which we were expected to express that speed. Let’s assume it is miles per hour,

Defining Classes | 69

and add a suitable property. We’ll use the floating-point double data type for this.
Example 3-8 shows the code to add to Plane.

Example 3-8. A modifiable speed property

public double SpeedInMilesPerHour
{
 get;
 set;
}

If we were to review this design with the customer, they might point out that while they
have some systems that do indeed want the speed in miles per hour the people they
liaise with in European air traffic control want the speed in kilometers per hour. To
avoid confusion, we will add another property so that they can get or set the speed in
the units with which they are familiar. Example 3-9 shows a suitable property.

Example 3-9. Property with code in its get and set

public double SpeedInKilometersPerHour
{
 get
 {
 return SpeedInMilesPerHour * 1.609344;
 }
 set
 {
 SpeedInMilesPerHour = value / 1.609344;
 }
}

We’ve done something different here—rather than just writing get; and set; we’ve
provided code for these accessors. This is another reason we have to declare the acces-
sors explicitly—the C# compiler needs to know whether we want to write a custom
property implementation.

We don’t want to use an ordinary property in Example 3-9, because our SpeedInKilo
metersPerHour is not really a property in its own right—it’s an alternative representation
for the information stored in the SpeedInMilesPerHour property. If we used the normal
property syntax for both, it would be possible to set the speed as being both 100 mph
and 400 km/h, which would clearly be inconsistent. So instead we’ve chosen to im-
plement SpeedInKilometersPerHour as a wrapper around the SpeedInMilesPerHour
property.

If you look at the getter, you’ll see that it returns a value of type double. It is equivalent
to a function with this signature:

public double get_SpeedInKilometersPerHour()

70 | Chapter 3: Abstracting Ideas with Classes and Structs

The setter seems to provide an invisible parameter called value, which is also of type
double. So it is equivalent to a method with this signature:

public void set_SpeedInKilometersPerHour(double value)

This value parameter is a contextual keyword—C# only considers it to
be a keyword in property or event accessors. (Events are described in
Chapter 5.) This means you’re allowed to use value as an identifier in
other contexts—for example, you can write a method that takes a pa-
rameter called value. You can’t do that with other keywords—you can’t
have a parameter called class, for example.

This is a very flexible system indeed. You can provide properties that provide real stor-
age in the class to store their data, or calculated properties that use any mechanism you
like to get and/or set the values concerned. This choice is an implementation detail
hidden from users of our class—we can switch between one and the other without
changing our class’s public face. For example, we could switch the implementation of
these speed properties around so that we stored the value in kilometers per hour, and
calculated the miles per hour—Example 3-10 shows how these two properties would
look if the “real” value was in km/h.

Example 3-10. Swapping over the real and calculated properties

public double SpeedInMilesPerHour
{
 get
 {
 return SpeedInKilometersPerHour / 1.609344;
 }
 set
 {
 SpeedInKilometersPerHour = value * 1.609344;
 }
}

public double SpeedInKilometersPerHour
{
 get;
 set;
}

As far as users of the Plane class are concerned, there’s no discernible difference between
the two approaches—the way in which properties work is an encapsulated implemen-
tation detail. Example 3-11 shows an updated Main function that uses the new prop-
erties. It neither knows nor cares which one is the “real” one.

Defining Classes | 71

Example 3-11. Using the speed properties

static void Main(string[] args)
{
 Plane someBoeing777 = new Plane("BA0049");

 someBoeing777.SpeedInMilesPerHour = 150.0;

 Console.WriteLine(
 "Your plane has identifier {0}, " +
 "and is traveling at {1:0.00}mph [{2:0.00}kph]",
 someBoeing777.Identifier,
 someBoeing777.SpeedInMilesPerHour,
 someBoeing777.SpeedInKilometersPerHour);

 someBoeing777.SpeedInKilometersPerHour = 140.0;

 Console.WriteLine(
 "Your plane has identifier {0}, " +
 "and is traveling at {1:0.00}mph [{2:0.00}kph]",
 someBoeing777.Identifier,
 someBoeing777.SpeedInMilesPerHour,
 someBoeing777.SpeedInKilometersPerHour);

 Console.ReadKey();
}

Although our public API supports two different units for speed while successfully
keeping the implementation for that private, there’s something unsatisfactory about
that implementation. Our conversion relies on a magic number (1.609344) that appears
repeatedly. Repetition impedes readability, and is prone to typos (I know that for a fact.
I’ve typed it incorrectly once already this morning while preparing the example!)
There’s an important principle in programming: don’t repeat yourself (or dry, as it’s
sometimes abbreviated). Your code should aim to express any single fact or concept
no more than once, because that way, you only need to get it right once.

It would be much better to put this conversion factor in one place, give it a name, and
refer to it by that instead. We can do that by declaring a field.

Fields: A Place to Put Data
A field is a place to put some data of a particular type. There’s no option to add code
like you can in a property—a field is nothing more than data. Back before C# 3.0 the
compiler didn’t let us write just get; and set;—we always had to write properties with
code as in Example 3-9, and if we wanted a simple property that stored a value, we had
to provide a field, with code such as Example 3-12.

72 | Chapter 3: Abstracting Ideas with Classes and Structs

Example 3-12. Writing your own simple property

// Field to hold the SpeedInMilesPerHour property's value
double speedInMilesPerHourValue;

public double SpeedInMilesPerHour
{
 get
 {
 return speedInMilesPerHourValue;
 }
 set
 {
 speedInMilesPerHourValue = value;
 }
}

When you write just get; and set; as we did in Example 3-8, the C# compiler generates
code that’s more or less identical to Example 3-12, except it gives the field a peculiar
name to prevent us from accessing it directly. (These compiler-generated properties are
called auto properties.) So, if we want to store a value in an object, there’s always a field
involved, even if it’s a hidden one provided automatically by the compiler. Fields are
the only class members that can hold information—properties are really just methods
in disguise.

As you can see, a field declaration looks similar to the start of a property declaration.
There’s the type (double), and a name. By convention, this name is camelCased, to
make fields visibly different from properties. (Some developers like to distinguish fields
further by giving them a name that starts with an underscore.)

We can modify a field’s protection level if we want, but, conventionally, we leave all
fields with the default private accessibility. That’s because a field is just a place for
some data, and if we make it public, we lose control over the internal state of our object.
Properties always involve some code, even if it’s generated automatically by the com-
piler. We can use private backing fields as we wish, or calculate property values any
way we like, and we’re free to modify the implementation without ever changing the
public face of the class. But with a field, we have nowhere to put code, so if we decide
to change our implementation by switching from a field to a calculated value, we would
need to remove the field entirely. If the field was part of the public contract of the class,
that could break our clients. In short, fields have no innate capacity for encapsulation,
so it’s a bad idea to make them public.

Example 3-13 shows a modified version of the Plane class. Instead of repeating the
magic number for our speed conversion factor, we declare a single field initialized to
the required value. Not only does this mean that we get to state the conversion value
just once, but we’ve also been able to give it a descriptive name—in the conversions,
it’s now obvious that we’re multiplying and dividing by the number of kilometers in a
mile, even if you happen not to have committed the conversion factor to memory.

Defining Classes | 73

Example 3-13. Storing the conversion factor in a field

class Plane
{
 // Constructor with a parameter
 public Plane(string newIdentifier)
 {
 Identifier = newIdentifier;
 }

 public string Identifier
 {
 get;
 private set;
 }

 double kilometersPerMile = 1.609344;

 public double SpeedInMilesPerHour
 {
 get
 {
 return SpeedInKilometersPerHour / kilometersPerMile;
 }
 set
 {
 SpeedInKilometersPerHour = value * kilometersPerMile;
 }
 }

 public double SpeedInKilometersPerHour
 {
 get;
 set;
 }
}

Notice how we’re able to initialize the field to a default value right where we declare it,
by using the = operator. (This sort of code is called, predictably enough, a field initial-
izer.) Alternatively, we could have initialized it inside a constructor, but if the default
is a constant value, it is conventional to set it at the point of declaration.

What about the first example of a field that we saw—the one we used as the backing
data for a property in Example 3-12? We didn’t explicitly initialize it. In some other
languages that would be a ghastly mistake. (Failure to initialize fields correctly is a major
source of bugs in C++, for example.) Fortunately, the designers of .NET decided that
the trade-off between performance and robustness wasn’t worth the pain, and kindly
initialize all fields to a default value for us—numeric fields are set to zero and fields of
other types get whatever the nearest equivalent of zero is. (Boolean fields are initialized
to false, for example.)

74 | Chapter 3: Abstracting Ideas with Classes and Structs

There’s also a security reason for this initialization. Because a new ob-
ject’s memory is always zeroed out before we get to see it, we can’t just
allocate a whole load of objects and then peer at the “uninitialized”
values to see if anything interesting was left behind by the last object
that used the same memory.

Defining a field for our scale factor is an improvement, but we could do better. Our
1.609344 isn’t ever going to change. There are always that many kilometers per mile,
not just for this instance of a Plane, but for any Plane there ever will be. Why allocate
the storage for the field in every single instance? Wouldn’t it be better if we could define
this value just once, and not store it in every Plane instance?

Fields Can Be Fickle, but const Is Forever
C# provides a mechanism for declaring that a field holds a constant value, and will
never, ever change. You use the const modifier, as Example 3-14 shows.

Example 3-14. Defining a constant value

const double kilometersPerMile = 1.609344;

The platform now takes advantage of the fact that this can never change, and allocates
storage for it only once, no matter how many instances of Plane you new up. Handy.

This isn’t just a storage optimization, though. By making the field const, there’s no
danger that someone might accidentally change it for some reason inside another func-
tion he’s building in the class—the C# compiler prevents you from assigning a value
to a const field anywhere other than at the point of declaration.

In general, when we are developing software, we’re trying to make it as
easy as possible for other developers (including our “future selves”) to
do the right thing, almost by accident. You’ll often hear this approach
called “designing for the pit of success.” The idea is that people will fall
into doing the right things because of the choices you’ve made.

Some aspects of an object don’t fit well as either a normal modifiable field or a constant
value. Take the plane’s identifier, for example—that’s fixed, in the sense that it never
changes after construction, but it’s not a constant value like kilometersPerMile. Dif-
ferent planes have different identifiers. .NET supports this sort of information through
read-only properties and fields, which aren’t quite the same as const.

Defining Classes | 75

Read-only Fields and Properties
In Example 3-5, we made our Plane class’s Identifier property private. This prevented
users of our class from setting the property, but our class is still free to shoot itself in
the foot. Suppose a careless developer added some code like that in Example 3-15,
which prints out messages in the SpeedInMilesPerHour property perhaps in order to
debug some problem he was investigating.

Example 3-15. Badly written debugging code

public double SpeedInMilesPerHour
{
 get
 {
 return SpeedInKilometersPerHour / kilometersPerMile;
 }
 set
 {
 Identifier += ": speed modified to " + value;
 Console.WriteLine(Identifier);
 SpeedInKilometersPerHour = value * kilometersPerMile;
 }
}

The first time someone tries to modify a plane’s SpeedInMilesPerHour this will print out
a message that includes the identifier, for example:

BA0048: speed modified to 400

Unfortunately, the developer who wrote this clearly wasn’t the sharpest tool in the
box—he used the += operator to build that debug string, which will end up modifying
the Identifier property. So, the plane now thinks its identifier is that whole text, in-
cluding the part about the speed. And if we modified the speed again, we’d see:

BA0048: speed modified to 400: speed modified to 380

While it might be interesting to see the entire modification history, the fact that we’ve
messed up the Identifier is bad. Example 3-15 was able to do this because the
SpeedInMilesPerHour property is part of the Plane class, so it can still use the private
setter. We can fix this (up to a point) by making the property read-only—rather than
merely making the setter private, we can leave it out entirely. However, we can’t just
write the code in Example 3-16.

Example 3-16. The wrong way to define a read-only property

class Plane
{
 // Wrong!
 public string Identifier
 {
 get;
 }

76 | Chapter 3: Abstracting Ideas with Classes and Structs

 ...
}

That won’t work because there’s no way we could ever set Identifier—not even in the
constructor. Auto properties cannot be read-only, so we must write a getter with code.
Example 3-17 will compile, although as we’re about to see, the job’s not done yet.

Example 3-17. A better, but incomplete, read-only property

class Plane
{
 public Plane(string newIdentifier)
 {
 _identifier = newIdentifier;
 }

 public string Identifier
 {
 get { return _identifier; }
 }
 private string _identifier;
 ...
}

This turns out to give us two problems. First, the original constructor from Exam-
ple 3-6 would no longer compile—it set Identifier, but that’s now read-only. That
was easy to fix, though—Example 3-17 just sets the explicit backing field we’ve added.
More worryingly, this hasn’t solved the original problem—the developer who wrote
the code in Example 3-15 has “cleverly” realized that he can “fix” his code by doing
exactly the same thing as the constructor. As Example 3-18 shows he has just used the
_identifier field directly.

Example 3-18. “Clever” badly written debugging code

public double SpeedInMilesPerHour
{
 get
 {
 return SpeedInKilometersPerHour / kilometersPerMile;
 }
 set
 {
 _identifier += ": speed modified to " + value;
 Console.WriteLine(Identifier);
 SpeedInKilometersPerHour = value * kilometersPerMile;
 }
}

That seemed like a long journey for no purpose. However, we can fix this problem—
we can modify the backing field itself to be read-only, as shown in Example 3-19.

Defining Classes | 77

Example 3-19. A read-only field

private readonly string _identifier;

That will foil the developer who wrote Example 3-15 and Example 3-18. But doesn’t
it also break our constructor again? In fact, it doesn’t: read-only fields behave differently
from read-only properties. A read-only property can never be modified. A read-only
field can be modified, but only by a constructor.

Since read-only fields only become truly read-only after construction completes, it
makes them perfect for properties that need to be able to be different from one instance
to another, but which need to be fixed for the lifetime of an instance.

Before we move on from const and readonly fields, there’s another property our
Plane needs for which const seems like it could be relevant, albeit in a slightly different
way. In addition to monitoring the speed of an aircraft, we also need to know whether
it is approaching or heading away from the airport.

We could represent that with a bool property called something like IsApproaching
(where true would mean that it was approaching, and false would, by implication,
indicate that it was heading away). That’s a bit clumsy, though. You can often end up
having to negate Boolean properties—you might need to write this sort of thing:

if (!plane.IsApproaching) { ... }

That reads as “if not plane is approaching” which sounds a bit awkward. We could go
with:

if (somePlane.IsApproaching == false) { ... }

That’s “if is approaching is false” which isn’t much better. We could offer a second,
calculated property called IsNotApproaching, but our code is likely to be simpler and
easier to read (and therefore likely to contain fewer bugs) if, instead of using bool, we
have a Direction property whose value could somehow be either Approaching or
Leaving.

We’ve just seen a technique we could use for that. We could create two constant fields
of any type we like (int, for example), and a property of type int called Direction (see
Example 3-20).

Example 3-20. Named options with const int

class Plane
{
 public const int Approaching = 0;
 public const int Leaving = 1;

 // ...

 public int Direction { get; set; }
}

78 | Chapter 3: Abstracting Ideas with Classes and Structs

This lets us write code that reads a bit more naturally than it would if we had used just
true and false:

someBoeing777.Direction = Plane.Approaching;
if (someAirbusA380.Direction == Plane.Leaving) { /* Do something */ }

But there’s one problem: if our Direction property’s type is int, there’s nothing to stop
us from saying something like:

someBoeing777.Direction = 72;

This makes no sense, but the C# compiler doesn’t know that—after all, we told it the
property’s type was int, so how’s it supposed to know that’s wrong? Fortunately, the
designers of C# have thought of this, and have given us a kind of type for precisely this
situation, called an enum, and it turns out to be a much better solution for this than
const int.

Related Constants with enum
The enum† keyword lets us define a type whose values can be one of a fixed set of
possibilities. Example 3-21 declares an enum for our Direction property. You can add
this to an existing source file, above or below the Plane class, for example. Alternatively,
you could add a whole new source file to the project, although Visual Studio doesn’t
offer a file template for enum types, so either you’d have to add a new class and then
change the class keyword to enum, or you could use the Code File template to add a
new, empty source file.

Example 3-21. Direction enum

enum DirectionOfApproach
{
 Approaching,
 Leaving
}

This is similar in some respects to a class declaration. We can optionally begin with a
protection level but if, like Example 3-21, we omit that, we get internal protection by
default. Then there’s the enum specifier itself, followed by the name of the type, which
by convention we PascalCase. Inside the braces, we declare the members, again using
PascalCasing. Notice that we use commas to separate the list of constants—this is
where the syntax starts to part company with class. Unusually, the members are pub-
licly accessible by default. That’s because an enum has no behavior, and so there are no
implementation details—it’s just a list of named values, and those need to be public
for the type to serve any useful purpose.

† It’s short for “enumeration,” by the way. So it’s often pronounced “e-noom” or, depending on where you’re
from, “e-nyoom.” However, some developers (and one of the authors) ignore the etymology and pronounce
it “ee numb” because that’s how it looks like it should sound.

Related Constants with enum | 79

Notice that we’ve chosen to call this DirectionOfApproach, and not the
plural DirectionsOfApproach. By convention, we give enum types a sin-
gular name even though they usually contain a list. This makes sense
because when you use named entries from an enumeration, you use
them one at a time, and so it would look odd if the type name were
plural. Obviously, there won’t be any technical consequences for break-
ing this convention, but following it helps make your code consistent
with the .NET Framework class libraries.

We can now declare our Direction property, using the enumeration instead of an in-
teger. Example 3-22 shows the property to add to the Plane class.

Example 3-22. Property with enum type

public DirectionOfApproach Direction
{
 get;
 set;
}

There are some optional features we can use in an enum declaration. Example 3-23 uses
these, and they provide some insight into how enum types work.

Example 3-23. Explicit type and values for enum

enum DirectionOfApproach : int
{
 Approaching = 0,
 Leaving = 1
}

In this declaration, we have explicitly specified the governing type for the enumeration.
This is the type that stores the individual values for an enumeration, and we specify it
with a colon and the type name. By default, it uses an int (exactly as we did in our
original const-based implementation of this property), so we’ve not actually changed
anything here; we’re just being more explicit. The governing type must be one of the
built-in integer types: byte, sbyte, short, ushort, uint, long, or ulong.

Example 3-23 also specifies the numbers to use for each named value. As it happens,
if you don’t provide these numbers, the first member is assigned the value 0, and we
count off sequentially after that, so again, this example hasn’t changed anything, it’s
just showing the values explicitly.

We could, if we wanted, specify any value for any particular member. Maybe we start
from 10 and go up in powers of 2. And we’re also free to define duplicates, giving the
same value several different names. (That might not be useful, but C# won’t stop you.)

We normally leave all these explicit specifiers off, and accept the defaults. However,
the sidebar on the next page describes a scenario in which you would need to control
the numbers.

80 | Chapter 3: Abstracting Ideas with Classes and Structs

Bit Fields with [Flags]
You can create a special kind of enum called a [Flags] enum, also known as a bit field. A
bit field is just an ordinary numeric value used in a particular way. When you view a
bit field value in binary, each bit represents a particular setting. For example, we could
define a bit field to represent the toppings on a bowl of ice cream. We might use the
least significant bit to indicate whether a chocolate sauce topping is required. And we
could use a different bit to indicate whether chocolate sprinkles are required.

The thing that makes bit field enum types different from normal ones is that you can use
any combination of values. Because each value gets a whole bit of the number to itself,
you can choose for that bit to be either 0 or 1 independently of the value of any other bits.

You indicate that your enum works this way by annotating it with a [Flags] attribute,
and specifying the values of the members to correspond to the relevant bit patterns.
(Actually, the [Flags] attribute turns out to be optional—the compiler ignores it, and
lets you use any enum as though it were a bit field. The .NET Framework only uses the
attribute to work out how to convert enumeration values to text. However, it’s a useful
signpost to tell other developers how your enum is meant to be used.) Typically, you
define a name for each bit, and you can also name some common combinations:

[Flags]
enum Toppings
{
 None = 0x00, // Special zero value
 ChocolateSauce = 0x01,
 ToffeeSauce = 0x02,
 ChocolateSprinkles = 0x04,
 Chocoholic = 0x05, // Combined value, sets 2 bits
 Greedy = 0x07 // Everything!
}

We’re using hexadecimal representations because it’s easier to relate them to the binary
values—each hex digit corresponds exactly to four binary digits.

We can combine the values together using the | operator (binary OR), for example:

// (011)
Toppings saucy =
 Toppings.ChocolateSauce | Toppings.ToffeeSauce;

We can use the binary AND operator (&) to see whether a particular flag has been set:

static bool DoYouWantChocolateSauceWithThat(Toppings t)
{
 return (t & Toppings.ChocolateSauce) != 0;
}

When defining bit fields, you might not want to allow certain combinations. For ex-
ample, you might reject the saucy combination, requiring customers to pick, at most,
one kind of sauce. Unfortunately, there are no language or platform mechanisms for
enforcing that kind of constraint, so you’d need to write code to check for illegal com-
binations in any method that accepted arguments of this type. (Or you could consider
an alternative design that does not use an enum at all.)

Related Constants with enum | 81

If you don’t specify explicit values, the first item in your list is effectively
the default value for the enum (because it corresponds to the zero value).
If you provide explicit values, be sure to define a value that corresponds
to zero—if you don’t, fields using your type will default to a value that’s
not a valid member of the enum, which is not desirable.

We can now access the enumeration property like this:

someBoeing777.Direction = DirectionOfApproach.Approaching;

We’ve clearly made some progress with our Plane class, but we’re not done yet. We
have a read-only property for its Identifier. We can store the speed, which we can get
and set using two different properties representing different units, using a const field
for the conversion factor. And we know the direction, which will be either the Approach
ing or the Leaving member of an enum.

We still need to store the aircraft’s position. According to the specification, we’ve got
two polar coordinates (an angle and a distance) for its position on the ground, and
another value for its height above sea level.

We’re likely to need to do a lot of calculations based on this position information. Every
time we want to create a function to do that, we’d need three parameters per point,
which seems overly complex. (And error-prone—it’d be all too easy to inadvertently
pass two numbers from one position, and a third number from a different position.) It
would be nicer if we could wrap the numbers up into a single, lightweight, “3D point”
type that we can think of in the same kind of way we do int or double—a basic building
block for other classes to use with minimum overhead.

This is a good candidate for a value type.

Value Types and Reference Types
So far, we’ve been building a class. When creating an instance of the class, we stored
it in a named variable, as Example 3-24 shows.

Example 3-24. Storing a reference in a variable

Plane someBoeing777 = new Plane("BA0049");
someBoeing777.Direction = DirectionOfApproach.Approaching;

We can define another variable with a different name, and store a reference to the same
plane in that new variable, as shown in Example 3-25.

Example 3-25. Copying a reference from one variable to another

Plane theSameBoeing777ByAnotherName = someBoeing777;

82 | Chapter 3: Abstracting Ideas with Classes and Structs

If we change a property through one variable, that change will be visible through the
other. Example 3-26 modifies our plane’s Direction property through the second var-
iable, but then reads it through the first variable, verifying that they really are referring
to the same object.

Example 3-26. Using one object through two variables

theSameBoeing777ByAnotherName.Direction = DirectionOfApproach.Leaving;
if (someBoeing777.Direction == DirectionOfApproach.Leaving)
{
 Console.WriteLine("Oh, they are the same!");
}

As Shakespeare might have said, if only he’d found his true vocation as a C# developer:

That which we call someBoeing777
By any other name would smell as sweet.

Assuming you like the smell of jet fuel.

When we define a type using class, we always get this behavior—our variables behave
as references to an underlying object. We therefore call a type defined as a class a
reference type.

It’s possible for a reference type variable to be in a state where it isn’t
referring to any object at all. C# has a special keyword, null, to represent
this. You can set a variable to null, or you can pass null as an argument
to a method. And you can also test to see if a field, variable, or argument
is equal to null in an if statement. Any field whose type is a reference
type will automatically be initialized to null before the constructor runs,
in much the same way as numeric fields are initialized to zero.

The enum we declared earlier and the built-in numeric types (int, double) behave dif-
ferently, though, as Example 3-27 illustrates.

Example 3-27. Copying values, not references

int firstInt = 3;
int secondInt = firstInt;

secondInt = 4;

if (firstInt != 4)
{
 Console.WriteLine("Well. They're not the same at all.");
}

When we assign firstInt to secondInt, we are copying the value. In this case, the var-
iables hold the actual value, not a reference to a value. We call types that behave this
way value types.

Value Types and Reference Types | 83

People often refer to reference types as being allocated “on the heap” and value types
“on the stack.” C++ programmers will be familiar with these concepts, and C++ pro-
vided one syntax in the language to explicitly create items on the stack (a cheap form
of storage local to a particular scope), and a different syntax for working on the heap
(a slightly more expensive but sophisticated form of storage that could persist beyond
the current scope). C# doesn’t make that distinction in its syntax, because the .NET
Framework itself makes no such distinction. These aspects of memory management
are completely opaque to the developer, and it is actively wrong to think of value types
as being always allocated on a stack.

For people familiar with C++ this can take a while to get used to, especially as the myth
is perpetuated on the Web, in the MSDN documentation and elsewhere. (For example,
at the time of this writing, http://msdn.microsoft.com/library/aa288471 states that
structs are created on the stack, and while that happens to be true of the ones in that
example when running against the current version of .NET, it would have been helpful
if the page had mentioned that it’s not always true. For example, if a class has a field
of value type, that field doesn’t live on the stack—it lives inside the object, and in all
the versions of .NET released so far, objects live on the heap.)

The important difference for the C# developer between these two kinds
of types is the one of reference versus copy semantics.

As well as understanding the difference in behavior, you also need to be aware of some
constraints. To be useful, a value type should be:

• Immutable

• Lightweight

Something is immutable if it doesn’t change over time. So, the integer 3 is immutable.
It doesn’t have any internal workings that can change its “three-ness”. You can replace
the value of an int variable that currently contains a 3, by copying a 4 into it, but you
can’t change a 3 itself. (Unlike, say, a particular Plane object, which has a Direction
property that you can change anytime you like without needing to replace the whole
Plane.)

There’s nothing in C# that stops you from creating a mutable value
type. It is just a bad idea (in general). If your type is mutable, it is prob-
ably safer to make it a reference type, by declaring it as a class. Mutable
value types cause problems because of the copy semantics—if you mod-
ify a value, it’s all too easy to end up modifying the wrong one, because
there may be many copies.

84 | Chapter 3: Abstracting Ideas with Classes and Structs

http://msdn.microsoft.com/library/aa288471

It should be fairly apparent that a value type also needs to be pretty lightweight, because
of all that copying going on. Every time you pass it into a function, or assign it to a
variable, a copy is made. And copies are generally the enemy of good performance. If
your value type consists of more than two or three of the built-in types, it may be getting
too big.

These constraints mean it is very rare that you will actually want to declare a value type
yourself. A lot of the obviously useful ones you might want are already defined in
the .NET Framework class libraries (things like 2D points, times, and dates). Custom
value types are so rare that it was hard to come up with a useful example for this book
that wasn’t already provided in the class libraries. (If you were wondering why our
example application represents aircraft positions in such an idiosyncratic fashion, this
is the reason.)

But that doesn’t mean you should never, ever declare a value type. Value types can have
performance benefits when used in arrays (although as with most performance issues,
this is not entirely clear-cut), and the immutability and copy semantics can make them
safer when passing them in to functions—you won’t normally introduce side effects by
working with a value type because you end up using a copy, rather than modifying
shared data that other code might be relying on.

Our polar 3D point seems to comply with the requirements. Any given point is just
that: a specific point in 3D space—a good candidate for immutability. (We might want
to move a plane to a different point, but we can’t change what a particular point means.)
It is also no more than three doubles in size, which is small enough for copy semantics.
Example 3-28 shows our declaration of this type, which we can add to our project. (As
with enum, Visual Studio doesn’t offer a template for value types. Again, we can use the
Class template, replacing the class with the code we want.)

Example 3-28. A value type

struct PolarPoint3D
{
 public PolarPoint3D(double distance, double angle, double altitude)
 {
 Distance = distance;
 Angle = angle;
 Altitude = altitude;
 }

 public double Distance
 {
 get;
 private set;
 }

 public double Angle
 {
 get;
 private set;

Value Types and Reference Types | 85

 }

 public double Altitude
 {
 get;
 private set;
 }
}

If you think that it looks just like a class declaration, but using the struct keyword
instead of class, you’d be right—these two kinds of types are very similar. However,
if we try to compile it, we get an error on the first line of the constructor:

The 'this' object cannot be used before all of its fields are assigned to

So, although the basic syntax of a struct looks just like a class there are important
differences. Remember that when you allocate an instance of a particular type, it is
always initialized to some default value. With classes, all fields are initialized to zero
(or the nearest equivalent value). But things work slightly differently with value types—
we need to do slightly more work.

Anytime we write a struct, C# automatically generates a default, parameterless con-
structor that initializes all of our storage to zero, so if we don’t want to write any custom
constructors, we won’t have any problems. (Unlike with a class, we aren’t allowed to
replace the default constructor. We can define extra constructors, but the default con-
structor is always present and we’re not allowed to write our own—see the sidebar on
the next page for details.)

Example 3-28 has hit trouble because we’re trying to provide an additional constructor,
which initializes the properties to particular values. If we write a constructor in a
struct, the compiler refuses to let us invoke any methods until we’ve initialized all the
fields. (It doesn’t do the normal zero initialization for custom constructors.) This re-
striction turns out to include properties, because get and set accessors are methods
under the covers. So C# won’t let us use our properties until the underlying fields have
been initialized, and we can’t do that because these are auto properties—the C# com-
piler has generated hidden fields that we can only access through the properties. This
is a bit of a chicken-and-egg bootstrapping problem!

Fortunately, C# gives us a way of calling one of our constructors from another. We
can use this to call the default constructor to do the initialization; then our constructor
can set the properties to whatever values it wishes. We call the constructor using the
this keyword, and the standard function calling syntax with any arguments enclosed
in parentheses. As Example 3-29 shows, we can invoke the default constructor with an
empty argument list.

86 | Chapter 3: Abstracting Ideas with Classes and Structs

Value Types and Default Constructors
Why aren’t we allowed to define a custom default constructor for a value type, given
that we’re allowed to do that for a reference type? The short answer is that the speci-
fication for the relevant behavior in the .NET Framework doesn’t let you. (The speci-
fication in question is called the Common Language Infrastructure [CLI], incidentally.)

The slightly longer answer is: for efficiency reasons. By mandating that the default
constructor for any value type always initializes everything to zero, large arrays of value
types can be constructed very cheaply, just by allocating the required amount of mem-
ory and zeroing out the whole array in one step. And similarly, it simplifies the initial-
ization of fields and variables—everything can be initialized to zero.

Example 3-29. Calling one constructor from another

public PolarPoint3D(double distance, double angle, double altitude)
 : this()
{
 Distance = distance;
 Angle = angle;
 Altitude = altitude;
}

You add the call just before the opening brace for the body of the constructor, and
prefix it with a colon. We can also use this technique to avoid writing common initi-
alization code multiple times. Say we wanted to provide another utility constructor that
just took the polar coordinates, and initialized the altitude to zero by default. Instead
of repeating all the code from the first constructor, we could just add this extra con-
structor to our definition for PolarPoint3D, as shown in Example 3-30.

Example 3-30. Sharing common initialization code

public PolarPoint3D(double distance, double angle)
 : this(distance, angle, 0)
{
}

public PolarPoint3D(
 double distance,
 double angle,
 double altitude)
 : this()
{
 Distance = distance;
 Angle = angle;
 Altitude = altitude;
}

Incidentally, this syntax for calling one constructor from another works equally well in
classes, and is a great way of avoiding code duplication.

Value Types and Reference Types | 87

Too Many Constructors, Mr. Mozart
You should be careful of adding too many constructors to a class or struct. It is easy
to lose track of which parameters are which, or to make arbitrary choices about which
constructors you provide and which you don’t.

For example, let’s say we wanted to add yet another constructor to PolarPoint3D that
lets callers pass just the angle and altitude, initializing the distance to a default of zero,
as Example 3-31 shows.

Example 3-31. A constructor too far

public PolarPoint3D(
 double altitude,
 double angle)
 : this(0, angle, altitude)
{
}

Even before we compile, we can see that there’s a problem—we happen to have added
the altitude parameter so that it is the first in the list, and angle stays second. In our
main constructor, the altitude comes after the angle. Because they are both just doubles,
there’s nothing to stop you from accidentally passing the parameters “the wrong way
round.” This is the exactly the kind of thing that surprises users of your class, and leads
to hard-to-find bugs. But while inconsistent parameter ordering is bad design, it’s not
a showstopper.

However, when we compile, things get even worse. We get another error:

Type 'PolarPoint3D' already defines a member called 'PolarPoint3D' with the same
parameter types

We have too many constructors. But how many is too many?

Overloading
When we define more than one member in a type with the same name (be it a con-
structor or, as we’ll see later, a method) we call this overloading.

Initially, we created two constructors (two overloads of the constructor) for Polar
Point3D, and they compiled just fine. This is because they took different sets of param-
eters. One took three doubles, the other two. In fact, there was also the third, hidden
constructor that took no parameters at all. All three constructors took different num-
bers of parameters, meaning there’s no ambiguity about which constructor we want
when we initialize a new PolarPoint3D.

The constructor in Example 3-31 seems different: the two doubles have different names.
Unfortunately, this doesn’t matter to the C# compiler—it only looks at the types of the
parameters, and the order in which they are declared. It does not use names for

88 | Chapter 3: Abstracting Ideas with Classes and Structs

disambiguation. This should hardly be surprising, because we’re not required to pro-
vide argument names when we call methods or constructors. If we add the overload in
Example 3-31, it’s not clear what new PolarPoint3D(0, 0) would mean, and that’s why
we get an error—we’ve got two members with the same name (PolarPoint3D—the
constructor), and exactly the same parameter types, in the same order.

Looking at overloaded functions will emphasize that it really is only the method name
and the parameters that matter—a function’s return type is not considered to be a
disambiguating aspect of the member for overload purposes.

That means there’s nothing we can do about it: we’re going to have to get rid of this
third constructor (just delete it); and while we’re in the code, we’ll finish up the dec-
laration of the data portion of our Plane by adding a property for its position, shown
in Example 3-32.

Example 3-32. Using our custom value type for a property

public PolarPoint3D Position
{
 get;
 set;
}

Overloaded Methods and Default Named Parameters
Just as with constructors, we can provide more than one method with the same name,
but a different list of parameter types. It is, in general, a bad idea to provide two over-
loads with the same name if they perform a semantically different operation (again—
that’s the kind of thing that surprises developers using your class), so the most common
reason for overloading is to provide several different ways to do something. We can
provide users of our code with flexible methods that take lots of arguments to control
different aspects of the code, and we can also provide developers that don’t need this
flexibility with simpler options by providing overloads that don’t need as many
arguments.

Suppose we added a method to our Plane class enabling messages to be sent to aircraft.
Perhaps in our first attempt we define a method whose signature looks like this:

public void SendMessage(string messageText)

But suppose that as the project progresses, we find that it would be useful to be able
to delay transmission of certain messages. We could modify the SendMessage method
so that it accepts an extra argument. There’s a handy type in the framework called
TimeSpan which lets us specify duration. We could modify the method to make use of it:

public void SendMessage(string messageText, TimeSpan delay)

Alas! If we already had code in our project depending on the original signature, we’d
start to see this compiler error:

No overload for method 'SendMessage' takes '1' arguments

Overloading | 89

We’ve changed the signature of that method, so all our clients are sadly broken. They
need to be rewritten to use the new method. That’s not great.

A better alternative is to provide both signatures—keep the old single-parameter con-
tract around, but add an overload with the extra argument. And to ensure that the
overloads behave consistently (and to avoid duplicating code) we can make the simpler
method call the new method as its actual implementation. The old method was just
the equivalent of calling the new method with a delay of zero, so we could replace it
with the method shown in Example 3-33. This lets us provide the newly enhanced
SendMessage, while continuing to support the old, simpler version.

Example 3-33. Implementing one overload in terms of another

public void SendMessage(string messageName)
{
 SendMessage(messageName, TimeSpan.Zero);
}

(TimeSpan.Zero is a static field that returns a duration of zero.)

Until C# 4.0 that’s as far as we could go. However, the C# designers noticed that a lot
of member overloads were just like this one: facades over an über-implementation, with
a bunch of parameters defaulted out to particular values. So they decided to make it
easier for us to support multiple variations on the same method. Rather than writing
lots of overloads, we can now just specify default values for a method’s arguments,
which saves us typing a lot of boilerplate, and helps make our default choices more
transparent.

Let’s take out the single-parameter method overload we just added, and instead change
the declaration of our multiparameter implementation, as shown in Example 3-34.

Example 3-34. Parameter with default value

public void SendMessage(
 string messageName,
 TimeSpan delay = default(TimeSpan))

Even though we’ve only got one method, which supports two arguments, code that
tries to call it with a single argument will still work. That’s because default values can
fill in for missing arguments. (If we tried to call SendMessage with no arguments at all,
we’d get a compiler error, because there’s no default for the first argument here.)

But it doesn’t end there. Say we had a method with four parameters, like this one:

public void MyMethod(
 int firstOne,
 double secondInLine = 3.1416,
 string thirdHere = "The third parameter",
 TimeSpan lastButNotLeast = default(TimeSpan))
{
 // ...
}

90 | Chapter 3: Abstracting Ideas with Classes and Structs

If we want to call it and specify the first parameter (which we have to, because it has
no default), and the third, but not the second or the fourth, we can do so by using the
names of the parameters, like this:

MyMethod(127, thirdHere: "New third parameter");

With just one method, we now have many different ways to call it—we can provide all
the arguments, or just the first and second, or perhaps the first, second, and third. There
are many combinations. Before named arguments and defaults were added in C# 4.0,
the only way to get this kind of flexibility was to write an overload for each distinct
combination.

Under the Hood with Default Parameters
Default and named parameters are very useful features, but we need to warn you of a
subtle potential problem. Although they are more-or-less equivalent to providing a
bunch of different function overloads, as far as the syntax for the caller goes, under the
covers, they are implemented very differently.

The compiler marks a parameter to indicate that it is optional using the OptionalAttri
bute and there’s a DefaultParameterValueAttribute to specify a default value. These
two attributes have been around for quite a while—they were originally added for the
benefit of Visual Basic, long before C# started using them. (Attributes are discussed in
Chapter 17.)

When you call a method (or constructor), the C# compiler always emits a complete
call—the compiled code passes a full set of arguments to the method, even if your source
code left some arguments out. For example, in our Plane example, if you wrote:

SendMessage("SomeMessage");

but the Plane class only has the method shown in Example 3-34, the compiler actually
generates code equivalent to this:

SendMessage("SomeMessage", default(TimeSpan));

In other words, it plugs in the default value at compile time. This means if you’re using
some external library that uses default values, and a newer version of the library comes
out that changes the default values for some method or constructor, your code won’t
pick up those new values unless you recompile your code.

There’s also a subtler problem you can run into. Some parts of the .NET Framework
require you to provide a particular constructor overload. For example, it you write a
custom control for WPF, and you want to use it from Xaml, it must have a default
constructor. (WPF and Xaml are described in Chapter 20.) If all your constructors take
parameters, then even if you provide default values for all the parameters, that’s not
good enough. You can write, say, new MyControl() in C#, but only because the C#
compiler is implicitly passing the missing values for you. Not everything in the world
of .NET understands the concept of default arguments. (C# itself didn’t until version
4.0.) Sometimes only a genuine no-arguments constructor will do.

Overloading | 91

This is not just limited to normal methods—you can use this same syntax to provide
default values for parameters in your constructors, if you wish.

Being forced to delete the extra constructor we tried to add back in Example 3-31 was
a little disappointing—we’re constraining the number of ways users of our type can
initialize it. Named arguments and default values have helped, but can we do more?

Object Initializers
Until C# 3.0, the only real solution to this was to write one or more factory methods.
These are described in the sidebar below. But now we have another option.

Factory Methods
A factory method is a static method that builds a new object. There’s no formal support
for this in C#, it’s just a common solution to a problem—a pattern, as popular idioms
are often called in programming. We can get around the overload ambiguity problems
by providing factory methods with different names. And the names can make it clear
how we’re initializing the instance:

public static PolarPoint3D FromDistanceAndAngle(
 double distance, double angle)
{
 return new PolarPoint3D(distance, angle, 0);
}

public static PolarPoint3D FromAngleAndAltitude(
 double angle, double altitude)
{
 return new PolarPoint3D(0, angle, altitude);
}

We rather like this approach, although some people frown on it as insufficiently dis-
coverable. (Most developers aren’t expecting to find static methods that act rather like
constructors, and if nobody finds these methods, we’re wasting our time in providing
them.) However, this pattern is used all over the .NET Framework libraries—DateTime,
TimeSpan, and Color are popular types that all use this technique.

With C# 3.0 the language was extended to support object initializers—an extension to
the new syntax that lets us set up a load of properties, by name, as we create our object
instance.

Example 3-35 shows how an object initializer looks when we use it in our Main function.

92 | Chapter 3: Abstracting Ideas with Classes and Structs

Example 3-35. Using object initializers

static void Main(string[] args)
{
 Plane someBoeing777 = new Plane("BA0049")
 {
 Direction = DirectionOfApproach.Approaching,
 SpeedInMilesPerHour = 150
 };

 Console.WriteLine(
 "Your plane has identifier {0}," +
 " and is traveling at {1:0.00}mph [{2:0.00}kph]",
 // Use the property getter
 someBoeing777.Identifier,
 someBoeing777.SpeedInMilesPerHour,
 someBoeing777.SpeedInKilometersPerHour);

 someBoeing777.SpeedInKilometersPerHour = 140.0;

 Console.WriteLine(
 "Your plane has identifier {0}," +
 " and is traveling at {1:0.00}mph [{2:0.00}kph]",
 // Use the property getter
 someBoeing777.Identifier,
 someBoeing777.SpeedInMilesPerHour,
 someBoeing777.SpeedInKilometersPerHour);

 Console.ReadKey();

}

Object initializers are mostly just a convenient syntax for constructing
a new object and then setting some properties. Consequently, this only
works with writable properties—you can’t use it for immutable
types,‡ so this wouldn’t work with our PolarPoint3D.

We still use the constructor parameter for the read-only Identifier property; but then
we add an extra section in braces, between the closing parenthesis and the semicolon,
in which we have a list of property assignments, separated by commas. What’s partic-
ularly interesting is that the purpose of the constructor parameter is normally
identifiable only by the value we happen to assign to it, but the object initializer is
“self-documenting”—we can easily see what is being initialized to which values, at a
glance.

‡ This is a slight oversimplification. In Chapter 8, we’ll encounter anonymous types, which are
always immutable, and yet we can use object initializers with those. In fact, we are required to.
But anonymous types are a special case.

Object Initializers | 93

The job isn’t quite done yet, though. While there’s nothing technically wrong with
using both the constructor parameter and the object initializer, it does look a little bit
clumsy. It might be easier for our clients if we allow them to use a default, parameterless
constructor, and then initialize all the members using this new syntax. As we’ll see in
Chapter 6, we have other ways of enforcing invariants in the object state, and dealing
with incorrect usages. Object initializers are certainly a more expressive syntax, and on
the basis that self-documenting and transparent is better, we’re going to change how
Plane works so that we can initialize the whole object with an object initializer.

As with any design consideration, there is a counter argument. Some
classes may be downright difficult to put into a “default” (zero-ish) state
that isn’t actively dangerous. We’re also increasing the size of the public
API by the changes we’re making—we’re adding a public setter. Here,
we’ve decided that the benefits outweigh the disadvantages in this par-
ticular case (although it’s really a judgment call; no doubt some devel-
opers would disagree).

First, as Example 3-36 shows, we’ll delete the special constructor from Plane, and then
make Identifier an ordinary read/write property. We can also remove the
_identifier backing field we added earlier, because we’ve gone back to using an auto
property.

Example 3-36. Modifying Plane to work better with object initializers

class Plane
{
 // Remove the constructor that we no longer require
 // public Plane(string newIdentifier)
 // {
 // Identifier = newIdentifier;
 // }

 public string Identifier
 {
 get;
 // remove the access modifier
 // to make it public
 set;
 }

 // ...
}

We can now use the object initializer syntax for all the properties we want to set. As
Example 3-37 shows, this makes our code look somewhat neater—we only need one
style of code to initialize the object.

94 | Chapter 3: Abstracting Ideas with Classes and Structs

Example 3-37. Nothing but object initializer syntax

Plane someBoeing777 = new Plane
 {
 Identifier = "BA0049",
 Direction = DirectionOfApproach.Approaching,
 SpeedInMilesPerHour = 150
 };

Object initializer syntax provides one big advantage over offering lots of specialized
constructors: people using your class can provide any combination of properties they
want. They might decide to set the Position property inline in this object initializer too,
as Example 3-38 does—if we’d been relying on constructors, default or named argu-
ments wouldn’t have helped if there was no constructor available that accepted a
Position. We’ve not had to provide an additional constructor overload to make this
possible—developers using our class have a great deal of flexibility. Of course, this
approach only makes sense if our type is able to work sensibly with default values for
the properties in question. If you absolutely need certain values to be provided on
initialization, you’re better off with constructors.

Example 3-38. Providing an extra property

Plane someBoeing777 = new Plane
 {
 Identifier = "BA0049",
 Direction = DirectionOfApproach.Approaching,
 SpeedInMilesPerHour = 150,
 Position = new PolarPoint3D(20, 180, 14500)
 };

So, we’ve addressed the data part of our Plane; but the whole point of a class is that it
can encapsulate both state and operations. What methods are we going to define in our
class?

Defining Methods
When deciding what methods a class might need, we generally scan our specifications
or scenarios for verbs that relate to the object of that class. If we look back at the ATC
system description at the beginning of this chapter, we can see several plane-related
actions, to do with granting permissions to land and permissions to take off. But do we
need functions on the Plane class to deal with that? Possibly not. It might be better to
deal with that in another part of the model, to do with our ground control, runways,
and runway management (that, you’ll be pleased to hear, we won’t be building).

But we will periodically need to update the position of all the planes. This involves
changing the state of the plane—we will need to modify its Position. And it’s a change
of state whose details depend on the existing state—we need to take the direction and

Defining Methods | 95

speed into account. This sounds like a good candidate for a method that the Plane class
should offer. Example 3-39 shows the code to add inside the class.

Example 3-39. A method

public void UpdatePosition(double minutesToAdvance)
{
 double hours = minutesToAdvance / 60.0;
 double milesMoved = SpeedInMilesPerHour * hours;
 double milesToTower = Position.Distance;
 if (Direction == DirectionOfApproach.Approaching)
 {
 milesToTower -= milesMoved;
 if (milesToTower < 0)
 {
 // We've arrived!
 milesToTower = 0;
 }
 }
 else
 {
 milesToTower += milesMoved;
 }
 PolarPoint3D newPosition = new PolarPoint3D(
 milesToTower, Position.Angle, Position.Altitude);
}

This method takes a single argument, indicating how much elapsed time the calculation
should take into account. It looks at the speed, the direction, and the current position,
and uses this information to calculate the new position.

This code illustrates that our design is some way from being finished.
We never change the altitude, which suggests that our planes are going
to have a hard time reaching the ground. (Although since this code
makes them stop moving when they get directly above the tower, they’ll
probably reach the ground soon enough...) Apparently our initial spec-
ification did not fully and accurately describe the problem our software
should be solving. This will not come as astonishing news to anyone
who has worked in the software industry. Clearly we need to talk to the
client to get clarification, but let’s implement what we can for now.

Notice that our code is able to use all of the properties—SpeedInMilesPerHour,
Direction, and so on—without needing to qualify them with a variable. Whereas in
Example 3-35 we had to write someBoeing777.SpeedInMilesPerHour, here we just write
SpeedInMilesPerHour. Methods are meant to access and modify an object’s state, and
so you can refer directly to any member of the method’s containing class.

There’s one snag with that. It can mean that for someone reading the code, it’s not
always instantly obvious when the code uses a local variable or argument, and when it
uses some member of the class. Our properties use PascalCasing, while we’re using

96 | Chapter 3: Abstracting Ideas with Classes and Structs

camelCasing for arguments and variables, which helps, but what it we wanted to access
a field? Those conventionally use camelCasing too. That’s why some developers put
an underscore in front of their field names—it makes it more obvious when we’re doing
something with the object’s state. But there’s an alternative—a more explicit style,
shown in Example 3-40.

Example 3-40. Explicit member access

public void UpdatePosition(double minutesToAdvance)
{
 double hours = minutesToAdvance / 60;
 double milesMoved = this.SpeedInMilesPerHour * hours;
 double milesToTower = this.Position.Distance;
 if (this.Direction == DirectionOfApproach.Approaching)
 {
 milesToTower -= milesMoved;
 if (milesToTower < 0)
 {
 // We've arrived!
 milesToTower = 0;
 }
 }
 else
 {
 milesToTower += milesMoved;
 }
 PolarPoint3D newPosition = new PolarPoint3D(
 milesToTower,
 this.Position.Angle,
 this.Position.Altitude);
}

This is almost the same as Example 3-39, except every member access goes through a
variable called this. But we’ve not defined any such variable—where did that come
from?

The UpdatePosition method effectively has an implied extra argument called this, and
it’s the object on which the method has been invoked. So, if our Main method were to
call someBoeing777.UpdatePosition(10), the this variable would refer to whatever ob-
ject the Main method’s someBoeing777 variable referred to.

Methods get a this argument by default, but they can opt out, because sometimes it
makes sense to write methods that don’t apply to any particular object. The Main
method of our Program class is one example—it has no this argument, because the .NET
Framework doesn’t presume to create an object; it just calls the method and lets us
decide what objects, if any, to create. You can tell a method has no this argument
because it will be marked with the static keyword—you may recall from Chapter 2
that this means the method can be run without needing an instance of its defining type.

Aside from our Main method, why might we not want a method to be associated with
a particular instance? Well, one case comes to mind for our example application.

Defining Methods | 97

There’s a rather important feature of airspace management that we’re likely to need to
cope with: ensuring that we don’t let two planes hit each other. So, another method
likely to be useful is one that allows us to check whether one plane is too close to another
one, within some margin of error (say, 5,000 feet). And this method isn’t associated
with any single plane: it always involves two planes.

Now we could define a method on Plane that accepted another Plane as an argument,
but that’s a slightly misleading design—it has a lack of symmetry which suggests that
the planes play different roles, because you’re invoking the method on one while pass-
ing in the other as an argument. So it would make more sense to define a static
method—one not directly associated with any single plane—and to have that take two
Plane objects.

Declaring Static Methods
We’ll add the method shown in Example 3-41 to the Plane class. Because it is marked
static, it’s not associated with a single Plane, and will have no implicit this argument.
Instead, we pass in both of the Plane objects we want to look at as explicit arguments,
to emphasize the fact that neither of the objects is in any way more significant than the
other in this calculation.

Example 3-41. Detecting when Planes are too close

public static bool TooClose(Plane first, Plane second, double minimumMiles)
{
 double x1 = first.Position.Distance * Math.Cos(first.Position.Angle);
 double x2 = second.Position.Distance * Math.Cos(second.Position.Angle);
 double y1 = first.Position.Distance * Math.Sin(first.Position.Angle);
 double y2 = second.Position.Distance * Math.Sin(second.Position.Angle);
 double z1 = first.Position.Altitude / feetPerMile;
 double z2 = second.Position.Altitude / feetPerMile;

 double dx = x1 - x2;
 double dy = y1 - y2;
 double dz = z1 - z2;

 double distanceSquared = dx * dx + dy * dy + dz * dz;
 double minimumSquared = minimumMiles * minimumMiles;
 return distanceSquared < minimumSquared;
}
private const double feetPerMile = 5280;

We’ve seen plenty of function declarations like this before, but we’ll quickly recap its
anatomy. This one returns a bool to indicate whether we’re safe (true) or not (false).
In its parameter list, we have the references to the two Plane objects, and a double for
the margin of error (in miles).

98 | Chapter 3: Abstracting Ideas with Classes and Structs

Because there’s no implicit this parameter, any attempt to use nonstatic
members of the class without going through an argument or variable
such as first and second in Example 3-41 will cause an error. This often
catches people out when learning C#. They try adding a method to the
Program class of a new program, and they forget to mark it as static (or
don’t realize that they need to), and then are surprised by the error they
get when attempting to call it from Main. Main is a static method, and
like any static method, it cannot use nonstatic members of its contain-
ing type unless you provide it with an instance.

Example 3-41 performs some calculations to work out how close the planes are. The
details aren’t particularly important here—we’re more interested in how this uses C#
methods. But just for completeness, the method converts the position into Cartesian
coordinates, and then calculates the sum of the squares of the differences of the coor-
dinates in all three dimensions, which will give us the square of the distance between
the two planes. We could calculate the actual distance by taking the square root, but
since we only want to know whether or not we’re too close, we can just compare with
the minimum distance squared. (Computers are much faster at squaring than they are
at calculating square roots, so given that we could do it either way, we may as well
avoid the square root.)

Static Fields and Properties
It isn’t just functions that we can declare as static. Fields and properties can be static,
too. In fact, we’ve already seen a special kind of static field—the const value we defined
for the conversion between miles and kilometers. There was only one conversion factor
value, however many objects we instantiated.

The only difference between a const field and a static field is that we can modify the
static field. (Remember: the const field was immutable.) So, a static property or field
effectively lets us get or set data associated with the class, rather than the object. No
matter how many objects we create, we are always getting and setting the same value.

Let’s look at a trivial illustration, shown in Example 3-42, to explore how it works,
before we think about why we might want to use it.

Example 3-42. Static state

public class MyClassWithAStaticProperty
{
 public static bool TrueOrFalse
 {
 get;
 set;
 }

 public void SayWhetherTrueOrFalse()

Static Fields and Properties | 99

 {
 Console.WriteLine("Object is {0}", TrueOrFalse);
 }
}

class Program
{
 static void Main(string[] args)
 {
 // Create two objects
 MyClassWithAStaticProperty object1 = new MyClassWithAStaticProperty();
 MyClassWithAStaticProperty object2 = new MyClassWithAStaticProperty();

 // Check how the property looks to each object,
 // and accessed through the class name

 object1.SayWhetherTrueOrFalse();
 object2.SayWhetherTrueOrFalse();
 Console.WriteLine("Class is {0}",
 MyClassWithAStaticProperty.TrueOrFalse);

 // Change the value
 MyClassWithAStaticProperty.TrueOrFalse = true;

 // And see that it has changed everywhere
 object1.SayWhetherTrueOrFalse();
 object2.SayWhetherTrueOrFalse();
 Console.WriteLine("Class is {0}",
 MyClassWithAStaticProperty.TrueOrFalse);

 Console.ReadKey();
 }
}

If you compile and run this code in a console application project, you’ll see the following
output:

Object is False
Object is False
Class is False
Object is True
Object is True
Class is True

This demonstrates that there’s clearly just the one piece of information here, no matter
how many different object instances we may try to look at it through. But why might
we want this kind of static, class-level data storage?

The principal use for class-level data is to enforce the reality that there is exactly one
instance of some piece of data throughout the whole system. If you think about it, that’s
exactly what our miles-to-kilometers value is all about—we only need one instance of
that number for the whole system, so we declare it as const (which, as we’ve already

100 | Chapter 3: Abstracting Ideas with Classes and Structs

seen, is like a special case of static). A similar pattern crops up in lots of places in
the .NET Framework class library. For example, on a computer running Windows,
there is a specific directory containing certain OS system files (typically C:\Windows
\system32). The class library provides a class called Environment which offers, among
other things, a SystemDirectory property that returns that location, and since there’s
only one such directory, this is a static property.

Another common use for static is when we want to cache information that is expensive
to calculate, or which is frequently reused by lots of different objects of the same type.
To get a benefit when lots of objects use the common data, it needs to be available to
all instances.

Static Constructors
We can even apply the static keyword to a constructor. This lets us write a special
constructor that only runs once for the whole class. We could add the constructor in
Example 3-43 to our Plane class to illustrate this.

Example 3-43. Static constructor

static Plane()
{
 Console.WriteLine("Plane static constructor");
}

With this code in place, you would see the message printed out by that constructor just
once at the beginning of the program—static constructors run exactly once.

In case you’re wondering, yes, static fields can be marked as
readonly. And just as a normal readonly field can only be modified in a
constructor, a static readonly field can only be modified in a static
constructor.

But when exactly do static constructors run? We know when regular members get
initialized and when normal constructors run—that happens when we new up the ob-
ject. Everything gets initialized to zero, and then our constructor(s) are called to do any
other initialization that we need doing. But what about static initialization?

The static constructor will run no later than the first time either of the following hap-
pens: you create an instance of the class; you use any static member of the class. There
are no guarantees about the exact moment the code will run—it’s possible you’ll see
them running earlier than you would have expected for optimization reasons.

Field initializers for static fields add some slight complication. (Remember, a field ini-
tializer is an expression that provides a default value for a field, and which appears in
the field declaration itself, rather than the constructor. Example 3-44 shows some ex-
amples.) .NET initializes the statics in the order in which they are declared. So, if you

Static Fields and Properties | 101

reference one static field from the initializer for another static field in the same class,
you need to be careful, or you can get errors at runtime. Example 3-44 illustrates how
this can go wrong. (Also, the .NET Framework is somewhat noncommittal about ex-
actly when field initializers will run—in theory it has more freedom than with a static
constructor, and could run them either later or earlier than you might expect, although
in practice, it’s not something you’d normally need to worry about unless you’re writing
multithreaded code that depends on the order in which static initialization occurs.)

Example 3-44. Unwise ordering of static field initializers

class Bar
{
 public bool myField;
}

// Bad - null reference exception on construction
class Foo
{
 public static bool field2 = field1.myField;
 public static Bar field1 = new Bar();
}

// OK - initialized in the right order
class Foo
{
 public static Bar field1 = new Bar();
 public static bool field2 = field1.myField;
}

Summary
We saw how to define classes from which we can create instances called objects, and
that this can be useful when attempting to model real-world entities. We can also define
value types, using the struct keyword, and the main difference is that when we assign
variables or pass arguments, value types always copy the whole value, whereas ordinary
classes (which are reference types) only copy a reference to the underlying object. We
also saw a simpler kind of type: enum. This lets us define named sets of constant values,
and is useful when we need a value representing a choice from a fixed set of options.

So, now we know how to abstract basic ideas of information storage (through fields
and simple properties) and manipulation (through functions and calculated proper-
ties), using classes and objects. In the next chapter, we’re going to look at how we can
extend these ideas further using a concept called polymorphism to model a hierarchy
of related classes that can extend or refine some basic contract.

102 | Chapter 3: Abstracting Ideas with Classes and Structs

CHAPTER 4

Extensibility and Polymorphism

In the previous chapter, we saw how to define various types of classes and specify their
members—fields, properties, and functions.

In this chapter, we’re going to start by looking at this again in more detail, and try to
understand what underlying concepts we’re implementing when we use these different
coding patterns. We’ll then introduce a couple of new concepts—inheritance and
polymorphism—and the language features that help us implement them.

We’ve finished our ATC application, by the way. Having gotten a reputation for build-
ing robust mission-critical software on time and to spec, we’ve now been retained by
the fire department to produce a training and simulation system for them. Exam-
ple 4-1 shows what we have so far.

Example 4-1. Classes representing firefighters and fire trucks

class Firefighter
{
 public string Name { get; set; }

 public void ExtinguishFire()
 {
 Console.WriteLine("{0} is putting out the fire!", Name);
 }

 public void Drive(Firetruck truckToDrive, Point coordinates)
 {
 if (truckToDrive.Driver != this)
 {
 // We can't drive the truck if we're not the driver
 // But just silently failing is BADBAD
 // What we need is some kind of structured means
 // of telling the client about the failure
 // We'll get to that in Chapter 6
 return;
 }
 truckToDrive.Drive(coordinates);
 }

103

}

class Firetruck
{
 public Firefighter Driver { get; set; }
 public void Drive(Point coordinates)
 {
 if (Driver == null)
 {
 // We can't drive if there's no driver
 return;
 }

 Console.WriteLine("Driving to {0}", coordinates);
 }
}

We have a model of the Firetruck, which uses a Firefighter as its Driver. The truck
can be instructed to drive somewhere (if it has a driver), and you can tell a
Firefighter to drive the truck somewhere (if he is the designated driver).

You can think of this as modeling a relationship between a Firetruck and its Driver.
That driver has to be a Firefighter. In object-oriented design, we call this relationship
between classes an association.

Association Through Composition and Aggregation
An association is a kind of flexible, “arms length” relationship between two entities in
the system. There are no particular constraints about the direction of the relationship:
the firefighter can be associated with the truck, or the truck with the firefighter. Or both.

Any particular firefighter may have associations with other types, and we can always
assign another driver to the fire truck; there’s no exclusivity. For instance, we can do
something like this:

Firetruck truckOne = new Firetruck();
Firefighter joe = new Firefighter { Name = "Joe" };
Firefighter frank = new Firefighter { Name = "Frank" };

truckOne.Driver = joe;
// Later...
truckOne.Driver = frank;

But what about the 30 foot retractable ladder that we happen to have on the fire truck;
what kind of relationship exists between the ladder and the fire truck?

Here’s our ladder class:

class Ladder
{
 public double Length { get; set; }
}

104 | Chapter 4: Extensibility and Polymorphism

This particular ladder is one of those powered, extensible rotating things that are built
right into the truck. So let’s add a property to represent that (see Example 4-2).

Example 4-2. Fire truck with integral ladder

class Firetruck
{
 public Firefighter Driver { get; set; }

 readonly Ladder ladder = new Ladder { Length = 30.0 };
 public Ladder Ladder
 {
 get
 {
 return ladder;
 }
 }

 // ...
}

When we construct the Truck, it creates a 30-foot ladder for itself, with a read-only
property to retrieve it.

We call this “made of” association between classes composition. The ladder is a built-
in part of the fire truck, but the fire truck can never be a part of the ladder, and the
truck itself is responsible for the life cycle of its own ladder.

What if we need to manage other equipment on the truck—a detachable coil of hose,
for example:

class Hose
{
}

We could add a property to the Truck to get and set that (modeling a particular coil of
hose being connected to the hose system on the truck):

public Hose Hose
{
 get;
 set;
}

This is another kind of composition relationship—one component of the Truck is a
hose, and the truck certainly can’t be a part of the hose; but the containing object (the
truck) no longer controls the creation and lifetime of its own piece of apparatus. Instead,
we say that it aggregates the hose.

Of course, there are no hard-and-fast rules about these terms and the code you write;
they are just concepts which we use when we are designing systems. The definitions
we’ve used come from the Unified Modeling Language (UML) 2.0, and we’re just
mapping them to C# language features.

Association Through Composition and Aggregation | 105

Nonetheless, it is useful to have a common conceptual language for describing our
systems and the common characteristics of the code we use to implement them.
Equally, when you are looking at someone else’s code (remembering that “someone
else” includes “past you”) it is helpful to be able to translate what was written into these
standard modeling concepts.

So we have a software model of the Firetruck, which has a Ladder and a Hose and uses
a Firefighter as its Driver. What about the fire chief?

The fire chief is just another firefighter. He can drive a truck. He can put out fires. But
he can do other stuff too. For instance, he can delegate responsibility for putting out a
fire to another firefighter.

The question we ask ourselves is this: is the FireChief a Firefighter with extra
responsibilities? If the answer is yes, we are describing an is-a association (the FireChief
is a Firefighter) which we can represent by an inheritance relationship.

Inheritance and Polymorphism
We’ll get into the nuances of the question in the preceding paragraph in a minute, but
let’s assume for the time being that our answer to the question is yes (which, on face
value, seems reasonable). Example 4-3 shows how we use inheritance in C#.

Example 4-3. Inheritance in C#

class FireChief : Firefighter
{
 public void TellFirefighterToExtinguishFire (Firefighter colleague)
 {
 colleague.ExtinguishFire();
 }
}

Notice that we use the colon in the class declaration to indicate that FireChief is a
Firefighter. We then say that Firefighter is a base class of FireChief. Looking at the
relationship from the other direction, we can also say that FireChief is a derived class
of Firefighter.

We’ve added the extra function that allows the chief to tell a firefighter to extinguish
a fire—which encapsulates that extra responsibility. What we haven’t had to do is to
duplicate all the functionality of the firefighter; that comes along anyway.

We can now use the fire chief just as we would a firefighter, as shown in Example 4-4.

Example 4-4. Using base class functionality inherited by a derived class

Firetruck truckOne = new Firetruck();
FireChief bigChiefHarry = new FireChief { Name = "Harry" };

truckOne.Driver = bigChiefHarry;
bigChiefHarry.Drive(truckOne, new Point(100,300));

106 | Chapter 4: Extensibility and Polymorphism

Firefighter joe = new Firefighter { Name = "Joe" };

bigChiefHarry.TellFirefighterToExtinguishFire(joe);

Because bigChiefHarry is an object of type FireChief, and a FireChief is a Fire
fighter, we can assign him to be the driver of a truck and tell him to drive it somewhere.
But because he is a FireChief, we can also ask him to tell Joe to put out the fire when
he gets there.

Wherever we talk about a FireChief, we can treat the object as a Firefighter. This use
of one type as though it were one of its bases is an example of polymorphism.

Equally, we could phrase that the other way around: we can successfully substitute an
instance of a more-derived class where we expect a base class. This is known as the
Liskov Substitution Principle (LSP) after computer scientist Barbara Liskov, who ar-
ticulated the idea in a paper she delivered in 1987.

It is quite possible to derive one class from another in a way that means
we can’t treat the derived class as its base type. The derived class could
change the meaning or behavior of a function with the same signature
as its base, or throw errors in situations where the base promised that
everything would be fine—say, the base accepted parameters in the
range 1–10, where the derived class accepts parameters in the range
2–5.

This violates the LSP, which is a very poor design practice, but it is very
easy to slip into, especially if the classes evolve independently over time.

What happens if our client doesn’t know that Harry is a fire chief, though? What if we
refer to the object via a reference typed to Firefighter instead?

FireChief bigChiefHarry = new FireChief { Name = "Harry" };
// Another reference to Harry, but as a firefighter
Firefighter stillHarry = bigChiefHarry;

Firefighter joe = new Firefighter { Name = "Joe" };

stillHarry.TellFirefighterToExtinguishFire(joe);

You know that stillHarry is referencing an object that is a FireChief, with that extra
method on it. But the compiler produces a long, semicomprehensible error full of useful
suggestions if you try to compile and execute this code:

'Firefighter' does not contain a definition for
 'TellFirefighterToExtinguishFire' and no extension method
 'TellFirefighterToExtinguishFire' accepting a first argument of type
 'Firefighter' could be found (are you missing a using directive or an
 assembly reference?)

Inheritance and Polymorphism | 107

The compiler is being rather tactful. It is assuming that you must’ve forgotten to include
some external reference that’s got a suitable extension method definition to fix your
problem. (We’ll be looking at that technique in a later chapter, by the way.)

Unfortunately, the real reason for our bug is hidden in the error’s opening salvo: we’re
trying to talk to a FireChief method through a variable that is strongly typed to be a
Firefighter, and you can’t call on any members of the derived class through a reference
typed to a base.

So, if we can’t use a derived member from a reference to a base type, is there any way
we can refine these classes so that Harry never puts out a fire, but always passes re-
sponsibility to his Number One when he’s asked to do so, regardless of whether we
happen to know that he’s a FireChief? After all, he knows that he’s the boss!

To get started, we’ll have to make a few changes to the model to accommodate this
idea of the chief’s Number One. In other words, we need to create an association be-
tween the FireChief and his NumberOne. Remember that we typically implement this as
a read/write property, which we can add to the FireChief:

public Firefighter NumberOne
{
 get;
 set;
}

And let’s change the main function so that it does what we want (see Example 4-5).

Example 4-5. Using base class methods to keep the compiler happy

// A reference to Joe, Harry's number one
Firefighter joe = new Firefighter { Name = "Joe" };

// Firefighter harry is really a firechief, with joe as his NumberOne
Firefighter harry = new FireChief { Name = "Harry", NumberOne = joe };

// Harry is just a firefighter, so he can extinguish fires
// but we want him to get joe to do the work
harry.ExtinguishFire();

But if we compile that, here’s the output we get:

Harry is putting out the fire!

That’s not what we want at all. What we want is a different implementation for that
ExtinguishFire method if we’re actually a FireChief, rather than an ordinary
Firefighter.

108 | Chapter 4: Extensibility and Polymorphism

Replacing Methods in Derived Classes
So the implementation for the ExtinguishFire method that we want on the FireChief
looks like this:

public void ExtinguishFire()
{
 // Get our number one to put out the fire instead
 TellFirefighterToExtinguishFire(NumberOne);
}

What happens if we just add that function to our FireChief and compile and run?

Well, it compiles, but when we run it, it still says:

Harry is putting out the fire!

It seems to have completely ignored our new function!

Let’s go back and have a look at that compiler output again. You’ll see that although
it built and ran, there’s a warning (you may have to rebuild to get it to appear again;
Choose Rebuild Solution from the Build menu):

'FireChief.ExtinguishFire()' hides inherited member
 'Firefighter.ExtinguishFire()'. Use the new keyword if hiding was intended.

It is a good idea to leave all your compiler warnings on and work until
you are both error and warning free. That way, when something crops
up unexpectedly like this, you can spot it easily, rather than burying it
in a pile of stuff you’re habitually ignoring.

It is telling us that, rather than replacing the implementation on the base class, our
method (with matching signature) is hiding it; and that if this is what we really meant
to do, we should add the keyword new to the method.

Hiding Base Members with new
OK, let’s do that:

public new void ExtinguishFire()
{
 // Get our number one to put out the fire instead
 TellFirefighterToExtinguishFire(NumberOne);
}

We typically add the new modifier between the accessibility modifier and the return
value.

Replacing Methods in Derived Classes | 109

Compile and run again. You’ll notice that we’ve gotten rid of the warning, but the
output hasn’t changed:

Harry is putting out the fire!

What’s going on?

This method-hiding approach is actually letting a single object provide different im-
plementations for the ExtinguishFire method. The implementation we get is based on
the type of the variable we use, rather than the type of object to which the variable
refers. You can see that happening if we use the code in Example 4-6 in our client.

Example 4-6. Different reference type, different method

// A reference to Joe, Harry's number one
Firefighter joe = new Firefighter { Name = "Joe" };

// Firefighter harry is really a firechief, with joe as his NumberOne
FireChief harry = new FireChief { Name = "Harry", NumberOne = joe };
Firefighter harryAsAFirefighter = harry;

// Harry is just a firefighter, so he can extinguish fires
// but as a firechief he gets joe to do the work
harry.ExtinguishFire();
// While as a firefighter he does it himself
harryAsAFirefighter.ExtinguishFire();

The output we get now looks like this:

Joe is putting out the fire!
Harry is putting out the fire!

When we talk to our Harry object through a FireChief reference, he gets Joe to put out
the fire. If we talk to the object through a Firefighter reference, he does it himself.
Same object, but two completely different implementations.

Why might we want to do that?

Let’s say we had multiple fire chiefs on a job, but it is our policy that a chief acting as
another chief’s Number One is not allowed to delegate the job again. Our code models
exactly this behavior, as shown in Example 4-7.

Of course, whether that’s desirable behavior is another matter entirely—
we’ve ended up with such radically different approaches to putting out
a fire that it might be better to separate them back out into functions
with different names.

When you go through a refactoring process such as this, it is a good idea
to check that you’re still happy with the semantic implications of your
code. Ideally, you want to end up with a neat design, but a superficially
neat design that makes no sense is not helpful.

110 | Chapter 4: Extensibility and Polymorphism

Example 4-7. Making twisted use of method hiding

// A reference to Joe, Harry's number one
Firefighter joe = new Firefighter { Name = "Joe" };

// FireChief harry has joe as his NumberOne
FireChief harry = new FireChief { Name = "Harry", NumberOne = joe };
FireChief tom = new FireChief { Name = "Tom", NumberOne = harry };

// Harry is just a firefighter, so he can extinguish fires
// but as a firechief he gets joe to do the work
harry.ExtinguishFire();

// But if Tom is asked to extinguish a fire, he asks Harry to do it
// Our policy dictates that Harry has to do it himself, not delegate to
// Joe this time.
tom.ExtinguishFire();

Harry delegates to Joe when he is asked to do it himself, because we are calling through
a reference to a FireChief.

Tom is also a FireChief, and we are calling through a reference to him as a FireChief,
so he delegates to Harry; but when Harry is asked to do it in his role as a Firefighter
(remember, the NumberOne property is a reference to a Firefighter), he does it himself,
because we are now calling the method through that reference typed to Firefighter.

So our output looks like this:

Joe is putting out the fire!
Harry is putting out the fire!

That’s all very well, but we don’t actually want that restriction—the fire chief should
be allowed to pass the work off to his subordinate as often as he likes, regardless of
who he asked to do it.

There’s one big caveat regarding everything we’ve just shown about
method hiding: I can’t think of the last time I used this feature in a real
application, but I see the warning from time to time and it usually alerts
me to a mistake in my code.

We’ve wanted to illustrate how method hiding works, but we discour-
age you from using it. The main reason to avoid method hiding with
new is that it tends to surprise your clients, and that, as we’ve established,
is not a good thing. (Would you really expect behavior to change be-
cause the type of the variable, not the underlying object, changes?)

While method hiding is absolutely necessary for some corner cases, we
usually treat this warning as an error, and think very carefully about
what we’re doing if it comes up. 9 times out of 10, we’ve got an inad-
vertent clash of names.

Replacing Methods in Derived Classes | 111

Replacing Methods with virtual and override
What we actually want to do is to change the implementation based on the type of the
object itself, not the variable we’re using to get at it. To do that we need to replace or
override the default implementation in our base class with the one in our derived class.
A quick glance at the C# spec shows us that there is a keyword to let us do just that:
override.

Let’s switch to the override modifier on the FireChief implementation of the
ExtinguishFire() method:

public override void ExtinguishFire()
{
 // Get our number one to put out the fire instead
 TellFirefighterToExtinguishFire(NumberOne);
}

Notice that we removed the new modifier and replaced it with override instead. But if
you compile, you’ll see that we’re not quite done (i.e., we get a compiler error):

'FireChief.ExtinguishFire()': cannot override inherited member
'Firefighter.ExtinguishFire()' because it is not marked virtual, abstract,
or override

We’re not allowed to override the method with our own implementation because our
base class has to say we’re allowed to do so. Fortunately, we wrote the base class, so we
can do that (as the compiler error suggests) by marking the method in the base with
the virtual modifier:

class Firefighter
{
 public virtual void ExtinguishFire()
 {
 Console.WriteLine("{0} is putting out the fire!", Name);
 }

 // ...
}

Why do we have this base-classes-opt-in system? Why is everything not virtual by de-
fault (like, say, Java)? Arguments continue on this very issue, but the designers of C#
chose to go with the nonvirtual-by-default option. There are a couple of reasons for
this: one has to do with implicit contracts, and another is related to versioning.

There is also (potentially) a small performance overhead for virtual
function dispatch, but this is negligible in most real-world scenarios. As
always, test before optimizing for this!

112 | Chapter 4: Extensibility and Polymorphism

We already saw how our public API is effectively a contract with our clients. With
virtual functions, though, we are defining not only a contract for the caller, as usual,
but also a contract for anyone who might choose to override that method. That requires
more documentation, and a greater degree of control over how you implement the
method.

By declaring a method as virtual, the base class gives derived classes
permission to replace whole pieces of its own innards. That’s a very
powerful but very dangerous technique, rather like organ transplant
surgery on an animal you’ve never seen before. Even a trained surgeon
might balk at replacing the kidneys of a dromedary armed with nothing
more than developer-quality documentation about the process.

For example, some method in your base class calls its MethodA, then its MethodB, to do
some work. You then (perhaps unknowingly) rely on that ordering when you provide
overrides for MethodA and MethodB. If a future version of the base class changes that
ordering, you will break.

Let’s go back to our example to look at that in more detail, because it is really important.

First, let’s change the implementation of Firefighter.ExtinguishFire so that it makes
use of a couple of helper methods: TurnOnHose and TrainHoseOnFire (see Example 4-8).

Example 4-8. Virtual methods and method ordering

class Firefighter
{
 // This calls TrainHoseOnFire and TurnOnHose as part of the
 // process for extinguishing the fire
 public virtual void ExtinguishFire()
 {
 Console.WriteLine("{0} is putting out the fire!", Name);
 TrainHoseOnFire();
 TurnOnHose();
 }

 private void TurnOnHose()
 {
 Console.WriteLine("The fire is going out.");
 }

 private void TrainHoseOnFire()
 {
 Console.WriteLine("Training the hose on the fire.");
 }

 // ...
}

Replacing Methods in Derived Classes | 113

Let’s also simplify our Main function so that we can see what is going on, as shown in
Example 4-9.

Example 4-9. Calling a virtual method

static void Main(string[] args)
{
 // A reference to Joe, Harry's number one
 Firefighter joe = new Firefighter { Name = "Joe" };
 joe.ExtinguishFire();

 Console.ReadKey();
}

If we compile and run, we’ll see the following output:

Joe is putting out the fire!
Training the hose on the fire.
The fire is going out.

All is well so far, but what happens if we add a trainee firefighter into the mix? The
trainee is extremely fastidious and follows his instructor’s guidelines to the letter. We’re
going to make a class for him and override the TurnOnHose and TrainHoseOnFire methods
so that the work is done in the trainee’s own particular idiom.

Hang on a moment, though! Our helper methods are private members. We can’t get
at them, except from other members of our Firefighter class itself.

Before we can do anything, we need to make them accessible to derived classes.

Inheritance and Protection
In the preceding chapter, we mentioned that there were two additional accessibility
modifiers that we would deal with later: protected and protected internal. Well, this
is where they come into their own. They make members accessible to derived classes.

If you want a member to be available either to derived classes or to other classes in your
own assembly, you mark that member protected internal. It will be visible to other
classes in the library, or to clients that derive classes from your base, but inaccessible
to other clients who just reference your assembly.

If, on the other hand, you want your class to make certain methods available only to
derived classes, you just mark those methods protected. In terms of code out there in
the wild, this is the most common usage, but it is not necessarily the best one!

114 | Chapter 4: Extensibility and Polymorphism

Both protected internal and internal are much underused access
modifiers. They are a very convenient way of hiding away library im-
plementation details from your consumers, and reducing the amount of
documentation and surface-area testing you need.

I suspect that they are unpopular (as with most “hidden by default” or
“secure by default” schemes) because they can sometimes get in your
way. There are a fair number of implementation details of classes in
the .NET Framework that are internal (or private) that people would
very much like to access, for example.

A common reason for taking something useful and applying the inter
nal modifier is that it was not possible to fully document (or understand
the full implications of) the “hook” this would provide into the frame-
work. And rather than open up potential security or reliability problems,
they are marked internal until a later date: perhaps much, much later,
tending toward never. Although there is an intention to revisit these
things, real-world pressures mean that they often remain unchanged.

This is another example of the “lock down by default” strategy which
helps improve software quality.

That doesn’t make it any less irritating when you can’t get at the inner
workings, though!

So we’ll mark those methods in the base class virtual and protected, as shown in
Example 4-10.

Example 4-10. Opening methods up to derived classes

 protected virtual void TurnOnHose()
 {
 Console.WriteLine("The fire is going out.");
 }

 protected virtual void TrainHoseOnFire()
 {
 Console.WriteLine("Training the hose on the fire.");
 }

We can now create our TraineeFirefighter class (see Example 4-11).

Example 4-11. Overriding the newly accessible methods

class TraineeFirefighter : Firefighter
{
 private bool hoseTrainedOnFire;
 protected override void TurnOnHose()
 {
 if (hoseTrainedOnFire)
 {
 Console.WriteLine("The fire is going out.");
 }

Inheritance and Protection | 115

 else
 {
 Console.WriteLine("There's water going everywhere!");
 }
 }

 protected override void TrainHoseOnFire()
 {
 hoseTrainedOnFire = true;
 Console.WriteLine("Training the hose on the fire.");
 }
}

As you can see, the trainee is derived from Firefighter. We added an extra Boolean
field to keep track of whether the trainee has actually trained the hose on the fire, and
then provided our own implementations of TrainHoseOnFire and TurnOnHose that make
use of that extra field. This is intended to model the detailed but slightly peculiar and
occasionally erratic way in which the trainee follows the instructions for these opera-
tions in his copy of How to Be a Firefighter, rather than allowing common sense to
prevail.

We also need a quick update to our main function to use our trainee. Let’s add the
following code at the end:

// A reference to Bill, the trainee
Firefighter bill = new TraineeFirefighter { Name = "Bill" };
bill.ExtinguishFire();

If we compile and run, we see the following output:

Joe is putting out the fire!
Training the hose on the fire.
The fire is going out.

Bill is putting out the fire!
Training the hose on the fire.
The fire is going out.

Well done, Bill; all that training came in handy, exactly as we’d expect.

Although it works, you’ll notice that we’ve duplicated some code from our base class
into our derived class—the bit that actually does the work in each of those methods.
It would be better if we could just call on our base class implementation to do the job
for us. As you’d expect, C# has this in hand, with the base keyword.

Calling Base Class Methods
If we ever want to call on the implementation of a member in our base class (bypassing
any of our own overrides), we can do so through the special base name:

base.CallOnTheBase();

116 | Chapter 4: Extensibility and Polymorphism

Using that, we can reimplement our TraineeFirefighter and remove that duplicate
code, as shown in Example 4-12.

Example 4-12. Avoiding duplication by calling the base class

class TraineeFirefighter : Firefighter
{
 private bool hoseTrainedOnFire;
 protected override void TurnOnHose()
 {
 if (hoseTrainedOnFire)
 {
 // Call on the base implementation
 base.TurnOnHose();
 }
 else
 {
 Console.WriteLine("There's water going everywhere!");
 }
 }

 protected override void TrainHoseOnFire()
 {
 hoseTrainedOnFire = true;
 base.TrainHoseOnFire();
 }
}

So, what happens if in a later version we change the implementation of the Extinguish
Fire method on the base class? Maybe we found an optimization that means it is faster
to implement it like this:

public virtual void ExtinguishFire()
{
 Console.WriteLine("{0} is putting out the fire!", Name);
 // We've swapped these around
 TurnOnHose();
 TrainHoseOnFire();
}

Let’s imagine that this Firefighter class is being implemented by one of our colleagues.
She tested the new implementation against her Firefighter unit test suite, exactly as
required, and everything passed just fine—fires were extinguished. Then she handed
it over to us to use (with our new TraineeFirefighter class that we’re working on).

If we compile and run, we get the following output:

Joe is putting out the fire!
Training the hose on the fire.
The fire is going out.

Bill is putting out the fire!
There's water going everywhere!
Training the hose on the fire.

Calling Base Class Methods | 117

So the Firefighter code works fine, just as our colleague promised; but our Trainee
Firefighter has made a bit of a mess. This is a shame, as he has not done anything
different—we didn’t change a single line of our TraineeFirefighter code that was
working just a moment earlier.

The problem is that, while our documentation for ExtinguishFire told us that it would
call both of those virtual methods it didn’t promise to do so in any particular order.
And there was no documentation at all on our protected virtual methods to tell us
how we should override them, or whether there were any particular constraints or
invariants we should maintain.

This is a very common combination of problems when designing an
inheritance hierarchy—poor documentation on the base class, and in-
sufficiently defensive implementations in a derived class. Creating a
class hierarchy is not an easy thing to do. And this is when we’re only
making selected methods virtual—imagine the chaos if all methods
were virtual by default!

In the next chapter, we’re going to look at some alternative ways to vary
behavior that are more easily documented and potentially more robust
than deriving from a base class.

That’s not to say that you shouldn’t make use of such a powerful concept
as polymorphism; it is just that you should take care when you do so.

Let’s just recap the implications of all that, as it is a bit complicated.

Back in Chapter 3, when we designed our first class, we talked about its public contract,
and how that encapsulated the implementation details which allowed us to use it as
though it was a black box.

With the addition of public and protected virtual members, we’re opening that black
box and creating a second contract: for people who derive their own classes, which, as
we just saw, is a whole lot more complex.

The designers of C# decided that should be an opt-in complexity: unless we specify
that a member is virtual we don’t have to worry about it. Along the same lines, they’ve
also provided a way to ensure that we don’t have to worry about anyone deriving from
us at all.

Thus Far and No Farther: sealed
Having got through all of that, you’re probably rightly concerned that, simple though
it is in theory, the practical implications of inheritance are actually rather complex and
require a lot of documentation, testing, and imagining how people might use and abuse
your virtual methods. And we have to do that for every class down the hierarchy.

118 | Chapter 4: Extensibility and Polymorphism

When we designed our FireChief, we happily provided an override for the Extinguish
Fire method, without giving a thought for the fact that someone else might override that
method in his own derived class. In fact, we didn’t even consider the possibility that
anyone might derive from FireChief at all. No documentation, nothing.

Now there are several members on our own base class that could be overridden by a
class that derives from FireChief. Does that have any implications for our own docu-
mentation or testing? Can we even tell? And how could we have guessed that was going
to happen when we built our FireChief class, since there was only one virtual member
on the base at that time? This looks like it has the potential to become a rich future
source of bugs and security holes.

Fortunately, we can eliminate this problem at a stroke by saying that we didn’t design
our FireChief to be derived from, and stopping anyone from doing so. We do that by
marking the FireChief class sealed. Let’s see how that looks:

sealed class FireChief : Firefighter
{
 // ...
}

We apply the sealed modifier before the class keyword and after any accessibility
modifiers if they are present.

So, what happens if we try to derive a new class from FireChief now?

class MasterChief : FireChief
{
}

Compile it, and you’ll see the following error:

'MasterChief': cannot derive from sealed type 'FireChief'

That’s put a stop to that. Let’s delete our MasterChief so that everything builds again.

Not only can sealing classes be very useful (and defensive), but if you
decide later that you want to unseal the class and allow people to derive
their own types, it doesn’t (normally) break binary compatibility for the
type. Sealing a previously unsealed class, however, does break
compatibility.

We now have three different types of firefighter. Let’s remind ourselves how they are
related (see Figure 4-1).

Thus Far and No Farther: sealed | 119

Figure 4-1. Three types of firefighter

Nonvirtual by Default, but Not sealed?
Why, you may ask, if we are nonvirtual by default aren’t we also sealed by default, with
an “unseal” keyword?

Notice, for instance, that we’ve been talking about classes so far—value types
(struct) are sealed (with no opt-out), so you can’t derive from them.

There’s no performance hit to marking a class sealed. There are potential security ad-
vantages to marking a class sealed (no one can sneakily exploit polymorphism to insert
code where you weren’t expecting it). So why not make them all sealed?

It is certainly much less problematic to present an unsealed class than it is to present a
virtual method; if there are no virtual methods, all you can do is to bolt extra bits on,
which do no harm to anyone. It also conforms to the expectations of a generation of
C++ and Java developers in this regard.

Plenty of people argue that we should have both unsealed-by-default and virtual-by-
default, and they certainly have a point, particularly with regard to convenience; but
the designers of C# took a different view. No doubt, the debate will continue.

Those three types of firefighter basically differ in the strategy that they use for putting
out fires. There’s a base class that provides a default implementation, and a couple of
classes that override the virtual methods to do things differently.

Let’s say we wanted to support lots of different types of firefighter, all of whom were
expected to have a different approach to fighting fire, from the trainee, to the chief, to
Gulliver (who has his own idiosyncratic way of putting out a fire in Lilliput).

We still want the handy Name property and the Drive method, and we still want anyone
to be able to call an ExtinguishFire method.

120 | Chapter 4: Extensibility and Polymorphism

Noticing that our FireChief, for example, doesn’t make use of the base implementation
at all; we don’t want to provide a standard for that method. We’ll just let all imple-
menters decide for themselves how it is going to work.

We’re shooting for something that looks like Figure 4-2.

Figure 4-2. Abstract base classes

Requiring Overrides with abstract
An abstract base class is intended to provide the “scaffolding” for a hierarchy of related
classes, but it is not intended to be instantiated itself, because it isn’t “finished.” It
requires that classes derived from it add in some missing bits.

Let’s turn our current firefighter into an abstract base for the others to use, and see how
that works.

First, we can add the abstract modifier to the class itself, and see what happens:

abstract class Firefighter
{
 // ...
}

As usual, we add the modifier before the class keyword (and after any accessibility
modifiers, if present).

If we build, we now get a compiler error:

Cannot create an instance of the abstract class or interface 'Firefighter'

Requiring Overrides with abstract | 121

That’s because we’re trying to create an instance of the Firefighter in our main
function:

Firefighter joe = new Firefighter { Name = "Joe" };

This is no longer allowed, because the Firefighter class is now abstract.

OK, we’ll comment that out temporarily while we carry on refactoring. We want it to
continue to build as we go so that we can see if we’ve introduced any other errors:

//Firefighter joe = new Firefighter { Name = "Joe" };
//joe.ExtinguishFire;

Build and run, and we get the output we expect—Bill is still spraying the water around:

Bill is putting out the fire!
There's water going everywhere!
Training the hose on the fire.

One other thing: if we’re creating an abstract base class, we usually name it something
such as FooBase to distinguish it from a regular class. This is by no means a hard-and-
fast rule, but it is pretty common. So let’s rename Firefighter to FirefighterBase, and
make sure we change it where it is referenced elsewhere—on the Firetruck,
FireChief, and TraineeFirefighter classes.

The easiest way to do that is to use the automatic rename refactoring in the IDE. Just
type over the old name in the declaration, click on the Smart Tag that appears, and
choose Rename Firefighter to FirefighterBase from the menu. You could do it by hand
if you wanted, though.

The whole purpose of this was to get rid of the default implementation we have for
putting out fires, so let’s turn Firefighterbase.ExtinguishFire into an abstract method.

Just like the modifier for the class, we use the abstract keyword, but this time we also
remove the method body and add a semicolon at the end of the declaration:

abstract class FirefighterBase
{
 public abstract void ExtinguishFire();
}

If you try building again now, you can see that we have a new compiler error:

'TraineeFirefighter' does not implement inherited abstract member
'FirefighterBase.ExtinguishFire()'

Remember, we are required to override an abstract method; our class isn’t finished
until we do so (unlike a virtual method, where we are invited to override it, but it will
fall back on the base if we don’t). While our FireChief does override the method, our
TraineeFirefighter doesn’t. So we need to add a suitable implementation:

 class TraineeFirefighter : FirefighterBase
 {
 // Override the abstract method
 public override void ExtinguishFire()

122 | Chapter 4: Extensibility and Polymorphism

 {
 // What are we going to put here?
 }
 // ...
}

But what are we going to put into that ExtinguishFire override? Before, we depended
on our base class for the implementation, but our base is now abstract, so we don’t
have one available anymore!

That’s because we’ve forgotten about our regular Firefighter. Let’s add a class for him
back into the hierarchy:

class Firefighter : FirefighterBase
{
 public override void ExtinguishFire()
 {
 Console.WriteLine("{0} is putting out the fire!", Name);
 TurnOnHose();
 TrainHoseOnFire();
 }
}

Notice we’ve given him the “standard firefighter” implementation for ExtinguishFire.

If we take one more look at the base class, we can see that we still have those two
virtual implementation helpers. While everything builds correctly at the moment, they
don’t really belong there; they are really a part of the Firefighter implementation, so
let’s move them in there. We end up with the code in Example 4-13.

Example 4-13. Refactored base classes

abstract class FirefighterBase
{
 public abstract void ExtinguishFire();

 public string Name { get; set; }

 public void Drive(Firetruck truckToDrive, Point coordinates)
 {
 if (truckToDrive.Driver != this)
 {
 // We can't drive the truck if we're not the driver
 return;
 }
 truckToDrive.Drive(coordinates);
 }
}

class Firefighter : FirefighterBase
{
 public override void ExtinguishFire()
 {
 Console.WriteLine("{0} is putting out the fire!", Name);
 TrainHoseOnFire();

Requiring Overrides with abstract | 123

 TurnOnHose();
 }

 protected virtual void TurnOnHose()
 {
 Console.WriteLine("The fire is going out.");
 }

 protected virtual void TrainHoseOnFire()
 {
 Console.WriteLine("Training the hose on the fire.");
 }
}

But we’re still not quite done! If you build this you’ll see another compiler error:

'TraineeFirefighter.TurnOnHose()': no suitable method found to override
'TraineeFirefighter.TrainHoseOnFire()': no suitable method found to override

Our trainee firefighter really is a kind of firefighter, and depends on those two
virtual functions we just moved. The error message is telling us that we can’t override
a method that isn’t actually present in the base.

We need to change its base class from FirefighterBase to Firefighter. This has the
advantage that we can also get rid of its duplicate override of the ExtingushFire method
(see Example 4-14).

Example 4-14. Using the newly refactored base classes

class TraineeFirefighter : Firefighter
{
 protected override void TurnOnHose()
 {
 if (hoseTrainedOnFire)
 {
 Console.WriteLine("The fire is going out.");
 }
 else
 {
 Console.WriteLine("There's water going everywhere!");
 }
 }

 private bool hoseTrainedOnFire;
 protected override void TrainHoseOnFire()
 {
 hoseTrainedOnFire = true;
 Console.WriteLine("Training the hose on the fire.");
 }
}

124 | Chapter 4: Extensibility and Polymorphism

We also need to uncomment our two lines about Joe in the Main function—everything
should work again:

Firefighter joe = new Firefighter { Name = "Joe" };
joe.ExtinguishFire();

We can build and run to check that. We get the expected output:

Joe is putting out the fire!
Training the hose on the fire.
The fire is going out.

Bill is putting out the fire!
There's water going everywhere!
Training the hose on the fire.

Let’s remind ourselves of the current class hierarchy (see Figure 4-2). Our FireChief is
no longer an “ordinary” Firefighter, with an override for putting out fires, but he does
take advantage of our common scaffolding for “firefighters in general” that we modeled
as an abstract base class called FirefighterBase. Our Firefighter also takes advantage
of that same scaffolding, but our TraineeFirefighter really is a Firefighter—just with
its own idiosyncratic way of doing some of the internal methods that Firefighter uses
to get the job done.

Back to the requirements for our fire department application: let’s say we want to keep
track of who is actually in the fire station at any particular time, just in case there is a
fire on the premises and we can take a roll call (health and safety is very important,
especially in a fire station).

There are two types of folks in the fire station: the firefighters and the administrators.
Example 4-15 shows our new Administrator class.

Example 4-15. A class representing administrative staff

class Administrator
{
 public string Title { get; set; }
 public string Forename { get; set; }
 public string Surname { get; set; }
 public string Name
 {
 get
 {
 StringBuilder name = new StringBuilder();
 AppendWithSpace(name, Title);
 AppendWithSpace(name, Forename);
 AppendWithSpace(name, Surname);
 return name.ToString();
 }
 }

 void AppendWithSpace(StringBuilder builder, string stringToAppend)
 {
 // Don't do anything if the string is empty

Requiring Overrides with abstract | 125

 if (string.IsNullOrEmpty(stringToAppend))
 {
 return;
 }

 // Add a space if we've got any text already
 if (builder.Length > 0)
 {
 builder.Append(" ");
 }
 builder.Append(stringToAppend);
 }
}

If you look at our Firefighter class, it had a single string property for a Name. With the
Administrator, you can independently get and set the Title, Forename, and Surname. We
then provided a special read-only property that returns a single formatted string for the
whole Name. It uses a framework class called StringBuilder to assemble the name from
the individual components as efficiently as possible.

AppendWithSpace is a utility function that does the actual work of concatenating the
substrings. It works out whether it needs to append anything at all using a static
method on string that checks whether it is null or empty, called IsNullOrEmpty; finally,
it adds an extra space to separate the individual words.

To do the roll call we want to write some code such as that in Example 4-16.

Example 4-16. Using the Administrator class

static void Main(string[] args)
{
 FireStation station = new FireStation();

 // A reference to Joe, Harry's number one
 Firefighter joe = new Firefighter { Name = "Joe" };

 // A reference to Bill, the trainee
 FirefighterBase bill = new TraineeFirefighter { Name = "Bill" };

 // Harry is back
 FireChief bigChiefHarry = new FireChief { Name = "Harry"};

 // And here's our administrator - Arthur
 Administrator arthur = new Administrator
 {
 Title = "Mr",
 Forename = "Arthur",
 Surname = "Askey"
 };

 station.ClockIn(joe);
 station.ClockIn(bill);
 station.ClockIn(bigChiefHarry);
 station.ClockIn(arthur);

126 | Chapter 4: Extensibility and Polymorphism

 station.RollCall();

 Console.ReadKey();
}

When you are designing a class framework it can often be a good idea
to write some example client code. You can then ensure that your design
is a good abstract model while supporting clean, simple code at point-
of-use.

Clearly, we’re going to need a FireStation class that is going to let our administrators
and firefighters ClockIn (registering their presence in the station), and where we can do
a RollCall (displaying their names). But what type is that ClockIn function going to
take, given that we haven’t specified any common base class that they share?

All Types Are Derived from Object
.NET comes to our rescue again. It turns out that every type in the system is derived
from Object. Every one—value types (struct) and reference types (class) alike, even
the built-in types such as Int32.

It is easy to see how that would work for a class declaration in C#. If you don’t specify
a particular base class, you get Object by default.

But what about a struct, or enum, or the built-in types; what happens if we try to talk
to them through their Object “base class”?

Boxing and Unboxing Value Types
Let’s give it a try. This code snippet will compile and work quite happily:

// Int variable
int myIntVariable = 1;
object myObject = myIntVariable;

What happens under the covers is that the runtime allocates a new object and puts a
copy of the value inside it. This is called boxing, and, as you might expect given that it
involves allocating objects and copying values, it is relatively expensive when compared
to a straightforward assignment.

You can also convert back the other way:

// Int variable
int myIntVariable = 1;
object myObject = myIntVariable;
int anotherIntVariable = (int)myObject;

All Types Are Derived from Object | 127

Notice how we use the type name in parentheses to perform the conversion back to an
int. In general, this sort of conversion from one type to another is known as a “cast,”
and will work for classes too (although we’ll see a more explicit way of doing that later
in this chapter).

The runtime looks at that box object for us and checks that it contains a value of the
correct type. If so, it will copy the value back out of the box and into the new variable.

What if it isn’t of the correct type? The runtime will throw an Invalid
CastException. You can find out more about exceptions in Chapter 6.

That process is known as unboxing, and is also quite expensive (although not as ex-
pensive as boxing, as it doesn’t need to allocate the object).

Although these performance costs are individually fairly small, if you are processing
large numbers of value types in a way that requires them to be repeatedly boxed and
unboxed the costs can add up quite rapidly; so you should be aware of boxing and
unboxing when you are profiling your application.

So the only common base of both Firefighter and Administrator is Object at the mo-
ment (remember, everything is ultimately derived from Object). That seems a bit low
level, but it is all we have to go on for now, so we’ll make do.

Example 4-17 shows our first pass at a FireStation.

Example 4-17. FireStation class

class FireStation
{
 List<object> clockedInStaff = new List<object>();

 public void ClockIn(object staffMember)
 {
 if (!clockedInStaff.Contains(staffMember))
 {
 clockedInStaff.Add(staffMember);
 }
 }

 public void RollCall()
 {
 foreach(object staffMember in clockedInStaff)
 {
 // Hmmm... What to do?
 }
 }
}

128 | Chapter 4: Extensibility and Polymorphism

Our ClockIn method is making use of a list of objects to keep track of who is in the
station. To do that it is using the generic collection class List<T> we first saw in Chap-
ter 2. Using the List.Contains method, the implementation checks that they weren’t
already in the station, and adds them if necessary.

Everything is fine so far. Then we reach the RollCall method. We’re using foreach to
iterate over the clocked-in staff, but we don’t actually have a method to call to get their
names!

We want a way of indicating that these disparate object types (firefighters, fire chiefs,
and administrators) all support giving out their name.

We saw one way of doing that already: we could create a common base class, and move
the Name functionality in there. Let’s see what happens if we try to do that.

Practically speaking, we have two completely different implementations of the Name
property. We saw that we can model that situation with an abstract base class from
which Firefighter and Administrator both derive, both implementing the method in
their own way.

Here’s our NamedPerson base with an abstract property for the Name:

abstract class NamedPerson
{
 public abstract string Name
 {
 get;
 }
}

There’s no problem when we implement this on our Administrator:

class Administrator : NamedPerson
{
 public override string Name
 {
 get
 {
 StringBuilder name = new StringBuilder();
 AppendWithSpace(name, Title);
 AppendWithSpace(name, Forename);
 AppendWithSpace(name, Surname);
 return name.ToString();
 }
 }

 // ...
}

Notice how we derived from NamedPerson and added the override modifier to our
Name property so that it overrides the abstract method in our base.

All Types Are Derived from Object | 129

That’s fine so far. What about our FirefighterBase? Let’s try doing exactly the same
thing:

abstract class FirefighterBase : NamedPerson
{
 public abstract void ExtinguishFire();

 public override string Name { get; set; }

 // ...
}

If we compile that, we get an error:

'FirefighterBase.Name.set': cannot override because 'NamedPerson.Name' does
 not have an overridable set accessor

We run into difficulty because FirefighterBase has both a getter and a setter for the
Name property, but our base allows only a getter.

Properties Under the Hood
We’re going to dive into the guts of the thing here, so feel free to skip this if you’re not
deeply interested in how this works under the covers.

If you do look under the hood at the IL code emitted by the compiler, using a tool such
as ildasm, you can see that properties consist of two pieces: the property metadata, and
(either or both of) two functions called get_PropName and set_PropName, which actually
implement the getter/setter. If you’ve chosen to use the simple property syntax, there’s
also a field created with a name that is something like <PropName>k__BackingField.

At the IL level, there’s no difference between a property override and a new property
declaration. It is the metadata on the getter and setter functions that determines
whether they are virtual (and indeed what their accessibility might be).

So the fact that we can’t override a property that has a getter in the base class with one
that has a getter and a setter in the derived class is a feature of the C# language, not
the underlying platform.

Well, we could work around that with another member to set the name; but as you can
see in Example 4-18, it is all getting a bit ugly.

Example 4-18. Mounting evidence that all is not well in our class hierarchy

abstract class FirefighterBase : NamedPerson
{
 public abstract void ExtinguishFire();

 public override string Name
 {
 get
 {
 return RealName;

130 | Chapter 4: Extensibility and Polymorphism

 }
 }

 public string RealName
 {
 get; set;
 }

 // ...
}

Not only is it ugly, but we have to replace all our object initializers to refer to our new
RealName property, so it is making us do unnecessary work, which is never good:

Firefighter joe = new Firefighter { RealName = "Joe" };

Are you feeling uncomfortable with this approach yet? Let’s push on with it just a little
bit further, and see what happens if we want to support a second behavior. Say we had
a SalariedPerson abstract base that provides us with the contract for getting/setting a
person’s salary. We’re going to need to apply that to both the FirefighterBase and the
Administrator, to tie in with the billing system:

abstract class SalariedPerson
{
 public abstract decimal Salary
 {
 get;
 set;
 }
}

We’re providing a decimal property for the Salary that must be implemented by any
SalariedPerson.

So, what happens if we now try to derive from this class for our Administrator, as shown
in Example 4-19?

Example 4-19. The final straw: Our class hierarchy needs a rethink

class Administrator : NamedPerson, SalariedPerson
{
 private decimal salary;
 public override decimal Salary
 {
 get
 {
 return salary;
 }
 set
 {
 salary = value;
 }
 }
 // ...
}

All Types Are Derived from Object | 131

C++ developers will be familiar with this syntax for specifying multiple
base classes.

Another compiler error:

Class 'Administrator' cannot have multiple base classes: 'NamedPerson' and
'SalariedPerson'

C# Does Not Support Multiple Inheritance of Implementation
This is a pretty fundamental roadblock! You cannot derive your class from more than
one base class.

When the designers of .NET were thinking about the platform fundamentals, they
looked at this issue of multiple inheritance and how they’d support it across multiple
languages, including C#, VB, and C++. They decided that the C++ approach was too
messy and prone to error (particularly when you think about how to resolve members
that appear in both base classes with the same signature). The implications of multiple
inheritance were probably just too difficult to come to grips with, and therefore were
unlikely to bring net productivity gains. With that view prevailing, single inheritance
of implementation is baked into the platform.

In more recent interviews, the .NET team has reflected that perhaps
there might have been a way of allowing multiple inheritance of imple-
mentation, without introducing all the complexity of C++ multiple in-
heritance. That’s the benefit of 20/20 hindsight; we (or our children)
will just have to wait until the next platform generation and see how the
argument goes then.

So are we really stymied? No! While we can’t support multiple inheritance of imple-
mentation, we can support multiple inheritance of interface.

C# Supports Multiple Inheritance of Interface
With our abstract base classes in this example, we’re not really trying to provide a base
implementation for our objects at all. We’re trying to mark them as supporting a par-
ticular contract that we can then rely on in our client code.

C# provides us with a mechanism for doing exactly that: interface. Let’s rewrite our
NamedPerson and SalariedPerson classes as interfaces instead, as shown in Exam-
ple 4-20.

132 | Chapter 4: Extensibility and Polymorphism

Example 4-20. Defining interfaces

interface INamedPerson
{
 string Name
 {
 get;
 }
}

interface ISalariedPerson
{
 decimal Salary
 {
 get;
 set;
 }
}

We use much the same syntax as we do for a class definition, but using the keyword
interface instead.

Notice also that we dropped the abstract modifier on the members; an interface is
implicitly without implementation. There are no accessibility modifiers on the mem-
bers either; an interface member is only ever allowed to be public.

The only other change we’ve made is to prefix our interface name with an I. This is not
a rule, but another one of those naming conventions to which most people conform.

We can now implement those interfaces on our Administrator, as shown in Exam-
ple 4-21.

Example 4-21. Implementing interfaces

class Administrator : INamedPerson, ISalariedPerson
{
 public decimal Salary
 {
 get;
 set;
 }

 public string Name
 {
 get
 {
 StringBuilder name = new StringBuilder();
 AppendWithSpace(name, Title);
 AppendWithSpace(name, Forename);
 AppendWithSpace(name, Surname);
 return name.ToString();
 }
 }
 // ...
}

C# Supports Multiple Inheritance of Interface | 133

And we can implement them on our FirefighterBase, as shown in Example 4-22.

Example 4-22. The same interfaces in a different part of the class hierarchy

abstract class FirefighterBase : INamedPerson, ISalariedPerson
{
 public string Name
 {
 get;
 set;
 }

 public decimal Salary
 {
 get;
 set;
 }

 // ...
}

Notice that we can happily implement the setter on our FirefighterBase, even though
the interface only requires a getter. The restrictions on how you implement the
interface—as long as you conform to the contract it specifies—are much looser than
those on overrides of a base class. Also, C# doesn’t allow you to use the simple property
syntax to define virtual properties or their overrides, but there is no such restriction
when you’re implementing an interface. So we’ve been able to use simple property
syntax here rather than having to implement using full-blown properties.

We can now make use of this interface in our FireStation class. Instead of a list of
objects, we can use a list of INamedPerson, and call on the Name property in our
RollCall method, as shown in Example 4-23.

Example 4-23. Modifying the FireStation class to use an interface

class FireStation
{
 List<INamedPerson> clockedInStaff = new List<INamedPerson>();

 public void ClockIn(INamedPerson staffMember)
 {
 if (!clockedInStaff.Contains(staffMember))
 {
 clockedInStaff.Add(staffMember);
 Console.WriteLine("Clocked in {0}", staffMember.Name);
 }
 }

 public void RollCall()
 {
 foreach (INamedPerson staffMember in clockedInStaff)
 {
 Console.WriteLine(staffMember.Name);

134 | Chapter 4: Extensibility and Polymorphism

 }
 }
}

If you’ve been following through the code in Visual Studio (which I
thoroughly recommend), you’ll also need to change your object initial-
izers back to this form:

Firefighter joe = new Firefighter { Name = "Joe" };

If we compile and run, we get the output we hoped for—a roll call of everyone in the
station:

Clocked in Joe
Clocked in Bill
Clocked in Harry
Clocked in Mr Arthur Askey
Joe
Bill
Harry
Mr Arthur Askey

Deriving Interfaces from Other Interfaces
Interfaces support inheritance too, just like classes. If you want, you could create a
named, salaried person interface like this:

interface INamedSalariedPerson : INamedPerson, ISalariedPerson
{
}

What happens if you have conflicting names? Imagine the interface ISettable
NamedPerson:

interface ISettableNamedPerson
{
 string Name
 {
 get; set;
 }
}

What happens if we implement both INamedPerson and ISettableNamedPerson on our
FirefighterBase?

abstract class FirefighterBase : INamedPerson, ISettableNamedPerson, ISalariedPerson
{
 // ...
}

The answer is that everything is just fine! Each interface requires that we implement a
string property called Name; one requires at least a getter, the other a getter and a setter.

Deriving Interfaces from Other Interfaces | 135

When we access the property through the relevant interface, it can resolve correctly
which member we meant; there’s no requirement for a separate implementation for
each interface.

But what if that was actually wrong? What if our Name property on INamedPerson had
entirely different semantics from the one on ISettableNamedPerson? Let’s suppose that
one is intended to allow only letters and numbers with no spaces and the other is just
our freeform “any old text” implementation with which we are familiar.

Whenever our client expects an INamedPerson we need to provide the second imple-
mentation, and whenever the client expects an ISettableNamedPerson, the first.

We can do that by explicitly implementing the interfaces.

Explicit Interface Implementation
To explicitly implement a particular member of an interface, you drop the accessibility
modifier and add the interface name as a prefix, as shown in Example 4-24.

Example 4-24. Explicit interface implementation

class AFootInBothCamps : INamedPerson, ISettableNamedPerson
{
 private string settableName;

 string INamedPerson.Name
 {
 get
 {
 Console.WriteLine("Accessed through the INamedPerson interface");
 return settableName;
 }
 }

 string ISettableNamedPerson.Name
 {
 get
 {
 return settableName;
 }
 set
 {
 Console.WriteLine(
 "Accessed through the " +
 "ISettableNamedPerson interface");

 if(settableName != null && settableName.Contains(" "))
 {
 // You can't set it if it contains the space
 // character
 return;
 }
 settableName = value;

136 | Chapter 4: Extensibility and Polymorphism

 }
 }
}

Example 4-25 shows how we’re going to access them from our main function.

Example 4-25. Calling different interface implementations of the same member name on the same
object

class Program
{
 static void Main(string[] args)
 {
 AFootInBothCamps both = new AFootInBothCamps();

 ISettableNamedPerson settablePerson = both;
 INamedPerson namedPerson = both;

 settablePerson.Name = "hello";

 Console.WriteLine(settablePerson.Name);
 Console.WriteLine(namedPerson.Name);

 Console.ReadKey();
 }
}

Notice how we’re creating our object, and then providing two additional references to
it: one through a variable of type ISettableNamedPerson and one through INamedPerson.

We then call on the Name property through each of those interfaces, and get the following
output:

Accessed through the ISettableNamedPerson interface
hello
Accessed through the INamedPerson interface
hello

But what if we try to access it through a reference typed to the class itself?

Console.WriteLine(both.Name);

Add the following line to the main function and compile, and we get a compiler error!

'AFootInBothCamps' does not contain a definition for 'Name' and no extension
 method 'Name' accepting a first argument of type 'AFootInBothCamps' could be
 found (are you missing a using directive or an assembly reference?)

We’ve seen that error before; it means we’re trying to talk to a member that doesn’t
exist. What’s happened is that the members that are explicitly implemented exist
only if we are accessing them through the relevant interfaces.

However, as long as we explicitly implement one of the two (or two of the three, or
however many we’re stuck with), we can choose one interface as our “default” and
implement it using the regular syntax, as shown in Example 4-26.

Deriving Interfaces from Other Interfaces | 137

Example 4-26. Implementing one of the interfaces implicitly

class AFootInBothCamps : INamedPerson, ISettableNamedPerson
{
 private string settableName;

 // Regular implementation syntax
 public string Name
 {
 get
 {
 Console.WriteLine("Accessed through the INamedPerson interface");
 return settableName;
 }
 }

 string ISettableNamedPerson.Name
 {
 get
 {
 return settableName;
 }
 set
 {
 Console.WriteLine("Accessed through the ISettableNamedPerson "
 + "interface");
 if(settableName != null && settableName.Contains(" "))
 {
 // You can't set it if it contains the space
 // character
 return;
 }
 settableName = value;
 }
 }
}

Now we can compile and run, and the default implementation for our class is the one
for the INamedPerson interface:

Accessed through the ISettableNamedPerson interface
hello
Accessed through the INamedPerson interface
hello
Accessed through the INamedPerson interface
hello

138 | Chapter 4: Extensibility and Polymorphism

In real life, you don’t often come across this need for explicit interface
implementation. If you have control over all the code in the application,
you should avoid designing in a clash where the names are the same but
the semantics are different. Like overloads or overrides with different
meanings, it surprises other developers.

The .NET Framework contains a few examples where it uses explicit
interface implementation to hide the interface members from the public
API of a class, even though there is no clash. The authors are uncon-
vinced that this improves matters.

More often, you will come across this usage where you don’t have con-
trol of the code—with two third-party libraries, for instance, both of
which declare interfaces with different semantics but a clash of names.
Even then, this is not a problem unless you happen to need to implement
both interfaces on one class. Even rarer!

(Abstract) Base Classes Versus Interfaces
We’ve clearly simplified our code by introducing interfaces into our model. Would we
ever want to use abstract base classes rather than an interface?

Well, we’ve already seen an example where an abstract base class is a good choice—if
there’s additional implementation scaffolding that we wish to bring along with us, and
the abstract members are plumbed into that structure. It would be unnecessary to in-
troduce an interface just for the abstract member.

In general, an interface is a good way of defining just the contract, without providing
any implementation at all, especially if that contract is shared between different parts
of a system.

It also has strict versioning rules: if you add or remove members from an interface and
ship your assembly, it is a different interface and will no longer be binary compatible
with code that implements the previous version of the interface (although clients that
just call through the interface will still work fine if you haven’t removed or changed
something on which they depended). With an abstract base class, you can generally
add members and it remains binary compatible with older code (although a new ab-
stract member will also break anyone who inherits from it, of course).

Right, let’s go back to our FireStation class for a minute, and imagine an interface we
could create to formalize the contract for clocking in: our billing system might define
this contract for us so that we can plug into it.

Deriving Interfaces from Other Interfaces | 139

As it happens, our FireStation provides an implementation which can ClockIn named
people, but our billing system’s IClockIn contract is much more generic—it can clock
in anything of type Object, as we had in our original implementation:

interface IClockIn
{
 void ClockIn(object item);
}

We can now implement IClockIn on our FireStation, as shown in Example 4-27.

Example 4-27. Implementing the IClockIn interface

class FireStation : IClockIn
{
 List<INamedPerson> clockedInStaff = new List<INamedPerson>();

 public void ClockIn(INamedPerson staffMember)
 {
 if (!clockedInStaff.Contains(staffMember))
 {
 clockedInStaff.Add(staffMember);
 Console.WriteLine("Clocked in {0}", staffMember.Name);
 }
 }

 public void RollCall()
 {
 foreach (INamedPerson staffMember in clockedInStaff)
 {
 Console.WriteLine(staffMember.Name);
 }
 }

 public void ClockIn(object item)
 {
 // What to do here
 }

}

Our original ClockIn method is unchanged, and we’ve added a new overload that takes
an object, and therefore matches the requirement in our interface. But how do we
implement that new method? We want to check that the person being clocked in is an
INamedPerson, and if it is, perform our usual operation. Otherwise, we want to tell the
user that we can’t clock him in.

In other words, we need a manual check for the type of the object.

140 | Chapter 4: Extensibility and Polymorphism

The Last Resort: Checking Types at Runtime
C# provides us with a couple of keywords for checking the type of an object: as and is.

Here’s how we can use them in our ClockIn implementation:

public void ClockIn(object item)
{
 if (item is INamedPerson)
 {
 ClockIn(item as INamedPerson);
 }
 else
 {
 Console.WriteLine("We can't check in a '{0}'", item.GetType());
 }
}

Notice how we are using the type name to check if the item is of that type. And then
we call our other overload of ClockIn by explicitly converting to a reference of our
INamedPerson type, using as.

It checks to see if our object would be accessible through a reference of the specified
type. It looks at the whole inheritance hierarchy for the object (up and down) to see if
it matches, and if it does, it provides us a reference of the relevant type.

What if you don’t bother with the is check and just use as? Conveniently, the as op-
eration just converts to a null reference if it can’t find a suitable type match:

public void ClockIn(object item)
{
 INamedPerson namedPerson = item as INamedPerson;
 if(namedPerson != null)
 {
 ClockIn(namedPerson);
 }
 else
 {
 Console.WriteLine("We can't check in a '{0}'", item.GetType());
 }
}

This is the form in which you most often see a test like this, because it is marginally
more efficient than the previous example. In the first version, the runtime has to perform
the expensive runtime type checking twice: once for the if() statement and once to see
whether we can actually perform the conversion, or whether null is required. In the
second case, we do the expensive check only once, and then do a simple test for null.

The Last Resort: Checking Types at Runtime | 141

Summary
So far, we’ve seen how to create classes; to model relationships between instances of
those classes through association, composition, and aggregation; and to create rela-
tionships between classes by derivation. We also saw how virtual functions enable
derived classes to replace selected aspects of a base class.

We saw how to use protected and protected internal to control the visibility of mem-
bers to derived classes. Then, we saw how we can use either abstract classes and
methods or interfaces to define public contracts for a class.

Finally, we looked at a means of examining the inheritance hierarchy by hand, and
verifying whether an object we are referencing through a base class is, in fact, an instance
of a more derived class.

In the next chapter, we are going to look at some other techniques for code reuse and
extensibility that don’t rely on inheritance.

142 | Chapter 4: Extensibility and Polymorphism

CHAPTER 5

Composability and Extensibility with
Delegates

In the preceding two chapters, we saw how to encapsulate behavior and information
with classes. Using the concepts of association, composition, aggregation, and deriva-
tion, we modeled relationships between those classes and looked at some of the benefits
of polymorphism along with the use and abuse of virtual functions and their implied
contracts with derived classes.

In this chapter, we’ll look at a functional (rather than class-based) approach to com-
position and extensibility, and see how we can use this to implement some of the pat-
terns that have previously required us to burn our one and only base class and override
virtual functions; and all with the added benefit of a looser coupling between classes.

Let’s start with another example. This time, we want to build a system that processes
incoming (electronic) documents prior to publication. We might want to do an auto-
mated spellcheck, repaginate, perform a machine translation for a foreign-language
website, or perform one of any other number of operations that our editors will devise
during the development process and beyond.

After some business analysis, our platform team has given us a class called Document,
which is shown in Example 5-1. This is their baby, and we’re not allowed to mess with
it.

Example 5-1. The Document class

public sealed class Document
{
 // Get/set document text
 public string Text
 {
 get;
 set;
 }

 // Date of the document

143

 public DateTime DocumentDate
 {
 get;
 set;
 }

 public string Author
 {
 get;
 set;
 }
}

It has simple properties for its Text, the DocumentDate, and the Author, and no other
methods.

What Is Coupling?
Two classes are said to be coupled if a change to one requires a change to another. We
saw examples of that in the previous chapter. When we created our NamedPerson class,
it required changes to the FirefighterBase and the Administrator classes. We therefore
say that FirefighterBase and Administrator are coupled to NamedPerson.

Of course, any class or function that refers to another class or function is coupled to
that class—that’s unavoidable (indeed, desirable). But to make testing simpler and
systems more reliable, we try to ensure that we minimize the number of other types to
which any class or function is coupled, and that we minimize the number of couplings
between any two types. That way, any given change to a class will have a minimal
number of knock-on effects elsewhere in the system.

We also try to ensure that we organize classes into conceptual groupings called layers
so that more tightly coupled classes live together in one layer, and that there are a
minimal number of well-controlled couplings between layers. As part of that layered
approach, it is usual to try to ensure that most couplings go one-way; classes of a
“lower” layer should not depend on classes in a layer above.

That way, we can further limit (and understand) the way changes propagate through
the system. The layers act like firewalls, blocking the further impact of a change.

As usual with software design, these disciplines are not hard-and-fast rules, and they
are not imposed by the platform or language; but they are common practices that the
platform and language are designed to support.

Now we want to be able to process the document. At the very least, we want to be able
to Spellcheck, Repaginate, or Translate it (into French, say). Because we can’t change
the Document class, we’ll implement these methods in a static utility class of common
processes, as we learned in Chapter 3. Example 5-2 shows this class, although the
implementations are obviously just placeholders—we’re illustrating how to structure
the code here, and trying to write a real spellchecker would be a rather large distraction.

144 | Chapter 5: Composability and Extensibility with Delegates

Example 5-2. Some document processing methods

static class DocumentProcesses
{
 public static void Spellcheck(Document doc)
 {
 Console.WriteLine("Spellchecked document.");
 }

 public static void Repaginate(Document doc)
 {
 Console.WriteLine("Repaginated document.");
 }

 public static void TranslateIntoFrench(Document doc)
 {
 Console.WriteLine("Document traduit.");
 }

 // ...
}

Now we can build a simple example of a document processor that translates, spell-
checks, and then repaginates the document (see Example 5-3).

Example 5-3. Processing a document

static class DocumentProcessor
{
 public static void Process(Document doc)
 {
 DocumentProcesses.TranslateIntoFrench(doc);
 DocumentProcesses.Spellcheck(doc);
 DocumentProcesses.Repaginate(doc);
 }
}

And we can call on it from our main function, to process a couple of documents, as
shown in Example 5-4.

Example 5-4. A program to test the document processing classes

class Program
{
 static void Main(string[] args)
 {
 Document doc1 = new Document
 {
 Author = "Matthew Adams",
 DocumentDate = new DateTime(2000, 01, 01),
 Text = "Am I a year early?"
 };
 Document doc2 = new Document
 {
 Author = "Ian Griffiths",

Composability and Extensibility with Delegates | 145

 DocumentDate = new DateTime(2001, 01, 01),
 Text = "This is the new millennium, I promise you."
 };

 Console.WriteLine("Processing document 1");
 DocumentProcessor.Process(doc1);
 Console.WriteLine();
 Console.WriteLine("Processing document 2");
 DocumentProcessor.Process(doc2);

 Console.ReadKey();
 }
}

Compile and run that, and you’ll see the following output:

Processing document 1
Document traduit.
Spellchecked document.
Repaginated document.

Processing document 2
Document traduit.
Spellchecked document.
Repaginated document.

We encapsulated a particular set of processing instructions, executed in a particular
order, in this (static) DocumentProcessor class so that we can easily reuse it with dif-
ferent client applications that want a standard, reliable means of performing our “trans-
late into French” process. So far, this should all be pretty familiar.

But what about a different set of processing operations, one that leaves the document
in its native language and just spellchecks and repaginates?

We could just create a second DocumentProcessor-like class, and encapsulate the rele-
vant method calls in a process function:

static class DocumentProcessorStandard
{
 public static void Process(Document doc)
 {
 DocumentProcesses.Spellcheck(doc);
 DocumentProcesses.Repaginate(doc);
 }
}

And then we could add some calls to that processor in our Main method:

Console.WriteLine();
Console.WriteLine("Processing document 1 (standard)");
DocumentProcessorStandard.Process(doc1);
Console.WriteLine();
Console.WriteLine("Processing document 2 (standard)");
DocumentProcessorStandard.Process(doc2);

146 | Chapter 5: Composability and Extensibility with Delegates

Nothing is intrinsically wrong with any of this; it clearly works, and we have a nice
enough design that neatly encapsulates our processing.

We note that each DocumentProcessor is coupled to the Document class, and also to each
method that it calls on the DocumentProcesses class. Our client is coupled to the
Document and each DocumentProcessor class that it uses.

If we go back to the specification we showed earlier, we see that we are likely to be
creating a lot of different functions to modify the document as part of the production
process; they’ll slip in and out of use depending on the type of document, other systems
we might have to work with, and the business process of the day.

Rather than hardcoding this process in an ever-increasing number of processor classes
(and coupling those to an ever-increasing number of DocumentProcesses), it would ob-
viously be better if we could devolve this to the developers on our production team.
They could provide an ordered set of processes (of some kind) to the one and only
DocumentProcessor class that actually runs those processes.

We can then focus on making the process-execution engine as efficient and reliable as
possible, and the production team will be able to create sequences of processes (built
by either us, them, contractors, or whoever), without having to come back to us for
updates all the time.

Figure 5-1 represents that requirement as a diagram.

Figure 5-1. Document processor architecture

The document is submitted to the document processor, which runs it through an or-
dered sequence of processes. The same document comes out at the other end.

Composability and Extensibility with Delegates | 147

OK, let’s build a DocumentProcessor class that implements that (see Example 5-5).

Example 5-5. An adaptable document processor

class DocumentProcessor
{
 private readonly List<DocumentProcess> processes =
 new List<DocumentProcess>();

 public List<DocumentProcess> Processes
 {
 get
 {
 return processes;
 }
 }

 public void Process(Document doc)
 {
 foreach(DocumentProcess process in Processes)
 {
 process.Process(doc);
 }
 }
}

Our document processor has a List of DocumentProcess objects (a hypothetical type
we’ve not written yet). A List<T> is an ordered collection—that is to say that the item
you Add at index 0 stays at index 0, and is first out of the block when you iterate the
list, and so on. That means our Process method can just iterate over the collection of
DocumentProcess objects, and call some equally hypothetical Process method on each
to do the processing.

But what type of thing is a DocumentProcess? Well, we already saw a solution we can
use—we could create a DocumentProcess abstract base, with a Process abstract method:

abstract class DocumentProcess
{
 public abstract void Process(Document doc);
}

We then need to create a derived class for every processing operation, as shown in
Example 5-6.

Example 5-6. Implementations of the abstract DocumentProcess

class SpellcheckProcess : DocumentProcess
{
 public override void Process(Document doc)
 {
 DocumentProcesses.Spellcheck(doc);
 }
}

148 | Chapter 5: Composability and Extensibility with Delegates

class RepaginateProcess : DocumentProcess
{
 public override void Process(Document doc)
 {
 DocumentProcesses.Repaginate(doc);
 }
}

class TranslateIntoFrenchProcess : DocumentProcess
{
 public override void Process(Document doc)
 {
 DocumentProcesses.TranslateIntoFrench(doc);
 }
}

Now we can configure a processor in our client by adding some process objects to the
list (see Example 5-7).

Example 5-7. Configuring a document processor with processes

static DocumentProcessor Configure()
{
 DocumentProcessor rc = new DocumentProcessor();
 rc.Processes.Add(new TranslateIntoFrenchProcess());
 rc.Processes.Add(new SpellcheckProcess());
 rc.Processes.Add(new RepaginateProcess());
 return rc;
}

See how we are adding the processes to the processor in the same order we had in our
function calls previously? Our process objects are logically similar to function calls, and
the order in which they appear is logically similar to a program, except that they are
composed at runtime rather than compile time.

We can then use this configuration method in our client, and call on the processor to
process our documents, as shown in Example 5-8.

Example 5-8. Using the dynamically configured processor

static void Main(string[] args)
{
 Document doc1 = new Document
 {
 Author = "Matthew Adams",
 DocumentDate = new DateTime(2000, 01, 01),
 Text = "Am I a year early?"
 };
 Document doc2 = new Document
 {
 Author = "Ian Griffiths",
 DocumentDate = new DateTime(2001, 01, 01),
 Text = "This is the new millennium, I promise you."
 };

Composability and Extensibility with Delegates | 149

 DocumentProcessor processor = Configure();

 Console.WriteLine("Processing document 1");
 processor.Process(doc1);
 Console.WriteLine();
 Console.WriteLine("Processing document 2");
 processor.Process(doc2);

 Console.ReadKey();
}

If you compile and run, you’ll see the same output as before:

Processing document 1
Document traduit.
Spellchecked document.
Repaginated document.

Processing document 2
Document traduit.
Spellchecked document.
Repaginated document.

This is a very common pattern in object-oriented design—encapsulating a method in
an object and/or a process in a sequence of objects.

What’s nice about it is that our DocumentProcessor is now coupled only to the
Document class, plus the abstract base it uses as a contract for the individual processes.
It is no longer coupled to each and every one of those processes; they can vary without
requiring any changes to the processor itself, because they implement the contract
demanded by the abstract base class.

Finally, the processing sequence (the “program” for the DocumentProcessor) is now the
responsibility of the client app, not the processor library; so our different production
teams can develop their own particular sequences (and, indeed, new processes) without
having to refer back to the core team and change the document processor in any way.

In fact, the only thing that is a bit of a pain about this whole approach is that we have
to declare a new class every time we want to wrap up a simple method call. Wouldn’t
it be easier just to be able to refer to the method call directly?

C# provides us with a tool to do just that: the delegate.

Functional Composition with delegate
We just wrote some code that wraps up a method call inside an object. The call itself
is wrapped up in another method with a well-known signature.

You can think of a delegate as solving that same sort of problem: it is an object that lets
us wrap up a method call on another object (or class).

150 | Chapter 5: Composability and Extensibility with Delegates

But while our DocumentProcess classes have their methods hardcoded into virtual func-
tion overrides, a delegate allows us to reference a specific function (from a given class
or object instance) at runtime, then use the delegate to execute that function.

So, in the same way that a variable can be considered to contain a reference to an object,
a delegate can be thought to contain a reference to a function (see Figure 5-2).

Figure 5-2. Delegates and variables

Before we get into the specific C# syntax, I just want to show you that there isn’t
anything mystical about a delegate; in fact, there is a class in the .NET Framework
called Delegate which encapsulates the behavior for us.

As you might expect, it uses properties to store the reference to the function. There are
two, in fact: Method (which indicates which member function to use) and Target (which
tells us the object on which the method should be executed, if any).

As you can see, the whole thing is not totally dissimilar in concept from our previous
DocumentProcess base class, but we don’t need to derive from Delegate to supply the
function to call. That ability has moved into a property instead.

That’s all there is to a delegate, really.

Functional Composition with delegate | 151

However, it is such a powerful and useful tool that the C# language designers have
provided us with special language syntax to declare new Delegate types, assign the
appropriate function, and then call it in a much more compact and expressive fashion.
It also allows the compiler to check that all the parameter and return types match up
along the way, rather than producing errors at runtime if you get it wrong.

It is so compact, expressive, and powerful that you can probably get through your entire
C# programming career without ever worrying about the classes the C# compiler emits
which derive from that Delegate class and implement it all.

So, why have we just spent a page or so discussing these implementation
details, if we’re never going to see them again?

While you don’t usually need to use the Delegate class directly, it is easy
to get confused by language-specific voodoo and lose track of what a
delegate really is: it is just an object, which in turn calls whichever func-
tion we like, all specified through a couple of properties.

Let’s start by defining a new delegate type to reference our document processing
functions.

As I mentioned earlier, rather than using that Delegate class, C# lets us define a delegate
type using syntax which looks pretty much like a function declaration, prefixed with
the keyword delegate:

delegate void DocumentProcess(Document doc);

That defines a delegate type for a method which returns void, and takes a single
Document parameter. The delegate’s type name is DocumentProcess.

Delegates Under the Hood
Anyone who has sensibly decided not to go any further into the implementation details
can skip this sidebar. For those still reading...

When you declare a delegate like this, under the covers C# emits a class called
DocumentProcess, derived from MulticastDelegate (which is a subclass of Delegate).

Among other things, that emitted class has a function called Invoke(int param) which
matches the signature we declared on the delegate.

So how is Invoke implemented? Surprisingly, it doesn’t have any method body at all!
Instead, all of the members of the emitted class are marked as special by the compiler,
and the runtime actually provides the implementations so that it can (more or less)
optimally dispatch the delegated function.

Having added the delegate, we have two types called DocumentProcess, which is not
going to work. Let’s get rid of our old DocumentProcess abstract base class, and the three

152 | Chapter 5: Composability and Extensibility with Delegates

classes we derived from it. Isn’t it satisfying, getting rid of code? There is less to test
and you are statistically likely to have fewer bugs.

So how are we going to adapt our DocumentProcessor to use our new definition for the
DocumentProcess type? Take a look at Example 5-9.

Example 5-9. Modifying DocumentProcess to use delegates

class DocumentProcessor
{
 private readonly List<DocumentProcess> processes =
 new List<DocumentProcess>();
 public List<DocumentProcess> Processes
 {
 get
 {
 return processes;
 }
 }

 public void Process(Document doc)
 {
 foreach(DocumentProcess process in Processes)
 {
 // Hmmm... this doesn't work anymore
 process.Process(doc);
 }
 }
}

We’re still storing a set of DocumentProcess objects, but those objects are now delegates
to member functions that conform to the signature specified by the DocumentProcess
delegate.

We can still iterate over the process collection, but we no longer have a Process method
on the object. The equivalent function on the delegate type is a method called Invoke
which matches the signature of our delegated function:

process.Invoke(doc);

While this works just fine, it is such a common thing to need to do with a delegate that
C# lets us dispense with .Invoke entirely and treat the delegate as though it really was
the function to which it delegates:

process(doc);

Here’s the final version of our Process method:

 public void Process(Document doc)
 {
 foreach(DocumentProcess process in Processes)
 {
 process(doc);
 }
 }

Functional Composition with delegate | 153

This can take a bit of getting used to, because our variable names are
usually camelCased and our method names are usually PascalCased.
Using function call syntax against a camelCased object can cause severe
cognitive dissonance. I’ve still never really gotten used to it myself, and
I always feel like I need a sit-down and a cup of coffee when it happens.

Now we need to deal with the Configure method that sets up our processes. Rather
than creating all those process classes, we need to create the delegate instances instead.

You can construct a delegate instance just like any other object, using new, and passing
the name of the function to which you wish to delegate as a constructor parameter:

static DocumentProcessor Configure()
{
 DocumentProcessor rc = new DocumentProcessor();
 rc.Processes.Add(new DocumentProcess(DocumentProcesses.TranslateIntoFrench));
 rc.Processes.Add(new DocumentProcess(DocumentProcesses.Spellcheck));
 rc.Processes.Add(new DocumentProcess(DocumentProcesses.Repaginate));
 return rc;
}

However, C# has more syntactic shorthand that can do away with a lot of that boil-
erplate code. It can work out which delegate type you mean from context, and you only
need to provide the method name itself:

static DocumentProcessor Configure()
{
 DocumentProcessor rc = new DocumentProcessor();
 rc.Processes.Add(DocumentProcesses.TranslateIntoFrench);
 rc.Processes.Add(DocumentProcesses.Spellcheck);
 rc.Processes.Add(DocumentProcesses.Repaginate);
 return rc;
}

Not only have we achieved the same end in much less code, but we’ve actually reduced
coupling between our subsystems still further—our DocumentProcessor doesn’t depend
on any classes other than the Document itself; it will work with any class, static or oth-
erwise, that can provide a method that conforms to the appropriate signature, as de-
fined by our delegate.

So far, we’ve only provided delegates to static functions, but this works just as well for
an instance method on a class.

Let’s imagine we need to provide a trademark filter for our document, to ensure that
we pick out any trademarks in an appropriate typeface. Example 5-10 shows our
TrademarkFilter class.

Example 5-10. Another processing step

class TrademarkFilter
{
 readonly List<string> trademarks = new List<string>();

154 | Chapter 5: Composability and Extensibility with Delegates

 public List<string> Trademarks
 {
 get
 {
 return trademarks;
 }
 }

 public void HighlightTrademarks(Document doc)
 {
 // Split the document up into individual words
 string[] words = doc.Text.Split(' ', '.', ',');
 foreach(string word in words)
 {
 if(Trademarks.Contains(word))
 {
 Console.WriteLine("Highlighting '{0}'", word);
 }
 }
 }
}

It maintains a list of Trademarks to pick out, and has a HighlightTrademarks method
that does the actual work. Notice that it is coupled only to the Document—it knows
nothing about our processor infrastructure. Neither have we burned our base; we didn’t
have to inherit from any particular class to fit in with the processor framework, leaving
it free for, say, our forthcoming “highlighter framework.”

Example 5-11 shows how we add it to our configuration code.

Example 5-11. Adding a processing step with a nonstatic method

static DocumentProcessor Configure()
{
 DocumentProcessor rc = new DocumentProcessor();
 rc.Processes.Add(DocumentProcesses.TranslateIntoFrench);
 rc.Processes.Add(DocumentProcesses.Spellcheck);
 rc.Processes.Add(DocumentProcesses.Repaginate);

 TrademarkFilter trademarkFilter = new TrademarkFilter();
 trademarkFilter.Trademarks.Add("O'Reilly");
 trademarkFilter.Trademarks.Add("millennium");

 rc.Processes.Add(trademarkFilter.HighlightTrademarks);

 return rc;
}

We create our TrademarkFilter object and add a few “trademarks” to its list. To specify
a delegate to the method on that instance we use our reference to the instance and the
name of the function on that instance. Notice that the syntax is very similar to a method
call on an object, but without the parentheses.

Functional Composition with delegate | 155

If we compile and run, we get the expected output:

Processing document 1
Document traduit.
Spellchecked document.
Repaginated document.

Processing document 2
Document traduit.
Spellchecked document.
Repaginated document.
Highlighting 'millennium'

This pattern is very common in object-oriented design: an overall process encapsulated
in a class is customized by allowing a client to specify some action or actions for it to
execute somewhere within that process. Our DocumentProcess delegate is typical for
this kind of action—the function takes a single parameter of some type (the object our
client wishes us to process), and returns void.

Because we so often need delegates with this kind of signature, the framework provides
us with a generic type that does away with the need to declare the delegate types ex-
plicitly, every time.

Generic Actions with Action<T>
Action<T> is a generic type for a delegate to a function that returns void, and takes a
single parameter of some type T. We used a generic type before: the List<T> (List-of-
T) where T represents the type of the objects that can be added to the list. In this case,
we have an Action-of-T where T represents the type of the parameter for the function.

So, instead of declaring our own delegate:

delegate void DocumentProcess(Document doc);

we could just use an Action<> like this:

Action<Document>

A quick warning: although these are functionally equivalent, you cannot
use an Action<Document> polymorphically as a DocumentProcess—they
are, of course, different classes under the covers.

We’re choosing between an implementation that uses a type we’re de-
claring ourselves, or one supplied by the framework. Although there are
sometimes good reasons for going your own way, it is usually best to
take advantage of library code if it is an exact match for your
requirement.

So, we can delete our own delegate definition, and update our DocumentProcessor to
use an Action<Document> instead, as shown in Example 5-12.

156 | Chapter 5: Composability and Extensibility with Delegates

Example 5-12. Modifying the processor to use the built-in Action<T> delegate type

class DocumentProcessor
{
 private readonly List<Action<Document>> processes =
 new List<Action<Document>>();

 public List<Action<Document>> Processes
 {
 get
 {
 return processes;
 }
 }

 public void Process(Document doc)
 {
 foreach (Action<Document> process in Processes)
 {
 process(doc);
 }
 }
}

Compile and run, and you’ll see that we still get our expected output.

If you were watching the IntelliSense as you were typing in that code, you will have
noticed that there are several Action<> types in the framework: Action<T>,
Action<T1,T2>, Action<T1,T2,T3>, and so on. As you might expect, these allow you to
define delegates to methods which return void, but which take two, three, or more
parameters. .NET 4 provides Action<> delegate types going all the way up to 16 pa-
rameters. (Previous versions stopped at four.)

OK, let’s suppose that everything we’ve built so far has been deployed to the integration
test environment, and the production folks have come back with a new requirement.
Sometimes they configure a processing sequence that fails against a particular docu-
ment—and it invariably seems to happen three hours into one of their more complex
processes. They have some code which would let them do a quick check for some of
their more compute-intensive processes and establish whether they are likely to fail.
They want to know if we can implement this for them somehow.

One way we might be able to do this is to provide a means of supplying an optional
“check” function corresponding to each “action” function. We could then iterate all
of the check functions first (they are supposed to be quick), and look at their return
values. If any fail, we can give up (see Figure 5-3).

We could implement that by rewriting our DocumentProcessor as shown in Exam-
ple 5-13.

Generic Actions with Action<T> | 157

Example 5-13. Adding quick checking to the document processor

class DocumentProcessor
{
 class ActionCheckPair
 {
 public Action<Document> Action { get; set; }
 public Check QuickCheck { get; set; }
 }

 private readonly List<ActionCheckPair> processes = new List<ActionCheckPair>();

 public void AddProcess(Action<Document> action)
 {
 AddProcess(action, null);
 }

 public void AddProcess(Action<Document> action, Check quickCheck)
 {
 processes.Add(
 new ActionCheckPair { Action = action, QuickCheck = quickCheck });
 }

 public void Process(Document doc)
 {
 // First time, do the quick check
 foreach(ActionCheckPair process in processes)
 {
 if (process.QuickCheck != null && !process.QuickCheck(doc))

Figure 5-3. Document processor with checking

158 | Chapter 5: Composability and Extensibility with Delegates

 {
 Console.WriteLine("The process will not succeed.");
 return;
 }
 }

 // Then perform the action
 foreach (ActionCheckPair process in processes)
 {
 process.Action(doc);
 }
 }
}

There are quite a few new things to look at here.

First, we declared a new class inside our DocumentProcessor definition, rather than in
the namespace scope. We call this a nested class.

We chose to nest the class because it is private to the DocumentProcessor, and we can
avoid polluting the namespace with implementation details. Although you can make
nested classes publicly accessible, it is unusual to do so and is considered a bad practice.

This nested class just associates a pair of delegates: the Action<Document> that does the
work, and the corresponding Check that performs the quick check.

We removed the public property for our list of processes, and replaced it with a pair of
AddProcess method overloads. These allow us to add processes to the sequence; one
takes both the action and the check, and the other is a convenience overload that allows
us to pass the action only.

Notice how we had to change the public contract for our class because
we initially exposed the list of processes directly. If we’d made the
list an implementation detail and provided the single-parameter
AddProcess method in the first place, we wouldn’t now need to change
our clients as we’d only be extending the class.

Our new Process function first iterates the processes and calls on the QuickCheck dele-
gate (if it is not null) to see if all is OK. As soon as one of these checks returns false,
we return from the method and do no further work. Otherwise, we iterate through the
processes again and call the Action delegate.

What type is a Check? We need a delegate to a method that returns a Boolean and takes
a Document:

delegate bool Check(Document doc);

We call this type of “check” method a predicate: a function that operates on a set of
parameters and returns either true or false for a given input. As you might expect,

Generic Actions with Action<T> | 159

given the way things have been going so far, this is a sufficiently useful idea for it to
appear in the framework (again, as of .NET 3.5).

Generic Predicates with Predicate<T>
Unlike the many variants of Action<>, the framework provides us with a single
Predicate<T> type, which defines a delegate to a function that takes a single parameter
of type T and returns a Boolean.

Why only the one parameter? There are good computer-science-
philosophical reasons for it. In mathematical logic, a predicate is usually
defined as follows:

P : X → { true, false }

That can be read as “a Predicate of some entity X maps to ‘true’ or
‘false’”. The single parameter in the mathematical expression is an im-
portant limitation, allowing us to build more complex systems from the
simplest possible building blocks.

This formal notion gives rise to the single parameter in the .NET
Predicate<T> class, however pragmatically useful it may be to have more
than one parameter in your particular application.

We can delete our Check delegate (Hurrah! More code removed!), and replace it with
a Predicate<T> that takes a Document as its type parameter:

Predicate<Document>

And we can update the DocumentProcessor to make use of Predicate<T>, as shown in
Example 5-14.

Example 5-14. DocumentProcessor updated to use Predicate<T>

class DocumentProcessor
{
 class ActionCheckPair
 {
 public Action<Document> Action { get; set; }
 public Predicate<Document> QuickCheck { get; set; }
 }

 private readonly List<ActionCheckPair> processes =
 new List<ActionCheckPair>();

 public void AddProcess(Action<Document> action)
 {
 AddProcess(action, null);
 }

 public void AddProcess(Action<Document> action,

160 | Chapter 5: Composability and Extensibility with Delegates

 Predicate<Document> quickCheck)
 {
 processes.Add(
 new ActionCheckPair { Action = action, QuickCheck = quickCheck });
 }

 // ...
}

We can now update our client code to use our new DocumentProcessor API, calling
AddProcess now that the list of processes is private (see Example 5-15).

Example 5-15. Updating Configure to use modified DocumentProcessor

static DocumentProcessor Configure()
{
 DocumentProcessor rc = new DocumentProcessor();
 rc.AddProcess(DocumentProcesses.TranslateIntoFrench);
 rc.AddProcess(DocumentProcesses.Spellcheck);
 rc.AddProcess(DocumentProcesses.Repaginate);

 TrademarkFilter trademarkFilter = new TrademarkFilter();
 trademarkFilter.Trademarks.Add("Ian");
 trademarkFilter.Trademarks.Add("Griffiths");
 trademarkFilter.Trademarks.Add("millennium");

 rc.AddProcess(trademarkFilter.HighlightTrademarks);

 return rc;
}

For the time being, we’re using the overload of AddProcess that doesn’t supply a
quickCheck, so if we compile and run, we get the same output as before:

Processing document 1
Document traduit.
Spellchecked document.
Repaginated document.

Processing document 2
Document traduit.
Spellchecked document.
Repaginated document.
Highlighting 'millennium'

OK, the idea here was to allow our production team to quickly configure a check to
see if the process was likely to fail, before embarking on a resource-intensive task. Let’s
say DocumentProcesses.TranslateIntoFrench is a very time-consuming function, and
they’ve discovered that any document whose text contains a question mark (?) will fail.

They’ve raised a bug with the machine translation team, but they don’t want to hold
up the entire production process until it is fixed—only 1 in 10 documents suffer from
this problem.

Generic Predicates with Predicate<T> | 161

They need to add a quick check to go with the TranslateIntoFrench process. It is only
one line of code:

return !doc.Contains("?");

They could create a static class, with a static utility function to use as their predicate,
but the boilerplate code would be about 10 times as long as the actual code itself. That’s
a barrier to readability, maintenance, and therefore the general well-being of the de-
veloper. C# comes to our rescue with a language feature called the anonymous method.

Using Anonymous Methods
An anonymous method is just like a regular function, except that it is inlined in the
code at the point of use.

Let’s update the code in our Configure function to include a delegate to an anonymous
method to perform the check:

rc.AddProcess(
 DocumentProcesses.TranslateIntoFrench,
 delegate(Document doc)
 {
 return !doc.Text.Contains("?");
 });

The delegate to the anonymous method (i.e., the anonymous delegate) is passed as the
second parameter to our AddProcess method. Let’s pull it out so that we can see it a
little more clearly (there’s no need to make this change in your code; it is just for clarity):

Predicate<Document> predicate =
 delegate(Document doc)
 {
 return !doc.Text.Contains("?");
 }

Written like this, it looks recognizably like a function definition, except that we use the
delegate keyword to let the compiler know we are providing a delegate. There’s no
need to specify the return type—that is inferred from the context. (In this case, the
delegate type is Predicate<T>, so the compiler knows the return type is bool.) Any
parameters in our parameter list are accessible only inside the body of the anonymous
method itself.

Why do we call it an anonymous method? Because it doesn’t have a name that can be
referenced elsewhere! The variable that references the delegate to the anonymous
method has a name, but not the anonymous delegate type, or the anonymous method
itself.

If you compile and run the code you’ll see the new output:

Processing document 1
The processing will not succeed

162 | Chapter 5: Composability and Extensibility with Delegates

Processing document 2
Document traduit.
Spellchecked document.
Repaginated document.

The production team is happy; but is the job done?

Not quite; although this inline syntax for an anonymous method is a lot more compact
than a static class/function declaration, we can get more compact and expressive still,
using lambda expression syntax, which was added in C# 3.0 (anonymous methods
having been around since C# 2.0).

Creating Delegates with Lambda Expressions
In the 1930s (a fertile time for computing theory!) two mathematicians named Church
and Kleene devised a formal system for investigating the properties of functions. This
was called lambda calculus, and (as further developed by Curry and others) it is still a
staple part of computational theory for computer scientists.

Fast-forward 70 or so years, and we see just a hint of this theory peeking through in
C#’s lambda expressions—only a hint, though, so bear with it.

As we saw before, you can think of a function as an expression that maps a set of inputs
(the parameters) to an output (the return value).

Mathematicians sometimes use a notation similar to this to define a function:

(x,y,z) → x + y + z

You can read this as defining a function that operates on three parameters (x, y, and
z). The result of the function is just the sum of the three parameters, and, by definition,
it can have no side effects on the system. The parameters themselves aren’t modified by
the function; we just map from the input parameters to a result.

Lambda expressions in C# use syntax very similar to this to define functional expres-
sions. Here’s the C# equivalent of that mathematical expression we used earlier:

(x,y,z) => x + y + z;

Notice how it rather cutely uses => as the programming language equiv-
alent of →. C++ users should not mistake this for the -> operator—it is
quite different!

This defines a lambda expression that takes three parameters and returns the sum of
those three parameters.

Creating Delegates with Lambda Expressions | 163

Some languages enforce the no side effects constraint; but in C# there is nothing to stop
you from writing a lambda expression such as this one:

(x,y,z) =>
{
 SomeStaticClass.CrashAndBurnAndMessWithEverything();
 x.ModifyInternalState();
 return x + y + z;
}

(Incidentally, this form of lambda expression, using braces to help define its body, is
called a statement-form lambda.) In C#, a lambda is really just a concise way to write
an anonymous method. We’re just writing normal code, so we can include operations
that have side effects.

So, although C# brings along some functional techniques with lambda syntax, it is not
a “pure” functional language like ML or F#. Nor does it intend to be.

So, what use is a lambda, then?

We’ll see some very powerful techniques in Chapter 8 and Chapter 14, where lambdas
play an important role in LINQ. Some of the data access features of the .NET Frame-
work use the fact that we can convert lambdas into data structures called expression
trees, which can be composed to create complex query-like expressions over various
types of data.

For now, we’re merely going to take advantage of the fact that we can implicitly create
a delegate from a lambda, resulting in less cluttered code.

How do we write our anonymous delegate as a lambda? Here’s the original:

Predicate<Document> predicate =
 delegate(Document doc)
 {
 return !doc.Text.Contains("?");
 }

And here it is rewritten using a lambda expression:

Predicate<Document> predicate = doc => !doc.Text.Contains("?");

Compact, isn’t it!

For a lot of developers, this syntax takes some getting used to, because it is completely
unlike anything they’ve ever seen before. Where are the type declarations? Is this taking
advantage of some of these dynamic programming techniques we’ve heard so much
about?

The short answer is no (but we’ll get to dynamic typing in Chapter 18, don’t worry).
One of the nicer features of lambda expression syntax is that it takes care of working
out what types the various parameters need to be, based on the context. In this case,
the compiler knows that it needs to produce a Predicate<Document>, so it can infer that

164 | Chapter 5: Composability and Extensibility with Delegates

the parameter type for the lambda must be a Document. You even get full IntelliSense
on your lambda parameters in Visual Studio.

It is well worth getting used to reading and writing lambdas; you’ll find
them to be a very useful and expressive means of defining short func-
tions, especially when we look at various aspects of the LINQ technol-
ogies and expression composition in later chapters.

Most developers, once they get over the initial comprehension hurdles,
fall in love with lambdas—I promise!

Delegates in Properties
The delegates we’ve seen so far have taken one or more parameters, and returned either
void (an Action<>) or a bool (a Predicate<T>).

But we can define a delegate to any sort of function we like. What if we want to provide
a mechanism that allows the client to be notified when each processing step has been
completed, and provide the processor with some text to insert into a process log?

Our callback delegate might look like this:

delegate string LogTextProvider(Document doc);

We could add a property to our DocumentProcessor so that we can get and set the
callback function (see Example 5-16).

Example 5-16. A property that holds a delegate

class DocumentProcessor
{
 public LogTextProvider LogTextProvider
 {
 get;
 set;
 }
 // ...
}

And then we could make use of it in our Process method, as shown in Example 5-17.

Example 5-17. Using a delegate in a property

public void Process(Document doc)
{
 // First time, do the quick check
 foreach (ActionCheckPair process in processes)
 {
 if (process.QuickCheck != null && !process.QuickCheck(doc))
 {
 Console.WriteLine("The process will not succeed.");
 if (LogTextProvider != null)

Delegates in Properties | 165

 {
 Console.WriteLine(LogTextProvider(doc));
 }
 return;
 }
 }

 // Then perform the action
 foreach (ActionCheckPair process in processes)
 {
 process.Action(doc);
 if (LogTextProvider != null)
 {
 Console.WriteLine(LogTextProvider(doc));
 }
 }
}

Notice that we’re checking that our property is not null, and then we use standard
delegate syntax to call the function that it references.

Let’s set a callback in our client (see Example 5-18).

Example 5-18. Setting a property with a lambda

static void Main(string[] args)
{
 // ...

 DocumentProcessor processor = Configure();

 processor.LogTextProvider = (doc => "Some text for the log...");

 // ...
}

Here we used a lambda expression to provide a delegate that takes a Document parameter
called doc, and returns a string. In this case, it is just a constant string. Later, we’ll do
some work to emit a more useful message.

Take a moment to notice again how compact the lambda syntax is, and how the com-
piler infers all those parameter types for us. Remember how much code we had to write
to do this sort of thing back in the world of abstract base classes?

Compile and run, and we see the following output:

Processing document 1
The processing will not succeed.
Some text for the log...

Processing document 2
Document traduit.
Some text for the log...
Spellchecked document.
Some text for the log...

166 | Chapter 5: Composability and Extensibility with Delegates

Repaginated document.
Some text for the log...
Highlighting 'millennium'
Some text for the log...

That’s an example of a delegate for a function that returns something other than void
or a bool. As you might have already guessed, the .NET Framework provides us with
a generic type so that we don’t have to declare those delegates by hand, either.

Generic Delegates for Functions
The .NET Framework exposes a generic class called Func<T, TResult>, which you can
read as “Func-of T and TResult.”

As with Predicate<T> and Action<T> the first type parameter determines the type of the
first parameter of the function referenced by the delegate.

Unlike Predicate<T> or Action<T> we also get to specify the type of the return value,
using the last type parameter: TResult.

Just like Action<T>, there is a whole family of Func<> types which take
one, two, three, and more parameters. Before .NET 4, Func<> went up
to four parameters, but now goes all the way up to 16.

So we could replace our custom delegate type with a Func<>. We can delete the delegate
declaration:

delegate string LogTextProvider(Document doc);

and update the property:

 public Func<Document,string> LogTextProvider
 {
 get;
 set;
 }

We can build and run without any changes to our client code because the new property
declaration still expects a delegate for a function with the same signature. And we still
get a bit of log text:

Processing document 1
The processing will not succeed.
Some text for the log...

Processing document 2
Document traduit.
Some text for the log...
Spellchecked document.
Some text for the log...
Repaginated document.

Generic Delegates for Functions | 167

Some text for the log...
Highlighting 'millennium'
Some text for the log...

OK, let’s go back and have a look at that log function. As we noted earlier, it isn’t very
useful right now. We can improve it by logging the name of the file we have processed
after each output stage, to help the production team diagnose problems.

Example 5-19 shows an update to the Main function to do that.

Example 5-19. Doing more in our logging callback

static void Main(string[] args)
{
 Document doc1 = new Document
 {
 Author = "Matthew Adams",
 DocumentDate = new DateTime(2000, 01, 01),
 Text = "Am I a year early?"
 };
 Document doc2 = new Document
 {
 Author = "Ian Griffiths",
 DocumentDate = new DateTime(2001, 01, 01),
 Text = "This is the new millennium, I promise you."
 };
 Document doc3 = new Document
 {
 Author = "Matthew Adams",
 DocumentDate = new DateTime(2002, 01, 01),
 Text = "Another year, another document."
 };

 string documentBeingProcessed = null;
 DocumentProcessor processor = Configure();

 processor.LogTextProvider = (doc => documentBeingProcessed);

 documentBeingProcessed = "(Document 1)";
 processor.Process(doc1);
 Console.WriteLine();
 documentBeingProcessed = "(Document 2)";
 processor.Process(doc2);
 Console.WriteLine();
 documentBeingProcessed = "(Document 3)";
 processor.Process(doc3);

 Console.ReadKey();
}

We added a third document to the set, just so that we can see more get processed. Then
we set up a local variable called documentBeingProcessed. As we move through the
documents we update that variable to reflect our current status.

How do we get that information into the lambda expression? Simple: we just use it!

168 | Chapter 5: Composability and Extensibility with Delegates

Compile and run that code, and you’ll see the following output:

The processing will not succeed.
(Document 1)

Document traduit.
(Document 2)
Spellchecked document.
(Document 2)
Repaginated document.
(Document 2)
Highlighting 'millennium'
(Document 2)

Document traduit.
(Document 3)
Spellchecked document.
(Document 3)
Repaginated document.
(Document 3)

We took advantage of the fact that an anonymous method has access to variables declared
in its parent scope, in addition to anything in its own scope. For more information about
this, see the sidebar below.

Closures
In general, we call an instance of a function and the set of variables on which it operates
a closure.

In a pure functional language, a closure is typically implemented by taking a snapshot
of the values of the variables at the time at which the closure is created, along with a
reference to the function concerned, and those values are immutable.

In C#, a similar technique is applied—but the language allows us to modify those
variables after the closure has been created.

As we see in this chapter, we can use this to our advantage, but we have to be careful
to understand and manage the scope of the variables in the closure to avoid peculiar
side effects.

We’ve seen how to read variables in our containing scope, but what about writing back
to them? That works too. Let’s create a process counter that ticks up every time we
execute a process, and add it to our logging function (see Example 5-20).

Example 5-20. Modifying surrounding variables from a nested method

static void Main(string[] args)
{
 // ... (document setup)

 DocumentProcessor processor = Configure();

Generic Delegates for Functions | 169

 string documentBeingProcessed = "(No document set)";
 int processCount = 0;

 processor.LogTextProvider = (doc => {
 processCount += 1;
 return documentBeingProcessed;
 });

 documentBeingProcessed = "(Document 1)";
 processor.Process(doc1);
 Console.WriteLine();
 documentBeingProcessed = "(Document 2)";
 processor.Process(doc2);
 Console.WriteLine();
 documentBeingProcessed = "(Document 3)";
 processor.Process(doc3);

 Console.WriteLine();
 Console.WriteLine("Executed " + processCount + " processes.");

 Console.ReadKey();
}

We added a processCount variable at method scope, which we initialized to zero. We’ve
switched our lambda expression into the statement form with the braces so that we can
write multiple statements in the function body. In addition to returning the name of
the document being processed, we also increment our processCount.

Finally, at the end of processing, we write out a line that tells us how many processes
we’ve executed. So our output looks like this:

The processing will not succeed.
(Document 1)

Document traduit.
(Document 2)
Spellchecked document.
(Document 2)
Repaginated document.
(Document 2)
Highlighting 'millennium'
(Document 2)

Document traduit.
(Document 3)
Spellchecked document.
(Document 3)
Repaginated document.
(Document 3)
(Document 3)

Executed 9 processes.

OK, our production team is very happy with all of that, but they have another require-
ment. Apparently, they have one team working on some diagnostic components that

170 | Chapter 5: Composability and Extensibility with Delegates

are going to track the time taken to execute some of their processes, and another team
developing some real-time display of all the processes as they run through the system.
They want to know when a process is about to be executed and when it has completed
so that these teams can execute some of their own code.

Our first thought might be to implement a couple of additional callbacks: one called
as processing starts, and the other as it ends; but that won’t quite meet their needs—
they have two separate teams who both want, independently, to hook into it.

We need a pattern for notifying several clients that something has occurred. The .NET
Framework steps up with events.

Notifying Clients with Events
An event is raised (or sent) by a publisher (or sender) when something of interest occurs
(such as an action taking place, or a property changing). Clients can subscribe to the
event by providing a suitable delegate, rather like the callbacks we used previously. The
method wrapped by the delegate is called the event handler. The neat thing is that more
than one client can subscribe to the event.

Here’s an example of a couple of events that we can add to the DocumentProcessor to
help our production team:

class DocumentProcessor
{
 public event EventHandler Processing;
 public event EventHandler Processed;

 // ...
}

Notice that we use the keyword event to indicate that what follows is an event decla-
ration. We then specify the delegate type for the event (EventHandler) and the name of
the event (using PascalCasing). So, this is just like a declaration for a public field of type
EventHandler, but annotated with the event keyword.

What does this EventHandler delegate look like? The framework defines it like this:

delegate void EventHandler(object sender, EventArgs e);

Notice that our delegate takes two parameters. The first is a reference to the publisher
of the event so that subscribers can tell who raised it. The second is some data associated
with the event. The EventArgs class is defined in the framework, and is a placeholder
for events that don’t need any extra information. We’ll see how to customize this later.

Almost all events follow this two-argument pattern. Technically, they’re
not required to—you can use any delegate type for an event. But in
practice, this pattern is almost universal.

Notifying Clients with Events | 171

So, how do we raise an event? Well, it really is just like a delegate, so we can use the
delegate calling syntax as shown in the OnProcessing and OnProcessed methods in Ex-
ample 5-21.

Example 5-21. Raising events

public void Process(Document doc)
{
 OnProcessing(EventArgs.Empty);
 // First time, do the quick check
 foreach (ActionCheckPair process in processes)
 {
 if (process.QuickCheck != null && !process.QuickCheck(doc))
 {
 Console.WriteLine("The process will not succeed.");
 if (LogTextProvider != null)
 {
 Console.WriteLine(LogTextProvider(doc));
 }
 OnProcessed(EventArgs.Empty);
 return;
 }
 }

 // Then perform the action
 foreach (ActionCheckPair process in processes)
 {
 process.Action(doc);
 if (LogTextProvider != null)
 {
 Console.WriteLine(LogTextProvider(doc));
 }
 }
 OnProcessed(EventArgs.Empty);
}

private void OnProcessing(EventArgs e)
{
 if (Processing != null)
 {
 Processing(this, e);
 }
}

private void OnProcessed(EventArgs e)
{
 if (Processed != null)
 {
 Processed(this, e);
 }
}

Notice how we pulled out the code to check for null and execute the delegate into
functions called OnXXX. This isn’t strictly necessary, but it is a very common practice.

172 | Chapter 5: Composability and Extensibility with Delegates

If we are designing our class as a base, we often mark this kind of method
as a protected virtual so that derived classes can override the event-
raising function instead of subscribing to the event.

This can be more efficient than going through the event, and it allows
us (optionally) to decline to raise the event by not calling on the base
implementation.

Be careful to document whether derived classes are allowed not to call
the base, though!

Now we need to subscribe to those events. So let’s create a couple of classes to simulate
what the production department would need to do (see Example 5-22).

Example 5-22. Subscribing to and unsubscribing from events

class ProductionDeptTool1
{
 public void Subscribe (DocumentProcessor processor)
 {
 processor.Processing += processor_Processing;
 processor.Processed += processor_Processed;
 }

 public void Unsubscribe(DocumentProcessor processor)
 {
 processor.Processing -= processor_Processing;
 processor.Processed -= processor_Processed;
 }

 void processor_Processing(object sender, EventArgs e)
 {
 Console.WriteLine("Tool1 has seen processing.");
 }

 void processor_Processed(object sender, EventArgs e)
 {
 Console.WriteLine("Tool1 has seen that processing is complete.");
 }
}

class ProductionDeptTool2
{
 public void Subscribe(DocumentProcessor processor)
 {
 processor.Processing +=
 (sender, e) => Console.WriteLine("Tool2 has seen processing.");
 processor.Processed +=
 (sender, e) =>
 Console.WriteLine("Tool2 has seen that processing is complete.");
 }
}

Notifying Clients with Events | 173

To subscribe to an event we use the += operator, with a suitable delegate. You can see
in ProductionDeptTool1.Subscribe that we used the standard delegate syntax, and in
ProductionDeptTool2.Subscribe we used the lambda expression syntax.

Of course, you don’t have to subscribe to events in methods called
Subscribe—you can do it anywhere you like!

When you’re done watching an event for any reason, you can unsubscribe using
the -= operator and another delegate to the same method. You can see that in the
ProductionDeptTool1.Unsubscribe method.

When you subscribe to an event your subscriber implicitly holds a reference to the
publisher. This means that the garbage collector won’t be able to collect the publisher
if there is still a rooted reference to the subscriber. It is a good idea to provide a means
of unsubscribing from events you are no longer actively observing, to avoid growing
your working set unnecessarily.

Let’s add some code to our Main method to make use of the two new tools, as shown
in Example 5-23.

Example 5-23. Updated Main method

static void Main(string[] args)
{
 // ...

 ProductionDeptTool1 tool1 = new ProductionDeptTool1();
 tool1.Subscribe(processor);

 ProductionDeptTool2 tool2 = new ProductionDeptTool2();
 tool2.Subscribe(processor);

 documentBeingProcessed = "(Document 1)";

 // ...

 Console.ReadKey();
}

If we compile and run, we now see the following output:

Tool1 has seen processing.
Tool2 has seen processing.
The processing will not succeed.
(Document 1)
Too11 has seen that processing is complete.
Tool2 has seen that processing is complete.

Tool1 has seen processing.
Tool2 has seen processing.

174 | Chapter 5: Composability and Extensibility with Delegates

Document traduit.
(Document 2)
Spellchecked document.
(Document 2)
Repaginated document.
(Document 2)
Highlighting 'millennium'
(Document 2)
Too11 has seen that processing is complete.
Tool2 has seen that processing is complete.

Tool1 has seen processing.
Tool2 has seen processing.
Document traduit.
(Document 3)
Spellchecked document.
(Document 3)
Repaginated document.
(Document 3)
(Document 3)
Too11 has seen that processing is complete.
Tool2 has seen that processing is complete.

Executed 9 processes.

You might notice that the event handlers have been executed in the order
in which we added them. This is not guaranteed to be the case, and you
cannot depend on this behavior.

If you need deterministic ordering (as we did for our processes, for ex-
ample) you should not use an event.

Earlier, I alluded to the fact that we can customize the data we send through with the
event. We do this by deriving our own class from EventArgs, and adding extra properties
or methods to it. Let’s say we want to send the current document through in the event;
we can create a class like the one shown in Example 5-24.

Example 5-24. Custom event arguments class

class ProcessEventArgs : EventArgs
{
 // Handy constructor
 public ProcessEventArgs(Document document)
 {
 Document = document;
 }

 // The extra property
 // We don't want subscribers to be able
 // to update this property, so we make
 // it private
 // (Of course, this doesn't prevent them
 // from changing the Document itself)

Notifying Clients with Events | 175

 public Document Document
 {
 get;
 private set;
 }
}

We also need to create a suitable delegate for the event, one that takes a ProcessEven
tArgs as its second parameter rather than the EventArgs base class. We could do this
by hand, sticking to the convention of calling the first parameter sender and the data
parameter e:

delegate void ProcessEventHandler(object sender, ProcessEventArgs e);

Once again, this is such a common thing to need that the framework provides us with
a generic type, EventHandler<T>, to save us the boilerplate code. So we can replace the
ProcessEventHandler with an EventHandler<ProcessEventArgs>.

Let’s update our event declarations (see Example 5-25).

Example 5-25. Updated event members

public event EventHandler<ProcessEventArgs> Processing;
public event EventHandler<ProcessEventArgs> Processed;

and then our helper methods which raise the event that will need to take a ProcessE
ventArgs (see Example 5-26).

Example 5-26. Updated code for raising events

private void OnProcessing(ProcessEventArgs e)
{
 if (Processing != null)
 {
 Processing(this, e);
 }
}

private void OnProcessed(ProcessEventArgs e)
{
 if (Processed != null)
 {
 Processed(this, e);
 }
}

And finally, our calls to those methods will need to create an appropriate ProcessEven
tArgs object, as shown in Example 5-27.

Example 5-27. Creating the event arguments object

public void Process(Document doc)
{
 ProcessEventArgs e = new ProcessEventArgs(doc);
 OnProcessing(e);

176 | Chapter 5: Composability and Extensibility with Delegates

 // First time, do the quick check
 foreach (ActionCheckPair process in processes)
 {
 if (process.QuickCheck != null && !process.QuickCheck(doc))
 {
 Console.WriteLine("The process will not succeed.");
 if (LogTextProvider != null)
 {
 Console.WriteLine(LogTextProvider(doc));
 }
 OnProcessed(e);
 return;
 }
 }

 // Then perform the action
 foreach (ActionCheckPair process in processes)
 {
 process.Action(doc);
 if (LogTextProvider != null)
 {
 Console.WriteLine(LogTextProvider(doc));
 }
 }
 OnProcessed(e);
}

Notice how we happen to reuse the same event data for each event we raise. That’s safe
to do because our event argument instance cannot be modified—its only property has
a private setter. If it were possible for event handlers to change the event argument
object, it would be risky to use the same one for both events.

We could offer our colleagues on the production team another facility using these
events. We already saw how they need to perform a quick check before each individual
process to determine whether they should abort processing. We can take advantage of
our Processing event to give them the option of canceling the whole process before it
even gets off the ground.

The framework defines a class called CancelEventArgs which adds a Boolean property
called Cancel to the basic EventArgs. Subscribers can set the property to True, and the
publisher is expected to abort the operation.

Let’s add a new EventArgs class for that (see Example 5-28).

Example 5-28. A cancelable event argument class

class ProcessCancelEventArgs : CancelEventArgs
{
 public ProcessCancelEventArgs(Document document)
 {
 Document = document;
 }

 public Document Document

Notifying Clients with Events | 177

 {
 get;
 private set;
 }
}

We’ll update the declaration of our Processing event, and its corresponding helper, as
shown in Example 5-29 (but we’ll leave the Processed event as it is—if the document
has already been processed, it’s too late to cancel it).

Example 5-29. A cancelable event

public event EventHandler<ProcessCancelEventArgs> Processing;

private void OnProcessing(ProcessCancelEventArgs e)
{
 if (Processing != null)
 {
 Processing(this, e);
 }
}

Finally, we need to update the Process method to create the right kind of event argu-
ment object, and to honor requests for cancellation (see Example 5-30).

Example 5-30. Supporting cancellation

public void Process(Document doc)
{
 ProcessEventArgs e = new ProcessEventArgs(doc);
 ProcessCancelEventArgs ce = new ProcessCancelEventArgs(doc);
 OnProcessing(ce);
 if (ce.Cancel)
 {
 Console.WriteLine("Process canceled.");
 if (LogTextProvider != null)
 {
 Console.WriteLine(LogTextProvider(doc));
 }
 return;
 }
 // ...
}

Now we’ll make use of this in one of our production tools, as shown in Example 5-31.

Example 5-31. Taking advantage of cancelability

class ProductionDeptTool1
{
 public void Subscribe(DocumentProcessor processor)
 {
 processor.Processing += processor_Processing;
 processor.Processed += processor_Processed;
 }

178 | Chapter 5: Composability and Extensibility with Delegates

 public void Unsubscribe(DocumentProcessor processor)
 {
 processor.Processing -= processor_Processing;
 processor.Processed -= processor_Processed;
 }

 void processor_Processing(object sender, ProcessCancelEventArgs e)
 {
 Console.WriteLine("Tool1 has seen processing, and not canceled.");
 }

 void processor_Processed(object sender, EventArgs e)
 {
 Console.WriteLine("Tool1 has seen that processing is complete.");
 }
}

class ProductionDeptTool2
{
 public void Subscribe(DocumentProcessor processor)
 {
 processor.Processing += (sender, e) =>
 {
 Console.WriteLine("Tool2 has seen processing and canceled it");
 if(e.Document.Text.Contains("document"))
 {
 e.Cancel = true;
 }
 };
 processor.Processed += (sender, e) =>
 Console.WriteLine("Tool2 has seen that processing is complete.");
 }
}

Notice how we don’t have to update the event data parameter—we can take advantage
of polymorphism and just refer to it through its base type, unless we want to take
advantage of its new features. In the lambda expression syntax, of course, the new type
parameter is inferred and we don’t have to change anything; we can just update the
handler in ProductionDeptTool2 to cancel if it sees the text "document".

If we compile and run, we now see the following output:

The process will not succeed.
(Document 1)
Tool1 has seen that processing is complete.
Tool2 has seen that processing is complete.

Tool1 has seen processing, and not canceled.
Tool2 has seen processing, and not canceled.
Document traduit.
(Document 2)
Spellchecked document.
(Document 2)
Repaginated document.

Notifying Clients with Events | 179

(Document 2)
Highlighting 'millennium'
(Document 2)
Tool1 has seen that processing is complete.
Tool2 has seen that processing is complete.

Tool1 has seen processing, and not canceled.
Tool2 has seen processing and canceled.
Process canceled.
(Document 3)

Executed 6 processes.

So we have our cancellation behavior, but we have to be very careful. Notice that
Tool1 happened to see the event first, and it happily executed its handler, before
Tool2 got in and canceled the whole thing. When you write handlers for cancelable
events, you must ensure that it doesn’t matter if some or all of those handlers never get
called and that they behave correctly if the action they expect never actually occurs.
Cancelable events need very careful documentation to indicate how they relate to the
actions around them, and the exact semantics of cancellation. It is therefore (in general)
a bad idea to do what we have just done, and convert a noncancelable event into a
cancelable one, if your code has already shipped; you stand a very good chance of
breaking any clients that just recompile successfully against the new version.

Exposing Large Numbers of Events
Some classes (particularly those related to user interactions) need to expose a very large
number of events. If you use the normal event syntax shown in the preceding examples,
storage is allocated for every single event you declare, even if the events have no sub-
scribers. This means that objects of this type can get very large, very quickly.

To avoid this situation, C# provides you with the ability to manage storage for the
events yourself, using syntax similar to a property getter and setter, with your own
backing storage:

public event EventHandler MyEvent
{
 add
 {
 // Code to add handler here
 }
 remove
 {
 // Code to remove handler here
 }
}

Typically, you use a Dictionary<Key,Val> to create the backing storage for the event
only when it gets its first subscriber. (Dictionaries are described in Chapter 9.)

180 | Chapter 5: Composability and Extensibility with Delegates

Example 5-32 updates the DocumentProcessor we’re developing in this chapter to use a
dictionary for the backing storage for its events.

Example 5-32. Custom event storage

class DocumentProcessor
{
 private Dictionary<string, Delegate> events;

 public event EventHandler<ProcessCancelEventArgs> Processing
 {
 add
 {
 Delegate theDelegate =
 EnsureEvent("Processing");
 events["Processing"] =
 ((EventHandler<ProcessCancelEventArgs>)
 theDelegate) + value;
 }
 remove
 {
 Delegate theDelegate =
 EnsureEvent("Processing");
 events["Processing"] =
 ((EventHandler<ProcessCancelEventArgs>)
 theDelegate) - value;
 }
 }

 public event EventHandler<ProcessEventArgs> Processed
 {
 add
 {
 Delegate theDelegate =
 EnsureEvent("Processed");
 events["Processed"] =
 ((EventHandler<ProcessEventArgs>)
 theDelegate) + value;
 }
 remove
 {
 Delegate theDelegate =
 EnsureEvent("Processed");
 events["Processed"] =
 ((EventHandler<ProcessEventArgs>)
 theDelegate) - value;
 }
 }

 private Delegate EnsureEvent(string eventName)
 {
 // Construct the dictionary if it doesn't already
 // exist
 if (events == null)
 {

Notifying Clients with Events | 181

 events = new Dictionary<string, Delegate>();
 }
 // Add a placeholder for the delegate if we don't
 // have it already
 Delegate theDelegate = null;
 if (!events.TryGetValue(
 eventName, out theDelegate))
 {
 events.Add(eventName, null);
 }
 return theDelegate;
 }

 private void OnProcessing(ProcessCancelEventArgs e)
 {
 Delegate eh = null;
 if(events != null &&
 events.TryGetValue("Processing", out eh))
 {
 EventHandler<ProcessCancelEventArgs> pceh =
 eh as EventHandler<ProcessCancelEventArgs>;
 if (pceh != null)
 {
 pceh(this, e);
 }
 }
 }

 private void OnProcessed(ProcessEventArgs e)
 {
 Delegate eh = null;
 if (events != null &&
 events.TryGetValue("Processed", out eh))
 {
 EventHandler<ProcessEventArgs> pceh =
 eh as EventHandler<ProcessEventArgs>;
 if (pceh != null)
 {
 pceh(this, e);
 }
 }
 }

 // ...
}

Obviously, that’s a lot more complex than the automatic method, and you would not
normally use it for a class that exposes just a couple of events, but it can save a lot of
working set for classes that are either large in number, or publish a large number of
events but have few subscribers.

182 | Chapter 5: Composability and Extensibility with Delegates

Summary
In this chapter, we saw how functional techniques provide powerful reuse and exten-
sibility mechanisms for our programs, in ways that can be more flexible and yet simpler
than class-based approaches. We also saw how events enabled a publisher-to-multiple-
subscribers relationship. In the next chapter, we’ll look at how we deal with unexpected
situations: errors, failures, and exceptions.

Summary | 183

CHAPTER 6

Dealing with Errors

Errors happen all the time; they’re a fact of life:

• Despite the best efforts of Microsoft Word, an army of highly skilled reviewers and
editors, and even your authors, it would be surprising if there wasn’t a typograph-
ical error in a book of this length.

• Although they are relatively few and far between, there are bugs in the .NET
Framework—hence the need for occasional service packs.

• You might type your credit card number for an online transaction and accidentally
transpose two digits; or forget to type in the expiration date.

Like it or not, we’re going to have to face up to the fact that there are going to be errors
of all kinds to deal with in our software too. In this chapter, we’ll look at various types
of errors, the tools that C# and the .NET Framework give us to deal with them, and
some strategies for applying those tools.

First, we need to recognize that all errors are not made the same. We’ve classified a few
of the more common ones in Table 6-1.

Table 6-1. A far-from-exhaustive list of some common errors

Error Description/example

Bug A failure to implement a contract according to its documentation.

Unexpected behavior A failure to document a contract properly for all expected input.

Unexpected input A client passes data to a method that is outside some expected range.

Unexpected data type A client passes data to a method that is not of the expected type.

Unexpected data format A client passes data to a method in a format that is not recognized.

Unexpected result A client receives information from a method that it did not expect for the given input.

Unexpected method call The class wasn’t expecting you to call a particular method at that time—you hadn’t performed
some required initialization, for example.

Unavailable resource A method tried to access a resource of some kind and it was not present—a hardware device was
not plugged in, for instance.

185

Error Description/example

Contended resource A method tried to access a scarce resource of some kind (memory or a hardware device that cannot
be shared), and it was not available because someone else was using it.

Although bugs are probably the most obvious type of error, we won’t actually be dealing
with them directly in this chapter. We will, however, look at how our error-handling
techniques can make it easier (or harder!) to find the bugs that are often the cause of
the other, better defined issues.

Let’s get started with an example we can use to look at error-handling techniques. We’re
going to branch out into the world of robotics for this one, and build a turtle-controlling
application. The real-world turtle is a rectangular piece of board on which are mounted
two motors that can drive two wheels. The wheels are located in the middle of the left
and right edges of the board, and there are nondriven castor wheels at the front and
back to give it a bit of stability. We can drive the two motors independently: we can
move forward, move backward, or stop. And by moving the wheels in different direc-
tions, or moving one wheel at time, we can steer it about a bit like a tank.

Let’s create a class to model our turtle (see Example 6-1).

Example 6-1. The Turtle class

class Turtle
{
 // The width of the platform
 public double PlatformWidth
 {
 get; set;
 }

 // The height of the platform
 public double PlatformHeight
 {
 get; set;
 }

 // The speed at which the motors drive the wheels,
 // in meters per second. For ease, we assume that takes account
 // of the distance traveled by the tires in contact
 // with the ground, and any slipping
 public double MotorSpeed
 {
 get; set;
 }

 // The state of the left motor
 public MotorState LeftMotorState
 {
 get; set;
 }

186 | Chapter 6: Dealing with Errors

 // The state of the right motor
 public MotorState RightMotorState
 {
 get; set;
 }

 // The current position of the turtle
 public Point CurrentPosition
 {
 get; private set;
 }

 // The current orientation of the turtle
 public double CurrentOrientation
 {
 get; private set;
 }
}

// The current state of a motor
enum MotorState
{
 Stopped,
 Running,
 Reversed
}

In addition to the motor control, we can define the size of the platform and the speed
at which the motors rotate the wheels. We also have a couple of properties that tell us
where the turtle is right now, relative to its point of origin, and the direction in which
it is currently pointing.

To make our turtle simulator actually do something, we can add a method which makes
time pass. This looks at the state of the different motors and applies an appropriate
algorithm to calculate the new position of the turtle. Example 6-2 shows our first,
somewhat naive, go at it.

Example 6-2. Simulating turtle motion

// Run the turtle for the specified duration
public void RunFor(double duration)
{
 if (LeftMotorState == MotorState.Stopped &&
 RightMotorState == MotorState.Stopped)
 {
 // If we are at a full stop, nothing will happen
 return;
 }

 // The motors are both running in the same direction
 // then we just drive
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Running) ||
 (LeftMotorState == MotorState.Reversed &&

Dealing with Errors | 187

 RightMotorState == MotorState.Reversed))
 {
 Drive(duration);
 return;
 }

 // The motors are running in opposite directions,
 // so we don't move, we just rotate about the
 // center of the rig
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Reversed) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Running))
 {
 Rotate(duration);
 return;
 }
}

If both wheels are pointing in the same direction (forward or reverse), we drive (or
reverse) in the direction we are pointing. If they are driving in opposite directions, we
rotate about our center. If both are stopped, we will remain stationary.

Example 6-3 shows the implementations of Drive and Rotate. They use a little bit of
trigonometry to get the job done.

Example 6-3. Simulating rotation and movement

private void Rotate(double duration)
{
 // This is the total circumference of turning circle
 double circum = Math.PI * PlatformWidth;
 // This is the total distance traveled
 double d = duration * MotorSpeed;
 if (LeftMotorState == MotorState.Reversed)
 {
 // And we're going backwards if the motors are reversed
 d *= -1.0;
 }
 // So we've driven it this proportion of the way round
 double proportionOfWholeCircle = d / circum;
 // Once round is 360 degrees (or 2pi radians), so we have traveled
 // this far:
 CurrentOrientation =
 CurrentOrientation + (Math.PI * 2.0 * proportionOfWholeCircle);
}

private void Drive(double duration)
{
 // This is the total distance traveled
 double d = duration * MotorSpeed;
 if (LeftMotorState == MotorState.Reversed)
 {
 // And we're going backwards if the motors are reversed
 d *= -1.0;

188 | Chapter 6: Dealing with Errors

 }
 // Bit of trigonometry for the change in the x,y coordinates
 double deltaX = d * Math.Sin(CurrentOrientation);
 double deltaY = d * Math.Cos(CurrentOrientation);

 // And update the position
 CurrentPosition =
 new Point(CurrentPosition.X + deltaX, CurrentPosition.Y + deltaY);
}

Let’s write a quick test program to see whether the code we’ve written actually does
what we expect (see Example 6-4).

Example 6-4. Testing the turtle

static void Main(string[] args)
{
 // Here's our turtle
 Turtle arthurTheTurtle =
 new Turtle {PlatformWidth = 10.0, PlatformHeight = 10.0, MotorSpeed = 5.0};

 ShowPosition(arthurTheTurtle);

 // We want to proceed forwards
 arthurTheTurtle.LeftMotorState = MotorState.Running;
 arthurTheTurtle.RightMotorState = MotorState.Running;
 // For two seconds
 arthurTheTurtle.RunFor(2.0);

 ShowPosition(arthurTheTurtle);

 // Now, let's rotate clockwise for a bit
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 // PI / 2 seconds should do the trick
 arthurTheTurtle.RunFor(Math.PI / 2.0);

 ShowPosition(arthurTheTurtle);

 // And let's go into reverse
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 arthurTheTurtle.LeftMotorState = MotorState.Reversed;

 // And run for 5 seconds
 arthurTheTurtle.RunFor(5);

 ShowPosition(arthurTheTurtle);

 // Then rotate back the other way
 arthurTheTurtle.RightMotorState = MotorState.Running;
 // And run for PI/4 seconds to give us 45 degrees
 arthurTheTurtle.RunFor(Math.PI / 4.0);

 ShowPosition(arthurTheTurtle);

Dealing with Errors | 189

 // And finally drive backwards for a bit
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 arthurTheTurtle.LeftMotorState = MotorState.Reversed;
 arthurTheTurtle.RunFor(Math.Cos(Math.PI / 4.0));

 ShowPosition(arthurTheTurtle);

 Console.ReadKey();

}

private static void ShowPosition(Turtle arthurTheTurtle)
{
 Console.WriteLine(
 "Arthur is at ({0}) and is pointing at angle {1:0.00} radians.",
 arthurTheTurtle.CurrentPosition,
 arthurTheTurtle.CurrentOrientation);
}

We chose the times for which to run quite carefully so that we end up going through
relatively readable distances and angles. (Hey, someone could design a more usable
facade over this API!) If we compile and run, we see the following output:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 1.57 radians.
Arthur is at (-25,10) and is pointing at angle 1.57 radians.
Arthur is at (-25,10) and is pointing at angle 0.79 radians.
Arthur is at (-27.5,7.5) and is pointing at angle 0.79 radians.

OK, that seems fine for basic operation. But what happens if we change the width of
the platform to zero?

Turtle arthurTheTurtle =
 new Turtle { PlatformWidth = 0.0, PlatformHeight = 10.0, MotorSpeed = 5.0 };

Not only does that not make much sense, but the output is not very useful either; clearly
we have divide-by-zero problems:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle Infinity radians.
Arthur is at (NaN,NaN) and is pointing at angle Infinity radians.
Arthur is at (NaN,NaN) and is pointing at angle NaN radians.
Arthur is at (NaN,NaN) and is pointing at angle NaN radians.

Clearly, our real-world turtle could go badly wrong if we told it to rotate through an
infinite angle. At the very least, we’d get bored waiting for it to finish. We should prevent
the user from running it if the PlatformWidth is less than or equal to zero. Previously,
we used the following code:

// Run the turtle for the specified duration
public void RunFor(double duration)
{

190 | Chapter 6: Dealing with Errors

 if (PlatformWidth <= 0.0)
 {
 // What to do here?
 }

 // ...
}

That detects the problem, but what should we do if our particular turtle is not set up
correctly? Previously, we silently ignored the problem, and returned as though every-
thing was just fine. Is that really what we want to do?

For this application it might be perfectly safe, but what if another developer uses our
turtle with a paintbrush strapped to its back, to paint the lines on a tennis court? The
developer added a few extra moves at the beginning of his sequence, and he didn’t
notice that he had inadvertently done so before he initialized the PlatformWidth. We
could have a squiggly paint disaster on our hands!

Not a Number?
The System.Double type defines a number of constant values that are used to represent
some very interesting doubles:

• Double.NaN is the result of dividing zero by zero (e.g., 0.0/0.0).

• Double.NegativeInfinity is the result of dividing a negative number by zero (e.g.,
−1.0/0.0).

• Double.PositiveInfinity is the result of dividing a positive number by zero (e.g.,
1.0/0.0).

They also behave in interesting ways. For example, you can’t compare one of these
special values with another (e.g., (0.0/0.0 != Double.NaN)).

Instead, you have to use helper methods such as these:

• Double.IsNaN(0.0/0.0)

• Double.IsPositiveInfinity(1.0/0.0)

• Double.IsNegativeInfinity(-1.0/0.0)

If you don’t care whether it is a positive or a negative infinity, just some sort of infinity,
you can use this helper: Double.IsInfinity(1.0/0.0).

Be very careful when playing with infinities, as you can easily get into trouble!

When and How to Fail
Choosing when and how to fail is one of the big debates in software development. There
is a lot of consensus about what we do, but things are much less clear-cut when it comes
to failures.

When and How to Fail | 191

You have a number of choices:

1. Try to plow on regardless.

2. Try to make sense of what has happened and work around it.

3. Return an error of some kind to your caller, and hope the caller knows what to do
with it.

4. Stop.

At the moment, we’re using option 1: try to plow on regardless; and you can see that
this might or might not be dangerous. The difficulty is that we can be sure it is safe
only if we know why our client is calling us. Given that we can’t possibly have knowledge
of the continuum of all possible clients (and their clients, and their clients’ clients),
plugging on regardless is, in general, not safe. We might be exposing ourselves to all
sorts of security problems and data integrity issues of which we cannot be aware at this
time.

What about option 2? Well, that is really an extension of the contract: we’re saying
that particular types of data outside the range we previously defined are valid, it is just
that we’ll special-case them to other values. This is quite common with range proper-
ties, where we clamp values outside the range to the minimum and maximum permitted
values. Example 6-5 shows how we could implement that.

Example 6-5. Range checking

class Turtle
{
 // The width of the platform must be between 1.0 and 10.0 inclusive
 // Values outside this range will be coerced into the range.
 private double platformWidth;
 public double PlatformWidth
 {
 get { return platformWidth; }
 set
 {
 platformWidth = value;
 EnsurePlatformSize();
 }
 }

 // The height of the platform must be between 1.0 and 10.0 inclusive
 // Values outside this range will be coerced into the range.
 private double platformHeight;
 public double PlatformHeight
 {
 get { return platformHeight; }
 set
 {
 platformHeight = value;
 EnsurePlatformSize();
 }
 }

192 | Chapter 6: Dealing with Errors

 // The new constructor initializes the platform size appropriately
 public Turtle()
 {
 EnsurePlatformSize();
 }

 // This method enforces the newly documented constraint
 // we added to the contract
 private void EnsurePlatformSize()
 {
 if (PlatformWidth < 1.0)
 {
 PlatformWidth = 1.0;
 }
 if (PlatformWidth > 10.0)
 {
 PlatformWidth = 10.0;
 }
 if (PlatformHeight < 1.0)
 {
 PlatformHeight = 1.0;
 }
 if (PlatformHeight > 10.0)
 {
 PlatformHeight = 10.0;
 }
 }
 // ...
}

Here we documented a constraint in our contract, and enforced that constraint first at
construction, and then whenever clients attempt to modify the value.

We chose to enforce that constraint at the point when the value can be changed because
that makes the effect of the constraint directly visible. If users set an out-of-bounds
value and read it back they can immediately see the effect of the constraint on the
property. That’s not the only choice, of course. We could have done it just before we
used it—but if we changed the implementation, or added features, we might have to
add lots of calls to EnsurePlatformSize, and you can be certain that we’d forget one
somewhere.

When we run the application again, we see the following output:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 15.71 radians.
Arthur is at (-1.53075794227797E-14,35) and is pointing at angle 15.71 radians.
Arthur is at (-1.53075794227797E-14,35) and is pointing at angle 7.85 radians.
Arthur is at (-3.53553390593275,35) and is pointing at angle 7.85 radians.

Although this is a very useful technique, and it has clearly banished those less-than-
useful NaNs, we have to consider: is this the right solution for this particular problem?
Let’s think about our tennis-court-painting robot again. Would we really want it to

When and How to Fail | 193

paint the court as though it were a 1-meter-wide robot, just because we forgot to ini-
tialize it? Looking at the distances traveled and the angles through which it has turned,
the answer is clearly no!

Constraints such as this are useful in lots of cases. We might want to
ensure that some UI element not extend off the screen, or grow too big
or small, for example. But equally, an online banking application that
doesn’t permit transactions less than $10 shouldn’t just clamp the
amount the user entered from $1 to $10 and carry on happily!

So let’s backtrack a little and look at another option: returning a value that signifies an
error.

Returning Error Values
For many years, programmers have written methods that detect errors, and which re-
port those errors by returning an error code. Typically, this is a Boolean value of some
kind, with True representing success and False failure. Or you might use either an
int or an enum if you need to distinguish lots of different types of errors.

Before we add an error return value, we should remove the code we just
added that silently enforces the constraints. We can delete EnsurePlat
formSize and any references to it. (Or if you’re following along in Visual
Studio and don’t want to delete the code, just comment out all the rel-
evant lines.)

So where are we going to return the error from? Our first instinct might be to put it in
the RunFor method, where we suggested earlier; but look at the code—there’s nothing
substantive there. The problem actually occurs in Rotate. What happens if we change
the Rotate method later so that it depends on different properties? Do we also update
RunFor to check the new constraints? Will we remember?

It is Rotate that actually uses the properties, so as a rule of thumb we should do the
checking there. It will also make the debugging easier later—we can put breakpoints
near the origin of the error and see what is going wrong.

Let’s change the Rotate method and see what happens (see Example 6-6).

Example 6-6. Indicating errors through the return value

private bool Rotate(double duration)
{
 if (PlatformWidth <= 0.0)
 {
 return false;
 }

194 | Chapter 6: Dealing with Errors

 // This is the total circumference of turning circle
 double circum = Math.PI * PlatformWidth;
 // This is the total distance traveled
 double d = duration * MotorSpeed;
 if (LeftMotorState == MotorState.Reversed)
 {
 // And we're going backwards if the motors are reversed
 d *= -1.0;
 }
 // So we've driven it this proportion of the way round
 double proportionOfWholeCircle = d / circum;
 // Once round is 360 degrees (or 2pi radians), so we have traveled
 CurrentOrientation =
 CurrentOrientation + (Math.PI * 2.0 * proportionOfWholeCircle);
 return true;
}

If we compile and run with our all-new error checking added, we see the following
output:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Arthur is at (0,-15) and is pointing at angle 0.00 radians.
Arthur is at (0,-15) and is pointing at angle 0.00 radians.
Arthur is at (0,-18.5355339059327) and is pointing at angle 0.00 radians.

Hmmm; that’s not very good. Rotate has indeed failed, but we’ve carried on driving
the turtle up and down that line because we didn’t do anything with the return value.

This is the great benefit, and great downside, of error return values: you
can just ignore them.

Let’s look at where we call Rotate and see what we can do with that error (see Exam-
ple 6-7).

Example 6-7. Detecting failure and then wondering what to do with it

// Run the turtle for the specified duration
public void RunFor(double duration)
{
 // ...

 // The motors are running in opposite directions,
 // so we don't move, we just rotate about the
 // center of the rig
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Reversed) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Running))
 {

Returning Error Values | 195

 if (!Rotate(duration))
 {
 // It failed, so what now?
 }
 return;
 }
}

It is simple enough to check to see if it failed, but what are we actually going to do about
it? Is there any action we can take? Not surprisingly, the answer is no—we know no
more about the needs of our caller than we did when we were discussing the other
options. So we are going to have to pass the error on up. Example 6-8 shows an im-
plementation of Run that does that.

Example 6-8. Passing the buck

// Run the turtle for the specified duration
// Returns false if there was a failure
// Or true if the run succeeded
public bool RunFor(double duration)
{
 if (LeftMotorState == MotorState.Stopped &&
 RightMotorState == MotorState.Stopped)
 {
 // If we are at a full stop, nothing will happen
 return true;
 }

 // The motors are both running in the same direction
 // then we just drive
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Running) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Reversed))
 {
 Drive(duration);
 return true;
 }

 // The motors are running in opposite directions,
 // so we don't move, we just rotate about the
 // center of the rig
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Reversed) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Running))
 {
 return Rotate(duration);
 }

 // We didn't expect to get here
 return false;
}

196 | Chapter 6: Dealing with Errors

Notice that we updated our documentation for the public method as we changed the
contract. We also have to return values from all of the exit points of our method.

That has exposed another problem with our implementation: we never supported one
motor at the stop condition, and the other at the driving or reversing condition. Well,
that’s fine—we can return an error if we hit those conditions now.

One problem with this contract is that we can’t tell why our error occurred. Was it due
to the state of the motors, or a problem with Rotate? We could create an enum that lets
us distinguish between these error types:

enum TurtleError
{
 OK,
 RotateError,
 MotorStateError
}

Then we could use the enum as shown in Example 6-9.

Example 6-9. Indicating errors with an enum

// Run the turtle for the specified duration
// Returns one of the TurtleError values if a failure
// occurs, or TurtleError.OK if it succeeds
public TurtleError RunFor(double duration)
{
 if (LeftMotorState == MotorState.Stopped &&
 RightMotorState == MotorState.Stopped)
 {
 // If we are at a full stop, nothing will happen
 return TurtleError.OK;
 }

 // The motors are both running in the same direction
 // then we just drive
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Running) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Reversed))
 {
 Drive(duration);
 return TurtleError.OK;
 }

 // The motors are running in opposite directions,
 // so we don't move, we just rotate about the
 // center of the rig
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Reversed) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Running))
 {
 if (!Rotate(duration))
 {

Returning Error Values | 197

 return TurtleError.RotateError;
 }
 }
 return TurtleError.MotorStateError;
}

OK so far, although it is starting to get a bit tortuous, and we’re going up only one call
in the stack. But let’s build and run anyway:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Arthur is at (0,-15) and is pointing at angle 0.00 radians.
Arthur is at (0,-15) and is pointing at angle 0.00 radians.
Arthur is at (0,-18.5355339059327) and is pointing at angle 0.00 radians.

Yup; we’re no better off than before, because all we’ve done is to pass the responsibility
up to the client, and they are still free to ignore our pleadings. Given that the problem
is a result of our oversight in the first place, what is the likelihood that we’ll remember
to check the error message?

Things would be even worse if this was in a library; we could recompile against this
new version, and everything would seem fine, while in the background everything
would quietly be going horribly wrong.

It is probably about time we did something with the error message, so let’s see what
happens in our client code (see Example 6-10).

Example 6-10. Handling an error

static void Main(string[] args)
{
 Turtle arthurTheTurtle =
 new Turtle {
 PlatformWidth = 0.0,
 PlatformHeight = 10.0,
 MotorSpeed = 5.0 };

 ShowPosition(arthurTheTurtle);

 // We want to proceed forwards
 arthurTheTurtle.LeftMotorState = MotorState.Running;
 arthurTheTurtle.RightMotorState = MotorState.Running;
 // For two seconds
 TurtleError result = arthurTheTurtle.RunFor(2.0);

 if (result != TurtleError.OK)
 {
 HandleError(result);
 return;
 }

 ShowPosition(arthurTheTurtle);

198 | Chapter 6: Dealing with Errors

 // Now, let's rotate clockwise for a bit
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 // PI / 2 seconds should do the trick
 result = arthurTheTurtle.RunFor(Math.PI / 2.0);
 if (result != TurtleError.OK)
 {
 HandleError(result);
 return;
 }

 ShowPosition(arthurTheTurtle);

 // And let's go into reverse
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 arthurTheTurtle.LeftMotorState = MotorState.Reversed;

 // And run for 5 seconds
 result = arthurTheTurtle.RunFor(5);
 if (result != TurtleError.OK)
 {
 HandleError(result);
 return;
 }

 ShowPosition(arthurTheTurtle);

 // Then rotate back the other way
 arthurTheTurtle.RightMotorState = MotorState.Running;
 // And run for PI/4 seconds to give us 45 degrees
 result = arthurTheTurtle.RunFor(Math.PI / 4.0);
 if (result != TurtleError.OK)
 {
 HandleError(result);
 return;
 }

 ShowPosition(arthurTheTurtle);

 // And finally drive backwards for a bit
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 arthurTheTurtle.LeftMotorState = MotorState.Reversed;
 result = arthurTheTurtle.RunFor(Math.Cos(Math.PI / 4.0));
 if (result != TurtleError.OK)
 {
 HandleError(result);
 return;
 }

 ShowPosition(arthurTheTurtle);

 Console.ReadKey();
}

private static void HandleError(TurtleError result)

Returning Error Values | 199

{
 Console.WriteLine("We hit turtle error {0}", result);
 Console.ReadKey();
}

Every time we call the RunFor method, we have to stash away the error message that is
returned, check it for problems, and then decide what we’re going to do.

In this instance, we decided to quit the application, after showing an error message to
the user, because it isn’t safe to continue.

If we compile and run, here’s the output:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
We hit turtle error RotateError

From an application point of view, this is much better behavior than before: we were
able to stop when we hit our first problem. Unfortunately, we had to write quite a lot
of boilerplate code to achieve that end, and our code is much less readable than it was
before. We also created a huge number of potential exit points out of our function,
which decreases its maintainability. So while it is better, I’m not totally happy with it;
this is catching just one potential error from one function, and we have almost as many
lines of code dealing with that as we do our success scenario, scattered throughout our
whole program!

Debugging with Return Values
So we finally spotted the problem, and stopped it from causing trouble. How do we
find out what is wrong? Well, first we should take a look at the error message. That
tells us that it has something to do with rotating the turtle, which gives us a bit of a
clue. The easiest way to see what is really going on, though, might be to set a breakpoint
in our error handler and see what state the system is in when the error occurs.

To set a breakpoint, we can put the cursor on the line where we want to break into the
debugger, and press F9. Figure 6-1 shows the code with a breakpoint set.

Figure 6-1. Code with a breakpoint set

If we run this now, the application will break into the debugger when we hit our error
handler. If we press Ctrl-Alt-C, we can inspect the call stack to see where we went
wrong, as shown in Figure 6-2.

200 | Chapter 6: Dealing with Errors

As you can see, there’s not an awful lot to help us; we lost context in which the error
occurred because we returned out of the method that had the actual problem, and
wound back up to our calling function.

It isn’t completely useless—we now know which call had the problem (this time), so
we can put a breakpoint on the relevant line and run again; but what if this was a hard-
to-reproduce, intermittent error? We may have lost our one chance this week to identify
and fix the problem!

These are not the only problems with a return-value-based approach to error handling.
What if we already need to use the return value on the method? We’re heading into the
realm of “magic” values that mean an error has occurred, or we could add out or ref
parameters to allow our method to return both a useful output and an error code.

And what about property setters; we don’t have the option of a return value, but we
might well like to return an error of some kind if the value is out of range.

If you’re thinking “surely there has to be a better way,” you’re right. C# (like most
modern languages) supports an alternative means of signaling errors: exceptions.

Exceptions
Rather than return an error code from a method, we can instead throw an instance of
any type derived from Exception. Let’s rewrite our Rotate method to do that (see Ex-
ample 6-11).

Example 6-11. Indicating an error with an exception

private void Rotate(double duration)
{
 if (PlatformWidth <= 0.0)
 {
 throw new InvalidOperationException(
 "The PlatformWidth must be initialized to a value > 0.0");
 }
 // This is the total circumference of turning circle
 double circum = Math.PI * PlatformWidth;
 // This is the total distance traveled
 double d = duration * MotorSpeed;
 if (LeftMotorState == MotorState.Reversed)

Figure 6-2. Call stack, broken in the error handler

Exceptions | 201

 {
 // And we're going backwards if the motors are reversed
 d *= −1.0;
 }
 // So we've driven it this proportion of the way round
 double proportionOfWholeCircle = d / circum;
 // Once round is 360 degrees (or 2pi radians), so we have traveled
 CurrentOrientation =
 CurrentOrientation + (Math.PI * 2.0 * proportionOfWholeCircle);
 // return true; (This is now redunant, so you can delete it)
}

Notice that we changed the return specification back to void, and removed the unnec-
essary return at the end. The interesting bit, though, is in our test at the beginning of
the method.

Pre- and Post Conditions: Design by Contract
The quick tests at the beginning of the method are sometimes called “guard clauses”
or “guards.”

Unless performance is more important to your application than correct operation (and
it usually isn’t), it is a good idea to check these preconditions before you attempt to
execute the method.

Sometimes you will also want a similar set of post-condition tests on exit from the
method, to verify that your state is still valid at the end of the operation.

The design-by-contract development philosophy requires you to specify these pre- and
post conditions as a part of your method contract, and some languages such as Eiffel
support declarative specification of these conditions.

Microsoft Research is working on an extension of C# called Spec# which includes
some of these design-by-contract features. You can read about it at http://research.mi
crosoft.com/en-us/projects/specsharp/.

Rather than return an instance of an enum, we throw an instance of the InvalidOpera
tionException class.

InvalidOperationException is one of several types derived from Exception. It is intended
to be used when an operation fails because the current state of the object itself doesn’t
allow the method to succeed (rather than, say, because a parameter passed in to the
method was incorrect). That seems to fit this case quite nicely, so we can make use of it.

Back before C# 3.0, you could throw an instance of any type you liked
(e.g., a string). In C# 3.0, a constraint was added that only types derived
from Exception can be thrown.

202 | Chapter 6: Dealing with Errors

http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/en-us/projects/specsharp/

If we take a look at the Exception class (see http://msdn.microsoft.com/library/system
.exception) we’ll see that it has a Message property. That’s what we’re setting with the
string we pass to the constructor, and it can be any text we like—preferably something
that will help us (or one of our clients) debug the problem in the future.

There’s also a property called Data. This is a dictionary of key/value pairs that lets us
associate more information with the exception, and it can be extremely useful for de-
bugging or logging purposes.

Replacing the return value with an exception, we will need to perform a bit of surgery
on our application to get it to compile.

First, let’s change the Turtle.RunFor method so that it no longer returns a value, and
delete the TurtleError enumeration (see Example 6-12).

Example 6-12. Passing the buck is no longer required

// Run the turtle for the specified duration
public void RunFor(double duration)
{
 if (LeftMotorState == MotorState.Stopped &&
 RightMotorState == MotorState.Stopped)
 {
 // If we are at a full stop, nothing will happen
 return;
 }

 // The motors are both running in the same direction
 // then we just drive
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Running) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Reversed))
 {
 Drive(duration);
 }

 // The motors are running in opposite directions,
 // so we don't move, we just rotate about the
 // center of the rig
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Reversed) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Running))
 {
 Rotate(duration);

 }
}

Then, we can update the calling program, and strip out the code that deals with the
return value (see Example 6-13).

Exceptions | 203

http://msdn.microsoft.com/library/system.exception
http://msdn.microsoft.com/library/system.exception

Example 6-13. Main no longer checking explicitly for errors

static void Main(string[] args)
{
 Turtle arthurTheTurtle = new Turtle {
 PlatformWidth = 0.0, PlatformHeight = 10.0, MotorSpeed = 5.0 };

 ShowPosition(arthurTheTurtle);

 // We want to proceed forwards
 arthurTheTurtle.LeftMotorState = MotorState.Running;
 arthurTheTurtle.RightMotorState = MotorState.Running;
 // For two seconds
 arthurTheTurtle.RunFor(2.0);

 ShowPosition(arthurTheTurtle);

 // Now, let's rotate clockwise for a bit
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 // PI / 2 seconds should do the trick
 arthurTheTurtle.RunFor(Math.PI / 2.0);

 ShowPosition(arthurTheTurtle);

 // And let's go into reverse
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 arthurTheTurtle.LeftMotorState = MotorState.Reversed;

 // And run for 5 seconds
 arthurTheTurtle.RunFor(5);

 ShowPosition(arthurTheTurtle);

 // Then rotate back the other way
 arthurTheTurtle.RightMotorState = MotorState.Running;
 // And run for PI/4 seconds to give us 45 degrees
 arthurTheTurtle.RunFor(Math.PI / 4.0);

 ShowPosition(arthurTheTurtle);

 // And finally drive backwards for a bit
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 arthurTheTurtle.LeftMotorState = MotorState.Reversed;
 arthurTheTurtle.RunFor(Math.Cos(Math.PI / 4.0));

 ShowPosition(arthurTheTurtle);

 Console.ReadKey();
}

Finally, we can delete the HandleError method.

204 | Chapter 6: Dealing with Errors

OK, what happens if you compile and run (make sure you press F5 or choose
Debug→Start Debugging so that you run in the debugger)? Well, you drop very rapidly
into the debugger, as you can see in Figure 6-3.

Figure 6-3. An unhandled exception in the debugger

As the debugger implies, we’ve broken in here because the exception is unhandled; but
notice that we’ve broken right at the point at which the exception actually occurred.
Even if we hadn’t provided some nice descriptive error text, we can clearly see why we
failed, unlike with error codes, where by the time the debugger got involved, we had
already lost track of the root cause of the failure.

If we want an even closer look, we can click the View Detail link on the callout. This
produces a dialog containing a property grid view of the exception object that was
thrown. We can examine this to help us debug the problem. (You can see the
Message and Data properties that we previously looked at, and I’ve popped open the
StackTrace for the exception, in the example in Figure 6-4.)

That’s already a huge improvement over the return value approach; but are there any
obvious downsides to throwing an exception?

Exceptions | 205

Figure 6-4. Exception detail with stack trace open

Well, the first downside is that throwing an exception is way more expensive than simply
returning a value. You don’t really want to throw an exception just to manage your
normal flow of control. Passing parameters and looking at internal state is always going
to be a better choice for anything you might call “the success path.”

That being said, expense is, of course, relative, and as usual, you should use the best
tool for the job. Plus, exceptions are actually lower cost than return values if you don’t
actually throw them. In our previous example, we allocated and copied return values
even if everything was OK. With the exception model, the success path is basically free.

The debate about when to use exceptions versus return values continues
to rage in our industry. I don’t expect it to let up anytime soon. As I said
at the beginning of the chapter, it is almost like we’re not really on top
of the whole error-handling situation.

We’ve seen what happens if we don’t handle an exception that we throw (i.e., it per-
colates up until eventually we crash); and while that behavior is far more satisfactory
than the situation when we ignored a return value, we would like to do much better.
We want to handle the error and exit gracefully, as we did before.

206 | Chapter 6: Dealing with Errors

As you might expect, C# provides us with language features to do just that: try,
finally, and catch.

Handling Exceptions
When we handled our return values, we had to propagate them up the call stack by
hand, adding appropriate return values to each and every method, checking the result,
and either passing it up or transforming and passing it as we go.

Exceptions, on the other hand, propagate up the stack automatically. If we don’t want
to add a handler, we don’t have to, and the next call site up gets its chance instead,
until eventually we pop out at the top of Main and either break into the debugger or
Windows Error Handling steps in.

This means we can take a more structured approach to error handling—identifying
points in our application control flow where we want to handle particular types of
exceptions, and gathering our error-handling code into easily identified blocks.

The try, catch, and finally keywords help us to define those blocks (along with the
ubiquitous braces).

In our example, we have no need to handle the potential errors from each and every
call to RunFor separately. Instead, we can wrap the whole set into a single set of try,
catch, and finally blocks, as shown in Example 6-14.

Example 6-14. Handling exceptions

static void Main(string[] args)
{
 Turtle arthurTheTurtle = new Turtle {
 PlatformWidth = 0.0, PlatformHeight = 10.0, MotorSpeed = 5.0 };

 ShowPosition(arthurTheTurtle);

 try
 {
 // We want to proceed forwards
 arthurTheTurtle.LeftMotorState = MotorState.Running;
 arthurTheTurtle.RightMotorState = MotorState.Running;
 // For two seconds
 arthurTheTurtle.RunFor(2.0);

 ShowPosition(arthurTheTurtle);

 // Now, let's rotate clockwise for a bit
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 // PI / 2 seconds should do the trick
 arthurTheTurtle.RunFor(Math.PI / 2.0);

 ShowPosition(arthurTheTurtle);

Exceptions | 207

 // And let's go into reverse
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 arthurTheTurtle.LeftMotorState = MotorState.Reversed;

 // And run for 5 seconds
 arthurTheTurtle.RunFor(5);

 ShowPosition(arthurTheTurtle);

 // Then rotate back the other way
 arthurTheTurtle.RightMotorState = MotorState.Running;
 // And run for PI/4 seconds to give us 45 degrees
 arthurTheTurtle.RunFor(Math.PI / 4.0);

 ShowPosition(arthurTheTurtle);

 // And finally drive backwards for a bit
 arthurTheTurtle.RightMotorState = MotorState.Reversed;
 arthurTheTurtle.LeftMotorState = MotorState.Reversed;
 arthurTheTurtle.RunFor(Math.Cos(Math.PI / 4.0));

 ShowPosition(arthurTheTurtle);
 }
 catch (InvalidOperationException e)
 {
 Console.WriteLine("Error running turtle:");
 Console.WriteLine(e.Message);
 }
 finally
 {
 Console.ReadKey();
 }
}

If any of the code in the try block throws an exception, the runtime looks to see if there
are any catch blocks whose exception type matches the type of that exception. It
matches successfully if the catch parameter is either of the same type, or of a less-derived
(base) type than that of the exception.

You can have any number of catch blocks for different types of exceptions, and it will
look through them in the order they are defined; the first one that matches wins (even
if there is a “better” match farther down).

If it doesn’t find a suitable match, the exception will be propagated on up the call stack,
just as though there was no try block.

To see how this works in practice, let’s quickly modify the code in Example 6-14 to
catch Exception as well, as shown in Example 6-15.

208 | Chapter 6: Dealing with Errors

Example 6-15. Poorly placed catch block

try
{
 ...
}
catch (Exception e2)
{
 Console.WriteLine("Caught generic exception...");
}
catch (InvalidOperationException e)
{
 Console.WriteLine("Error running turtle:");
 Console.WriteLine(e.Message);
}
finally
{
 Console.WriteLine("Waiting in the finally block...");
 Console.ReadKey();
}

If you try to compile this, you’ll see the following error:

A previous catch clause already catches all exceptions of this or of a
super type ('System.Exception')

This occurs because Exception is an ancestor of InvalidOperationException, and the
clause appears first in the list of catch blocks. If we switch those around, we compile
successfully, as shown in Example 6-16.

Example 6-16. Catching exceptions in the right order

try
{
 ...
}
catch (InvalidOperationException e)
{
 Console.WriteLine("Error running turtle:");
 Console.WriteLine(e.Message);
}
catch (Exception e2)
{
 Console.WriteLine("Caught generic exception...");
}
finally
{
 Console.WriteLine("Waiting in the finally block...");
 Console.ReadKey();
}

Exceptions | 209

Catching Too Much
You should consider very carefully whether you want to catch instances of the base
Exception type.

When you do that you are saying “something bad happened, but I don’t really know
what it was.” That degree of uncertainty tends to imply that the app has lost control of
its own internal consistency.

It is a common practice to catch Exception in your top-level exception handlers (e.g.,
in Main or, as we’ll see later, in threading worker functions); and when you do, you
normally need to terminate the application (or at least restart some subsystem).

Of course, you might know perfectly well what might go wrong, and you’re catching
Exception because you can’t be bothered to list the half dozen exception types you
intend to handle in the same way. (Maybe F1 wasn’t working so well that day and you
couldn’t inspect the docs; and someone was pressing you to check in your changes.)

Beware!

What happens if an implementation detail changes in another class on which you de-
pend, such that a new exception is thrown? Your handler will swallow it up and carry
on. That might be OK, and your game of tic-tac-toe will continue happily. Or it might
have unintended consequences, such as data loss or the start of WWIII. You just can’t
know in advance.

When the flow of control leaves the try block successfully, or the flow of control exits
the last catch block if an exception occurred in the try block, the code in the finally
block is executed. In other words, the code in the finally block is always executed,
regardless of whether there was an exception.

If you designed your exception-handling code nicely, you’ll almost certainly use far
more finally blocks than you do catch blocks. The finally block is a good place for
cleaning up your resources, or winding back internal state if an error occurs, to ensure
that your pre- and post conditions are still valid, whereas a catch block allows you to
deal with an error condition you, as a client, understand in some way—even if it is only
to present a message to the user (as in this case).

If we compile and run our code again, we’ll see the following output:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Error running turtle:
The PlatformWidth must be initialized to a value > 0.0
Waiting in the finally block...

Notice how the error-handling code is now consolidated neatly into clearly defined
blocks, rather than scattered throughout our code, and we’ve been able to cut down
substantially on the number of points of return from our method.

210 | Chapter 6: Dealing with Errors

At the moment, we’re not handling any exceptions in our Turtle itself. Let’s imagine
that our Turtle is being provided to clients in a library, and we (as the leading vendors
of turtle simulators) want the library to do some internal logging when errors occur:
maybe we have an opt-in customer experience program that sends telemetry back to
our team.

We still want the errors to propagate up to the client for them to deal with; we just
want to see them on the way past.

C# gives us the ability to catch, and then transparently rethrow, an exception, as shown
in Example 6-17.

Example 6-17. Rethrowing an exception

// Run the turtle for the specified duration
public void RunFor(double duration)
{
 try
 {

 if (LeftMotorState == MotorState.Stopped &&
 RightMotorState == MotorState.Stopped)
 {
 // If we are at a full stop, nothing will happen
 return;
 }

 // The motors are both running in the same direction
 // then we just drive
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Running) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Reversed))
 {
 Drive(duration);
 }

 // The motors are running in opposite directions,
 // so we don't move, we just rotate about the
 // center of the rig
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Reversed) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Running))
 {
 Rotate(duration);

 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Log message: " + ex.Message);
 // Rethrow
 throw;

Exceptions | 211

 }
}

The first thing to notice is that we caught the base Exception type, having just said that
we almost never do that. We want to log every exception, and because we’re rethrowing
rather than eating it, we won’t simply ignore exceptions we weren’t expecting.

After we execute our handler code (just writing the message to the console in this case),
we use the throw keyword, without any object, to rethrow the exception we just caught.

If you compile and run that, you’ll see the following output:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Log error: The PlatformWidth must be initialized to a value > 0.0
Error running turtle:
The PlatformWidth must be initialized to a value > 0.0
Waiting in the finally block

Notice that we get the output from both of the exception handlers.

That’s not the only way to throw from a catch block: it is perfectly reasonable to throw
any exception from our exception handler! We often do this to wrap up an exception
that comes from our implementation in another exception type that is more appropriate
for our context. The original exception is not thrown away, but stashed away in the
InnerException property of the new one, as shown in Example 6-18.

Example 6-18. Wrapping one exception in another

// Run the turtle for the specified duration
public void RunFor(double duration)
{
 try
 {

 if (LeftMotorState == MotorState.Stopped &&
 RightMotorState == MotorState.Stopped)
 {
 // If we are at a full stop, nothing will happen
 return;
 }

 // The motors are both running in the same direction
 // then we just drive
 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Running) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Reversed))
 {
 Drive(duration);
 }

 // The motors are running in opposite directions,
 // so we don't move, we just rotate about the
 // center of the rig

212 | Chapter 6: Dealing with Errors

 if ((LeftMotorState == MotorState.Running &&
 RightMotorState == MotorState.Reversed) ||
 (LeftMotorState == MotorState.Reversed &&
 RightMotorState == MotorState.Running))
 {
 Rotate(duration);

 }
 }
 catch (InvalidOperationException iox)
 {
 throw new Exception("Some problem with the turtle...", iox);
 }
 catch (Exception ex)
 {
 // Log here
 Console.WriteLine("Log message: " + ex.Message);
 // Rethrow
 throw;
 }
}

Notice how we passed the exception to be wrapped as a parameter to the new exception
when we constructed it. Let’s make a quick modification to the exception handler in
Main to take advantage of this new feature (see Example 6-19).

Example 6-19. Reporting an InnerException

static void Main(string[] args)
{
 Turtle arthurTheTurtle = new Turtle {
 PlatformWidth = 0.0, PlatformHeight = 10.0, MotorSpeed = 5.0 };

 ShowPosition(arthurTheTurtle);

 try
 {
 // ...
 }
 catch (InvalidOperationException e)
 {
 Console.WriteLine("Error running turtle:");
 Console.WriteLine(e.Message);
 }
 catch (Exception e1)
 {
 // Loop through the inner exceptions, printing their messages
 Exception current = e1;
 while (current != null)
 {
 Console.WriteLine(current.Message);
 current = current.InnerException;
 }
 }
 finally

Exceptions | 213

 {
 Console.WriteLine("Waiting in the finally block");
 Console.ReadKey();
 }
}

If we compile and run again, we can see the following output, including the messages
from both the outer and inner exceptions:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Arthur is at (0,10) and is pointing at angle 0.00 radians.
Some problem with the turtle has occurred
The PlatformWidth must be initialized to a value > 0.0
Waiting in the finally block

Clearly, wrapping an implementation-detail exception with something explicitly docu-
mented in our public contract can simplify the range of exception handlers you require.
It also helps to encapsulate implementation details, as the exceptions you throw can
be considered part of your contract.

On the other hand, are there any disadvantages to throwing a wrapped exception (or
indeed rethrowing the original exception explicitly, rather than implicitly with
throw;)? As programming tends to be a series of compromises, the answer is, as you
might expect, yes.

If you explicitly (re)throw an exception, the call stack in the exception handler starts
at the new throw statement, losing the original context in the debugger (although you
can still inspect it in the inner exception in the object browser). This makes debugging
noticeably less productive.

Because of this, you should consider carefully whether you need to wrap the exception,
and always ensure that you implicitly (rather than explicitly) rethrow exceptions that
you have caught and then wish to pass through.

When Do finally Blocks Run?
It is worth clarifying exactly when the finally block gets executed, under a few edge
conditions.

First, let’s see what happens if we run our example application outside the debugger.
If we do that (by pressing Ctrl-F5) we’ll see that Windows Error Handling* materializes,
and presents the user with an error dialog before we actually hit our finally block at
all! It is like the runtime has inserted an extra catch block in our own (top-level) ex-
ception handler, rather than percolating up another level (and hence out of our scope,
invoking the code in the finally block).

And what happens when exceptions are thrown out of the exception handlers?

* Or “Dr. Watson” as the crash handler was more colorfully named on older versions of Windows.

214 | Chapter 6: Dealing with Errors

Let’s add a finally block to our RunFor method (see Example 6-20).

Example 6-20. Seeing when finally blocks run

// Run the turtle for the specified duration
public void RunFor(double duration)
{
 try
 {
 // ...
 }
 catch (InvalidOperationException iox)
 {
 throw new Exception("Some problem with the turtle has occurred", iox);
 }
 catch (Exception ex)
 {
 // Log here
 Console.WriteLine("Log error: " + ex.Message);
 // Rethrow
 throw;
 }
 finally
 {
 Console.WriteLine("In the Turtle finally block");
 }
}

If you compile and run this code, you’ll see the following output:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
In the Turtle finally block
Arthur is at (0,10) and is pointing at angle 0.00 radians.
In the Turtle finally block
Some problem with the turtle has occurred
The PlatformWidth must be initialized to a value > 0.0
Waiting in the finally block

So our finally block executes after the exception is thrown, but before it executes the
exception handlers farther up the stack.

Deciding What to Catch
One important question remains: how did we know what exception type to catch from
our code? Unlike some other languages (e.g., Java) there is no keyword which allows
us to specify that a method can throw a particular exception. We have to rely on good
developer documentation. The MSDN documentation for the framework itself care-
fully documents all the exceptions that can be thrown from its methods (and proper-
ties), and we should endeavor to do the same.

The .NET Framework provides a wide variety of exception types that you can catch
(and often use). Let’s revisit Table 6-1 (the common error types) and see what is avail-
able for those situations (see Table 6-2).

Exceptions | 215

Table 6-2. Some common errors and their exception types

Error Description Examples

Unexpected input A client passes data to a method that is outside some
expected range.

ArgumentException

ArgumentNullException

ArgumentOutOfRangeException

Unexpected data
type

A client passes data to a method that is not of the expected
type.

InvalidCastException

Unexpected data
format

A client passes data to a method in a format that is not
recognized.

FormatException

Unexpected result A client receives information from a method that it did not
expect for the given input (e.g., null).

NullReferenceException

Unexpected
method call

The class wasn’t expecting you to call a particular method
at that time; you hadn’t performed some required initiali-
zation, for example.

InvalidOperationException

Unavailable
resource

A method tried to access a resource of some kind and it failed
to respond in a timely fashion; a hardware device was not
plugged in, for instance.

TimeoutException

Contended
resource

A method tried to access a scarce resource of some kind
(memory or a hardware device that cannot be shared) and
it was not available because someone else was using it.

OutOfMemoryException

TimeoutException

Obviously, that’s a much abbreviated list, but it contains some of the most common
exceptions you’ll see in real applications. One of the most useful that you’ll throw
yourself is the ArgumentException. You can use that when parameters passed to your
methods fail to validate.

Let’s make use of that in our RunFor method. Say that a “feature” of our turtle hardware
is that it crashes and becomes unresponsive if we try to run it for zero seconds. We can
work around this in our software by checking for this condition in the RunFor method,
and throwing an exception if clients try this, as shown in Example 6-21.

Example 6-21. Throwing an exception when arguments are bad

public void RunFor(double duration)
{
 if (duration <= double.Epsilon)
 {
 throw new ArgumentException(
 "Must provide a duration greater than 0",
 "duration");
 }
 try
 {
 // ...
 }
 catch (InvalidOperationException iox)

216 | Chapter 6: Dealing with Errors

 {
 throw new Exception("Some problem with the turtle has occurred", iox);
 }
 catch (Exception ex)
 {
 // Log here
 Console.WriteLine("Log error: " + ex.Message);
 // Rethrow
 throw;
 }
 finally
 {
 Console.WriteLine("In the Turtle finally block");
 }
}

The second parameter in this constructor should match the name of the parameter that
is in error. The first represents the exception message.

When you come to use ArgumentNullException (which you throw when
you are erroneously passed a null argument) you’ll find that the error
message and parameter arguments are swapped around in the construc-
tor. This irritating inconsistency has been with us since .NET 1.0, and
too much code depends on it to fix it now.

The code in Example 6-22 updates Main, to sneak in an attempt to run it for zero
seconds.

Example 6-22. Testing for the expected exception

static void Main(string[] args)
{
 Turtle arthurTheTurtle = new Turtle {
 PlatformWidth = 0.0, PlatformHeight = 10.0, MotorSpeed = 5.0 };

 ShowPosition(arthurTheTurtle);

 try
 {
 arthurTheTurtle.RunFor(0.0);
 // ...
 }
 catch (InvalidOperationException e)
 {
 Console.WriteLine("Error running turtle:");
 Console.WriteLine(e.Message);
 }
 catch (Exception e1)
 {
 // Loop through the inner exceptions, printing their messages
 Exception current = e1;
 while (current != null)

Exceptions | 217

 {
 Console.WriteLine(current.Message);
 current = current.InnerException;
 }
 }
 finally
 {
 Console.WriteLine("Waiting in the finally block");
 Console.ReadKey();
 }
}

If we compile and run, we’ll see the following output:

Arthur is at (0,0) and is pointing at angle 0.00 radians.
Must provide a duration greater than 0
Parameter name: duration
Waiting in the finally block

Notice how the error message automatically includes the details of the problem
parameter.

Custom Exceptions
You might want to create your own exceptions for a couple of reasons:

• My exception is a special snowflake.

• I want to group my exceptions together for layered exception handling.

The first of these is the most problematic. You should think very carefully about
whether your exception is really special, or whether you can just reuse an existing
exception type.

When you introduce new exceptions, you’re asking clients to understand and deal with
a new type of problem, and you’re expecting them to handle it in a special way. There
are occasional instances of this, but more often the differences are in the context (i.e.,
that it was thrown from your code) rather than the exception itself (i.e., something was
out of range, invalid, null, or unavailable, or it timed out).

Slightly more often, you provide custom exception types when you want to provide a
convenient API over some additional information that comes along with the exception.
The Exception.Data property we discussed earlier might be a better solution—it gives
you somewhere to put information without needing to add a new kind of exception.
But the convenience of a dedicated property might outweigh the costs of introducing
a custom exception.

Finally, you might wish to create a custom exception class to allow you to conceptually
group some subsystem’s exceptions together. DbException is an example of this in
the .NET Framework; it represents the various errors that can occur when using a
database. There are various specialized errors that derive from this, such as the
SqlException thrown by the SQL Server subsystem, but the common base class

218 | Chapter 6: Dealing with Errors

enables you to write a single catch for all database errors, rather than having to handle
provider-specific errors.

Again, you should think carefully about this before doing it: what client exception-
handling scenarios are you enabling, and why do you need the custom type?

However, having been through all of this, creating your own exception type is very
simple. Let’s create a TurtleException for our exception wrapper (see Example 6-23).

Whether we really want a TurtleException is another matter. I’m not
sure I really would in these circumstances, but your mileage may vary.

Example 6-23. A custom exception

[Serializable]
class TurtleException : Exception
{
 public TurtleException()
 {}

 public TurtleException(string message)
 : base(message)
 { }

 public TurtleException(string message, Exception innerException)
 : base(message, innerException)
 {}

 // For serialization support
 protected TurtleException(SerializationInfo info, StreamingContext context)
 : base(info, context)
 {}
}

The first thing to notice is that we derive from Exception.

If you’ve plowed through the MSDN documentation you might have noticed the
ApplicationException type, which derives from Exception, and was provided as a base
class for application-defined exceptions. Why, you might ask, are we not deriving from
ApplicationException?

Well, ApplicationException adds no functionality to Exception, and the .NET designers
could not come up with a scenario where it was useful to catch ApplicationException
(as opposed to Exception). Sadly, they only realized this after .NET 1.0 had shipped,
so it is in the library, but it is now deprecated. You should neither derive from nor catch
ApplicationException.

Also, we provide a bunch of standard constructors: a default parameterless constructor,
one that takes a message, and one that takes a message and an inner exception. Even

Exceptions | 219

if you add more properties to your own exception that you wish to initialize in the
constructor, you should still provide constructors that follow this pattern (including
the default, parameterless one).

The final constructor supports serialization. We do this because Exception itself is
marked as a serializable class, which means that derived classes have to be too. This
enables exceptions to cross appdomain boundaries.† We’re just calling the base class’s
constructor here. Because there is no constructor inheritance in C#, we need to provide
a matching constructor which calls the one in our base. If we didn’t do this, any code
that polymorphically used our TurtleException as its base Exception might break.

Summary
In this chapter, we reviewed the various types of errors that might occur in our software
and looked at several strategies for handling them. These include ignoring the problem,
aborting the application, returning errors, and throwing exceptions. We also saw some
of the benefits and pitfalls of returning errors, and how exceptions can often provide a
more robust and flexible means of alerting your clients to problems. We saw how we
can handle exceptions in layers, sometimes catching, using, and then rethrowing an
exception, sometimes wrapping an implementation exception in a public exception
type, and sometimes allowing exceptions to bubble up to the next layer of handlers.
We saw what happens when an unhandled exception pops out at the top of the stack,
and how we can use finally blocks at each layer to ensure that application state remains
consistent, and resources can be released, whether exceptions occur or not. We then
took a quick review of some of the most common exceptions provided by the frame-
work, and how we might use them. Finally, we looked at creating our own exception
types and why we might (and might not) wish to do so.

We’ve come a long way in the past few chapters, covering all of the everyday C# pro-
gramming concepts you’ll need. In the next few chapters, we’ll look at features of
the .NET Framework in more detail, and how we can best use them in C#; starting
with the collection classes.

† An appdomain is a kind of process within a process. We’ll talk about them a little more in Chapter 11 and
Chapter 15, but they’re mainly used by systems that need to host code, such as ASP.NET.

220 | Chapter 6: Dealing with Errors

CHAPTER 7

Arrays and Lists

Most programs have to deal with multiple pieces of information. Payroll systems need
to calculate the salary of every employee in a company; a space battle game has to track
the position of all the ships and missiles; a social networking website needs to be able
to show all of the user’s acquaintances. Dealing with large numbers of items is a task
at which computers excel, so it’s no surprise that C# has a range of features dedicated
to working with collections of information.

Sets of information crop up so often that we’ve already seen some of what C# has to
offer here. So we’ll start with a more detailed look at the collection-based features we’ve
already seen, and in the next chapter we’ll look at the powerful LINQ (Language In-
tegrated Query) feature that C# offers for finding and processing information in po-
tentially large sets of information.

Arrays
The ability to work with collections is so important that the .NET Framework’s type
system has a feature just for this purpose: the array. This is a special kind of object that
can hold multiple items, without needing to declare a field for each individual item.
Example 7-1 creates an array of strings, with one entry for each event coming up in one
of the authors’ calendars over the next few days. You may notice a theme here (although
one misfit appears to be a refugee from an earlier chapter’s theme, but that’s just how
the author’s weekend panned out; real data is never tidy).

Example 7-1. An array of strings

string[] eventNames =
{
 "Swing Dancing at the South Bank",
 "Saturday Night Swing",
 "Formula 1 German Grand Prix",
 "Swing Dance Picnic",
 "Stompin' at the 100 Club"
};

221

Look at the variable declaration on the first line. The square brackets after string in-
dicate that eventNames is not just a single string; it’s an array of string values. These
square brackets tie in with the syntax for accessing individual elements in the array.
Example 7-2 prints the first and fifth items in the array. (So this will print out the text
“Swing Dancing at the South Bank”, followed by “Stompin’ at the 100 Club”.)

Example 7-2. Using elements in an array

Console.WriteLine(eventNames[0]);
Console.WriteLine(eventNames[4]);

The number inside the square brackets is called the index, and as you can see, C# starts
counting array elements from zero. As you may recall from Chapter 2, the index says
how far into the array we’d like C# to look—to access the very first element, we don’t
have to go any distance into the array at all, so its index is 0. Likewise, an index of 4
jumps past the first four items to arrive at the fifth.

To modify an array element you just put the same syntax on the lefthand side of an
assignment. For example, noticing that I got one of the event names slightly wrong, I
can update it, like so:

eventNames[1] = "Saturday Night Swing Club";

While you can change any element of an array like this, the number of elements is fixed
for the lifetime of the array. (As we’ll see later, this limitation is less drastic than it first
sounds.)

If you try to use too high an index or a negative index when accessing
an array element, the code will throw an IndexOutOfRangeException.
Since elements are numbered from zero, the highest acceptable index is
one less than the number of elements. For example, eventNames[4] is
the last item in our five-item array, so trying to read or write
eventNames[5] would throw an exception.

The .NET Framework supports arrays whose first element is numbered
from something other than zero. This is to support languages such as
Visual Basic that have historically offered such a construct. However,
you cannot use such arrays with the C# index syntax shown here—you
would need to use the Array class’s GetValue and SetValue helper meth-
ods to use such an array.

Since the size of an array is fixed at the moment it is constructed, let’s look at the
construction process in more detail.

Construction and Initialization
There are two ways you can create a new array in C#. Example 7-1 showed the most
straightforward approach—the array variable declaration was followed by a list of the

222 | Chapter 7: Arrays and Lists

array’s contents enclosed in braces, which is called an initializer list. But this requires
you to know exactly what you want in the array when you write the code. You will
often work with information that your program discovers at runtime, perhaps from a
database or a web service. So C# offers an alternative mechanism that lets you choose
the array’s size at runtime.

For example, suppose I decide I’d like to display the events in my calendar as a num-
bered list. I already have an array of event names, but I’d like to build a new string array
that adds a number to the event text. Example 7-3 shows how to do this.

Example 7-3. Creating an array dynamically

static string[] AddNumbers(string[] names)
{
 string[] numberedNames = new string[names.Length];
 for (int i = 0; i < names.Length ; ++i)
 {
 numberedNames[i] = string.Format("{0}: {1}", i, names[i]);
 }
 return numberedNames;
}

This AddNumbers method doesn’t know up front what will be in the array it creates—
it’s building a modified copy of an existing array. So instead of creating a fixed list of
items, it uses this syntax: new ElementType[arrayLength]. This specifies the two things
that are fixed when you create a new array: the type and number of elements.

When you create an array with this minimal syntax, the elements all start out with their
default values. With the string type used here, the default is null; an array of numbers
created this way would contain all zeros. So Example 7-3 immediately goes on to pop-
ulate the newly created array with some useful values. In fact, that’s also what happened
in Example 7-1—when you provide an array with a list of initial contents, the C#
compiler turns it into the sort of code shown in Example 7-4.

Example 7-4. How initializer lists work

string[] eventNames = new string[5];
eventNames[0] = "Swing Dancing at the South Bank";
eventNames[1] = "Saturday Night Swing";
eventNames[2] = "Formula 1 German Grand Prix";
eventNames[3] = "Swing Dance Picnic";
eventNames[4] = "Stompin' at the 100 Club";

The array initialization syntax in Example 7-1 is really just convenient shorthand—
the .NET Framework itself always expects to be told the number and type of elements,
so it’s just a matter of whether the C# compiler works out the element count for you.

The Example 7-1 shorthand works only at the point at which you declare a variable. If
your program decides to put a new array into an existing variable, you’ll find that the
syntax no longer works (see Example 7-5).

Arrays | 223

Example 7-5. Where array initializers fail

// Won't compile!
eventNames =
{
 "Dean Collins Shim Sham Lesson",
 "Intermediate Lindy Hop Lesson",
 "Wild Times - Social Dancing at Wild Court"
};

The reasons for this are somewhat arcane. In general, C# cannot always work out what
element type you need for an array, because it may have more than one choice. For
example, a list of strings doesn’t necessarily have to live in an array of type string[].
An array of type object[] is equally capable of holding the same data. And as we’ll see
later, initializer lists don’t necessarily have to initialize arrays—this list of strings could
initialize a List<string>, for example.

As it happens, only one of those choices would work in Example 7-5—we’re assigning
into the eventNames variable, which is of type string[], so you’d think the compiler
would know what we want. But since there are some situations which really are am-
biguous, Microsoft decided to require you to specify the element type everywhere ex-
cept for the one special case of initializing a newly declared array variable.

The upshot is not so bad—if you specify the element type, you still get to use the
initializer list syntax and have C# count the elements for you. Example 7-6 modifies
Example 7-5 by explicitly stating the type of array we’d like before providing its con-
tents. By the way, we could also have added this explicit array type in Example 7-1—
it would have worked, it’s just more verbose than necessary in that particular case.

Example 7-6. Combining an explicit element type with an initializer list

// Will compile!
eventNames = new string[]
{
 "Dean Collins Shim Sham Lesson",
 "Intermediate Lindy Hop Lesson",
 "Wild Times - Social Dancing at Wild Court"
};

This syntax works anywhere you need an array-typed expression. For example, we
could use this to pass in an array to the AddNumbers method in Example 7-3, as shown
in Example 7-7.

Example 7-7. Inline array initializer

string[] result = AddNumbers(new string[] { "The Jazz Devil", "Jitterbugs" });

This inline array technique can occasionally be useful if you need to call a method that
demands to be passed an array, and you happen not to have one handy. The String
class’s Split method illustrates an interesting twist on this.

224 | Chapter 7: Arrays and Lists

Array arguments and the params keyword

The String.Split method breaks a string into multiple strings based on separator
characters. You tell it which characters to treat as separators by passing a char array.
Example 7-8 splits on spaces, commas, and periods.

Example 7-8. Array arguments in the class library

string[] items = inputString.Split(
 new char[] { ' ', ',', '.' },
 StringSplitOptions.RemoveEmptyEntries);

If inputString contained "One,Two Three, Four. Five.", this would put a five-element
array into items containing the strings "One", "Two", "Three", "Four", and "Five".

Example 7-8 asks Split to ignore empty items so that when we get both a period and
a space in succession we don’t get an empty string in the results to represent the fact
that there were two separators. If you don’t need to skip such things, there’s a simpler
overload of Split that illustrates yet another way to initialize an array:

string[] items = inputString.Split(' ', ',', '.');

It looks like we’ve passed three char arguments to this method. But there’s no such
overload of Split—this ends up calling an overload that looks like this:

public string[] Split(params char[] separator) ...

That params keyword is significant. When an argument is marked with this keyword,
C# lets you use syntax that makes it look like a series of individual arguments, and it
will create an array from these for you. (You’re free to provide the array explicitly if you
prefer.) The params keyword can be used on only the very last argument of a method,
to avoid potential ambiguity about which values go into arrays and which become
arguments in their own right. That’s why Example 7-8 had to create the array explicitly.

The examples so far contain nothing but strings. This is a poor way to represent events
in a calendar—it would be useful to know when each event occurs. We could add a
second array of type DateTimeOffset[] whose elements correspond to the event names
in the original array. But spreading related data across multiple arrays can make code
awkward to write and hard to maintain. Fortunately, there’s a better way.

Custom Types in Arrays
You can create an array using any type for the element type—you’re not limited to types
provided by the .NET Framework class library. You can use a class defined in the way
shown in Chapter 3, such as the calendar event type in Example 7-9.

Example 7-9. Custom class to represent events in a calendar

class CalendarEvent
{
 public string Title { get; set; }

Arrays | 225

 public DateTimeOffset StartTime { get; set; }
 public TimeSpan Duration { get; set; }
}

This class holds the event’s title, start time, and duration in a single object. We can
create an array of these objects, as shown in Example 7-10.

Example 7-10. Creating an array with a custom element type

CalendarEvent[] events =
{
 new CalendarEvent
 {
 Title = "Swing Dancing at the South Bank",
 StartTime = new DateTimeOffset (2009, 7, 11, 15, 00, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(4)
 },
 new CalendarEvent
 {
 Title = "Saturday Night Swing",
 StartTime = new DateTimeOffset (2009, 7, 11, 19, 30, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(6.5)
 },
 new CalendarEvent
 {
 Title = "Formula 1 German Grand Prix",
 StartTime = new DateTimeOffset (2009, 7, 12, 12, 10, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(3)
 },
 new CalendarEvent
 {
 Title = "Swing Dance Picnic",
 StartTime = new DateTimeOffset (2009, 7, 12, 15, 00, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(4)
 },
 new CalendarEvent
 {
 Title = "Stompin' at the 100 Club",
 StartTime = new DateTimeOffset (2009, 7, 13, 19, 45, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(5)
 }
};

Notice that Example 7-10 uses the new keyword to initialize each object. This highlights
an important point about arrays: individual array elements are similar to variables of
the same type. Recall from Chapter 3 that a custom type defined with the class key-
word, such as the CalendarEvent type in Example 7-9, is a reference type. This means
that when you declare a variable of that type, the variable does not represent a particular
object—it’s a storage location that can refer to an object. And the same is true of each
element in an array if the element type is a reference type. Figure 7-1 shows the objects
that Example 7-10 creates: five CalendarEvent objects (shown on the right), and an array

226 | Chapter 7: Arrays and Lists

object of type CalendarEvent[] (shown on the left) where each element in the array
refers to one of the event objects.

Figure 7-1. An array with reference type elements

As you saw in Chapter 3, with reference types multiple different variables can all refer
to the same object. Since elements in an array behave in a similar way to local variables
of the element type, we could create an array where all the elements refer to the same
object, as shown in Example 7-11.

Example 7-11. Multiple elements referring to the same object

CalendarEvent theOnlyEvent = new CalendarEvent
{
 Title = "Swing Dancing at the South Bank",
 StartTime = new DateTimeOffset (2009, 7, 11, 15, 00, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(4)
};

CalendarEvent[] events =
{
 theOnlyEvent,
 theOnlyEvent,
 theOnlyEvent,
 theOnlyEvent,
 theOnlyEvent
};

Figure 7-2 illustrates the result. While this particular example is not brilliantly useful,
in some situations it’s helpful for multiple elements to refer to one object. For example,
imagine a feature for booking meeting rooms or other shared facilities—this could
be a useful addition to a calendar program. An array might describe how the room will
be used today, where each element represents a one-hour slot for a particular room. If

Arrays | 227

the same individual had booked the same room for two different slots, the two corre-
sponding array elements would both refer to the same person.

Figure 7-2. An array where all of the elements refer to the same object

Another feature that reference type array elements have in common with reference type
variables and arguments is support for polymorphism. As you saw in Chapter 4, a
variable declared as some particular reference type can refer to any object of that type,
or of any type derived from the variable’s declared type. This works for arrays too—
using the examples from Chapter 4, if an array’s type is FirefighterBase[], each ele-
ment could refer to a Firefighter, or TraineeFirefighter, or anything else that derives
from FirefighterBase. (And each element is allowed to refer to an object of a different
type, as long as the objects are all compatible with the element type.) Likewise, you can
declare an array of any interface type—for example, INamedPerson[], in which case each
element can refer to any object of any type that implements that interface. Taking this
to extremes, an array of type object[] has elements that can refer to any object of any
reference type, or any boxed value.

As you will remember from Chapter 3, the alternative to a reference type is a value
type. With value types, each variable holds its own copy of the value, rather than a
reference to some potentially shared object. As you would expect, this behavior carries
over to arrays when the element type is a value type. Consider the array shown in
Example 7-12.

Example 7-12. An array of integer values

int[] numbers = { 2, 3, 5, 7, 11 };

Like all the numeric types, int is a value type, so we end up with a rather different
structure. As Figure 7-3 shows, the array elements are the values themselves, rather
than references to values.

Why would you need to care about where exactly the value lives? Well, there’s a sig-
nificant difference in behavior. Given the numbers array in Example 7-12, consider this
code:

228 | Chapter 7: Arrays and Lists

int thirdElementInArray = numbers[2];
thirdElementInArray += 1;
Console.WriteLine("Variable: " + thirdElementInArray);
Console.WriteLine("Array element: " + numbers[2]);

which would print out the following:

Variable: 6
Array element: 5

Figure 7-3. An array with value type elements

Because we are dealing with a value type, the thirdElementInArray local variable gets
a copy of the value in the array. This means that the code can change the local variable
without altering the element in the array. Compare that with similar code working on
the array from Example 7-10:

CalendarEvent thirdElementInArray = events[2];
thirdElementInArray.Title = "Modified title";
Console.WriteLine("Variable: " + thirdElementInArray.Title);
Console.WriteLine("Array element: " + events[2].Title);

This would print out the following:

Variable: Modified title
Array element: Modified title

This shows that we’ve modified the event’s title both from the point of view of the local
variable and from the point of view of the array element. That’s because both refer to
the same CalendarEvent object—with a reference type, when the first line gets an ele-
ment from the array we don’t get a copy of the object, we get a copy of the reference
to that object. The object itself is not copied.

The distinction between the reference and the object being referred to means that
there’s sometimes scope for ambiguity—what exactly does it mean to change an ele-
ment in an array? For value types, there’s no ambiguity, because the element is the
value. The only way to change an entry in the numbers array in Example 7-12 is to assign
a new value into an element:

numbers[2] = 42;

Arrays | 229

But as you’ve seen, with reference types the array element is just a reference, and we
may be able to modify the object it refers to without changing the array element itself.
Of course, we can also change the element, it just means something slightly different—
we’re asking to change which object that particular element refers to. For example, this:

events[2] = events[0];

causes the third element to refer to the same object as the first. This doesn’t modify the
object that element previously referenced. (It might cause the object to become inac-
cessible, though—if nothing else has a reference to that object, overwriting the array
element that referred to it means the program no longer has any way of getting hold of
that object, and so the .NET Framework can reclaim the memory it occupies during
the next garbage collection cycle.)

It’s often tempting to talk in terms of “the fourth object in the array,” and in a lot of
cases, that’s a perfectly reasonable approximation in practice. As long as you’re aware
that with reference types, array elements contain references, not objects, and that what
you really mean is “the object referred to by the fourth element in the array” you won’t
get any nasty surprises.

Regardless of what element type you choose for an array, all arrays provide various
useful methods and properties.

Array Members
An array is an object in its own right; distinct from any objects its elements may refer
to. And like any object, it has a type—as you’ve already seen, we write an array type as
SomeType[]. Whatever type SomeType may be, its corresponding array type, Some
Type[], will derive from a standard built-in type called Array, defined in the System
namespace.

The Array base class provides a variety of services for working with arrays. It can help
you find interesting items in an array. It can reorder the elements, or move information
between arrays. And there are methods for working with the array’s size.

Finding elements

Suppose we want to find out if an array of calendar items contains any events that start
on a particular date. An obvious way to do this would be to write a loop that iterates
through all of the elements in the array, looking at each date in turn (see Example 7-13).

Example 7-13. Finding elements with a loop

DateTime dateOfInterest = new DateTime (2009, 7, 12);
foreach (CalendarEvent item in events)
{
 if (item.StartTime.Date == dateOfInterest)
 {
 Console.WriteLine(item.Title + ": " + item.StartTime);

230 | Chapter 7: Arrays and Lists

 }
}

Example 7-13 relies on a useful feature of the DateTimeOffset type that
makes it easy to work out whether two DateTimeOffset values fall on the
same day, regardless of the exact time. The Date property returns a
DateTime in which the year, month, and day are copied over, but the
time of day is set to the default time of midnight.

Although Example 7-13 works just fine, the Array class provides an alternative: its
FindAll method builds a new array containing only those elements in the original array
that match whatever criteria you specify. Example 7-14 uses this method to do the same
job as Example 7-13.

Example 7-14. Finding elements with FindAll

DateTime dateOfInterest = new DateTime (2009, 7, 12);
CalendarEvent[] itemsOnDateOfInterest = Array.FindAll(events,
 e => e.StartTime.Date == dateOfInterest);

foreach (CalendarEvent item in itemsOnDateOfInterest)
{
 Console.WriteLine(item.Title + ": " + item.StartTime);
}

Notice that we’re using a lambda expression to tell FindAll which items match. That’s
not mandatory—FindAll requires a delegate here, so you can use any of the alternatives
discussed in Chapter 5, including lambda expressions, anonymous methods, method
names, or any expression that returns a suitable delegate. The delegate type here is
Predicate<T>, where T is the array element type (Predicate<CalendarEvent> in this case).
We also discussed predicate delegates in Chapter 5, but in case your memory needs
refreshing, we just need to supply a function that takes a CalendarEvent and returns
true if it matches, and false if it does not. Example 7-14 uses the same expression as
the if statement in Example 7-13.

This may not seem like an improvement on Example 7-13. We’ve not written any less
code, and we’ve ended up using a somewhat more advanced language feature—lambda
expressions—to get the job done. However, notice that in Example 7-14, we’ve already
done all the work of finding the items of interest before we get to the loop. Whereas
the loop in Example 7-13 is a mixture of code that works out what items we need and
code that does something with those items, Example 7-14 keeps those tasks neatly
separated. And if we were doing more complex work with the matching items, that
separation could become a bigger advantage—code tends to be easier to understand
and maintain when it’s not trying to do too many things at once.

The FindAll method becomes even more useful if you want to pass the set of matching
items on to some other piece of code, because you can just pass the array of matches

Arrays | 231

it returns as an argument to some method in your code. But how would you do that
with the approach in Example 7-13, where the match-finding code is intermingled with
the processing code? While the simple foreach loop in Example 7-13 is fine for trivial
examples, FindAll and similar techniques (such as LINQ, which we’ll get to in the next
chapter) are better at managing the more complicated scenarios likely to arise in real
code.

This is an important principle that is not limited to arrays or collections.
In general, you should try to construct your programs by combining
small pieces, each of which does one well-defined job. Code written this
way tends to be easier to maintain and to contain fewer bugs than code
written as one big, sprawling mass of complexity. Separating code that
selects information from code that processes information is just one
example of this idea.

The Array class offers a few variations on the FindAll theme. If you happen to be in-
terested only in finding the first matching item, you can just call Find. Conversely,
FindLast returns the very last matching item.

Sometimes it can be useful to know where in the array a matching item was found. So
as an alternative to Find and FindLast, Array also offers FindIndex and FindLastIndex,
which work in the same way except they return a number indicating the position of the
first or last match, rather than returning the matching item itself.

Finally, one special case for finding the index of an item turns out to crop up fairly
often: the case where you know exactly which object you’re interested in, and just need
to know where it is in the array. You could do this with a suitable predicate, for example:

int index = Array.FindIndex(events, e => e == someParticularEvent);

But Array offers the more specialized IndexOf and LastIndexOf, so you only have to
write this:

int index = Array.IndexOf(events, someParticularEvent);

Ordering elements

Sometimes it’s useful to modify the order in which entries appear in an array. For
example, with a calendar, some events will be planned long in advance while others
may be last-minute additions. Any calendar application will need to be able to ensure
that events are displayed in chronological order, regardless of how they were added, so
we need some way of getting items into the right order.

The Array class makes this easy with its Sort method. We just need to tell it how we
want the events ordered—it can’t really guess, because it doesn’t have any way of
knowing whether we consider our events to be ordered by the Title, StartTime, or
Duration property. This is a perfect job for a delegate: we can provide a tiny bit of code

232 | Chapter 7: Arrays and Lists

that looks at two CalendarEvent objects and says whether one should appear before the
other, and pass that code into the Sort method (see Example 7-15).

Example 7-15. Sorting an array

Array.Sort(events,
 (event1, event2) => event1.StartTime.CompareTo(event2.StartTime));

The Sort method’s first argument, events, is just the array we’d like to reorder. (We
defined that back in Example 7-10.) The second argument is a delegate, and for con-
venience we again used the lambda syntax introduced in Chapter 5. The Sort method
wants to be able to know, for any two events, whether one should appear before the
other, It requires a delegate of type Comparison<T>, a function which takes two argu-
ments—we called them event1 and event2 here—and which returns a number. If
event1 is before event2, the number must be negative, and if it’s after, the number must
be positive. We return zero to indicate that the two are equal. Example 7-15 just defers
to the StartTime property—that’s a DateTimeOffset, which provides a handy
CompareTo method that does exactly what we need.

It turns out that Example 7-15 isn’t changing anything here, because the events array
created in Example 7-10 happens to be in ascending order of date and time already. So
just to illustrate that we can sort on any criteria, let’s order them by duration instead:

Array.Sort(events,
 (event1, event2) => event1.Duration.CompareTo(event2.Duration));

This illustrates how the use of delegates enables us to plug in any number of different
ordering criteria, leaving the Array class to get on with the tedious job of shuffling the
array contents around to match the specified order.

Some data types such as dates or numbers have an intrinsic ordering. It would be irri-
tating to have to tell Array.Sort how to work out whether one number comes before
or after another. And in fact we don’t have to—we can pass an array of numbers to a
simpler overload of the Sort method, as shown in Example 7-16.

Example 7-16. Sorting intrinsically ordered data

int[] numbers = { 4, 1, 2, 5, 3 };
Array.Sort(numbers);

As you would expect, this arranges the numbers into ascending order. We would pro-
vide a comparison delegate here only if we wanted to sort the numbers into some other
order. You might be wondering what would happen if we tried this simpler method
with an array of CalendarEvent objects:

Array.Sort(events); // Blam!

Arrays | 233

If you try this, you’ll find that the method throws an InvalidOperationException, be-
cause Array.Sort has no way of working out what order we need. It works only for
types that have an intrinsic order. And should we want to, we could make Calen
darEvent self-ordering. We just have to implement an interface called IComparable<Cal
endarEvent>, which provides a single method, CompareTo. Example 7-17 implements
this, and defers to the DateTimeOffset value in StartTime—the DateTimeOffset type
implements IComparable<DateTimeOffset>. So all we’re really doing here is passing the
responsibility on to the property we want to use for ordering, just like we did in Ex-
ample 7-15. The one extra bit of work we do is to check for comparison with null—
the IComparable<T> interface documentation states that a non-null object should always
compare as greater than null, so we return a positive number in that case. Without this
check, our code would crash with a NullReferenceException if null were passed to
CompareTo.

Example 7-17. Making a type comparable

class CalendarEvent : IComparable<CalendarEvent>
{
 public string Title { get; set; }
 public DateTimeOffset StartTime { get; set; }
 public TimeSpan Duration { get; set; }

 public int CompareTo(CalendarEvent other)
 {
 if (other == null) { return 1; }
 return StartTime.CompareTo(other.StartTime);
 }
}

Now that our CalendarEvent class has declared an intrinsic ordering for itself, we are
free to use the simplest Sort overload:

Array.Sort(events); // Works, now that CalendarEvent is IComparable<T>

Getting your array contents in order isn’t the only reason for relocating elements, so
Array offers some slightly less specialized methods for moving data around.

Moving or copying elements

Suppose you want to build a calendar application that works with multiple sources of
information—maybe you use several different websites with calendar features and
would like to aggregate all the events into a single list. Example 7-18 shows a method
that takes two arrays of CalendarEvent objects, and returns one array containing all the
elements from both.

Example 7-18. Copying elements from two arrays into one big one

static CalendarEvent[] CombineEvents(CalendarEvent[] events1,
 CalendarEvent[] events2)
{

234 | Chapter 7: Arrays and Lists

 CalendarEvent[] combinedEvents =
 new CalendarEvent[events1.Length + events2.Length];
 events1.CopyTo(combinedEvents, 0);
 events2.CopyTo(combinedEvents, events1.Length);

 return combinedEvents;
}

This example uses the CopyTo method, which makes a complete copy of all the elements
of the source array into the target passed as the first argument. The second argument
says where to start copying elements into the target—Example 7-18 puts the first array’s
elements at the start (offset zero), and then copies the second array’s elements directly
after that. (So the ordering won’t be very useful—you’d probably want to sort the results
after doing this.)

You might sometimes want to be a bit more selective—you might want to copy only
certain elements from the source into the target. For example, suppose you want to
remove the first event. Arrays cannot be resized in .NET, but you could create a new
array that’s one element shorter, and which contains all but the first element of the
original array. The CopyTo method can’t help here as it copies the whole array, but you
can use the more flexible Array.Copy method instead, as Example 7-19 shows.

Example 7-19. Copying less than the whole array

static CalendarEvent[] RemoveFirstEvent(CalendarEvent[] events)
{
 CalendarEvent[] croppedEvents = new CalendarEvent[events.Length - 1];
 Array.Copy(
 events, // Array from which to copy
 1, // Starting point in source array
 croppedEvents, // Array into which to copy
 0, // Starting point in destination array
 events.Length - 1 // Number of elements to copy
);
 return croppedEvents;
}

The key here is that we get to specify the index from which we want to start copying—
1 in this case, skipping over the first element, which has an index of 0.

In practice, you would rarely do this—if you need to be able to add or
remove items from a collection, you would normally use the List<T>
type that we’ll be looking at later in this chapter, rather than a plain
array. And even if you are working with arrays, there’s an
Array.Resize helper function that you would typically use in reality—
it calls Array.Copy for you. However, you often have to copy data be-
tween arrays, even if it might not be strictly necessary in this simple
example. A more complex example would have obscured the essential
simplicity of Array.Copy.

Arrays | 235

The topic of array sizes is a little more complex than it first appears, so let’s look at that
in more detail.

Array Size
Arrays know how many elements they contain—several of the previous examples have
used the Length property to discover the size of an existing array. This read-only prop-
erty is defined by the base Array class, so it’s always present.* That may sound like
enough to cover the simple task of knowing an array’s size, but arrays don’t have to be
simple sequential lists. You may need to work with multidimensional data, and .NET
supports two different styles of arrays for that: jagged and rectangular arrays.

Arrays of arrays (or jagged arrays)

As we said earlier, you can make an array using any type as the element type. And since
arrays themselves have types, it follows that you can have an array of arrays. For ex-
ample, suppose we wanted to create a list of forthcoming events over the next five days,
grouped by day. We could represent this as an array with one entry per day, and since
each day may have multiple events, each entry needs to be an array. Example 7-20
creates just such an array.

Example 7-20. Building an array of arrays

static CalendarEvent[][] GetEventsByDay(CalendarEvent[] allEvents,
 DateTime firstDay,
 int numberOfDays)
{
 CalendarEvent[][] eventsByDay = new CalendarEvent[numberOfDays][];

 for (int day = 0; day < numberOfDays; ++day)
 {
 DateTime dateOfInterest = (firstDay + TimeSpan.FromDays(day)).Date;
 CalendarEvent[] itemsOnDateOfInterest = Array.FindAll(allEvents,
 e => e.StartTime.Date == dateOfInterest);

 eventsByDay[day] = itemsOnDateOfInterest;
 }

 return eventsByDay;
}

* There’s also a LongLength, which is a 64-bit version of the property, which theoretically allows for larger arrays
than the 32-bit Length property. However, .NET currently imposes an upper limit on the size of any single
array: it cannot use more than 2 GB of memory, even in a 64-bit process. So in practice, LongLength isn’t very
useful in the current version of .NET (4). (You can use a lot more than 2 GB of memory in total in a 64-bit
process—the 2 GB limit applies only to individual arrays.)

236 | Chapter 7: Arrays and Lists

We’ll look at this one piece at a time. First, there’s the method declaration:

static CalendarEvent[][] GetEventsByDay(CalendarEvent[] allEvents,
 DateTime firstDay,
 int numberOfDays)
{

The return type—CalendarEvent[][]—is an array of arrays, denoted by two pairs of
square brackets. You’re free to go as deep as you like, by the way—it’s perfectly possible
to have an array of arrays of arrays of arrays of anything.

The method’s arguments are fairly straightforward. This method expects to be passed
a simple array containing an unstructured list of all the events. The method also needs
to know which day we’d like to start from, and how many days we’re interested in.

The very first thing the method does is construct the array that it will eventually return:

CalendarEvent[][] eventsByDay = new CalendarEvent[numberOfDays][];

Just as new CalendarEvent[5] would create an array capable of containing five
CalendarEvent elements, new CalendarEvent[5][] would create an array capable of
containing five arrays of CalendarEvent objects. Since our method lets the caller specify
the number of days, we pass that argument in as the size of the top-level array.

Remember that arrays are reference types, and that whenever you create a new array
whose element type is a reference type, all the elements are initially null. So although
our new eventsByDay array is capable of referring to an array for each day, what it holds
right now is a null for each day. So the next bit of code is a loop that will populate the
array:

for (int day = 0; day < numberOfDays; ++day)
{
 ...
}

Inside this loop, the first couple of lines are similar to the start of Example 7-14:

DateTime dateOfInterest = (firstDay + TimeSpan.FromDays(day)).Date;
CalendarEvent[] itemsOnDateOfInterest = Array.FindAll(allEvents,
 e => e.StartTime.Date == dateOfInterest);

The only difference is that this example calculates which date to look at as we progress
through the loop. So Array.FindAll will return an array containing all the events that
fall on the day for the current loop iteration. The final piece of code in the loop puts
that into our array of arrays:

eventsByDay[day] = itemsOnDateOfInterest;

Once the loop is complete, we return the array:

 return eventsByDay;
}

Each element will contain an array with the events that fall on the relevant day.

Arrays | 237

Code that uses such an array can use the normal element access syntax, for example:

Console.WriteLine("Number of events on first day: " + eventsByDay[0].Length);

Notice that this code uses just a single index—this means we want to retrieve one of
the arrays from our array of arrays. In this case, we’re looking at the size of the first of
those arrays. Or we can dig further by providing multiple indexes:

Console.WriteLine("First day, second event: " + eventsByDay[0][1].Title);

This syntax, with its multiple sets of square brackets, fits right in with the syntax used
to declare and construct the array of arrays.

So why is an array of arrays sometimes called a jagged array? Figure 7-4 shows the
various objects you would end up with if you called the method in Example 7-20,
passing the events from Example 7-10, asking for five days of events starting from July
11. The figure is laid out to show each child array as a row, and as you can see, the rows
are not all the same length—the first couple of days have two items per row, the third
day has one, and the last two are empty (i.e., they are zero-length arrays). So rather
than looking like a neat rectangle of objects, the rows form a shape with a somewhat
uneven or “jagged” righthand edge.

This jaggedness can be either a benefit or a problem, depending on your goals. In this
example, it’s helpful—we used it to handle the fact that the number of events in our
calendar may be different every day, and some days may have no events at all. But if
you’re working with information that naturally fits into a rectangular structure (e.g.,
pixels in an image), rows of differing lengths would constitute an error—it would be
better to use a data structure that doesn’t support such things, so you don’t have to
work out how to handle such an error.

Moreover, jagged arrays end up with a relatively complicated structure—there are a lot
of objects in Figure 7-4. Each array is an object distinct from the objects its element
refers to, so we’ve ended up with 11 objects: the five events, the five per-day arrays
(including two zero-length arrays), and then one array to hold those five arrays. In
situations where you just don’t need this flexibility, there’s a simpler way to represent
multiple rows: a rectangular array.

Rectangular arrays

A rectangular array† lets you store multidimensional data in a single array, rather than
needing to create arrays of arrays. They are more regular in form than jagged arrays—
in a two-dimensional rectangular array, every row has the same width.

† Rectangular arrays are also sometimes called multidimensional arrays, but that’s a slightly confusing name,
because jagged arrays also hold multidimensional data.

238 | Chapter 7: Arrays and Lists

Rectangular arrays are not limited to two dimensions, by the way. Just
as you can have arrays of arrays of arrays, so you can have any number
of dimensions in a “rectangular” array, although the name starts to
sound a bit wrong. With three dimensions, it’s a cuboid rather than a
rectangle, and more generally the shape of these arrays is always an
orthotope. Presumably the designers of C# and the .NET Framework
felt that this “proper” name was too obscure (as does the spellchecker
in Word) and that rectangular was more usefully descriptive, despite
not being technically correct. Pragmatism beat pedantry here because
C# is fundamentally a practical language.

Figure 7-4. A jagged array

Arrays | 239

Rectangular arrays tend to suit different problems than jagged arrays, so we need to
switch temporarily to a different example. Suppose you were writing a simple game in
which a character runs around a maze. And rather than going for a typical modern 3D
game rendered from the point of view of the player, imagine something a bit more
retro—a basic rendering of a top-down view, and where the walls of the maze all fit
neatly onto a grid. If you’re too young to remember this sort of thing, Figure 7-5 gives
a rough idea of what passed for high-tech entertainment back when your authors were
at school.

Figure 7-5. Retro gaming—3D is for wimps

We don’t want to get too hung up on the details of the game play, so let’s just assume
that our code needs to know where the walls are in order to work out where the player
can or can’t move next, and whether she has a clean shot to take out the baddies chasing
her through the maze. We could represent this as an array of numbers, where 0 repre-
sents a gap and 1 represents a wall, as Example 7-21 shows. (We could also have used
bool instead of int as the element type, as there are only two possible options: a wall
or no wall. However, using true and false would have prevented each row of data from
fitting on a single row in this book, making it much harder to see how Example 7-21
reflects the map in Figure 7-5. Moreover, using numbers leaves open the option to add
exciting game features such as unlockable doors, squares of instant death, and other
classics.)

240 | Chapter 7: Arrays and Lists

Example 7-21. A multidimensional rectangular array

int[,] walls = new int[,]
{
 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
 { 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
 { 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1 },
 { 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 },
 { 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1 },
 { 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0 },
 { 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 },
 { 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 },
 { 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1 },
 { 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 },
 { 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 },
 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
};

There are a couple of differences between this and previous examples. First, notice that
the array type has a comma between the square brackets. The number of commas
indicates how many dimensions we want—no commas at all would mean a one-
dimensional array, which is what we’ve been using so far, but the single comma here
specifies a two-dimensional array. We could represent a cuboid layout with int[,,],
and so on, into as many dimensions as your application requires.

The second thing to notice here is that we’ve not had to use the new keyword for each
row in the initializer list—new appears only once, and that’s because this really is just
a single object despite being multidimensional. As Figure 7-6 illustrates, this kind of
array has a much simpler structure than the two-dimensional jagged array in Figure 7-4.

While Figure 7-6 is accurate in the sense that just one object holds all
the values here, the grid-like layout of the numbers is not a literal rep-
resentation of how the numbers are really stored, any more than the
position of the various objects in Figure 7-4 is a literal representation of
what you’d see if you peered into your computer’s memory chips with
a scanning electron microscope.

In reality, multidimensional arrays store their elements as a sequential
list just like the simple array in Figure 7-3, because computer memory
itself is just a big sequence of storage locations. But the programming
model C# presents makes it look like the array really is
multidimensional.

The syntax for accessing elements in a rectangular array is slightly different from that
of a jagged array. But like a jagged array, the access syntax is consistent with the dec-
laration syntax—as Example 7-22 shows, we use a single pair of square brackets, pass-
ing in an index for each dimension, separated by commas.

Arrays | 241

Figure 7-6. A two-dimensional rectangular array

Example 7-22. Accessing an element in a rectangular array

static bool CanCharacterMoveDown(int x, int y, int[,] walls)
{
 int newY = y + 1;

 // Can't move off the bottom of the map
 if (newY == walls.GetLength(0)) { return false; }

 // Can only move down if there's no wall in the way
 return walls[newY, x] == 0;
}

If you pass in the wrong number of indexes, the C# compiler will com-
plain. The number of dimensions (or rank, to use the official term) is
considered to be part of the type: int[,] is a different type than
int[,,], and C# checks that the number of indexes you supply matches
the array type’s rank.

242 | Chapter 7: Arrays and Lists

Example 7-22 performs two checks: before it looks to see if there’s a wall in the way of
the game character, it first checks to see if the character is up against the edge of the
map. To do this, it needs to know how big the map is. And rather than assuming a
fixed-size grid, it asks the array for its size. But it can’t just use the Length property we
saw earlier—that returns the total number of elements. Since this is a 12 × 12 array,
Length will be 144. But we want to know the length in the vertical dimension. So instead,
we use the GetLength method, which takes a single argument indicating which dimen-
sion you want—0 would be the vertical dimension and 1 in this case is horizontal.

Arrays don’t really have any concept of horizontal and vertical. They
simply have as many dimensions as you ask for, and it’s up to your
program to decide what each dimension is for. This particular program
has chosen to use the first dimension to represent the vertical position
in the maze, and the second dimension for the horizontal position.

This rectangular example has used a two-dimensional array of integers, and since int
is a value type, the values get to live inside the array. You can also create multidimen-
sional rectangular arrays with reference type elements. In that case, you’ll still get a
single object containing all the elements of the array in all their dimensions, but these
individual elements will be null references—you’ll need to create objects for them to
refer to, just like you would with a single-dimensional array.

While jagged and rectangular multidimensional arrays give us flexibility in terms of
how to specify the size of an array, we have not yet dealt with an irritating sizing problem
mentioned back at the start of the chapter: an array’s size is fixed. We saw that it’s
possible to work around this by creating new arrays and copying some or all of the old
data across, or by getting the Array.Resize method to do that work for us. But these
are inconvenient solutions, so in practice, we rarely work directly with arrays in C#.
There’s a far easier way to work with changing collection sizes, thanks to the List<T>
class.

List<T>
The List<T> class, defined in the System.Collections.Generic namespace, is effectively
a resizable array. Strictly speaking, it’s just a generic class provided by the .NET Frame-
work class library, and unlike arrays, List<T> does not get any special treatment from
the type system or the CLR. But from a C# developer’s perspective, it feels very
similar—you can do most of the things you could do with an array, but without the
restriction of a fixed size.

List<T> | 243

Generics
List<T> is an example of a generic type. You do not use a generic type directly; you use
it to build new types. For example, List<int> is a list of integers, and List<string> is
a list of strings. These are two types in their own right, built by passing different type
arguments to List<T>. Plugging in type arguments to form a new type is called instan-
tiating the generic type.

Generics were added in C# 2.0 mainly to support collection classes such as List<T>.
Before this, we had to use the ArrayList class (which you should no longer use; it’s not
present in Silverlight, and may eventually be deprecated in the full .NET Framework).
ArrayList was also a resizable array, but it represented all items as object. This meant
it could hold anything, but every time you read an element, you were obliged to cast
to the type you were expecting, which was messy.

With generics, we can write code that has one or more placeholder type names—the
T in List<T>, for example. We call these type parameters. (The distinction between
parameters and arguments is the same here as it is for methods: a parameter is a named
placeholder, whereas an argument is a specific value or type provided for that parameter
at the point at which you use the code.) So you can write code like this:

public class Wrapper<T>
{
 public Wrapper(T v) { Value = v; }
 public T Value { get; private set; }
}

This code doesn’t need to know what type T is—and in fact T can be any type. If we
want a wrapper for an int, we can write Wrapper<int>, and that generates a class exactly
like the example, except with the T replaced by int throughout.

Some classes take multiple type parameters. Dictionary collections (which are descri-
bed in Chapter 9) require both a key and a value type, so you would specify, say,
Dictionary<string, MyClass>. An instantiated generic type is a type in its own right, so
you can use one as an argument for another generic type, for example, Diction
ary<string, List<int>>.

You can also specify a type parameter list for a method. For example, .NET defines an
extension method for all collections called OfType<TResult>. If you have a
List<object> that happens to contain a mixture of different kinds of objects, you can
retrieve just the items that are of type string by calling myList.OfType<string>().

You may be wondering why .NET offers arrays when List<T> appears
to be more useful. The answer is that it wouldn’t be possible for
List<T> to exist if there were no arrays: List<T> uses an array internally
to hold its elements. As you add elements, it allocates new, larger arrays
as necessary, copying the old contents over. It employs various tricks to
minimize how often it needs to do this.

244 | Chapter 7: Arrays and Lists

List<T> is one of the most useful types in the .NET Framework. If you’re dealing with
multiple pieces of information, as programs often do, it’s very common to need some
flexibility around the amount of information—fixed-size lists are the exception rather
than the rule. (An individual’s calendar tends to change over time, for example.) So
have we just wasted your time with the first half of this chapter? Not at all—not only
do arrays crop up a lot in APIs, but List<T> collections are very similar in use to arrays.

We could migrate most of the examples seen so far in this chapter from arrays to lists.
Returning to our earlier, nonrectangular example, we would need to modify only the
first line of Example 7-10, which creates an array of CalendarEvent objects. That line
currently reads:

CalendarEvent[] events =

It is followed by the list of objects to add to the array, contained within a pair of braces.
If you change that line to this:

List<CalendarEvent> events = new List<CalendarEvent>

the initializer list can remain the same. Notice that besides changing the variable dec-
laration to use the List<T> type (with the generic type argument T set to the element
type CalendarEvent, of course) we also need an explicit call to the constructor. (Nor-
mally, you’d expect parentheses after the type name when invoking a constructor, but
those are optional when using an initializer list.) As you saw earlier, the use of new is
optional when assigning a value to a newly declared array, but C# does not extend that
courtesy to other collection types.

While we can initialize the list in much the same way as we would an array, the differ-
ence is that we are free to add and remove elements later. To add a new element, we
can use the Add method:

CalendarEvent newEvent = new CalendarEvent
 {
 Title = "Dean Collins Shim Sham Lesson",
 StartTime = new DateTimeOffset (2009, 7, 14, 19, 15, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(1)
 };

events.Add(newEvent);

This appends the element to the end of the list. If you want to put the new element
somewhere other than at the end, you can use Insert:

events.Insert(2, newEvent);

The first argument indicates the index at which you’d like the new item to appear—
any items at or after this index will be moved down to make space. You can also remove
items, either by index, using the RemoveAt method, or by passing the value you’d like
to remove to the Remove method (which will remove the first element it finds that con-
tains the specified value).

List<T> | 245

List<T> does not have a Length property, and instead offers a Count. This
may seem like pointless inconsistency with arrays, but there’s a reason.
An array’s Length property is guaranteed not to change. A List<T> can-
not make that guarantee, and so the behavior of its Count property is
necessarily different from an array’s Length. The use of different names
signals the fact that the semantics are subtly different.

List<T> also offers AddRange, which lets you add multiple elements in a single step. This
makes it much easier to concatenate lists—remember that with arrays we ended up
writing the CombineEvents method in Example 7-18 to concatenate a couple of arrays.
But with lists, it becomes as simple as the code shown in Example 7-23.

Example 7-23. Adding elements from one list to another

events1.AddRange(events2);

The one possible downside of List<T> is that this kind of operation
modifies the first list. Example 7-18 built a brand-new array, leaving the
two input arrays unmodified, so if any code happened still to be using
those original arrays, it would carry on working. But Example 7-23
modifies the first list by adding in the events from the second list. You
would need to be confident that nothing in your code was relying on
the first list containing only its original content. Of course, you could
always build a brand-new new List<T> from the contents of two existing
lists. (There are various ways to do this, but one straightforward ap-
proach is to construct a new List<T> and then call AddRange twice, once
for each list.)

You access elements in a List<T> with exactly the same syntax as for an array. For
example:

Console.WriteLine("List element: " + events[2].Title);

As with arrays, a List<T> will throw an IndexOutOfRangeException if you
use too high an index, or a negative index. This applies for writes as well
as reads—a List<T> will not automatically grow if you write to an index
that does not yet exist.

There is a subtle difference between array element access and list element access that
can cause problems with custom value types (structs). You may recall that Chapter 3
warned that when writing a custom value type, it’s best to make it immutable if you
plan to use it in a collection. To understand why, you need to know how List<T> makes
the square bracket syntax for element access work.

246 | Chapter 7: Arrays and Lists

Custom Indexers
Arrays are an integral part of the .NET type system, so C# knows exactly what to do
when you access an array element using the square bracket syntax. However, as
List<T> demonstrates, it’s also possible to use this same syntax with some objects that
are not arrays. For this to work, the object’s type needs to help C# out by defining the
behavior for this syntax. This takes the form of a slightly unusual-looking property, as
shown in Example 7-24.

Example 7-24. A custom indexer

class Indexable
{
 public string this[int index]
 {
 get
 {
 return "Item " + index;
 }
 set
 {
 Console.WriteLine("You set item " + index + " to " + value);
 }
 }
}

This has the get and set parts we’d expect in a normal property, but the definition line
is a little unusual: it starts with the accessibility and type as normal, but where we’d
expect to see the property name we instead have this[int index]. The this keyword
signifies that this property won’t be accessed by any name. It is followed by a parameter
list enclosed in square brackets, signifying that this is an indexer property, defining
what should happen if we use the square bracket element access syntax with objects of
this type. For example, look at the code in Example 7-25.

Example 7-25. Using a custom indexer

Indexable ix = new Indexable();
Console.WriteLine(ix[10]);
ix[42] = "Xyzzy";

After constructing the object, the next line uses the same element access syntax you’d
use to read an element from an array. But this is not an array, so the C# compiler will
look for a property of the kind shown in Example 7-24. If you try this on a type that
doesn’t provide an indexer, you’ll get a compiler error, but since this type has one, that
ix[10] expression ends up calling the indexer’s get accessor. Similarly, the third line
has the element access syntax on the lefthand side of an assignment, so C# will use the
indexer’s set accessor.

List<T> | 247

If you want to support the multidimensional rectangular array style of
index (e.g., ix[10, 20]), you can specify multiple parameters between
the square brackets in your indexer. Note that the List<T> class does
not do this—while it covers most of the same ground as the built-in
array types, it does not offer rectangular multidimensional behavior.
You’re free to create a jagged list of lists, though. For example,
List<List<int>> is a list of lists of integers, and is similar in use to an
int[][].

The indexer in Example 7-24 doesn’t really contain any elements at all—it just makes
up a value in the get, and prints out the value passed into set without storing it any-
where. So if you run this code, you’ll see this output:

Item 10
You set item 42 to Xyzzy

It may seem a bit odd to provide array-like syntax but to discard whatever values are
“written,” but this is allowed—there’s no rule that says that indexers are required to
behave in an array-like fashion. In practice, most do—the reason C# supports indexers
is to make it possible to write classes such as List<T> that feel like arrays without nec-
essarily having to be arrays. So while Example 7-24 illustrates that you’re free to do
whatever you like in a custom indexer, it’s not a paragon of good coding style.

What does any of this have to do with value types and immutability, though? Look at
Example 7-26. It has a public field with an array and also an indexer that provides access
to the array.

Example 7-26. Arrays versus indexers

// This class's purpose is to illustrate a difference between
// arrays and indexers. Do not use this in real code!
class ArrayAndIndexer<T>
{
 public T[] TheArray = new T[100];
 public T this[int index]
 {
 get
 {
 return TheArray[index];
 }
 set
 {
 TheArray[index] = value;
 }
 }
}

248 | Chapter 7: Arrays and Lists

You might think that it would make no difference whether we use this class’s indexer,
or go directly for the array. And some of the time that’s true, as it is in this example:

ArrayAndIndexer<int> aai = new ArrayAndIndexer<int>();
aai.TheArray[10] = 42;
Console.WriteLine(aai[10]);
aai[20] = 99;
Console.WriteLine(aai.TheArray[20]);

This swaps freely between using the array and the indexer, and as the output shows,
items set through one mechanism are visible through the other:

42
99

However, things are a little different if we make this class store a mutable value type.
Here’s a very simple modifiable value type:

struct CanChange
{
 public int Number { get; set; }
 public string Name { get; set; }
}

The Number and Name properties both have setters, so this is clearly not an immutable
type. This might not seem like a problem—we can do more or less exactly the same
with this type as we did with int just a moment ago:

ArrayAndIndexer<CanChange> aai = new ArrayAndIndexer<CanChange>();
aai.TheArray[10] = new CanChange { Number = 42 };
Console.WriteLine(aai[10].Number);
aai[20] = new CanChange { Number = 99, Name = "My item" };
Console.WriteLine(aai.TheArray[20].Number);

That works fine. The problem arises when we try to modify a property of one of the
values already inside the array. We can do it with the array:

aai.TheArray[10].Number = 123;
Console.WriteLine(aai.TheArray[10].Number);

That works—it prints out 123 as you’d expect. But this does not work:

aai[20].Number = 456;

If you try this, you’ll find that the C# compiler reports the following error:

error CS1612: Cannot modify the return value of
'ArrayAndIndexer<CanChange>.this[int]' because it is not a variable

That’s a slightly cryptic message. But the problem becomes clear when we think about
what we just asked the compiler to do. The intent of this code:

aai[20].Number = 456;

seems clear—we want to modify the Number property of the item whose index is 20.
And remember, this line of code is using our ArrayAndIndexer<T> class’s indexer. Look-
ing at Example 7-26, which of the two accessors would you expect it to use here? Since

List<T> | 249

we’re modifying the value, you might expect set to be used, but a set accessor is an all
or nothing proposition: calling set means you want to replace the whole element. But
we’re not trying to do that here—we just want to modify the Number property of the
value, leaving its Name property unmodified. If you look at the set code in Exam-
ple 7-26, it simply doesn’t offer that as an option—it will completely replace the element
at the specified index in the array. The set accessor can come into play only when we’re
providing a whole new value for the element, as in:

aai[20] = new CanChange { Number = 456 };

That compiles, but we end up losing the Name property that the element in that location
previously had, because we overwrote the entire value of the element.

Since set doesn’t work, that leaves get. The C# compiler could interpret this code:

aai[20].Number = 456;

as being equivalent to the code in Example 7-27.

Example 7-27. What the compiler might have done

CanChange elem = aai[20];
elem.Number = 456;

And in fact, that’s what it would have done if we were using a reference type. However,
it has noticed that CanChange is a value type, and has therefore rejected the code. (The
error message says nothing about value types, but you can verify that this is the heart
of the problem by changing the CanChange type from a struct to a class. That removes
the compiler error, and you’ll find that the code aai[20].Number = 456 works as
expected.)

Why has the compiler rejected this seemingly obvious solution? Well, remember that
the crucial difference between reference types and value types is that values usually
involve copies—if you retrieve a value from an indexer, the indexer returns a copy. So
in Example 7-27 the elem variable holds a copy of the item at index 20. Setting
elem.Number to 456 has an effect on only that copy—the original item in the array
remains unchanged. This makes clear why the compiler rejected our code—the only
thing it can do with this:

aai[20].Number = 456;

is to call the get accessor, and then set the Number property on the copy returned by the
array, leaving the original value unaltered. Since the copy would then immediately be
discarded, the compiler has wisely determined that this is almost certainly not what we
meant. (If we really want that copy-then-modify behavior, we can always write the code
in Example 7-27 ourselves, making the fact that there’s a copy explicit. Putting the copy
into a named variable also gives us the opportunity to go on and do something with
the copy, meaning that setting a property on the copy might no longer be a waste of
effort.)

250 | Chapter 7: Arrays and Lists

You might be thinking that the compiler could read and modify a copy
like Example 7-27, and then write that value back using the set indexer
accessor. However, as Example 7-24 showed, indexer accessors are not
required to work in the obvious way, and more generally, accessors can
have side effects. So the C# compiler cannot assume that such a get-
modify-set sequence is necessarily safe.

This problem doesn’t arise with reference types, because in that case, the get accessor
returns a reference rather than a value—no copying occurs because that reference refers
to the same object that the corresponding array entry refers to.

But why does this work when we use the array directly? Recall that the compiler didn’t
have a problem with this code:

aai.TheArray[10].Number = 123;

It lets that through because it’s able to make that behave like we expect. This will in
fact modify the Number property of the element in the array. And this is the rather subtle
difference between an array and an indexer. With an array you really can work directly
with the element inside the array—no copying occurs in this example. This works
because the C# compiler knows what an array is, and is able to generate code that deals
directly with array elements in situ. But there’s no way to write a custom indexer that
offers the same flexibility. (There are reasons for this, but to explain them would require
an exploration of the .NET Framework’s type safety rules, which would be lengthy and
quite outside the scope of this chapter.)

Having established the root of the problem, let’s look at what this means for List<T>.

Immutability and List<T>

The List<T> class gets no special privileges—it may be part of the .NET Framework
class library, but it is subject to the same restrictions as your code. And so it has the
same problem just described—the following code will produce the same compiler error
you saw in the preceding section:

List<CanChange> numbers = new List<CanChange> { new CanChange() };
numbers[0].Number = 42; // Will not compile

One way of dealing with this would be to avoid using custom value types in a collection
class such as List<T>, preferring custom reference types instead. And that’s not a bad
rule of thumb—reference types are a reasonable default choice for most data types.
However, value types do offer one compelling feature if you happen to be dealing with
very large volumes of data. As Figure 7-1 showed earlier, an array with reference type
elements results in an object for the array itself, and one object for each element in the
array. But when an array has value type elements, you end up with just one object—
the values live inside the array, as Figure 7-3 illustrates. List<T> has similar character-
istics because it uses an array internally.

List<T> | 251

For an array with hundreds of thousands of elements, the simpler structure of
Figure 7-3 can have a noticeable impact on performance. For example, I just ran a quick
test on my computer to see how long it would take to create a List<CanChange> with
500,000 entries, and then run through the list, adding the Number values together.
Example 7-28 shows the code—it uses the Stopwatch class from the System.Diagnos
tics namespace, which provides a handy way to see how long things are taking.

Example 7-28. Microbenchmarking values versus references in lists

Stopwatch sw = new Stopwatch();
sw.Start();
int itemCount = 500000;
List<CanChange> items = new List<CanChange>(itemCount);
for (int i = 0; i < itemCount; ++i)
{
 items.Add(new CanChange { Number = i });
}
sw.Stop();
Console.WriteLine("Creation: " + sw.ElapsedTicks);
sw.Reset();
sw.Start();
int total = 0;
for (int i = 0; i < itemCount; ++i)
{
 total += items[i].Number;
}
sw.Stop();
Console.WriteLine("Total: " + total);
Console.WriteLine("Sum: " + sw.ElapsedTicks);

With CanChange as a value type, it takes about 150 ms on my machine to populate the
list, and then about 40 ms to run through all the numbers, adding them together. But
if I change CanChange from a struct to a class (i.e., make it a reference type) the numbers
become more like 600 ms and 50 ms, respectively. So that’s about 25 percent longer to
perform the calculations but a staggering four times longer to create the collection in
the first place. And that’s because with CanChange as a reference type, we now need to
ask the .NET Framework to create half a million objects for us instead of just one object
when we initialize the list. From the perspective of an end user, this is the difference
between a tiny hiatus and an annoyingly long delay—when an application freezes for
more than half a second, users begin to wonder if it has hung, which is very disruptive.

252 | Chapter 7: Arrays and Lists

Please don’t take away the message that value types are four times faster
than reference types—they aren’t. A micro benchmark like this should
always be taken with a very strong pinch of salt. All we’ve really meas-
ured here is how long it takes to do something contrived in an isolated
and artificial experiment. This example is illuminating only insofar as it
demonstrates that the choice between value types and reference types
can sometimes have a profound effect. It would be a mistake to draw a
generalized conclusion from this.

Notice that even in this example we see significant variation: the first
part of the code slowed down by a factor of four, but in the second part,
the impact was much smaller. In some scenarios, there will be no meas-
urable difference, and as it happens there are situations in which value
types can be shown to be slower than reference types.

The bottom line is this: the only important performance measurements
are ones you make yourself on the system you are building. If you think
your code might get a useful speedup by using a value type instead of a
reference type in a large collection, measure the effect of that change,
rather than doing it just because some book said it would be faster.

Since the use of value types in a collection can sometimes offer very useful performance
benefits, the rule of thumb we suggested earlier—always use reference types—looks
too restrictive in practice. So this is where immutability comes into play. As we saw
earlier in this section, the fact that a get accessor can only return a copy of a value type
causes problems if you ever need to modify a value already in a collection. But if your
value types are immutable, you will never hit this problem. And as we’ll see in Chap-
ter 16, there are other benefits to immutable types.

So we now know how List<T> is able to make itself resemble an array. Having under-
stood some of the subtle differences between array element access and custom indexers,
let’s get back to some of the other functionality of List<T>.

Finding and Sorting
Earlier we saw that the Array class offers a variety of helper methods for finding elements
in arrays. If you try to use these directly on a List<T>, it won’t work. The following
code from Example 7-14 will not compile if events is a List<CalendarEvents>, for
example:

DateTime dateOfInterest = new DateTime (2009, 7, 12);
CalendarEvent[] itemsOnDateOfInterest = Array.FindAll(events,
 e => e.StartTime.Date == dateOfInterest);

List<T> | 253

This will cause an error, because Array.FindAll expects an array, and we’re now giving
it a List<T>. However, all the finding and sorting functionality we saw earlier is still
available; you just have to use the methods provided by List<T> instead of Array:

DateTime dateOfInterest = new DateTime(2009, 7, 12);
List<CalendarEvent> itemsOnDateOfInterest = events.FindAll(
 e => e.StartTime.Date == dateOfInterest);

Notice a slight stylistic difference—whereas with arrays, FindAll is a static method
provided by the Array class, List<T> chooses to make its FindAll method an instance
member—so we invoke it as events.FindAll. Style aside, it works in exactly the same
way. As you might expect, it returns its results as another List<T> rather than as an
array.

This same stylistic difference exists with all the other techniques we looked at before.
List<T> provides Find, FindLast, FindIndex, FindLastIndex, IndexOf, LastIndexOf, and
Sort methods that all work in almost exactly the same way as the array equivalents we
looked at earlier, but again, they’re instance methods rather than static methods.

Since List<T> offers almost everything you’re likely to want from an array and more
besides, List<T> will usually be your first choice to represent a collection of data. (The
only common exception is if you need a rectangular array.) Unfortunately, you will
sometimes come up against APIs that simply require you to provide an array. In fact,
we already wrote some code that does this: the AddNumbers method back in Exam-
ple 7-3 requires its input to be in the form of an array. But even this is easy to deal with:
List<T> provides a handy ToArray() method for just this eventuality, building a copy
of the list’s contents in array form.

But wouldn’t it be better if we could write our code in such a way that it didn’t care
whether incoming information was in an array, a List<T>, or some other kind of col-
lection? It is possible to do exactly this, using the polymorphism techniques discussed
in Chapter 4.

Collections and Polymorphism
Polymorphic code is code that is able to work on a variety of different forms of data.
The foreach keyword has this characteristic. For example:

foreach (CalendarEvent ev in events)
{
 Console.WriteLine(ev.Title);
}

This code works if events is an array—CalendarEvent[]—but it works equally well if
events is a List<CalendarEvent>. And in fact, there are many more specialized collection
types in the .NET Framework class library that we’ll look at in a later chapter that
foreach can work with. You can even arrange for it to work with custom collection
classes you may have written yourself. All this is possible because the .NET Framework

254 | Chapter 7: Arrays and Lists

defines some standard interfaces for representing collections of things. The foreach
construct depends on a pair of interfaces: IEnumerable<T> and IEnumerator<T>. These
derive from a couple of nongeneric base interfaces, IEnumerable and IEnumerator. These
interfaces are defined in the class library, and they are reproduced in Example 7-29.

Example 7-29. Enumeration interfaces

namespace System.Collections.Generic
{
 public interface IEnumerable<out T> : IEnumerable
 {
 new IEnumerator<T> GetEnumerator();
 }

 public interface IEnumerator<out T> : IDisposable, IEnumerator
 {
 new T Current { get; }
 }
}

namespace System.Collections
{
 public interface IEnumerable
 {
 IEnumerator GetEnumerator();
 }

 public interface IEnumerator
 {
 bool MoveNext();
 object Current { get; }
 void Reset();
 }
}

The split between the generic and nongeneric interfaces here is a historical artifact.
Versions 1.0 and 1.1 of .NET did not support generics, so only the base IEnumerable
and IEnumerator interfaces existed. When .NET 2.0 shipped in 2005, generics were
introduced, making it possible to provide versions of these interfaces that were explicit
about what type of objects a collection contains, but in order to maintain backward
compatibility the old version 1.x interfaces had to remain. You will normally use the
generic versions, because they are easier to work with.

Conceptually, if a type implements IEnumerable<T> it is declaring that it contains a
sequence of items of type T. To get hold of the items, you can call the GetEnumerator
method, which will return an IEnumerator<T>. An enumerator is an object that lets you
work through the objects in an enumerable collection one at a time.‡ The split between
enumerables and enumerators makes it possible to have different parts of your program

‡ If you’re familiar with C++ and its Standard Template Library, an enumerator is broadly similar in concept
to an iterator in the STL.

Collections and Polymorphism | 255

working their way through the same collection at the same time, without all of them
needing to be in the same place. This can be useful in multithreaded applications (al-
though as we’ll see in a later chapter, you have to be extremely careful about letting
multiple threads use the same data structure simultaneously).

Some enumerable collections, such as List<T>, can be modified. (.NET
defines an IList<T> interface to represent the abstract idea of a modifi-
able, ordered collection. List<T> is just one implementation IList<T>.)
You should avoid modifying a collection while you’re in the process of
iterating through it. For example, do not call Add on a List<T> in the
middle of a foreach loop that uses that list. List<T> detects when this
happens, and throws an exception.

Note that unlike IList<T>, IEnumerable<T> does not provide any meth-
ods for modifying the sequence. While this provides less flexibility to
the consumer of a sequence, it broadens the range of data that can be
wrapped as an IEnumerable<T>. For some sources of data it doesn’t make
sense to provide consumers of that data with the ability to reorder it.

These interfaces make it possible to write a function that uses a collection without
having any idea of the collection’s real type—you only need to know what type of
elements it contains. We could rewrite Example 7-3 so that it works with any IEnumer
able<string> rather than just an array of strings, as shown in Example 7-30.

Example 7-30. Using IEnumerable<T> and IEnumerator<T>

static string[] AddNumbers(IEnumerable<string> names)
{
 List<string> numberedNames = new List<string>();

 using (IEnumerator<string> enumerator = names.GetEnumerator())
 {
 int i = 0;
 while (enumerator.MoveNext())
 {
 string currentName = enumerator.Current;
 numberedNames.Add(string.Format("{0}: {1}", i, currentName));
 i += 1;
 }
 }
 return numberedNames.ToArray();
}

Since List<T> and arrays both implement IEnumerable<T>, this modified code in Ex-
ample 7-30 will now work with List<string>, as well as arrays, or any other collection
class that implements IEnumerable<string>. For more information on the subtleties of
type compatibility and enumerations, see the sidebar on the next page.

256 | Chapter 7: Arrays and Lists

Enumerations and Variance
Suppose you’ve written a function that uses an enumeration of elements of some base
type, perhaps an IEnumerable<FirefighterBase>. (Chapter 4 defined FirefighterBase
as a base class of various types representing firefighters.) For example:

static void ShowNames(IEnumerable<FirefighterBase> people)
{
 foreach (FirefighterBase person in people)
 { Console.WriteLine(person.Name); }
}

What would you expect to happen if you tried to pass this method an IEnumera
ble<TraineeFirefighter>, where TraineeFirefighter derives from FirefighterBase? It
seems like it should work—ShowNames expects to get a sequence of FirefighterBase
objects, and since TraineeFirefighter derives from FirefighterBase, an IEnumera
ble<TraineeFirefighter> will return a sequence of objects that are all of type Firefight
erBase (as well as being of type TraineeFirefighter).

In C# 4.0, this works as you’d expect. But it didn’t in previous versions. In general, it’s
not safe to assume that types are necessarily compatible just because their type argu-
ments happen to be compatible. For example, there’s an IList<T> interface which de-
fines an Add method. IList<TraineeFirefighter> cannot safely be converted to
IList<FirefighterBase>, because the latter’s Add method would allow anything derived
from FirefighterBase (e.g., Firefighter, TraineeFirefighter) to be added, but in prac-
tice the implementer of IList<TraineeFirefighter> might not allow that—it might ac-
cept only the TraineeFirefighter type.

IEnumerable<T> works here because the T type only ever comes out of an enumeration;
there’s no way to pass instances of T into IEnumerable<T>. The interface definition states
this—as Example 7-29 shows, the type argument is prefixed with the out keyword. In
the official terminology, this means that IEnumerable<T> is covariant with T. This means
that if type D derives from type B (or is otherwise type-compatible—maybe B is an in-
terface that D implements), IEnumerable<D> is type-compatible with IEnumerable.

Generic arguments can also be prefixed with the in keyword, meaning that the type is
only ever passed in, and will never be returned. The IComparable<T> interface we saw
earlier happens to work this way. In this case, we say that IComparable<T> is contra-
variant with T—it works the other way around. You cannot pass an IComparable<Train
eeFirefighter> to a method expecting an IComparable<FirefighterBase>, because that
method might pass in a different kind of FirefighterBase, such as Firefighter. But you
can pass an IComparable<FirefighterBase> to a method expecting an ICompara
ble<TraineeFirefighter> (even though you cannot pass a FirefighterBase to a method
expecting a TraineeFirefighter). An IComparable<FirefighterBase> is capable of being
compared to any FirefighterBase, and is therefore able to be compared with a
TraineeFirefighter.

By default, generic arguments are neither covariant nor contravariant. C# 4.0 intro-
duced support for variance because the absence of variance with collection interfaces
just seemed wrong—IEnumerable<T> now works like most developers would expect.

Collections and Polymorphism | 257

Example 7-30 works much harder than it needs to—it creates the enumerator explicitly,
and walks through the objects by calling MoveNext in a loop, retrieving the Current value
each time around. (A newly created enumerator needs us to call MoveNext before first
reading Current. It doesn’t automatically start on the first item because there might not
be one—collections can be empty.) As it happens, that’s exactly what foreach does, so
we can get that to do the work for us. Example 7-31 does the same thing as Exam-
ple 7-30, but lets the C# compiler generate the code.

Example 7-31. Using an IEnumerable<T> with foreach

static string[] AddNumbers(IEnumerable<string> names)
{
 List<string> numberedNames = new List<string>();
 int i = 0;
 foreach (string currentName in names)
 {
 numberedNames.Add(string.Format("{0}: {1}", i, currentName));
 i += 1;
 }
 return numberedNames.ToArray();
}

This example only half enters into the spirit of things—it can accept any IEnumera
ble<string>, but it stubbornly continues to return an array. This isn’t necessarily a
problem; after all, arrays implement IEnumerable<T>. However, our code is a little in-
elegant in the way that it creates a List<string> and then converts that into an array at
the end. There’s a better way—C# makes it very easy to provide a sequence of objects
directly as an IEnumerable<T>.

Creating Your Own IEnumerable<T>
Before version 2 of C# (which shipped with Visual Studio 2005), writing your own
enumerable types was tedious—you had to write a class that implemented IEnumera
tor, and that would usually be a separate class from the one that implemented
IEnumerable, because multiple enumerators can be active simultaneously for any single
collection. It wasn’t hugely tricky, but it was enough of a hassle to put most people off.
But C# 2 made it extremely easy to provide enumerations. Example 7-32 shows yet
another reworking of the AddNumbers method.

Example 7-32. Implementing IEnumerable<T> with yield return

static IEnumerable<string> AddNumbers(IEnumerable<string> names)
{
 int i = 0;
 foreach (string currentName in names)
 {
 yield return string.Format("{0}: {1}", i, currentName);
 i += 1;
 }
}

258 | Chapter 7: Arrays and Lists

Instead of using the normal return statement, this method uses yield return. This
special form of return statement can only be used inside a method that returns either
an enumerable or an enumerator object—you’ll get a compiler error if you try to use it
anywhere else. It works rather differently from a normal return. A normal return state-
ment indicates that the method has finished, and would like to return control to the
caller (returning a value, if the method’s return type was not void). But yield return
effectively says: “I want to return this value as an item in the collection, but I might not
be done yet—I could have more values to return.”

The yield return in Example 7-32 is in the middle of a foreach loop. Whereas a normal
return would break out of the loop, in this case the loop is still running, even though
the method has returned a value. This leads to some slightly surprising flow of execu-
tion. Let’s look at the order in which this code runs. Example 7-33 modifies the
AddNumbers method from Example 7-32 by adding a few calls to Console.Writeline, so
we can see exactly how the code runs. It also includes a Main method with a foreach
loop iterating over the collection returned by AddNumbers, again with some Con
sole.WriteLine calls to keep track of what’s going on.

Example 7-33. Exploring yield return

class Program
{
 static IEnumerable<string> AddNumbers(IEnumerable<string> names)
 {
 Console.WriteLine("Starting AddNumbers");
 int i = 0;
 foreach (string currentName in names)
 {
 Console.WriteLine("In AddNumbers: " + currentName);
 yield return string.Format("{0}: {1}", i, currentName);
 i += 1;
 }
 Console.WriteLine("Leaving AddNumbers");
 }

 static void Main(string[] args)
 {
 string[] eventNames =
 {
 "Swing Dancing at the South Bank",
 "Saturday Night Swing",
 "Formula 1 German Grand Prix",
 "Swing Dance Picnic",
 "Stompin' at the 100 Club"
 };

 Console.WriteLine("Calling AddNumbers");
 IEnumerable<string> numberedNames = AddNumbers(eventNames);
 Console.WriteLine("Starting main loop");
 foreach (string numberedName in numberedNames)
 {
 Console.WriteLine("In main loop: " + numberedName);

Collections and Polymorphism | 259

 }
 Console.WriteLine("Leaving main loop");
 }
}

Here’s the output:

Calling AddNumbers
Starting main loop
Starting AddNumbers
In AddNumbers: Swing Dancing at the South Bank
In main loop: 0: Swing Dancing at the South Bank
In AddNumbers: Saturday Night Swing
In main loop: 1: Saturday Night Swing
In AddNumbers: Formula 1 German Grand Prix
In main loop: 2: Formula 1 German Grand Prix
In AddNumbers: Swing Dance Picnic
In main loop: 3: Swing Dance Picnic
In AddNumbers: Stompin' at the 100 Club
In main loop: 4: Stompin' at the 100 Club
Leaving AddNumbers
Leaving main loop

Even though the main method calls AddNumbers only once, before the start of the loop,
you can see from the output that the code flits back and forth between the main loop
and AddNumbers for each item in the list.

That’s how yield return works—it returns from the method temporarily. Execution
will continue from after the yield return as soon as the code consuming the collection
asks for the next element. (More precisely, it will happen when the client code calls
MoveNext on the enumerator.) C# generates some code that remembers where it had
got to on the last yield return so that it can carry on from where it left off.

You might be wondering what happens if the consumer abandons the
loop halfway through. If that happens, execution will not continue from
the yield return. However, as you saw in Example 7-30, code that con-
sumes an enumeration should have a using statement to ensure that the
enumerator is always disposed of—a foreach loop will always do this
for you. The enumerator generated by C# to implement yield return
relies on this to ensure that any using or finally blocks inside your
enumerator method run correctly even when the enumeration is aban-
doned halfway through.

This causes a slight wrinkle in the story regarding exception handling.
You’ll find that you cannot use yield return inside a try block that is
followed by a catch block, for example, because it’s not possible for the
C# compiler to guarantee that exceptions will be handled consistently
in situations where enumerations are abandoned.

260 | Chapter 7: Arrays and Lists

This ability to continue from where we left off as the consumer iterates through the
loop illustrates a subtler benefit of yield return: it doesn’t just make the code slightly
neater; it lets the code be lazy.

Lazy collections

The AddNumbers method in Example 7-31 creates all of its output before it returns any-
thing. We could describe it as being eager—it does all the work it might need to do
right up front. But the modified version in Example 7-32, which uses yield return, is
not so eager: it generates items only when it is asked for them, as you can see from the
output of Example 7-33. This approach of not doing work until absolutely necessary
is often referred to as a lazy style. In fact, if you look closely at the output you’ll see
that the AddNumbers method in Example 7-33 is so lazy, it doesn’t seem to run any code
at all until we start asking it for items—the Starting AddNumbers message printed out
at the beginning of the AddNumbers method (before it starts its foreach loop) doesn’t
appear when we call AddNumbers—as you can see, the Starting main loop message
appears first, even though Main doesn’t print that out until after AddNumbers returns.
This illustrates that none of the code in AddNumbers runs at the point when we call
AddNumbers. Nothing happens until we start retrieving elements.

Support for lazy collections is the reason that IEnumerable<T> does not
provide a Count property. The only way to find out how many items are
in an enumeration is to enumerate the whole lot and see how many come
out. Enumerable sequences don’t necessarily know how many items
they contain until you’ve asked for all the items.

Lazy enumeration has some benefits, particularly if you are dealing with very large
quantities of information. Lazy enumeration makes it possible to start processing data
as soon as the first item becomes available. Example 7-34 illustrates this. Its
GetAllFilesInDirectory returns an enumeration that returns all the files in a folder,
including all those in any subdirectories. The Main method here uses this to enumerate
all the files on the C: drive. (In fact, the Directory class can save us from writing all this
code—there’s an overload of Directory.EnumerateFiles that will do a lazy, recursive
search for you. But writing our own version is a good way to see how lazy enumeration
works.)

Example 7-34. Lazy enumeration of a large, slow data set

class Program
{
 static IEnumerable<string> GetAllFilesInDirectory(string directoryPath)
 {
 IEnumerable<string> files = null;
 IEnumerable<string> subdirectories = null;
 try
 {

Collections and Polymorphism | 261

 files = Directory.EnumerateFiles(directoryPath);
 subdirectories = Directory.EnumerateDirectories(directoryPath);
 }
 catch (UnauthorizedAccessException)
 {
 Console.WriteLine("No permission to access " + directoryPath);
 }
 if (files != null)
 {
 foreach (string file in files)
 {
 yield return file;
 }
 }
 if (subdirectories != null)
 {
 foreach (string subdirectory in subdirectories)
 {
 foreach (string file in GetAllFilesInDirectory(subdirectory))
 {
 yield return file;
 }
 }
 }
 }

 static void Main(string[] args)
 {
 foreach (string file in GetAllFilesInDirectory(@"c:\"))
 {
 Console.WriteLine(file);
 }
 }
}

If you run this, you’ll find it starts printing out filenames immediately, even though it
clearly won’t have had time to discover every single file on the hard disk. (That’s why
we’re not using the overload of Directory.GetFiles that recursively searches subdir-
ectories for us. As you’ll see in Chapter 8, the Directory class can save us from writing
all this code, but it insists on finding all the files before starting to return any of them.)

It’s possible to chain enumerations together. For example, we can combine Exam-
ple 7-34 with the AddNumbers function, as shown in Example 7-35.

Example 7-35. Chaining lazy enumerators together

IEnumerable<string> allFiles = GetAllFilesInDirectory(@"c:\");
IEnumerable<string> numberedFiles = AddNumbers(allFiles);
foreach (string file in numberedFiles)
{
 Console.WriteLine(file);
}

262 | Chapter 7: Arrays and Lists

If we’re using the version of AddNumbers from Example 7-32—the one that uses yield
return—this will start printing out filenames (with added numbers) immediately.
However, if you try it with the version from Example 7-31, you’ll see something quite
different. The program will sit there for as many minutes as it takes to find all the
filenames on the hard disk—it might print out some messages to indicate that you don’t
have permission to access certain folders, but it won’t print out any filenames until it
has all of them. And it ends up consuming quite a lot of memory—on my system it uses
more than 130 MB of memory, as it builds up a huge List<string> containing all of the
filenames, whereas the lazy version makes do with a rather more frugal 7 MB.

So in its eagerness to do all of the necessary work up front, Example 7-31 actually slowed
us down. It didn’t return any information until it had collected all of the information.
Ironically, the lazy version in Example 7-32 enabled us to get to work much faster, and
to work more efficiently.

This style of enumeration, in which work is done no sooner than nec-
essary, is sometimes called deferred execution. While that’s more of a
mouthful, it’s probably more fitting in cases where the effect is the op-
posite of what lazy suggests.

Lazy enumeration also permits an interesting technique whereby infinite loops aren’t
necessarily a problem. A method can yield an infinite collection, leaving it up to the
caller to decide when to stop. Example 7-36 returns an enumeration of numbers in the
Fibonacci series. That’s an infinite series, and since this example uses the BigInteger
type introduced in .NET 4, the quantity of numbers it can return is limited only by
space and time—the amount of memory in the computer, and the impending heat death
of the universe, respectively (or your computer’s next reboot, whichever comes sooner).

Example 7-36. An infinite sequence

using System.Numerics; // Required for BigInteger

...

static IEnumerable<BigInteger> Fibonacci()
{
 BigInteger current = 1;
 BigInteger previous = 1;
 yield return 1;
 while (true)
 {
 yield return current;
 BigInteger next = current + previous;
 previous = current;
 current = next;
 }
}

Collections and Polymorphism | 263

Because consumers of enumerations are free to stop enumerating at any time, in prac-
tice this sort of enumeration will just keep going until the calling code decides to stop.
We’ll see some slightly more practical uses for this when we explore parallel execution
and multithreading later in the book.

The concept of chaining lazy enumerations together shown in Example 7-35 is a very
useful technique—it’s the basis of the most powerful feature that was added in version
3 of C#: LINQ. LINQ is such an important topic that the next chapter is devoted to
it. But before we move on, let’s review what we’ve seen so far.

Summary
The .NET Framework’s type system has intrinsic support for collections of items in the
form of arrays. You can make arrays out of any type. They can be either simple single-
dimensional lists, nested arrays of arrays, or multidimensional “rectangular” arrays.
The size of an array is fixed at the moment you create it, so when we need a bit more
flexibility we use the List<T> generic collection class instead. This works more or less
like an array, except we can add and remove items at will. (It uses arrays internally,
dynamically allocating new arrays and copying elements across as necessary.) Both
arrays and lists offer various services for finding and sorting elements. Thanks to the
IEnumerable<T> interface, it’s possible to write polymorphic code that can work with
any kind of collection. And as we’re about to see, LINQ takes that idea to a whole new
level.

264 | Chapter 7: Arrays and Lists

CHAPTER 8

LINQ

LINQ, short for Language Integrated Query, provides a powerful set of mechanisms
for working with collections of information, along with a convenient syntax. You can
use LINQ with the arrays and lists we saw in the previous chapter—anything that
implements IEnumerable<T> can be used with LINQ, and there are LINQ providers for
databases and XML documents. And even if you have to deal with data that doesn’t fit
into any of these categories, LINQ is extensible, so in principle, a provider could be
written for more or less any information source that can be accessed from .NET. This
chapter will focus mainly on LINQ to Objects—the provider for running queries against
objects and collections—but the techniques shown here are applicable to other LINQ
sources.

Collections of data are ubiquitous, so LINQ can have a profound effect on how you
program. Both of your authors have found that LINQ has changed how we write C#
in ways we did not anticipate. Pre-LINQ versions of C# now feel like a different and
significantly less powerful language. It may take a little while to get your head around
how to use LINQ, but it’s absolutely worth the effort.

LINQ is not a single language feature—it’s the culmination of several elements that
were added to version 3.0 of the C# language and version 3.5 of the .NET Framework.
(Despite the different version numbers, these did in fact ship at the same time—they
were both part of the Visual Studio 2008 release.) So as well as exploring the most
visible aspect of LINQ—the query syntax—we’ll also examine the other associated
language and framework features that contribute to LINQ.

Query Expressions
C# 3.0 added query expressions to the language—these look superficially similar to
SQL queries in some respects, but they do not necessarily involve a database. For ex-
ample, we could use the data returned by the GetAllFilesInDirectory code from the
preceding chapter, reproduced here in Example 8-1. This returns an IEnumera
ble<string> containing the filenames of all the files found by recursively searching the

265

specified directory. In fact, as we mentioned in the last chapter, it wasn’t strictly nec-
essary to work that hard. We implemented the function by hand to illustrate some
details of how lazy evaluation works, but as Example 8-1 shows, we can get the .NET
Framework class library to do the work for us. The Directory.EnumerateFiles method
still enumerates the files in a lazy fashion when used in this recursive search mode—it
works in much the same way as the example we wrote in the previous chapter.

Example 8-1. Enumerating filenames

static IEnumerable<string> GetAllFilesInDirectory(string directoryPath)
{
 return Directory.EnumerateFiles(directoryPath, "*",
 SearchOption.AllDirectories);
}

Since a LINQ query can work with any enumeration of objects, we can write a query
that just returns the files larger than, say, 10 million bytes, as shown in Example 8-2.

Example 8-2. Using LINQ with an enumeration

var bigFiles = from file in GetAllFilesInDirectory(@"c:\")
 where new FileInfo(file).Length > 10000000
 select file;

foreach (string file in bigFiles)
{
 Console.WriteLine(file);
}

As long as the C# file has a using System.Linq; directive at the top (and Visual Studio
adds this to new C# files by default) this code will work just fine. Notice that we’ve
done nothing special to enable the use of a query here—the GetAllFilesInDirectory
method just returns the lazy enumeration provided by the Directory class. And more
generally, this sort of query works with anything that implements IEnumerable<T>.

Let’s look at the query in more detail. It’s common to assign LINQ query expressions
into variables declared with the var keyword, as Example 8-2 does:

var bigFiles = ...

This tells the compiler that we want it to deduce that variable’s type for us. As it hap-
pens, it will be an IEnumerable<string>, and we could have written that explicitly, but
as you’ll see shortly, queries sometimes end up using anonymous types, at which point
the use of var becomes mandatory.

The first part of the query expression itself is always a from clause. This describes the
source of information that we want to query, and also defines a so-called range variable:

from file in GetAllFilesInDirectory(@"c:\")

The source appears on the right, after the in keyword—this query runs on the files
returned by the GetAllFilesInDirectory method. The range variable, which appears

266 | Chapter 8: LINQ

between the from and in keywords, chooses the name by which we’ll refer to source
items in the rest of the query—file in this example. It’s similar to the iteration variable
in a foreach loop.

The next line in Example 8-2 is a where clause:

where new FileInfo(file).Length > 10000000

This is an optional, although very common, LINQ query feature. It acts as a filter—
only items for which the expression is true will be present in the results of the query.
This clause constructs a FileInfo object for the file, and then looks at its Length property
so that the query only returns files that are larger than the specified size.

The final part of the query describes what information we want to come out of the
query, and it must be either a select or a group clause. Example 8-2 uses a select clause:

select file;

This is a trivial select clause—it just selects the range variable, which contains the
filename. That’s why this particular query ends up producing an IEnumera
ble<string>. But we can put other expressions in here—for example, we could write:

select File.ReadAllLines(file).Length;

This uses the File class (defined in System.IO) to read the file’s text into an array with
one element per line, and then retrieves that array’s Length. This would make the query
return an IEnumerable<int>, containing the number of lines in each file.

You may be wondering exactly how this works. The code in a LINQ query expression
looks quite different from most other C# code—it is, by design, somewhat reminiscent
of database queries. But it turns out that all that syntax turns into straightforward
method calls.

Query Expressions Versus Method Calls
The C# language specification defines a process by which all LINQ query expressions
are converted into method invocations. Example 8-3 shows what the query expression
in Example 8-2 turns into. Incidentally, C# ignores whitespace on either side of the .
syntax for member access, so the fact that this example has been split across multiple
lines to fit on the page doesn’t stop it from compiling.

Example 8-3. LINQ query as method calls

var bigFiles = GetAllFilesInDirectory(@"c:\").
 Where(file => new FileInfo(file).Length > 10000000);

Let’s compare this with the components of the original query:

var bigFiles = from file in GetAllFilesInDirectory(@"c:\")
 where new FileInfo(file).Length > 10000000
 select file;

Query Expressions | 267

The source, which follows the in keyword in the query expression, becomes the starting
point—that’s the enumeration returned by GetAllFilesInDirectory in this case. The
next step is determined by the presence of the where clause—this turns into a call to
the Where method on the source enumeration. As you can see, the condition in the
where clause has turned into a lambda expression, passed as an argument to the
Where method.

The final select clause has turned into...nothing! That’s because it’s a trivial select—
it just selects the range variable and nothing else, in which case there’s no need to do
any further processing of the information that comes out of the Where method. If we’d
had a slightly more interesting expression in the select clause, for example:

var bigFiles = from file in GetAllFilesInDirectory(@"c:\")
 where new FileInfo(file).Length > 10000000
 select "File: " + file;

we would have seen a corresponding Select method in the equivalent function calls,
as Example 8-4 shows.

Example 8-4. Where and Select as methods

var bigFiles = GetAllFilesInDirectory(@"c:\").
 Where(file => new FileInfo(file).Length > 10000000).
 Select(file => "File: " + file);

A question remains, though: where did the Where and Select methods here come from?
GetAllFilesInDirectory returns an IEnumerable<string>, and if you examine this in-
terface (which we showed in the preceding chapter) you’ll see that it doesn’t define a
Where method. And yet if you try these method-based equivalents of the query expres-
sions, you’ll find that they compile just fine as long as you have a using System.Linq;
directive at the top of the file, and a project reference to the System.Core library. What’s
going on? The answer is that Where and Select in these examples are extension methods.

Extension Methods and LINQ
One of the language features added to C# 3.0 for LINQ is support for extension meth-
ods. These are methods bolted onto a type by some other type. You can add new meth-
ods to an existing type, even if you can’t change that type—perhaps it’s a type built
into the .NET Framework. For example, the built-in string type is not something we
get to change, and it’s sealed, so we cannot derive from it either, but that doesn’t stop
us from adding new methods. Example 8-5 adds a new and not very useful Backwards
method that returns a copy of the string with the characters in reverse order.*

* This is even less useful than it sounds. If the string in question contains characters that are required to be
used in strict sequence, such as combining characters or surrogates, naively reversing the character order will
have peculiar results. But the point here is to illustrate how to add new methods to an existing type, not to
explain why it’s surprisingly difficult to reverse a Unicode string.

268 | Chapter 8: LINQ

Example 8-5. Adding an extension method to string

static class StringAdditions
{
 // Naive implementation for illustrative purposes.
 // DO NOT USE in real code!
 public static string Backwards(this string input)
 {
 char[] characters = input.ToCharArray();
 Array.Reverse(characters);
 return new string(characters);
 }
}

Notice the this keyword in front of the first argument—that indicates that Backwards
is an extension method. Also notice that the class is marked as static—you can only
define extension methods in static classes.

As long as this class is in a namespace that’s in scope (either because of a using directive,
or because it’s in the same namespace as the code that wants to use it) you can call this
method as though it were a normal member of the string class:

string stationName = "Finsbury Park";
Console.WriteLine(stationName.Backwards());

The Where and Select methods used in Example 8-4 are extension methods. The
System.Linq namespace defines a static class called Enumerable which defines these and
numerous other extension methods for IEnumerable<T>. Here’s the signature for one of
the Where overloads:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, bool> predicate)

Notice that this is a generic method—the method itself takes a type argument, called
TSource here, and passes that through as the type argument T for the first parameter’s
IEnumerable<T>. The result is that this method extends IEnumerable<T>, whatever T may
be. In other words, as long as the System.Linq namespace is in scope, all IEnumera
ble<T> implementations appear to offer a Where method.

Select and Where are examples of LINQ operators—standard methods that are available
wherever LINQ is supported. The Enumerable class in System.Linq provides all the
LINQ operators for IEnumerable<T>, but is not the only LINQ provider—it just provides
query support for collections in memory, and is sometimes referred to as LINQ to
Objects. In later chapters, we’ll see sources that support LINQ queries against data-
bases and XML documents. Anyone can write a new provider, because C# neither
knows nor cares what the source is or how it works—it just mechanically translates
query expressions into method calls, and as long as the relevant LINQ operators are
available, it will use them. This leaves different data sources free to implement the
various operators in whatever way they see fit. Example 8-6 shows how you could
exploit this to provide custom implementations of the Select and Where operators.

Query Expressions | 269

Example 8-6. Custom implementation of some LINQ operators

public class Foo
{
 public string Name { get; set; }
 public Foo Where(Func<Foo, bool> predicate)
 {
 return this;
 }

 public TResult Select<TResult>(Func<Foo, TResult> selector)
 {
 return selector(this);
 }
}

These are normal methods rather than extension methods—we’re writing a custom
type, so we can add LINQ operators directly to that type. Since C# just converts LINQ
queries into method calls, it doesn’t matter whether LINQ operators are normal meth-
ods or extension methods. So with these methods in place, we could write the code
shown in Example 8-7.

Example 8-7. Confusing but technically permissible use of a LINQ query

Foo source = new Foo { Name = "Fred" };
var result = from f in source
 where f.Name == "Fred"
 select f.Name;

C# will follow the rules for translating query expressions into method calls, just as it
would for any query, so it will turn Example 8-7 into this:

Foo source = new Foo { Name = "Fred" };
var result = source.Where(f => f.Name == "Fred").Select(f => f.Name);

Since the Foo class provides the Where and Select operators that C# expects, this will
compile and run. It won’t be particularly useful, because our Where implementation
completely ignores the predicate. And it’s also a slightly bizarre thing to do—our Foo
class doesn’t appear to represent any kind of collection, so it’s rather misleading to use
syntax that’s intended to be used with collections. In fact, Example 8-7 has the same
effect as:

var result = source.Name;

So you’d never write code like Example 8-6 and Example 8-7 for a type as simple as
Foo in practice—the purpose of these examples is to illustrate that the C# compiler
blindly translates query expressions into method calls, and has no understanding or
expectation of what those calls might do. The real functionality of LINQ lives entirely
in the class library. Query expressions are just a convenient syntax.

270 | Chapter 8: LINQ

let Clauses
Query expressions can contain let clauses. This is an interesting kind of clause in that
unlike most of the rest of a query, it doesn’t correspond directly to any particular LINQ
operator. It’s just a way of making it easier to structure your query.

You would use a let clause when you need to use the same information in more than
one place in a query. For example, suppose we want to modify the query in Exam-
ple 8-2 to return a FileInfo object, rather than a filename. We could do this:

var bigFiles = from file in GetAllFilesInDirectory(@"c:\")
 where new FileInfo(file).Length > 10000000
 select new FileInfo(file);

But this code repeats itself—it creates a FileInfo object in the where clause and then
creates another one in the select clause. We can avoid this repetition with a let clause:

var bigFiles = from file in GetAllFilesInDirectory(@"c:\")
 let info = new FileInfo(file)
 where info.Length > 10000000
 select info;

The C# compiler jumps through some significant hoops to make this work. There’s
no need to know the details to make use of a let clause, but if you’re curious to know
how it works, here’s what happens. Under the covers it generates a class containing
two properties called file and info, and ends up generating two queries:

var temp = from file in GetAllFilesInDirectory(@"c:\")
 select new CompilerGeneratedType(file, new FileInfo(file));
var bigFiles = from item in temp
 where item.info.Length > 10000000
 select item.info;

The purpose of the first query is to produce a sequence in which the range variable is
wrapped in the compiler-generated type, alongside any variables declared with a let
clause. (It’s not actually called CompilerGeneratedType, of course—the compiler gen-
erates a unique, meaningless name.) This allows all these variables to be available in
all the clauses of the query.

LINQ Concepts and Techniques
Before we look in detail at the services LINQ offers, there are some features that apply
across all of LINQ that you should be aware of.

Delegates and Lambdas
LINQ query syntax makes implicit use of lambdas. The expressions that appear in
where, select, or most other clauses are written as ordinary expressions, but as you’ve
seen, the C# compiler turns queries into a series of method calls, and the expressions
become lambda expressions.

LINQ Concepts and Techniques | 271

Most of the time, you can just write the expressions you need and they work. But you
need to be wary of code that has side effects. For example, it would be a bad idea to
write the sort of query shown in Example 8-8.

Example 8-8. Unhelpful side effects in a query

int x = 10000;
var bigFiles = from file in GetAllFilesInDirectory(@"c:\")
 where new FileInfo(file).Length > x++
 select file;

The where clause here increments a variable declared outside the scope of the query.

This is allowed (although it’s a bad idea) in LINQ to Objects. Some
LINQ providers, such as the ones you would use with databases, will
reject such a query at runtime.

This will have the potentially surprising result that the query could return different files
every time it runs, even if the underlying data has not changed. Remember, the ex-
pression in the where clause gets converted into an anonymous method, which will be
invoked once for every item in the query’s source. The first time this runs, the local x
variable will be incremented once for every file on the disk. If the query is executed
again, that’ll happen again—nothing will reset x to its original state.

Moreover, queries are often executed sometime after the point at which they are cre-
ated, which can make code with side effects very hard to follow—looking at the code
in Example 8-8 it’s not possible to say exactly when x will be modified. We’d need more
context to know that—when exactly is the bigFiles query evaluated? How many times?

In practice, it is important to avoid side effects in queries. This extends beyond simple
things such as the ++ operator—you also need to be careful about invoking methods
from within a query expression. You’ll want to avoid methods that change the state of
your application.

It’s usually OK for expressions in a query to read variables from the surrounding scope,
though. A small modification to Example 8-8 illustrates one way you could exploit this
(see Example 8-9).

Example 8-9. Using a local variable in a query

int minSize = 10000;
var bigFiles = from file in GetAllFilesInDirectory(@"c:\")
 where new FileInfo(file).Length > minSize
 select file;

var filesOver10k = bigFiles.ToArray();
minSize = 100000;
var filesOver100k = bigFiles.ToArray();
minSize = 1000000;

272 | Chapter 8: LINQ

var filesOver1MB = bigFiles.ToArray();
minSize = 10000000;
var filesOver10MB = bigFiles.ToArray();

This query makes use of a local variable as before, but this query simply reads the value
rather than modifying it. By changing the value of that variable, we can modify how
the query behaves the next time it is evaluated. (The call to ToArray() executes the query
and puts the results into an array. This is one way of forcing an immediate execution
of the query.)

Functional Style and Composition
LINQ operators all share a common characteristic: they do not modify the data they
work on. For example, you can get LINQ to sort the results of a query, but unlike
Array.Sort or List<T>.Sort, which both modify the order of an existing collection,
sorting in LINQ works by producing a new IEnumerable<T> which returns objects in
the specified order. The original collection is not modified.

This is similar in style to .NET’s string type. The string class provides various methods
that look like they will modify the string, such as Trim, ToUpper, and Replace. But strings
are immutable, so all of these methods work by building a new string—you get a modi-
fied copy, leaving the original intact.

LINQ never tries to modify sources, so it’s able to work with immutable sources. LINQ
to Objects relies on IEnumerable<T>, which does not provide any mechanism for mod-
ifying the contents or order of the underlying collection.

Of course, LINQ does not require sources to be immutable. IEnumera
ble<T> can be implemented by modifiable and immutable classes alike.
The point is that LINQ will never attempt to modify its source
collections.

This approach is sometimes described as a functional style. Functional programming
languages such as F# tend to have this characteristic—just as mathematical functions
such as addition, multiplication, and trigonometric functions do not modify their in-
puts, neither does purely functional code. Instead, it generates new information based
on its inputs—new enumerations layered on top of input enumerations in the case of
LINQ.

C# is not a purely functional language—it’s possible and indeed common to write code
that modifies things—but that doesn’t stop you from using a functional style, as LINQ
shows.

Functional code is often highly composable—it tends to lead to APIs whose features
can easily be combined in all sorts of different ways. This in turn can lead to more
maintainable code—small, simple features are easier to design, develop, and test than

LINQ Concepts and Techniques | 273

complex, monolithic chunks of code, but you can still tackle complex problems by
combining smaller features. Since LINQ works by passing a sequence to a method that
transforms its input into a new sequence, you can plug together as many LINQ oper-
ators as you like. The fact that these operators never modify their inputs simplifies
things. If multiple pieces of code are all vying to modify some data, it can become
difficult to ensure that your program behaves correctly. But with a functional style,
once data is produced it never changes—new calculations yield new data instead of
modifying existing data. If you can be sure that some piece of data will never change,
it becomes much easier to understand your code’s behavior, and you’ll have a better
chance of making it work. This is especially important with multithreaded code.

Deferred Execution
Chapter 7 introduced the idea of lazy enumeration (or deferred execution, as it’s also
sometimes called). As we saw, iterating over an enumeration such as the one returned
by GetAllFilesInDirectory does the necessary work one element at a time, rather
than processing everything up front. The query in Example 8-2 preserves this
characteristic—if you run the code, you won’t have to wait for GetAllFilesInDirec
tory to finish before you see any results; it will start printing filenames immediately.
(Well, almost immediately—it depends on how far it has to look before finding a file
large enough to get through the where clause.) And in general, LINQ queries will defer
work as much as possible—merely having executed the code that defines the query
doesn’t actually do anything. So in our example, this code:

var bigFiles = from file in GetAllFilesInDirectory(@"c:\")
 where new FileInfo(file).Length > 10000000
 select file;

does nothing more than describe the query. No work is done until we start to enumerate
the bigFiles result with a foreach loop. And at each iteration of that loop, it does the
minimum work required to get the next item—this might involve retrieving multiple
results from the underlying collection, because the where clause will keep fetching items
until it either runs out or finds one that matches the condition. But even so, it does no
more work than necessary.

The picture may change a little as you use some of the more advanced features described
later in this chapter—for example, you can tell a LINQ query to sort your data, in which
case it will probably have to look at all the results before it can work out the correct
order. (Although even that’s not a given—it’s possible to write a source that knows all
about ordering, and if you have special knowledge about your data source, it may be
possible to write a source that delivers data in order while still fetching items lazily.
We’ll see providers that do this when we look at how to use LINQ with databases in a
later chapter.)

274 | Chapter 8: LINQ

Although deferred execution is almost always a good thing, there’s one
gotcha to bear in mind. Because the query doesn’t run up front, it will
run every time you evaluate it. LINQ doesn’t keep a copy of the results
when you execute the query, and there are good reasons you wouldn’t
want it to—it could consume a lot of memory, and would prevent you
from using the technique in Example 8-9. But it does mean that relatively
innocuous-looking code can turn out to be quite expensive, particularly
if you’re using a LINQ provider for a database. Inadvertently evaluating
the query multiple times could cause multiple trips to the database
server.

LINQ Operators
There are around 50 standard LINQ operators. The rest of this chapter describes the
most important operators, broken down by the main areas of functionality. We’ll show
how to use them both from a query expression (where possible) and with an explicit
method call.

Sometimes it’s useful to call the LINQ query operator methods explic-
itly, rather than writing a query expression. Some operators offer over-
loads with advanced features that are not available in a query expression.
For example, sorting strings is a locale-dependent operation—there are
variations on what constitutes alphabetical ordering in different lan-
guages. The query expression syntax for ordering data always uses the
current thread’s default culture for ordering. If you need to use a dif-
ferent culture for some reason, or you want a culture-independent order,
you’ll need to call an overload of the OrderBy operator explicitly instead
of using an orderby clause in a query expression.

There are even some LINQ operators that don’t have an equivalent in
a query expression. So understanding how LINQ uses methods is not
just a case of looking at implementation details. It’s the only way to
access some more advanced LINQ features.

Filtering
You already saw the main filtering feature of LINQ. We illustrated the where clause and
the corresponding Where operator in Example 8-2 and Example 8-3, respectively. An-
other filter operator worth being aware of is called OfType. It has no query expression
equivalent, so you can use it only with a method call. OfType is useful when you have
a collection that could contain a mixture of types, and you only want to look at the
elements that have a particular type. For example, in a user interface you might want
to get hold of control elements (such as buttons), ignoring purely visual elements such
as images or drawings. You could write this sort of code:

var controls = myPanel.Children.OfType<Control>();

LINQ Operators | 275

If myPanel.Children is a collection of objects of some kind, this code will ensure that
controls is an enumeration that only returns objects that can be cast to the Control type.

Although OfType has no equivalent in a query expression, that doesn’t stop you from
using it in conjunction with a query expression—you can use the result of OfType as
the source for a query:

var controlNames = from control in myPanel.Children.OfType<Control>()
 where !string.IsNullOrEmpty(control.Name)
 select control.Name;

This uses the OfType operator to filter the items down to objects of type Control, and
then uses a where clause to further filter the items to just those with a nonempty Name
property.

Ordering
Query expressions can contain an orderby clause, indicating the order in which you’d
like the items to emerge from the query. In queries with no orderby clause, LINQ does
not, in general, make any guarantees about the order in which items emerge. LINQ to
Objects happens to return items in the order in which they emerge from the source
enumeration if you don’t specify an order, but other LINQ providers will not necessarily
define a default order. (In particular, database LINQ providers typically return items
in an unpredictable order unless you explicitly specify an order.)

So as to have some data to sort, Example 8-10 brings back the CalendarEvent class from
Chapter 7.

Example 8-10. Class representing a calendar event

class CalendarEvent
{
 public string Title { get; set; }
 public DateTimeOffset StartTime { get; set; }
 public TimeSpan Duration { get; set; }
}

When examples in this chapter refer to an events variable, assume that it was initialized
with the data shown in Example 8-11.

Example 8-11. Some example data

List<CalendarEvent> events = new List<CalendarEvent>
{
 new CalendarEvent
 {
 Title = "Swing Dancing at the South Bank",
 StartTime = new DateTimeOffset (2009, 7, 11, 15, 00, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(4)
 },
 new CalendarEvent
 {

276 | Chapter 8: LINQ

 Title = "Saturday Night Swing",
 StartTime = new DateTimeOffset (2009, 7, 11, 19, 30, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(6.5)
 },
 new CalendarEvent
 {
 Title = "Formula 1 German Grand Prix",
 StartTime = new DateTimeOffset (2009, 7, 12, 12, 10, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(3)
 },
 new CalendarEvent
 {
 Title = "Swing Dance Picnic",
 StartTime = new DateTimeOffset (2009, 7, 12, 15, 00, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(4)
 },
 new CalendarEvent
 {
 Title = "Stompin' at the 100 Club",
 StartTime = new DateTimeOffset (2009, 7, 13, 19, 45, 00, TimeSpan.Zero),
 Duration = TimeSpan.FromHours(5)
 }
};

Example 8-12 shows a LINQ query that orders these events by start time.

Example 8-12. Ordering items with LINQ

var eventsByStartTime = from ev in events
 orderby ev.StartTime
 select ev;

By default, the items will be sorted into ascending order. You can be explicit about this
if you like:

var eventsByStartTime = from ev in events
 orderby ev.StartTime ascending
 select ev;

And, of course, you can sort into descending order too:

var eventsByStartTime = from ev in events
 orderby ev.StartTime descending
 select ev;

The expression in the orderby clause does not need to correspond directly to a property
of the source object. It can be a more complex expression. For example, we could
extract just the time of day to produce the slightly confusing result of events ordered
by what time they start, regardless of date:

var eventsByStartTime = from ev in events
 orderby ev.StartTime.TimeOfDay
 select ev;

You can specify multiple criteria. Example 8-13 sorts the events: first by date (ignoring
the time) and then by duration.

LINQ Operators | 277

Example 8-13. Multiple sort criteria

var eventsByStartDateThenDuration = from ev in events
 orderby ev.StartTime.Date, ev.Duration
 select ev;

Four LINQ query operator methods correspond to the orderby clause. Most obviously,
there’s OrderBy, which takes a single ordering criterion as a lambda:

var eventsByStartTime = events.OrderBy(ev => ev.StartTime);

That code has exactly the same effect as Example 8-12. Of course, like most LINQ
operators, you can chain this together with other ones. So we could combine that with
the Where operator:

var longEvents = events.OrderBy(ev => ev.StartTime).
 Where(ev => ev.Duration > TimeSpan.FromHours(2));

This is equivalent to the following query:

var longEvents = from ev in events
 orderby ev.StartTime
 where ev.Duration > TimeSpan.FromHours(2)
 select ev;

You can customize the comparison mechanism used to sort the items by using an over-
load that accepts a comparison object—it must implement IComparer<TKey>† where
TKey is the type returned by the ordering expression. So in these examples, it would
need to be an IComparer<DateTimeOffset>, since that’s the type of the StartTime prop-
erty we’re using to order the data. There’s not a lot of scope for discussion about what
order dates come in, so this is not a useful example for plugging in an alternate com-
parison. However, string comparisons do vary a lot—different languages have different
ideas about what order letters come in, particularly when it comes to letters with ac-
cents. The .NET Framework class library offers a StringComparer class that can provide
an IComparer<string> implementation for any language and culture supported in .NET.
The following example uses this in conjunction with an overload of the OrderBy oper-
ator to sort the events by their title, using a string sorting order appropriate for the
French-speaking Canadian culture, and configured for case insensitivity:

CultureInfo cult = new CultureInfo("fr-CA");
// 2nd argument is true for case insensitivity
StringComparer comp = StringComparer.Create(cult, true);
var eventsByTitle = events.OrderBy(ev => ev.Title, comp);

There is no equivalent query expression—if you want to use anything other than the
default comparison for a type, you must use this overload of the OrderBy operator.

† This is very similar to IComparable<T>, introduced in the preceding chapter. But while objects that implement
IComparable<T> can themselves be compared with other objects of type T, an IComparer<T> compares two
objects of type T—the objects being compared are separate from the comparer.

278 | Chapter 8: LINQ

The OrderBy operator method always sorts in ascending order. To sort in descending
order, there’s an OrderByDescending operator.

If you want to use multiple sort criteria, as in Example 8-13, a different operator comes
into play: you need to use either ThenBy or ThenByDescending. This is because the
OrderBy and OrderByDescending operators discard the order of incoming elements and
impose the specified order from scratch—that’s the whole point of those operators.
Refining an ordering by adding further sort criteria is a different kind of operation,
hence the different operators. So the method-based equivalent of Example 8-13 would
look like this:

var eventsByStartTime = events.OrderBy(ev => ev.StartTime).
 ThenBy(ev => ev.Duration);

Ordering will cause LINQ to Objects to iterate through the whole source collection
before returning any elements—it can only sort items once it has seen all of the items.

Concatenation
Sometimes you’ll end up wanting to combine two sequences of values into one. LINQ
provides a very straightforward operator for this: Concat. There is no equivalent in the
query expression syntax. If you wanted to combine two lists of events into one, you
would use the code in Example 8-14.

Example 8-14. Concatenating two sequences

var allEvents = existingEvents.Concat(newEvents);

Note that this does not modify the inputs. This builds a new enumeration object that
returns all the elements from existingEvents, followed by all the elements from
newEvents. So this can be safer than the List<T>.AddRange method shown in Chap-
ter 7, because this doesn’t modify anything. (Conversely, if you were expecting Exam-
ple 8-14 to modify existingEvents, you will be disappointed.)

This is a good illustration of how LINQ uses the functional style descri-
bed earlier. Like mathematical functions, most LINQ operators
calculate their outputs without modifying their inputs. For example, if
you have two int variables called x and y, you would expect to be able
to calculate x+y without that calculation changing either x or y. Con-
catenation works the same way—you can produce a sequence that is
the concatenation of two inputs without changing those inputs.

As with most LINQ operators, concatenation uses deferred evaluation—it doesn’t start
asking its source enumerations for elements in advance. Only when you start to iterate
through the contents of allEvents will this start retrieving items from existingEvents.
(And it won’t start asking for anything from newEvents until it has retrieved all the
elements from existingEvents.)

LINQ Operators | 279

Grouping
LINQ provides the ability to take flat lists of data and group them. As Example 8-15
shows, we could use this to write a LINQ-based alternative to the GetEventsByDay
method shown in Chapter 7.

Example 8-15. Simple LINQ grouping

var eventsByDay = from ev in events
 group ev by ev.StartTime.Date;

This will arrange the objects in the events source into one group for each day.

The eventsByDay variable here ends up with a slightly different type than anything we’ve
seen before. It’s an IEnumerable<IGrouping<DateTimeOffset, CalendarEvent>>. So
eventsByDay is an enumeration, and it returns an item for each group found by the
group clause. Example 8-16 shows one way of using this. It iterates through the collec-
tion of groupings, and for each grouping it displays the Key property—the value by
which the items have been grouped—and then iterates through the items in the group.

Example 8-16. Iterating through grouped results

foreach (var day in eventsByDay)
{
 Console.WriteLine("Events for " + day.Key);
 foreach (var item in day)
 {
 Console.WriteLine(item.Title);
 }
}

This produces the following output:

Events for 7/11/2009 12:00:00 AM
Swing Dancing at the South Bank
Saturday Night Swing
Events for 7/12/2009 12:00:00 AM
Formula 1 German Grand Prix
Swing Dance Picnic
Events for 7/13/2009 12:00:00 AM
Stompin' at the 100 Club

This illustrates that the query in Example 8-15 has successfully grouped the events by
day, but let’s look at what returned in a little more detail. Each group is represented as
an IGrouping<TKey, TElement>, where TKey is the type of the expression used to group
the data—a DateTimeOffset in this case—and TElement is the type of the elements
making up the groups—CalendarEvent in this example. IGrouping<TKey, TElement>
derives from IEnumerable<TElement>, so you can enumerate through the contents of a
group like you would any other enumeration. (In fact, the only thing IGrouping<TKey,
TElement> adds is the Key property, which is the grouping value.) So the query in Ex-
ample 8-15 returns a sequence of sequences—one for each group (see Figure 8-1).

280 | Chapter 8: LINQ

While a LINQ query expression is allowed to end with a group clause, as Exam-
ple 8-15 does, it doesn’t have to finish there. If you would like to do further processing,
you can add an into keyword on the end, followed by an identifier. The continuation
of the query after a group ... into clause will iterate over the groups, and the identifier
effectively becomes a new range variable. Example 8-17 uses this to convert each group
into an array. (Calling ToArray on an IGrouping effectively discards the Key, and leaves
you with just an array containing that group’s contents. So this query ends up producing
an IEnumerable<CalendarEvent[]>—a collection of arrays.)

Figure 8-1. Result of groupby query

LINQ Operators | 281

Example 8-17. Continuing a grouped query with into

var eventsByDay = from ev in events
 group ev by ev.StartTime.Date into dayGroup
 select dayGroup.ToArray();

Like the ordering operators, grouping will cause LINQ to Objects to evaluate the whole
source sequence before returning any results.

Projections
The select clause’s job is to define how each item should look when it comes out of
the query. The official (if somewhat stuffy) term for this is projection. The simplest
possible kind of projection just leaves the items as they are, as shown in Example 8-18.

Example 8-18. Trivial projection

var projected = from ev in events
 select ev;

Earlier, you saw this kind of trivial select clause collapsing away to nothing. However,
that doesn’t happen here, because this is what’s called a degenerate query—it contains
nothing but a trivial projection. (Example 8-2 was different, because it contained a
where clause in addition to the trivial select.) LINQ never reduces a query down to
nothing at all, so when faced with a degenerate query, it leaves the trivial select in
place, even though it appears to have nothing to do. So Example 8-18 becomes a call
to the Select LINQ operator method:

var projected = events.Select(ev => ev);

But projections often have work to do. For example, if we want to pick out event titles,
we can write this:

var projected = from ev in events
 select ev.Title;

Again, this becomes a call to the Select LINQ operator method, with a slightly more
interesting projection lambda:

var projected = events.Select(ev => ev.Title);

We can also calculate new values in the select clause. This calculates the end time of
the events:

var projected = from ev in events
 select ev.StartTime + ev.Duration;

You can use any expression you like in the select clause. In fact, there’s not even any
obligation to use the range variable, although it’s likely to be a bit of a waste of time to
construct a query against a data source if you ultimately don’t use any data from that
source. But C# doesn’t care—any expression is allowed. The following slightly silly

282 | Chapter 8: LINQ

code generates one random number for each event, in a way that is entirely unrelated
to the event in question:

Random r = new Random();
var projected = from ev in events
 select r.Next();

You can, of course, construct a new object in the select clause. There’s one interesting
variation on this that often crops up in LINQ queries, which occurs when you want
the query to return multiple pieces of information for each item. For example, we might
want to display calendar events in a format where we show both the start and the end
times. This is slightly different from how the CalendarEvent class represents things—it
stores the duration rather than the end time. We could easily write a query that calcu-
lates the end time, but it wouldn’t be very useful to have just that time. We’d want all
the details—the title, the start time, and the end time.

In other words, we’d be transforming the data slightly. We’d be taking a stream of
objects where each item contains Title, StartTime, and Duration properties, and pro-
ducing one where each item contains a Title, StartTime, and EndTime. Example 8-19
does exactly this.

Example 8-19. Select clause with anonymous type

var projected = from ev in events
 select new
 {
 Title = ev.Title,
 StartTime = ev.StartTime,
 EndTime = ev.StartTime + ev.Duration
 };

This constructs a new object for each item. But while the new keyword is there, notice
that we’ve not specified the name of a type. All we have is the object initialization syntax
to populate various properties—the list of values in braces after the new keyword. We
haven’t even defined a type anywhere in these examples that has a Title, a StartTime,
and an EndTime property. And yet this compiles. And we can go on to use the results as
shown in Example 8-20.

Example 8-20. Using a collection with an anonymous item type

foreach (var item in projected)
{
 Console.WriteLine("Event {0} starts at {1} and ends at {2}",
 item.Title, item.StartTime, item.EndTime);
}

These two examples are using the anonymous type feature added in C# 3.0.

LINQ Operators | 283

Anonymous types

If we want to define a type to represent some information in our application, we would
normally use the class or struct keyword as described in Chapter 3. Typically, the type
definition would live in its own source file, and in a real project we would want to devise
unit tests to ensure that it works as expected. This might be enough to put you off the
idea of defining a type for use in a very narrow context, such as having a convenient
container for the information coming out of a query. But it’s often useful for the
select clause of a query just to pick out a few properties from the source items, possibly
transforming the data in some way to get it into a convenient representation.

Extracting just the properties you need can become important when
using LINQ with a database—database providers are typically able to
transform the projection into an equivalent SQL SELECT statement. But
if your LINQ query just fetches the whole row, it will end up fetching
every column whether you need it or not, placing an unnecessary extra
load on the database and network.

There’s a trade-off here. Is the effort of creating a type worth the benefits if you’re only
going to use it to hold the results of a query? If your code immediately does further
processing of the data, the type will be useful to only a handful of lines of code. But if
you don’t create the type, you have to deal with a compromise—you might not be able
to structure the information coming out of your query in exactly the way you want.

C# 3.0 shifts the balance in favor of creating a type in this scenario, by removing most
of the effort required, thanks to anonymous types. This is another language feature
added mainly for the benefit of LINQ, although you can use it in other scenarios if you
find it useful. An anonymous type is one that the C# compiler writes for you, based
on the properties in the object initializer list. So when the compiler sees this expression
from Example 8-19:

new
{
 Title = ev.Title,
 StartTime = ev.StartTime,
 EndTime = ev.StartTime + ev.Duration
};

it knows that it needs to supply a type, because we’ve not specified a type name after
the new keyword. It will create a new class definition, and will define properties for each
entry in the initializer. It will work out what types the properties should have from the
types of the expressions in the initializer. For example, the ev.Title expression evalu-
ates to a string, so it will add a property called Title of type string.

284 | Chapter 8: LINQ

Before generating a new anonymous type, the C# compiler checks to
see if it has already generated one with properties of the same name and
type, specified in the same order elsewhere in your project. If it has, it
just reuses that type. So if different parts of your code happen to end up
creating identical anonymous types, the compiler is smart enough to
share the type definition. (Normally, the order in which properties are
defined has no significance, but in the case of anonymous types, C#
considers two types to be equivalent only if the properties were specified
in the same order.)

The nice thing about this is that when we come to use the items in a collection based
on an anonymous type (such as in Example 8-20) IntelliSense and compile-time check-
ing work exactly as they always do—it’s just like working with a normal type, but we
didn’t have to write it.

From the point of view of the .NET Framework, the type generated by the C# compiler
is a perfectly ordinary type like any other. It neither knows nor cares that the compiler
wrote the class for us. It’s anonymous only from the point of view of our C# code—
the generated type does in fact have a name, it’s just a slightly odd-looking one. It’ll be
something like this:

<>f__AnonymousType0`3

The C# compiler deliberately picks a name for the type that would be illegal as a C#
class name (but which is still legal as far as .NET is concerned) in order to stop us from
trying to use the class by its name—that would be a bad thing to do, because the
compiler doesn’t guarantee to keep the name the same from one compilation to the
next.

The anonymity of the type name means that anonymous types are only any use within
a single method. Suppose you wanted to return an anonymous type (or an IEnumera
ble<SomeAnonymousType>) from a method—what would you write as the return type if
the type in question has no name? You could use Object, but the properties of the
anonymous type won’t be visible. The best you could do is use dynamic, which we
describe in Chapter 18. This would make it possible to access the properties, but with-
out the aid of compile-time type checking or IntelliSense. So the main purpose of
anonymous types is simply to provide a convenient way to get information from a query
to code later in the same method that does something with that information.

Anonymous types would not be very useful without the var keyword, another feature
introduced in C# 3.0. As we saw earlier, when you declare a local variable with the
var keyword, the compiler works out the type from the expression you use to initialize
the variable. To see why we need this for anonymous types to be useful, look at Ex-
ample 8-19—how would you declare the projected local variable if we weren’t using
var? It’s going to be some sort of IEnumerable<T>, but what’s T here? It’s an anonymous
type, so by definition we can’t write down its name. It’s interesting to see how Visual

LINQ Operators | 285

Studio reacts if we ask it to show us the type by hovering our mouse pointer over the
variable—Figure 8-2 shows the resultant data tip.

Visual Studio chooses to denote anonymous types with names such as 'a, 'b, and so
forth. These are not legal names—they’re just placeholders, and the data tip pop up
goes on to show the structure of the anonymous types they represent.

Whether or not you’re using anonymous types in your projections, there’s an alterna-
tive form of projection that you will sometimes find useful when dealing with multiple
sources.

Figure 8-2. How Visual Studio shows anonymous types

Using multiple sources

Earlier, Example 8-15 used a groupby clause to add some structure to a list of events—
the result was a list containing one group per day, with each group itself containing a
list of events. Sometimes it can be useful to go in the opposite direction—you may have
structured information that you would like to flatten into a single list. You can do this
in a query expression by writing multiple from clauses, as Example 8-21 shows.

Example 8-21. Flattening lists using multiple from clauses

var items = from day in eventsByday
 from item in day
 select item;

You can think of this as having roughly the same effect as the following code:

List<CalendarEvent> items = new List<CalendarEvent>();
foreach (IGrouping<DateTime, CalendarEvent> day in eventsByDay)
{
 foreach (CalendarEvent item in day)
 {
 items.Add(item);
 }
}

That’s not exactly how it works, because the LINQ query will use deferred execution—
it won’t start iterating through the source items until you start trying to iterate through
the query. The foreach loops, on the other hand, are eager—they build the entire flat-
tened list as soon as they run. But lazy versus eager aside, the set of items produced is
the same—for each item in the first source, every item in the second source will be
processed.

286 | Chapter 8: LINQ

Notice that this is very different from the concatenation operator shown
earlier. That also works with two sources, but it simply returns all the
items in the first source, followed by all the items in the second source.
But Example 8-21 will iterate through the source of the second from
clause once for every item in the source of the first from clause. (So con-
catenation and flattening are as different as addition and multiplica-
tion.) Moreover, the second from clause’s source expression typically
evaluates to a different result each time around.

In Example 8-21, the second from clause uses the range variable from the first from
clause as its source. This is a common technique—it’s what enables this style of query
to flatten a grouped structure. But it’s not mandatory—you can use any LINQ-capable
source you like; for example, any IEnumerable<T>. Example 8-22 uses the same source
array for both from clauses.

Example 8-22. Alternative use of multiple from clauses

int[] numbers = { 1, 2, 3, 4, 5 };
var multiplied = from x in numbers
 from y in numbers
 select x * y;
foreach (int n in multiplied)
{
 Console.WriteLine(n);
}

The source contains five numbers, so the resultant multiplied sequence contains 25
elements—the second from clause counts through all five numbers for each time around
the first from clause.

The LINQ operator method for flattening multiple sources is called SelectMany. The
equivalent of Example 8-22 looks like this:

var multiplied = numbers.SelectMany(
 x => numbers,
 (x, y) => x * y);

The first lambda is expected to return the collection over which the nested iteration
will be performed—the collection for the second from clause in the LINQ query. The
second lambda is the projection from the select clause in the query. In queries with a
trivial final projection, a simpler form is used, so the equivalent of Example 8-21 is:

var items = days.SelectMany(day => day);

Whether you’re using a multisource SelectMany or a simple single-source projection,
there’s a useful variant that lets your projection know each item’s position, by passing
a number into the projection.

LINQ Operators | 287

Numbering items

The Select and SelectMany LINQ operators both offer overloads that make it easy to
number items. Example 8-23 uses this to build a list of numbered event names.

Example 8-23. Adding item numbers

var numberedEvents = events.
 Select((ev, i) => string.Format("{0}: {1}", i + 1, ev.Title));

If we iterate over this, printing out each item:

foreach (string item in numberedEvents)
{
 Console.WriteLine(item);
}

the results look like this:

1: Swing Dancing at the South Bank
2: Formula 1 German Grand Prix
3: Swing Dance Picnic
4: Saturday Night Swing
5: Stompin' at the 100 Club

This illustrates how LINQ often makes for much more concise code than was possible
before C# 3.0. Remember that in Chapter 7, we wrote a function that takes an array
of strings and adds a number in a similar fashion. That required a loop with several
lines of code, and it worked only if we already happened to have a collection of strings.
Here we’ve turned a collection of CalendarEvents into a collection of numbered event
titles with just a single method call.

As you get to learn LINQ, you’ll find this happens quite a lot—situations in which you
might have written a loop, or a series of loops, can often turn into fairly simple LINQ
queries.

Zipping
The Zip operator is useful when you have two related sequences, where each element
in one sequence is somehow connected with the element at the same position in the
other sequence. You can unite the two sequences by zipping them back into one. Ob-
viously, the name has nothing to do with the popular ZIP compression format. This
operator is named after zippers of the kind used in clothing.

This might be useful with a race car telemetry application of the kind we discussed in
Chapter 2. You might end up with two distinct series of data produced by two different
measurement sources. For example, fuel level readings and lap time readings could be
two separate sequences, since such readings would likely be produced by different
instruments. But if you’re getting one reading per lap in each sequence, it might be
useful to combine these into a single sequence with one element per lap, as Exam-
ple 8-24 shows.

288 | Chapter 8: LINQ

Example 8-24. Zipping two sequences into one

IEnumerable<TimeSpan> lapTimes = GetLapTimes();
IEnumerable<double> fuelLevels = GetLapFuelLevels();

var lapInfo = lapTimes.Zip(fuelLevels, (time, fuel) =>
 new
 {
 LapTime = time,
 FuelLevel = fuel
 });

You invoke the Zip operator on one of the input streams, passing in the second stream
as the first argument. The second argument is a projection function—it’s similar to the
projections used with the Select operator, except it is passed two arguments, one for
each stream. So the lapInfo sequence produced by Example 8-24 will contain one item
per lap, where the items are of an anonymous type, containing both the LapTime and
the FuelLevel in a single item.

Since the two sequences are of equal length here—the number of laps completed—it’s
clear how long the output sequence will be, but what if the input lengths differ? The
Zip operator stops as soon as either one of the input sequences stops, so the shorter of
the two determines the length. Any spare elements in the longer stream will not be used.

Getting Selective
Sometimes you won’t want to work with an entire collection. For example, in an ap-
plication with limited screen space, you might want to show just the next three events
on the user’s calendar. While there is no way to do this directly in a query expression,
LINQ defines a Take operator for this purpose. As Example 8-25 shows, you can still
use the query syntax for most of the query, using the Take operator as the final stage.

Example 8-25. Taking the first few results of a query

var eventsByStart = from ev in events
 orderby ev.StartTime
 where ev.StartTime > DateTimeOffset.Now
 select ev;

var next3Events = eventsByStart.Take(3);

LINQ also defines a Skip operator which does the opposite of Take—it drops the first
three items (or however many you ask it to drop) and then returns all the rest.

If you’re interested in only the very first item, you may find the First operator more
convenient. If you were to call Take(1), the method would still return a collection of
items. So this code would not compile:

CalendarEvent nextEvent = eventsByStart.Take(1);

LINQ Operators | 289

You’d get the following compiler error:

CS0266: Cannot implicitly convert type 'System.Collections.Generic.IEnumerable<
 CalendarEvent>' to CalendarEvent'. An explicit conversion exists (are you
 missing a cast?)

In other words, Take always returns an IEnumerable<CalendarEvent>, even if we ask for
only one object. But this works:

CalendarEvent nextEvent = eventsByStart.First();

First gets the first element from the enumeration and returns that. (It then abandons
the enumerator—it doesn’t iterate all the way to the end of the sequence.)

You may run into situations where the list might be empty. For example, suppose you
want to show the user’s next appointment for today—it’s possible that there are no
more appointments. If you call First in this scenario, it will throw an exception. So
there’s also a FirstOrDefault operator, which returns the default value when there are
no elements (e.g., null, if you’re dealing with a reference type). The Last and
LastOrDefault operators are similar, except they return the very last element in the
sequence, or the default value in the case of an empty sequence.

A yet more specialized case is where you are expecting a sequence to contain no more
than one element. For example, suppose you modify the CalendarEvent class to add an
ID property intended to be used as a unique identifier for the event. (Most real calendar
systems have a concept of a unique ID to provide an unambiguous way of referring to
a particular calendar entry.) You might write this sort of query to find an item by ID:

var matchingItem = from ev in events
 where ev.ID == theItemWeWant
 select ev;

If the ID property is meant to be unique, we would hope that this query returns no more
than one item. The presence of two or more items would point to a problem. If you use
either the First or the FirstOrDefault operator, you’d never notice the problem—these
would pick the first item and silently ignore any more. As a general rule, you don’t want
to ignore signs of trouble. In this case, it would be better to use either Single or
SingleOrDefault. Single would be the right choice in cases where failure to find a match
would be an error, while SingleOrDefault would be appropriate if you do not neces-
sarily expect to find a match. Either will throw an InvalidOperationException if the
sequence contains more than one item. So given the previous query, you could use the
following:

CalendarEvent item = matchingItem.SingleOrDefault();

If a programming error causes multiple different calendar events to end up with the
same ID, this code will detect that problem. (And if your code contains no such prob-
lem, this will work in exactly the same way as FirstOrDefault.)

290 | Chapter 8: LINQ

Testing the Whole Collection
You may need to discover at runtime whether certain characteristics are true about any
or every element in a collection. For example, if the user is adding a new event to the
calendar, you might want to warn him if the event overlaps with any existing items.
First, we’ll write a helper function to do the date overlap test:

static bool TimesOverlap(DateTimeOffset startTime1, TimeSpan duration1,
 DateTimeOffset startTime2, TimeSpan duration2)
{
 DateTimeOffset end1 = startTime1 + duration1;
 DateTimeOffset end2 = startTime2 + duration2;

 return (startTime1 < startTime2) ?
 (end1 > startTime2) :
 (startTime1 < end2);
}

Then we can use this to see if any events overlap with the proposed time for a new entry:

DateTimeOffset newEventStart = new DateTimeOffset(2009, 7, 20, 19, 45, 00,
 TimeSpan.Zero);
TimeSpan newEventDuration = TimeSpan.FromHours(5);
bool overlaps = events.Any(
 ev => TimesOverlap(ev.StartTime, ev.Duration,
 newEventStart, newEventDuration));

The Any operator looks to see if there is at least one item for which the condition is true,
and it returns true if it finds one and false if it gets to the end of the collection without
having found a single item that meets the condition. So if overlaps ends up false here,
we know that events didn’t contain any items whose time overlapped with the proposed
new event time.

There’s also an All operator that returns true only if all of the items meet the condition.
We could also have used this for our overlap test—we’d just need to invert the sense
of the test:

bool noOverlaps = events.All(
 ev => !TimesOverlap(ev.StartTime, ev.Duration,
 newEventStart, newEventDuration));

The All operator returns true if you apply it to an empty sequence. This
surprises some people, but it’s difficult to say what the right behavior
is—what does it mean to ask if some fact is true about all the elements
if there are no elements? This operator’s definition takes the view that
it returns false if and only if at least one element does not meet the
condition. And while there is some logic to that, you would probably
feel misled if a company told you “All our customers think our widgets
are the best they’ve ever seen” but neglected to mention that it has no
customers.

LINQ Operators | 291

There’s an overload of the Any operator that doesn’t take a condition. You can use this
to ask the question: is there anything in this sequence? For example:

bool doIHaveToGetOutOfBedToday = eventsForToday.Any();

The Any and All operators are technically known as quantifiers. More
specifically, they are sometimes referred to as the existential quantifier
and the universal quantifier, respectively. You may also have come
across the common mathematical notation for these.

The existential quantifier is written as a backward E (∃), and is conven-
tionally pronounced “there exists.” This corresponds to the Any
operator—it’s true if at least one item exists in the set that meets the
condition.

The universal quantifier is written as an upside down A (∀), and is con-
ventionally pronounced “for all.” It corresponds to the All operator,
and is true if all the elements in some set meet the condition. The con-
vention that the universal quantifier is true for any empty set (i.e., that
All returns true when you give it no elements, regardless of the condi-
tion) has a splendid mathematical name: it is called a vacuous truth.

Quantifiers are special cases of a more general operation called aggregation—
aggregation operators perform calculations across all the elements in a set. The quan-
tifiers are singled out as special cases because they have the useful property that the
calculation can often terminate early: if you’re testing to see whether something is true
about all the elements in the set, and you find an element for which it’s not true, you
can stop right there. But for most whole-set operations that’s not true, so there are some
more general-purpose aggregation operators.

Aggregation
Aggregation operators perform calculations that involve every single element in a col-
lection, producing a single value as the result. This can be as simple as counting the
number of elements—this involves all the elements in the sense that you need to know
how many elements exist to get the correct count. And if you’re dealing with an
IEnumerable<T>, it is usually necessary to iterate through the whole collection because
in general, enumerable sources don’t know how many items they contain in advance.
So the Count operator iterates through the entire collection, and returns the number of
elements it found.

292 | Chapter 8: LINQ

LINQ to Objects has optimizations for some special cases. It looks for
an implementation of a standard ICollection<T> interface, which de-
fines a Count property. (This is distinct from the Count operator, which,
like all LINQ operators, is a method, not a property.) Collections such
as arrays and List<T> that know how many items they contain imple-
ment this interface. So the Count operator may be able to avoid having
to enumerate the whole collection by using the Count property. And
more generally, the nature of the Count operator depends on the
source—database LINQ providers can arrange for the database to cal-
culate the correct value for Count, avoiding the need to churn through
an entire table just to count rows. But in cases where there’s no way of
knowing the count up front, such as the file enumeration in Exam-
ple 8-1, Count can take a long time to complete.

LINQ defines some specialized aggregation operators for numeric values. The Sum op-
erator returns the sum of the values of a given expression for all items in a collection.
For example, if you want to find out how many hours of meetings you have in a col-
lection of events, you could do this:

double totalHours = events.Sum(ev => ev.Duration.TotalHours);

Average calculates the same sum, but then divides the result by the number of items,
returning the mean value. Min and Max return the lowest and highest of the values cal-
culated by the expression.

There’s also a general-purpose aggregation operator called Aggregate. This lets you
perform any operation that builds up some value by performing some calculation on
each item in turn. In fact, Aggregate is all you really need—the other aggregation op-
erators are simply more convenient.‡ For instance, Example 8-26 shows how to im-
plement Count using Aggregate.

Example 8-26. Implementing Count with Aggregate

int count = events.Aggregate(0, (c, ev) => c + 1);

The first argument here is a seed value—it’s the starting point for the value that will be
built up as the aggregation runs. In this case, we’re building up a count, so we start at
0. You can use any value of any type here—Aggregate is a generic method that lets you
use whatever type you like.

The second argument is a delegate that will be invoked once for each item. It will be
passed the current aggregated value (initially the seed value) and the current item. And
then whatever this delegate returns becomes the new aggregated value, and will be
passed in as the first argument when that delegate is called for the next item, and so

‡ That’s true for LINQ to Objects. However, database LINQ providers may implement Sum, Average, and so
on using corresponding database query features. They might not be able to do this optimization if you use
the general-purpose Aggregate operator.

LINQ Operators | 293

on. So in this example, the aggregated value starts off at 0, and then we add 1 each time
around. The final result is therefore the number of items.

Example 8-26 doesn’t look at the individual items—it just counts them. If we wanted
to implement Sum, we’d need to add a value from the source item to the running total
instead of just adding 1:

double hours = events.Aggregate(0.0,
 (total, ev) => total + ev.Duration.TotalHours);

Calculating an average is a little more involved—we need to maintain both a running
total and the count of the number of elements we’ve seen, which we can do by using
an anonymous type as the aggregation value. And then we can use an overload of
Aggregate that lets us provide a separate delegate to be used to determine the final
value—that gives us the opportunity to divide the total by the count:

double averageHours = events.Aggregate(
 new { TotalHours = 0.0, Count = 0 },
 (agg, ev) => new
 {
 TotalHours = agg.TotalHours + ev.Duration.TotalHours,
 Count = agg.Count + 1
 },
 (agg) => agg.TotalHours / agg.Count);

Obviously, it’s easier to use the specialized Count, Sum, and Average operators, but this
illustrates the flexibility of Aggregate.

While LINQ calls this mechanism Aggregate, it is often known by other
names. In functional programming languages, it’s sometimes called
fold or reduce. The latter name in particular has become slightly better
known in recent years thanks to Google’s much-publicized use of a
programming system called map/reduce. (LINQ’s name for map is
Select, incidentally.) LINQ’s names weren’t chosen to be different for
the sake of it—they are more consistent with these concepts’ names in
database query languages. Most professional developers are currently
likely to have rather more experience with SQL than, say, Haskell or
LISP.

Set Operations
LINQ provides operators for some common set-based operations. If you have two col-
lections, and you want to discover all the elements that are present in both collections,
you can use the Intersect operator:

var inBoth = set1.Intersect(set2);

It also offers a Union operator, which provides all the elements from both input sets,
but when it comes to the second set it will skip any elements that were already returned
because they were also in the first set. So you could think of this as being like Concat,

294 | Chapter 8: LINQ

except it detects and removes duplicates. In a similar vein, there’s the Distinct
operator—this works on a single collection, rather than a pair of collections.
Distinct ensures that it returns any given element only once, so if your input collection
happens to contain duplicate entries, Distinct will skip over those.

Finally, the Except operator returns only those elements from the first set that do not
also appear in the second set.

Joining
LINQ supports joining of sources, in the sense typically associated with databases—
given two sets of items, you can form a new set by combining the items from each set
that have the same value for some attribute. This is a feature that tends not to get a lot
of use when working with object models—relationships between objects are usually
represented with references exposed via properties, so there’s not much need for joins.
But joins can become much more important if you’re using LINQ with data from a
relational database. (Although the Entity Framework, which we describe in a later
chapter, is often able to represent relationships between tables as object references. It’ll
use joins at the database level under the covers, but you may not need to use them
explicitly in LINQ all that often.)

Even though joins are typically most useful when working with data structured for
storage in a relational database, you can still perform joins across objects—it’s possible
with LINQ to Objects even if it’s not all that common.

In our hypothetical calendar application, imagine that you want to add a feature where
you can reconcile events in the user’s local calendar with events retrieved from his
phone’s calendar, and you need to try to work out which of the imported events from
the phone correspond to items already in the calendar. You might find that the only
way to do this is to look for events with the same name that occur at the same time, in
which case you might be able to use a join to build up a list of events from the two
sources that are logically the same events:

var pairs = from localEvent in events
 join phoneEvent in phoneEvents
 on new { Title = localEvent.Title, Start = localEvent.StartTime }
 equals new { Title = phoneEvent.Name, Start = phoneEvent.Time }
 select new { Local = localEvent, Phone = phoneEvent };

A LINQ join expects to be able to compare just a single object in order to determine
whether two items should be joined. But we want to join items only when both the title
and the time match. So this example builds an anonymously typed object to hold both
values in order to be able to provide LINQ with the single object it expects. (You can
use this technique for the grouping operators too, incidentally.) Note that this example
also illustrates how you would deal with the relevant properties having different names.
You can imagine that the imported phone events might use different property names
because you might need to use some third-party import library, so this example shows

LINQ Operators | 295

how the code would look if it called the relevant properties Name and Time instead of
Title and StartTime. We fix this by mapping the properties from the two sources into
anonymous types that have the same structure.

Conversions
Sometimes it’s necessary to convert the results of a LINQ query into a specific collection
type. For example, you might have code that expects an array or a List<T>. You can
still use LINQ queries when creating these kinds of collections, thanks to the standard
ToArray and ToList operators. Example 8-17 used ToArray to convert a grouping into
an array of objects. We could extend that further to convert the query into an array of
arrays, just like the original example from Chapter 7:

var eventsByDay = from ev in events
 group ev by ev.StartTime.Date into dayGroup
 select dayGroup.ToArray();

CalendarEvent[][] arrayOfEventsByDay = eventsByDay.ToArray();

In this example, eventsByDay is of type IEnumerable<CalendarEvent[]>. The final line
then turns the enumeration into an array of arrays—a CalendarEvent[][].

Remember that LINQ queries typically use deferred execution—they don’t start doing
any work until you start asking them for elements. But by calling ToList or ToArray,
you will fully execute the query, because it builds the entire list or array in one go.

As well as providing conversion operators for getting data out of LINQ and into other
data types, there are some operators for getting data into LINQ’s world. Sometimes
you will come across types that provide only the old .NET 1.x-style nongeneric
IEnumerable interface. This is problematic for LINQ because there’s no way for it to
know what kinds of objects it will find. You might happen to know that a collection
will always contain CalendarEvent objects, but this would be invisible to LINQ if you
are working with a library that uses old-style collections. So to work around this, LINQ
defines a Cast operator—you can use this to tell LINQ what sort of items you believe
are in the collection:

IEnumerable oldEnum = GetCollectionFromSomewhere();
var items = from ev in oldEnum.Cast<CalendarEvent>()
 orderby ev.StartTime
 select ev;

As you would expect, this will throw an InvalidCastException if it discovers any ele-
ments in the collection that are not of the type you said. But be aware that like most
LINQ operators, Cast uses deferred execution—it casts the elements one at a time as
they are requested, so any mismatch will not be discovered at the point at which you
call Cast. The exception will be thrown at the point at which you reach the first non-
matching item while enumerating the query.

296 | Chapter 8: LINQ

Summary
LINQ provides a convenient syntax for performing common operations on collections
of data. The query expression syntax is reminiscent of database query languages, and
can be used in conjunction with databases, as later chapters will show. But these queries
are frequently used on objects in memory. The compiler transforms the query syntax
into a series of method calls, meaning that the choice of LINQ implementation is de-
termined by context—you can write your own custom LINQ provider, or use a built-
in provider such as LINQ to Objects, LINQ to SQL, or LINQ to XML.

All providers implement standard operators—methods with well-known names and
signatures that implement various common query features. The features include filter-
ing, sorting, grouping, and the ability to transform data through a projection. You can
also perform test and aggregation operations across entire sets. Queries can be
composed—most operators’ output can be used as input to other operators. LINQ uses
a functional style to maximize the flexibility of composition.

Summary | 297

CHAPTER 9

Collection Classes

In the preceding two chapters we saw how to store information in arrays and lists, and
how to sort, search, and process that information using LINQ. Important as sequential
lists and rectangular arrays are, they don’t accommodate every possible requirement
you could have for storing and structuring data. So in this final chapter on working
with collections, we’ll look at some of the other collection classes offered by the .NET
Framework.

Dictionaries
A dictionary is a collection that enables you to look up information associated with
some kind of value. .NET calls this sort of collection a dictionary because it is remi-
niscent of a traditional printed dictionary: the information is structured to make it easy
to find the entry for a particular word—if you know what word you’re looking for, you
can find it very quickly even among tens of thousands of definitions. The information
you find when you’ve looked up the word depends on the sort of dictionary you
bought—it might provide a definition of the word, but other kinds exist, such as dic-
tionaries of quotations, or of etymology.

Likewise, a .NET dictionary collection is structured to enable quick and easy lookup
of entries. The syntax looks very similar to array access, but where you’d expect to see
a number, the index can be something else, such as a string, as shown in Example 9-1.

Example 9-1. Looking up an entry in a dictionary

string definition = myDictionary["sea"];

Just as printed dictionaries vary in what you get when you look up a word, so can .NET
dictionaries. The Dictionary type in the System.Collections.Generic namespace is a
generic type, letting you choose the type for both the key—the value used for the
index—and the value associated with the index. (Note that there are some restrictions
regarding the key type—see the sidebar on the next page.) Example 9-1, which models

299

a traditional printed dictionary, uses strings for the index, and expects a string as the
result, so myDictionary in that example would be defined as shown in Example 9-2.

Example 9-2. A dictionary with string keys and string values

Dictionary<string, string> myDictionary = new Dictionary<string, string>();

Keys, Comparison, and Hashes
To be able to look up entries quickly, dictionaries impose a couple of requirements on
keys. First, a dictionary entry’s key must not change in a way that affects comparisons.
(This often just means that you should never change a key. However, it’s technically
possible to build a type for which certain kinds of changes have no impact on compar-
isons performed by the Equals methods. Such changes are invisible to the dictionary.)
Second, it should provide a good hash function.

To understand the first requirement—that for comparison purposes, keys must not
change—consider what changing a key would mean in a printed dictionary. Suppose
you look up the entry for bug in your dictionary, and then you cross out the word
bug and write feature in its place. The usual way of looking up words will now fail for
this entry—the entry was positioned in exactly the right place for when the key was
bug. Anyone looking up feature will not think to look in the location for your amended
item. And it’s the same with a dictionary collection—to enable fast lookup, dictionaries
create an internal structure based on the keys items had when they were added to the
dictionary. It has no way of knowing when you’ve changed a key value. If you really
need to do this, you should remove the entry, and then add it back with the new key—
this gives the dictionary a chance to rebuild its internal lookup data structures.

This requirement is most easily met by using an immutable type, such as string, or any
of the built-in numeric types.

The second requirement—that key types should have a good hash function—is a bit
less obvious, and has to do with how dictionary collections implement fast lookup. The
base System.Object class defines a virtual method called GetHashCode, whose job is to
return an int whose value loosely represents the value of the object. GetHashCode is
required to be consistent with the Equals method (also defined by System.Object)—
two objects or values that are equal according to Equals are required to return the same
hash code. Those are the rules, and dictionaries will not work if you break them.

This means that if you override Equals, you are required to override GetHashCode, and
vice versa.

The rules about hash codes for items that are not equal are more flexible. Ideally, non-
equal items should return nonequal hash codes, but clearly that’s not always possible:
a long can have any of several quintillion distinct values, but a hash code is an int,
which has merely a few billion possible values. So inevitably there will be hash
collisions—nonequal values that happen to have equal hash codes. For example, long
returns the same hash code for the values 4,294,967,296 and 1.

GetHashCode implementations should try to minimize hash collisions. The reason is that
dictionaries use the hash code to work out where to put the entry—in the printed

300 | Chapter 9: Collection Classes

dictionary analogy the hash code effectively tells it on which page the entry belongs.
Hash collisions mean dictionary entries share a page, and the dictionary has to spend
time scanning through the entries to find the right one. The fewer hash collisions you
have, the faster dictionaries work.

If you use built-in numeric types such as int as keys, or if you use string, you can safely
ignore all of this because these types provide good hash codes. You need to care about
this only if you plan to use a custom type which defines its own notion of equality (i.e.,
that overrides Equals).

When you start using collection types that require multiple generic type arguments
such as this, specifying the full type name in the variable declaration and then again in
the constructor starts to look a bit verbose, so if you’re using a dictionary with a local
variable, you might prefer to use the var keyword introduced in C# 3.0, as shown in
Example 9-3.

Example 9-3. Avoiding repetitive strain injury with var

var myDictionary = new Dictionary<string, string>();

Remember, the var keyword simply asks C# to work out the variable’s type by looking
at the expression you’re using to initialize the variable. So Example 9-3 is exactly equiv-
alent to Example 9-2.

Just as arrays and other lists can be initialized with a list of values in braces, you can
also provide an initializer list for a dictionary. As Example 9-4 shows, you must provide
both a key and a value for each entry, so each entry is contained within nested braces
to keep the key/value grouping clear.

Example 9-4. Dictionary initializer list

var myDictionary = new Dictionary<string, string>()
{
 { "dog", "Not a cat." },
 { "sea", "Big blue wobbly thing that mermaids live in." }
};

Storing individual items in a dictionary also uses an array-like syntax:

myDictionary["sea"] = "Big blue wobbly thing that mermaids live in.";

As you may already have guessed, dictionaries exploit the C# indexer feature we saw
in Chapter 8.

Common Dictionary Uses
Dictionaries are extremely useful tools, because the situations they deal with—anyplace
something is associated with something else—crop up all the time. They are so widely
used that it’s helpful to look at some common concrete examples.

Dictionaries | 301

Looking up values

Computer systems often use inscrutable identifiers where people would normally use
a name. For example, imagine a computer system for managing patients in a hospital.
This system would need to maintain a list of appointments, and it would be useful for
the hospital’s reception staff to be able to tell arriving patients where to go for their
appointment. So the system would need to know about things such as buildings and
departments—radiography, physiotherapy, and so on.

The system will usually have some sort of unique identifier for entities such as these in
order to avoid ambiguity and ensure data integrity. But users of the system will most
likely want to know that an appointment is in the Dr. Marvin Munroe Memorial Build-
ing, rather than, say, the building with ID 49. So the user interface will need to convert
the ID to text.

The information about which ID corresponds to which building typically belongs in a
database, or possibly a configuration file. You wouldn’t want to bake the list into a big
switch statement in the code, as that would make it hard to support multiple customers,
and would also need a new software release anytime a building is built or renamed.

The user interface could just look up the name in the database every time it needs to
display an appointment’s information, but there are a few problems with this. First,
the computer running the UI might not have access to the database—if the UI is written
as a client-side application in WPF or Windows Forms, there’s a good chance that it
won’t—a lot of companies put databases behind firewalls that restrict access even on
the internal network. And even if it did, making a request to the server for each ID-
based field takes time—in a form with several such fields, you could easily end up
causing a noticeable delay. And this would be unnecessary for data that’s not expected
to change from day to day.

A dictionary can provide a better solution here. When the application starts up, it can
load a dictionary to go from an ID to a name. Translating an ID to a displayable name
then becomes as simple as this:

string buildingName = buildingIdToNameMap[buildingId];

As for how you would load this dictionary in the first place, that’ll depend on where
the data is stored. Whether it’s coming from a file, a database, a web service, or some-
where else, you can use LINQ to initialize a dictionary—we’ll see how to do that in
“Dictionaries and LINQ.”

Caching

Dictionaries are often used to cache information that is slow to fetch or create. Infor-
mation can be placed in a dictionary the first time it is loaded, allowing an application
to avoid that cost the next time the information is required. For example, suppose a
doctor is with a patient, and wants to look at information regarding recent tests or
medical procedures the patient has undergone. This will typically involve requesting

302 | Chapter 9: Collection Classes

records from some server to describe these patient encounters, and you might find that
the application can be made considerably more responsive by keeping hold of the re-
cords on the client side after they have been requested so that they don’t have to be
looked up again and again as the doctor scrolls through a list of records.

This is a very similar idea to the lookup usage we described earlier, but there are two
important differences. First, caches usually need some sort of policy that decides when
to remove data from the cache—if we add every record we load into the cache and
never clear out old ones, the cache will consume more memory over time, slowing the
program down, which is the opposite of the intended effect. The appropriate policy for
removing items from a cache will be application-specific. In a patient record viewing
application, the best approach might be to clear the cache as soon as the doctor starts
looking up information for a new patient, since that suggests the doctor has moved on
to a new appointment and therefore won’t be looking at the previous patient’s details
anytime soon. But that policy works only because of how this particular system is
used—other systems may require other mechanisms. Another popular heuristic is to
set an upper limit on either the number of entries or the total size of the data in a cache,
and to remove items based on when they were last retrieved.

The second difference between using a dictionary to cache data rather than to look up
preloaded data is that in caching scenarios, the data involved is often more dynamic.
A list of known countries won’t change very often, but patient records might change
while in use, particularly if the patient is currently in the hospital. So when caching
copies of information locally in a dictionary, you need to have some way of dealing
with the fact that the information in the cache might be stale. (For example, although
caching patient records locally would be useful, your application might need to deal
with the possibility that new test results become available while the patient is with the
doctor.) As with removal policy, detection of stale data requires application-specific
logic.

For example, some data might never change—accounting data usually works this way,
because even when data is discovered to be incorrect, it’s not usually modified. Legal
auditing requirements usually mean you have to fix problems by adding a new ac-
counting record that corrects the old one. So for this sort of entry, you know that a
cache of any given record will never be stale. (Newer records might exist that supersede
the cached record you have, but the cache of that record will still be consistent with
whatever is in the database for that entry.)

Sometimes it might be possible to perform a relatively cheap test to discover whether
the cached record is consistent with the information on a server. HTTP supports this—
a client can send a request with an If-Modified-Since header, containing the date at
which the cached information was known to be up-to-date. If the server has no newer
information, it sends a very short reply to confirm this, and will not send a new copy
of the data. Web browser caches use this to make web pages you’ve previously visited
load faster, while ensuring that you always see the most recent version of the page.

Dictionaries | 303

But you may simply have to guess. Sometimes the best staleness heuristic available to
you might be something such as “If the cached record we have is more than 20 minutes
old, let’s get a fresh copy from the server.” But you need to be careful with this approach.
Guesswork can sometimes lead to a cache that offers no useful performance improve-
ments, or which produces data that is too stale to be useful, or both.

Regardless of the precise details of your cache removal and staleness policies, the ap-
proach will look something like Example 9-5. (The Record type in this example is not
a class library type, by the way. It’s just for illustration—it would be the class for what-
ever data you want to cache.)

Example 9-5. Using a dictionary for caching

class RecordCache
{
 private Dictionary<int, Record> cachedRecords =
 new Dictionary<int, Record>();

 public Record GetRecord(int recordId)
 {
 Record result;
 if (cachedRecords.TryGetValue(recordId, out result))
 {
 // Found item in cache, but is it stale?
 if (IsStale(result))
 {
 result = null;
 }
 }

 if (result == null)
 {
 result = LoadRecord(recordId);
 // Add newly loaded record to cache
 cachedRecords[recordId] = result;
 }
 DiscardAnyOldCacheEntries();

 return result;
 }

 private Record LoadRecord(int recordId)
 {
 ... Code to load the record would go here ...
 }

 private bool IsStale(Record result)
 {
 ... Code to work out whether the record is stale would go here ...
 }

304 | Chapter 9: Collection Classes

 private void DiscardAnyOldCacheEntries()
 {
 ... Cache removal policy code would go here ...
 }
}

Notice that this code does not use the indexer to look up a cache entry. Instead, it uses
a method called TryGetValue. You use this when you’re not sure if the dictionary will
contain the entry you’re looking for—in this case, the entry won’t be present the first
time we look it up. (The dictionary would throw an exception if we use the indexer to
look up a value that’s not present.) TryGetValue returns true if an entry for the given
key was found, and false if not. Notice that its second argument uses the out qualifier
and it uses this to return the item when it’s found, or a null reference when it’s not
found.

You might be wondering why TryGetValue doesn’t just use a null return
value to indicate that a record wasn’t found, rather than this slightly
clumsy arrangement with a bool return value and an out argument. But
that wouldn’t work with value types, which cannot be null. Dictionaries
can hold either reference types or value types.

Dynamic properties

Another common use for a dictionary is when you want something that works like a
property, but where the set of available properties is not necessarily fixed. For example,
WCF is designed to send and receive messages over a wide range of network technol-
ogies, each of which may have its own unique characteristics. So WCF defines some
normal properties and methods to deal with aspects of communication that are com-
mon to most scenarios, but also provides a dictionary of dynamic properties to handle
transport-specific scenarios.

For example, if you are using WCF with HTTP-based communication, you might want
your client code to be able to modify the User-Agent header. This header is specific to
HTTP, and so WCF doesn’t provide a property for this as part of its programming
model, because it wouldn’t do anything for most network protocols. Instead, you con-
trol this with a dynamic property, added via the WCF Message type’s Properties dic-
tionary, as Example 9-6 shows.

Example 9-6. Setting a dynamic property on a WCF message

Message wcfMessage = CreateMessageSomehow();

HttpRequestMessageProperty reqProps = new HttpRequestMessageProperty();
reqProps.Headers.Add(HttpRequestHeader.UserAgent, "my user agent");

wcfMessage.Properties[HttpRequestMessageProperty.Name] = reqProps;

Dictionaries | 305

C# 4.0 introduces an alternative way to support dynamic properties,
through the dynamic keyword (which we will describe in Chapter 18).
This makes it possible to use normal C# property access syntax with
properties whose availability is determined at runtime. So you might
think dynamic makes dictionaries redundant. In practice, dynamic is nor-
mally used only when interacting with dynamic programming systems
such as scripting languages, so it’s not based on .NET’s dictionary
mechanisms.

Sparse arrays

The final common scenario we’ll look at for dictionaries is to provide efficient storage
for a sparse array. A sparse array is indexed by an integer, like a normal array, but only
a tiny fraction of its elements contain anything other than the default value. For a
numeric element type that would mean the array is mostly zeros, while for a reference
type it would be mostly nulls.

As an example of where this might be useful, consider a spreadsheet. When you create
a new spreadsheet, it appears to be a large expanse of cells. But it’s not really storing
information for every cell. I just ran Microsoft Excel, pressed Ctrl-G to go to a particular
cell and typed in XFD1000000, and then entered a value for that cell. This goes to the
16,384th column (which is as wide as Excel 2007 can go), and the 1 millionth row. Yet
despite spanning more than 16 billion cells, the file is only 8 KB. And that’s because it
doesn’t really contain all the cells—it only stores information for the cells that contain
something.

The spreadsheet is sparse—it is mostly empty. And it uses a representation that makes
efficient use of space when the data is sparse.

If you try to create a rectangular array with 16,384 columns and 1 million rows, you’ll
get an exception as such an array would go over the .NET 4 upper size limit for any
single array of 2 GB. A newly created array always contains default values for all of its
elements, so the information it contains is always sparse to start with—sparseness is a
characteristic of the data, rather than the storage mechanism, but the fact that we simply
cannot create a new, empty array this large demonstrates that a normal array doesn’t
store sparse information efficiently.

There is no built-in type designed specifically for storing sparse data, but we can use a
dictionary to make such a thing. Example 9-7 uses a dictionary to provide storage for
a single-dimensional sparse array of double elements. It uses long as the index argument
type to enable the array to grow to a logical size that is larger than would be possible
with an int, which tops out at around 2.1 billion.

Example 9-7. A sparse array of numbers

class SparseArray
{
 private Dictionary<long, double> nonEmptyValues =

306 | Chapter 9: Collection Classes

 new Dictionary<long, double>();

 public double this[long index]
 {
 get
 {
 double result;
 nonEmptyValues.TryGetValue(index, out result);
 return result;
 }
 set
 {
 nonEmptyValues[index] = value;
 }
 }
}

Notice that this example doesn’t bother to check the return value from TryGetValue.
That’s because when it fails to find the entry, it sets the result to the default value, and
in the case of a double, that means 0. And 0 is what we want to return for an entry
whose value has not been set yet.

The following code uses the SparseArray class:

SparseArray big = new SparseArray();
big[0] = 123;
big[10000000000] = 456;

Console.WriteLine(big[0]);
Console.WriteLine(big[2]);
Console.WriteLine(big[10000000000]);

This sets the value of the first element, and also the element with an index of 10 billion—
this simply isn’t possible with an ordinary array. And yet it works fine here, with min-
imal memory usage. The code prints out values for three indexes, including one that
hasn’t been set. Here are the results:

123
0
456

Reading the value that hasn’t been set returns the default value of 0, as required.

Some arrays will be sparser than others, and there will inevitably come
a point of insufficient sparseness at which this dictionary-based ap-
proach will end up being less efficient than simply using a large array.
It’s hard to predict where the dividing line between the two techniques
will fall, as it will depend on factors such as the type and quantity of
data involved, and the range of index values. As with any implementa-
tion choice made on the grounds of efficiency, you should compare the
performance against the simpler approach to find out whether you’re
getting the benefit you hoped for.

Dictionaries | 307

IDictionary<TKey, TValue>
The examples we’ve seen so far have all used the Dictionary type defined in the
System.Collections.Generic namespace. But that’s not the only dictionary. As we saw
a couple of chapters ago, the IEnumerable<T> type lets us write polymorphic code that
can work with any sequential collection class. We can do the same with a dictionary—
the .NET Framework class library defines an interface called IDictionary<TKey,
TValue>, which is reproduced in Example 9-8.

Example 9-8. IDictionary<TKey, TValue>

namespace System.Collections.Generic
{
 public interface IDictionary<TKey, TValue> :
 ICollection<KeyValuePair<TKey, TValue>>,
 IEnumerable<KeyValuePair<TKey, TValue>>,
 IEnumerable
 {

 void Add(TKey key, TValue value);
 bool ContainsKey(TKey key);
 bool Remove(TKey key);
 bool TryGetValue(TKey key, out TValue value);

 TValue this[TKey key] { get; set; }
 ICollection<TKey> Keys { get; }
 ICollection<TValue> Values { get; }
 }
}

You can see the indexer—TValue this[TKey]—and the TryGetValue method that we
already looked at. But as you can see, dictionaries also implement other useful standard
features.

The Add method adds a new entry to the dictionary. This might seem redundant because
you can add new entries with the indexer, but the difference is that the indexer will
happily overwrite an existing value. But if you call Add, you are declaring that you believe
this to be a brand-new entry, so the method will throw an exception if the dictionary
already contained a value for the specified key.

There are members for helping you discover what’s already in the dictionary—you can
get a list of all the keys and values from the Keys and Values properties. Both of these
implement ICollection<T>, which is a specialized version of IEnumerable<T> that adds
in useful members such as Count, Contains, and CopyTo.

Notice also that IDictionary<TKey, TValue> derives from IEnumerable<KeyPair
Value<TKey, TValue>>. This means it’s possible to enumerate through the contents of
a dictionary with a foreach loop. The KeyPairValue<TKey, TValue> items returned by
the enumeration just package the key and associated value into a single struct. We could

308 | Chapter 9: Collection Classes

add the method in Example 9-9 to the class in Example 9-7, in order to print out just
those elements with a nondefault value.

Example 9-9. Iterating through a dictionary’s contents

public void ShowArrayContents()
{
 foreach (var item in nonEmptyValues)
 {
 Console.WriteLine("Key: '{0}', Value: '{1}'",
 item.Key, item.Value);
 }
}

Remember, the presence of IEnumerable<T> is all that LINQ to Objects needs, so we
can use dictionaries with LINQ.

Dictionaries and LINQ
Because all IDictionary<TKey, TValue> implementations are also enumerable, we can
run LINQ queries against them. Given the RecordCache class in Example 9-5, we might
choose to implement the cache item removal policy as shown in Example 9-10.

Example 9-10. LINQ query with dictionary source

private void DiscardAnyOldCacheEntries()
{
 // Calling ToList() on source in order to query a copy
 // of the enumeration, to avoid exceptions due to calling
 // Remove in the foreach loop that follows.
 var staleKeys = from entry in cachedRecords.ToList()
 where IsStale(entry.Value)
 select entry.Key;
 foreach (int staleKey in staleKeys)
 {
 cachedRecords.Remove(staleKey);
 }
}

But it’s also possible to create new dictionaries with LINQ queries. Example 9-11 il-
lustrates how to use the standard ToDictionary LINQ operator.

Example 9-11. LINQ’s ToDictionary operator

IDictionary<int, string> buildingIdToNameMap =
 MyDataSource.Buildings.ToDictionary(
 building => building.ID,
 building => building.Name);

This example presumes that MyDataSource is some data source class that provides a
queryable collection containing a list of buildings. Since this information would typi-
cally be stored in a database, you would probably use a database LINQ provider such

Dictionaries | 309

as LINQ to Entities or LINQ to SQL. The nature of the source doesn’t greatly matter,
though—the mechanism for extracting the resources into a dictionary object are the
same in any case. The ToDictionary operator needs to be told how to extract the key
from each item in the sequence. Here we’ve provided a lambda expression that retrieves
the ID property—again, this property would probably be generated by a database map-
ping tool such as the ones provided by the Entity Framework or LINQ to SQL. (We
will be looking at data access technologies in a later chapter.) This example supplies a
second lambda, which chooses the value—here we pick the Name property. This second
lambda is optional—if you don’t provide it, ToDictionary will just use the entire source
item from the stream as the value—so in this example, leaving out the second lambda
would cause ToDictionary to return an IDictionary<int, Building> (where Building is
whatever type of object MyDataSource.Buildings provides).

The code in Example 9-11 produces the same result as this:

var buildingIdToNameMap = new Dictionary<int, string>();
foreach (var building in MyDataSource.Buildings)
{
 buildingIdToNameMap.Add(building.ID, building.Name);
}

HashSet and SortedSet
HashSet<T> is a collection of distinct values. If you add the same value twice, it will
ignore the second add, allowing any given value to be added only once. You could use
this to ensure uniqueness—for example, imagine an online chat server. If you wanted
to make sure that usernames are unique, you could maintain a HashSet<string> of
usernames used so far, and check that a new user’s chosen name isn’t already in use by
calling the hash set’s Contains method.

You might notice that List<T> offers a Contains method, and so with a
little extra code, you could implement a uniqueness check using
List<T>. However, HashSet<T> uses the same hash-code-based fast
lookup as a dictionary, so HashSet<T> will be faster for large sets than
List<T>.

HashSet<T> was added in .NET 3.5. Prior to that, people tended to use a dictionary with
nothing useful in the value as a way of getting fast hash-code-based uniqueness testing.

.NET 4 adds SortedSet<T>, which is very similar to HashSet<T>, but adds the feature
that if you iterate through the items in the set, they will come out in order. (You can
provide an IComparer<T> to define the required order, or you can use self-ordering
types.) Obviously, you could achieve the same effect by applying the OrderBy LINQ
operator to a HashSet<T>, but SortedSet<T> sorts the items as they are added, meaning
that they’re already sorted by the time you want to iterate over them.

310 | Chapter 9: Collection Classes

Both HashSet<T> and SortedSet<T> offer various handy set-based methods. You can
determine whether an IEnumerable<T> is a subset of (i.e., all its elements are also found
in) a set with the IsSubsetOf, for example. The available methods are defined by the
common ISet<T> interface, reproduced in Example 9-12.

Example 9-12. ISet<T>

namespace System.Collections.Generic
{
 public interface ISet<T> : ICollection<T>, IEnumerable<T>, IEnumerable
 {
 bool Add(T item);
 void ExceptWith(IEnumerable<T> other);
 void IntersectWith(IEnumerable<T> other);
 bool IsProperSubsetOf(IEnumerable<T> other);
 bool IsProperSupersetOf(IEnumerable<T> other);
 bool IsSubsetOf(IEnumerable<T> other);
 bool IsSupersetOf(IEnumerable<T> other);
 bool Overlaps(IEnumerable<T> other);
 bool SetEquals(IEnumerable<T> other);
 void SymmetricExceptWith(IEnumerable<T> other);
 void UnionWith(IEnumerable<T> other);
 }
}

Queues
Queue<T> is a handy collection type for processing entities on a first come, first served
basis. For example, some doctors’ general practice surgeries operate an appointment-
free system. Since the time taken to see each patient in these scenarios can vary wildly
depending on the problem at hand, seeing patients in turn can end up being a lot more
efficient than allocating fixed-length appointment slots.

We could model this with a Queue<Patient> (where Patient is some class defined by
our application). When a patient arrives, she would be added to a queue by calling its
Enqueue method:

private Queue<Patient> waitingPatients = new Queue<Patient>();

...

public void AddPatientToQueue(Patient newlyArrivedPatient)
{
 waitingPatients.Enqueue(newlyArrivedPatient);
}

When a doctor has finished seeing one patient and is ready to see the next, the
Dequeue method will return the patient who has been in the queue longest, and will
then remove that patient from the queue:

Patient nextPatientToSee = waitingPatients.Dequeue();

Queues | 311

While this example perfectly matches how Queue<T> works, you prob-
ably wouldn’t use a Queue<T> here in practice. You’d want to handle
crashes and power failures gracefully in this application, which means
that in practice, you’d probably store the list of waiting patients in a
database, along with something such as a ticket number indicating their
place in the queue.

In-memory queues tend to show up more often in multithreaded servers
for keeping track of outstanding work. But since we haven’t gotten to
either the networking or the threading chapters yet, an example along
those lines would be premature.

Queue<T> implements IEnumerable<T>, so you can use LINQ queries across items in the
whole queue. It also implements ICollection<T>, so you can discover whether the
queue is currently empty by inspecting its Count property.

Queue<T> operates in strict first in, first out (FIFO) order, which is to say that Dequeue
will return items in exactly the same order in which they were added with Enqueue. That
might be fine for general practice, but it wouldn’t work so well for the emergency room.

Linked Lists
If you’ve ever had to visit a hospital emergency room, you’ll know that waiting in a
queue is one of the defining features of the experience unless you were either very lucky
or very unlucky. If you were lucky, the queue will have been empty and you will not
have had to wait. Alternatively, if you were unlucky, your condition may have been
sufficiently perilous that you got to jump to the head of the queue.

In medical emergencies, a triage system will be in place to work out where each arriving
patient should go in the queue. A similar pattern crops up in other scenarios—frequent
fliers with gold cards may be allocated standby seats at the last minute even though
others have been waiting for hours; celebrities might be able to walk right into a res-
taurant for which the rest of us have to book a table weeks in advance.

The LinkList<T> class is able to model these sorts of scenarios. At its simplest, you
could use it like a Queue<T>—call AddLast to add an item to the back of the queue (as
Enqueue would), and RemoveFirst to take the item off the head of the queue (like
Dequeue would). But you can also add an item to the front of the queue with
AddFirst. Or you can add items anywhere you like in the queue with the AddBefore and
AddAfter methods. Example 9-13 uses this to place new patients into the queue.

Example 9-13. Triage in action

private LinkedList<Patient> waitingPatients = new LinkedList<Patient>();

...

LinkedListNode<Patient> current = waitingPatients.First;

312 | Chapter 9: Collection Classes

while (current != null)
{
 if (current.Value.AtImminentRiskOfDeath)
 {
 current = current.Next;
 }
 else
 {
 break;
 }
}
if (current == null)
{
 waitingPatients.AddLast(newPatient);
}
else
{
 waitingPatients.AddBefore(current, newPatient);
}

This code adds the new patient after all those patients in the queue whose lives appear
to be at immediate risk, but ahead of all other patients—the patient is presumably either
quite unwell or a generous hospital benefactor. (Real triage is a little more complex, of
course, but you still insert items into the list in the same way, no matter how you go
about choosing the insertion point.)

Note the use of LinkedListNode<T>—this is how LinkedList<T> presents the queue’s
contents. It allows us not only to see the item in the queue, but also to navigate back
and forth through the queue with the Next and Previous properties.

Stacks
Whereas Queue<T> operates a FIFO order, Stack<T> operates a last in, first out (LIFO)
order. Looking at this from a queuing perspective, it seems like the height of
unfairness—latecomers get priority over those who arrived early. However, there are
some situations in which this topsy-turvy ordering can make sense.

A performance characteristic of most computers is that they tend to be able to work
faster with data they’ve processed recently than with data they’ve not touched lately.
CPUs have caches that provide faster access to data than a computer’s main memory
can support, and these caches typically operate a policy where recently used data is
more likely to stay in the cache than data that has not been touched recently.

If you’re writing a server-side application, you may consider throughput to be more
important than fairness—the total rate at which you process work may matter more
than how long any individual work item takes to complete. In this case, a LIFO order
may make the most sense—work items that were only just put into a queue are much
more likely to still live in the CPU’s cache than those that were queued up ages ago,

Stacks | 313

and so you’ll get better throughput during high loads if you process newly arrived items
first. Items that have sat in the queue for longer will just have to wait for a lull.

Like Queue<T>, Stack<T> offers a method to add an item, and one to remove it. It calls
these Push and Pop, respectively. They are very similar to the queue’s Enqueue and
Dequeue, except they both work off the same end of the list. (You could get the same
effect using a LinkedList, and always calling AddFirst and RemoveFirst.)

A stack could also be useful for managing navigation history. The Back button in a
browser works in LIFO order—the first page it shows you is the last one you visited.
(And if you want a Forward button, you could define a second stack—each time the
user goes Back, Push the current page onto the Forward stack. Then if the user clicks
Forward, Pop a page from the Forward stack, and Push the current page onto the Back
stack.)

Summary
The .NET Framework class library provides various useful collection classes. We saw
List<T> in an earlier chapter, which provides a simple resizable linear list of items.
Dictionaries store entries by associating them with keys, providing fast key-based
lookup. HashSet<T> and SortedSet<T> manage sets of unique items, with optional or-
dering. Queues, linked lists, and stacks each manage a queue of items, offering various
strategies for how the order of addition relates to the order in which items come out of
the queue.

314 | Chapter 9: Collection Classes

CHAPTER 10

Strings

Chapter 10 is all about strings. A bit late, you might think: we’ve had about nine chap-
ters of string-based action already! Well, yes, you’d be right. That’s not terribly sur-
prising, though: text is probably the single most important means an application has
of communicating with its users. That is especially true as we haven’t introduced any
graphical frameworks yet. I suppose we could have beeped the system speaker in Morse,
although even that can be considered a text-based operation.

Even with a graphical UI framework where we have pictures and buttons and graphs
and sounds, they almost always have textual labels, descriptions, comments, or tool
tips.

Users who have difficulty reading (perhaps because they have a low-vision condition)
may have that text transformed into sound by accessibility tools, but the application is
still processing text strings under the covers.

Even when we are dealing with integers or doubles internally within an algorithm, there
comes a time when we need to represent them to humans, and preferably in a way that
is meaningful to us. We usually do that (at least in part) by converting them into strings
of one form or another.

Strings are surprisingly complex and sophisticated entities, so we’re going to take some
time to explore their properties in this chapter.

First, we’ll look at what we’re really doing when we initialize a literal string. Then, we’ll
see a couple of techniques which let us convert from other types to a string represen-
tation and how we can control the formatting of that conversion.

Next, we’ll look at various different techniques we can use to process a string. This will
include composition, splitting, searching and replacing content, and what it means to
compare strings of various kinds.

Finally, we will look at how .NET represents strings internally, how that differs from
other representations in popular use in the world, and how we can convert between
those representations by using an Encoding.

315

What Is a String?
A string is an ordered sequence of characters:

We could consider this sentence to be a string.

We start with the first character, which is W. Then we continue on in order from left to
right:

'W', 'e', ' ', 'c', 'o', 'u', 'l', 'd'

And so on.

A string doesn’t have to be a whole sentence, of course, or even anything meaningful.
Any ordered sequence of characters is a string. Notice that each character might be an
uppercase letter, lowercase letter, space, punctuation mark, number (or, in fact, any
other textual symbol). It doesn’t even have to be an English letter. It could be Arabic,
for example:

العربية
Here we have the following characters:

' ا', 'ل', 'ع', 'ر', 'ب', 'ي', 'ة '
If you look carefully, you’ll notice that the string is ordered the other way round—the
first character is the rightmost one, and the last character is the leftmost one. This is
because Arabic scripts read right to left and not left to right; but the string is still ordered,
character by character.

A quick reminder: a font is a particular visual design for an entire set of
characters. Historically, it was a box containing a set of moveable type
in a specific design at a certain size, but we’ve come to blur the meanings
of font family, typeface, and font in popular usage, and people tend to
use these terms interchangeably now.

I think it is interesting to note that only a few years ago, fonts were the
sole purview of designers and printers; but they’ve now become com-
monplace, thanks to the ubiquity of the word processor.

Just in case you have been on the moon since 1968, here are three ex-
amples taken from different fonts:

316 | Chapter 10: Strings

You’ll also notice that the “joined up” cursive form of the characters is visually quite
different from their form when separated out individually. This is normal; the ultimate
visual representation of the character in the string is entirely separate from the string
itself. We’re just so used to the characters of our own language that we don’t tend to
think of them as abstract symbols, and tend to discount any visual differences down to
the choice of font or other typographical niceties when we are interpreting them.

We could happily design a font where the character e looks like Q and the character
f looks like A. All our text processing would continue as normal: searching and sorting
would be just fine (words starting with f wouldn’t start appearing in the dictionary
before words starting with e), because the data in the string is unchanged; but when
we drew it on the screen, it would look more than a bit confusing.*

The take-home point is that there are a bunch of layers between the .NET runtime’s
representation of a string as data in memory, and its final visual appearance on a screen,
in a file, or in another application (such as notepad.exe, for example). As we go through
this chapter, we’ll unpick those layers as we come across them, and point out some of
the common pitfalls.

Let’s get on and see how the .NET Framework presents a string to us.

The String and Char Types
It will come as no surprise that the .NET Framework provides us with two types that
correspond with strings and characters: String and Char. In fact, as we’ve seen before,
these are such important types that C# even provides us with keywords that correspond
to the underlying types: string and char.

String needs to provide us with that “ordered sequence of characters” behavior. It does
so by implementing IEnumerable<char>, as Example 10-1 illustrates.

Example 10-1. Iterating through the characters in a string

string myString = "I've gone all vertical.";

foreach (char theCharacter in myString)
{
 Console.WriteLine(theCharacter);
}

* In fact, I don’t think that this particular typeface would catch on.

The String and Char Types | 317

If you create a console application for this code, you’ll see output like this when it runs:

I
'
v
e

g
o
n
e

a
l
l

v
e
r
t
i
c
a
l
.

What exactly does that code do? First, it initializes a variable called myString which we
will use to hold the reference to our string object (because String is a reference type).

We then enumerate the string, yielding every Char in turn, and we output each Char to
the console on its own separate line. Char is a value type, so we’re actually getting a
copy of the character from the string itself.

The string object is created using a literal string—a sequence of characters enclosed in
double quotes:

"I've gone all vertical."

We’re already quite familiar with initializing a string with a literal—we probably do it
without a second thought; but let’s have a look at these literals in a little more detail.

Literal Strings and Chars
The simplest literal string is a set of characters enclosed in double quotes, shown in the
first line of Example 10-2.

Example 10-2. A string literal

string myString = "Literal string";
Console.WriteLine(myString);

This produces the output:

Literal string

318 | Chapter 10: Strings

You can also initialize a string from a char[], using the appropriate constructor. One
way to obtain a char array is by using char literals. A char literal is a single character,
wrapped in single quotes. Example 10-3 constructs a string this way.

Example 10-3. Initializing a string from char literals

string myString = new string(new []
 { 'H', 'e', 'l', 'l', 'o', ' ', '"', 'w', 'o', 'r', 'l', 'd', '"' });
Console.WriteLine(myString);

If you compile and run this, you’ll see the following output:

Hello "world"

Notice that we’ve got double-quote marks in our output. That was easy to achieve with
this char[], because the delimiter for an individual character is the single quote; but
how could we include double quotes in the string, without resorting to a literal char
array? Equally, how could we specify the single-quote character as a literal char?

Escaping Special Characters
The way to deal with troublesome characters in string and char literals is to escape them
with the backslash character. That means that you precede the quote with a \, and it
interprets the quote as part of the string, rather than the end of it. Like this:†

"Literal \"string\""

If you build and run with this change, you’ll see the output, with quotes in place:

Literal "string"

There are several other special characters that you can escape in this way. You can find
some common ones listed in Table 10-1.

Table 10-1. Common escaped characters for string literals

Escaped character Purpose

\" Include a double quote in a string literal.

\' Include a single quote in a char literal.

\\ Insert a backslash.

\n New line.

\r Carriage return.

\t Tab.

There are also some rather uncommon ones, listed in Table 10-2. In general, you don’t
need to worry about them, but they are quite interesting.

† We’ll just show the string literal from here on, rather than repeating the boilerplate code each time. Just
replace the string initializer with the example.

Literal Strings and Chars | 319

Table 10-2. Less common escape characters for string literals

Escaped character Purpose

\0 The character represented by the char with value zero (not the character '0').

\a Alert or “Bell”. Back in the dim and distant past, terminals didn’t really have sound, so you couldn’t play
a great big .wav file beautifully designed by Robert Fripp every time you wanted to alert the user to the
fact that he had done something a bit wrong. Instead, you sent this character to the console, and it beeped
at you, or even dinged a real bell (like the line-end on a manual typewriter). It still works today, and on
some PCs there’s still a separate speaker just for making this old-school beep. Try it, but be prepared for
unexpected retro-side effects like growing enormous sideburns and developing an obsession with disco.

\b Backspace. Yes, you can include backspaces in your string.

Write:

"Hello world\b\b\b\b\bdolly"

to the console, and you’ll see:

Hello dolly

Not all rendering engines support this character, though. You can see the same string rendered in a WPF
application in Figure 10-1. Notice how the backspace characters have been ignored.

Remember: output mechanisms can interpret individual characters differently, even though they’re the
same character, in the same string.

\f Form feed. Another special character from yesteryear. This used to push a whole page worth of paper
through the printer. This is somewhat less than useful now, though. Even the console doesn’t do what
you’d expect.

If you write:

"Hello\fworld"

to the console, you’ll see something like:

Hello♀world
Yes, that is the symbol for “female” in the middle there. That’s because the original IBM PC defined a
special character mapping so that it could use some of these characters to produce graphical symbols
(like male, female, heart, club, diamond, and spade) that weren’t part of the regular character set. These
mappings are sometimes called code pages, and the default code page for the console (at least for U.S.
English systems) incorporates those original IBM definitions. We’ll talk more about code pages and
encodings later.

\v Vertical quote. This one looks like a “male” symbol (♂) in the console’s IBM-emulating code page.

The first character in Table 10-2 is worth a little attention: character value 0, sometimes
also referred to as the null character, although it’s not the same as a null reference—
char is a value type, so it’s more like the char equivalent of the number 0. In a lot of
programming systems, this character is used to mark the end of a string—C and C++
use this convention, as do many Windows APIs. However, in .NET, and therefore in
C#, string objects contain the length as a separate field, and so you’re free to put null
characters in your strings if you want. However, you may need to be careful—if those

320 | Chapter 10: Strings

strings end up being passed to Windows APIs, it’s possible that Windows will ignore
everything after the first null.

There’s one more escape form that’s a little different from all the others, because you
can use it to escape any character. This escape sequence begins with \u and is then
followed by four hexadecimal digits, letting you specify the exact numeric value for a
character. How can a textual character have a numeric value? Well, we’ll get into that
in detail in the “Encoding Characters” on page 360 section, but roughly speaking, each
possible character can be identified by number. For example, the uppercase letter A has
the number 65, B is 66, and so on. In hexadecimal, those are 41 and 42, respectively.
So we can write this string:

"\u0041\u0042\u0043"

which is equivalent to:

"ABC"

Of course, if that’s the string you want, you’d normally just write that second form.
The \u escape sequence is more useful when you need a particular character that’s not
on your keyboard. For example, \u00A9 is the copyright symbol: ©.

Sometimes you’ll have a block of text that includes a lot of these special characters (like
carriage returns, for instance) and you want to just paste it out of some other application
straight into your code as a literal string without having to add lots of backslashes.

While it can be done, you might question the wisdom of large quantities
of text in your C# source files. You might want to store the text in a
separate resource file, and load it up on demand.

If you prefix the opening double-quote mark with the @ symbol, the compiler will then
interpret every subsequent character (including any whitespace such as newlines, and
tabs) as part of the string, until it sees a matching double-quote mark to close the string.
Example 10-4 exploits this to embed new lines and indentation in a string literal.

Figure 10-1. WPF ignoring control characters

Literal Strings and Chars | 321

Example 10-4. Avoiding backslashes with @-quoting

 string multiLineString =
@"Lots of
lines and
 tabs!";
 Console.WriteLine(multiLineString);

This code will produce the following output:

Lots of
lines and
 tabs!

Notice how it respects the whitespace between the double quotes.

The @ prefix can be especially useful for literal file paths. You don’t need
to escape all those backslashes. So instead of writing "C:\\some\\path"
you can write just @"c:\some\path".

Formatting Data for Output
So, we know how to initialize literal strings, which is terribly useful; but what about
our other data? How do we display an Int32 or DateTime or whatever?

We’ve already met one way of converting any object to a string—the virtual ToString
method, which Example 10-5 uses.

Example 10-5. Converting numbers to strings with ToString

int myValue = 45;
string myString = myValue.ToString();

Console.WriteLine(myString);

This will produce the output you might expect:

45

What if we try a decimal? Example 10-6 shows this.

Example 10-6. Calling ToString on a decimal

decimal myValue = 45.65M;
string myString = myValue.ToString();
Console.WriteLine(myString);

Again, we get the expected output:

45.65

OK, what if we have some decimals in something like an accounting ledger, and we
want to format them all to line up properly, with a preceding dollar sign?

322 | Chapter 10: Strings

Well, there’s an overload of ToString on each of the numeric types that takes an addi-
tional parameter—a format string.

Standard Numeric Format Strings
In most instances, we’re not dreaming up a brand-new format for our numeric strings;
if we were, people probably wouldn’t understand what we meant. Consequently, the
framework provides us with a whole bunch of standard numeric format strings, for
everyday use. Let’s have a look at them in action.

Currency

Example 10-7 shows how we format a decimal as a currency value, using an overload
of the standard ToString method.

Example 10-7. Currency format

decimal dollarAmount = 123165.4539M;
string text = dollarAmount.ToString("C");

Console.WriteLine(text);

The capital C indicates that we want the decimal formatted as if it were a currency value;
and here’s the output:

$123,165.45

Notice how it has rounded to two decimal places (rounding down in this case), added
a comma to group the digits, and inserted a dollar sign for us.

Actually, I’ve lied to you a bit. On my machine the output looked like
this:

£123,165.45

That’s because it is configured for UK English, not U.S. English, and my
default currency symbol is the one for pounds sterling. We’ll talk about
formatting and globalization a little later in this chapter.

That’s the simplest form of this “currency” format. We can also add a number after the
C to indicate the number of decimal places we want to use, as Example 10-8 shows.

Example 10-8. Specifying decimal places with currency format

decimal dollarAmount = 123165.4539M;
string text = dollarAmount.ToString("C3");

Console.WriteLine(text);

Formatting Data for Output | 323

This will produce three decimal places in the output:

$123,165.454

Notice that it is again rounding the result. If you want to truncate, or always round up,
you’ll need to round the original value before you convert to a string.

This formatting style is available on all of the numeric types. (We’ll see some later that
apply to only particular types.)

Decimal

Decimal formatting is a bit confusingly named, as it actually applies to integer types,
not the decimal type. It gets its name from the fact that it displays the number as a string
of decimal digits (0–9), with a preceding minus sign (−) if necessary. Example 10-9 uses
this format.

Example 10-9. Decimal format, with explicit precision

int amount = 1654539;
string text = amount.ToString("D9");

We’re asking for nine digits in the output string, and it pads with leading zeros:

001654539

If you don’t supply a qualifying number of decimal digits, as Example 10-10 shows, it
just uses as many as necessary.

Example 10-10. Decimal format with unspecified precision

int amount = -2895729;
string text = amount.ToString("D");

This produces:

−2895729

Hexadecimal

Another one for integer types, hexadecimal formatting, shown in Example 10-11, rep-
resents numbers as a string of hex digits (0–9, A–F).

Example 10-11. Hexadecimal format

int amount = 256;
string text = amount.ToString("X");

This produces the output:

100

As with the decimal format string, you can specify a number to indicate the total number
of digits to which to pad the number, as shown in Example 10-12.

324 | Chapter 10: Strings

Example 10-12. Hexadecimal format with explicit precision

int amount = 256;
string text = amount.ToString("X4");

This produces the output:

0100

Notice that the method doesn’t prepend a 0x or similar; so there is nothing to distin-
guish this as a hex string, if you happen to hit a value that does not include the digits
A–F. (The convention of preceding hexadecimal values with 0x is common in C family
languages, which is why C# supports it for numeric constants, but it’s not universal.
VB.NET uses the prefix &H, for example. All .NET languages share the same numeric
types and formatting services, so if they printed hex numbers with a C# prefix, that
would be annoying for users of other languages. If you want a prefix, you have to add
it yourself.)

Exponential form

All numeric types can be expressed in exponential form. You will probably be familiar
with this notation. For example, 1.05 × 103 represents the number 1050, and 1.05 ×
10−3 represents the number 0.00105.

Developers use plain text editors, which don’t support formatting such as superscript,
so there’s a convention for representing exponential numbers with plain, unformatted
text. We can write those last two examples as 1.05E+003 and 1.05E-003, respectively.
C# recognizes this convention for literal floating-point values. But we can also use it
when printing out numbers.

To display this form, we use the format string E, with the numeric specifier determining
how many decimal places of precision we use.

It will always format the result with one digit to the left of the decimal
point, so you could also think of the precision specified as “one less than
the number of significant figures.”

Example 10-13 asks for exponential formatting with four digits of precision.

Example 10-13. Exponential format

double amount = 254.23875839484;
string text = amount.ToString("E4");

And here’s the string it produces:

2.5424E+002

If you don’t provide a precision specifier, as in Example 10-14, you get six digits to the
right of the decimal point (or fewer, if the trailing digits would be zero).

Formatting Data for Output | 325

We’ll see later how these defaults can be controlled by the framework’s
globalization features

Example 10-14. Exponential format without precision

double amount = 254.23875839484;
string text = amount.ToString("E");

This produces:

2.542388E+002

Fixed point

Another format string that applies to all numeric types, the fixed-point format provides
the ability to display a number with a specific number of digits after the decimal point.
As usual, it rounds the result, rather than truncating. Example 10-15 asks for four digits
after the decimal point.

Example 10-15. Fixed-point format

double amount = 152.68385485;
string text = amount.ToString("F4");

This produces:

152.6839

The output will be padded with trailing zeros if necessary. Example 10-16 causes this
by asking for four digits where only two are required.

Example 10-16. Fixed-point format causing trailing zeros

double amount = 152.68;
string text = amount.ToString("F4");

So, the output in this case is:

152.6800

General

Sometimes you want to use fixed point, if possible, but if an occasional result demands
a huge number of leading zeros, you’d prefer to fall back on the exponential form (rather
than display it as zero, for instance). The “general” format string, illustrated in Exam-
ple 10-17, will provide you with this behavior. It is available on all numeric types.

326 | Chapter 10: Strings

Example 10-17. General format

double amount = 152.68;
string text = amount.ToString("G4");
Console.WriteLine(text);

double amount2 = 0.00000000000015268;
text = amount2.ToString("G4");
Console.WriteLine(text);

This will produce the following output:

152.7
1.527E-13

Note that the precision string determines the number of significant figures in either
case, not the number of decimal places (as per the fixed-point and exponential forms).
As usual, rounding is used if there are more digits than the precision allows. And if you
do not specify the precision (i.e., you just use "G") it chooses the number of digits based
on the precision of the data you’re using—float will show fewer digits than double, for
example.

If you don’t specify a particular format string, the default is as though
you had specified "G".

Numeric

The numeric format, shown in Example 10-18, is very similar to the fixed-point format,
but adds a “group” separator for values with enough digits (just as the currency format
does). The precision specifier can be used to determine the number of decimal places,
and rounding is applied if necessary.

Example 10-18. Numeric format

double amount = 1520494.684848;
string text = amount.ToString("N4");
Console.WriteLine(text);

This will produce the following output:

1,520,494.6848

Percent

Very often you need to display a number as a percentage. However, it’s common to
maintain values which represent a percentage using one of the floating-point types,
predivided by 100 for ease of future manipulation.

Formatting Data for Output | 327

The more mathematically minded among you probably rail against people calling the
value 0.58 “a percentage” when they really mean 58%; but it is, unfortunately, a some-
what common convention in computer circles. Worse, it’s not consistently applied,
making it hard to know whether you are dealing with predivided values, or “true”
percentages. It can get especially confusing when you are frequently dealing with values
less than 1 percent:

double interestRatePercent = 0.2;

Is that supposed to be 0.2 percent (like I get on my savings) or 20 percent APR (like my
credit card)? One way to avoid ambiguity is to avoid mentioning “percent” in your
variable names and always to store values as fractions, representing 100 percent as 1.0,
converting into a percentage only when you come to display the number.

The percent format is useful if you follow this convention: it will multiply by 100,
enabling you to work with ratios internally, but to display them as percentages where
necessary. It displays numbers in a fixed-point format, and adds a percentage symbol
for you. The precision determines the number of decimal places to use, with the usual
rounding method applied. Example 10-19 asks for four decimal places.

Example 10-19. Percent format

double amount = 0.684848;
string text = amount.ToString("P4");
Console.WriteLine(text);

This will produce:

68.4848 %

Note that this format works with any numeric type—including the integer types.
There’s no special treatment for an Int32 or Int16, for example. They are multiplied
up by 100, in just the same way as the floating-point types. This means that you can’t
format values in increments of less than 100 percent with an integer. For instance, 0 ×
100 implies 0 percent, 1 × 100 implies 100 percent, and so on.

Round trip

The last of the standard numeric format strings we’re going to look at is the round-
trip format. This is used when you are expecting the string value to be converted back
into its numeric representation at some point in the future, and you want to guarantee
no loss of precision.

This format has no use for a precision specifier, because by definition, we always want
full precision. (You can provide one if you like, because all the standard numeric for-
mats follow a common pattern, including an optional precision. This format supports
the common syntax rules, it just ignores the precision.) The framework will use the
most compact form it can to achieve the round-trip behavior. Example 10-20 shows
this format in use.

328 | Chapter 10: Strings

Example 10-20. Round-trip format

double amount = 0.684848;
string text = amount.ToString("R");
Console.WriteLine(text);

This produces the following output:

0.684848

Custom Numeric Format Strings
You are not limited to the standard forms discussed in the preceding section. You can
provide your own custom numeric format strings for additional control over the final
output.

The basic building blocks of a custom numeric format string are as follows:

• The # symbol, which represents an optional digit placeholder; if the digit in this
position would have been a leading or trailing 0, it will be omitted.

• The 0 symbol, which represents a required digit placeholder; the string is padded
with a 0 if the place is not needed.

• The . (dot) symbol, which represents the location of the decimal point.

• The , (comma) symbol, which performs two roles: it can enable digit grouping,
and it can also scale the number down.

Look at Example 10-21.

Example 10-21. Custom numeric formats

double value = 12.3456;
Console.WriteLine(value.ToString("00.######"));

value = 1.23456;
Console.WriteLine(value.ToString("00.000000"));

Console.WriteLine(value.ToString("##.000000"));

We see the following output:

12.3456
01.234560
1.234560

You don’t actually have to put all the # symbols you require before the decimal place—
a single one will suffice; but the placeholders after the decimal point, as shown in
Example 10-22, are significant.

Example 10-22. Placeholders after the decimal point

double value = 1234.5678;
text = value.ToString("#.###");
Console.WriteLine(text);

Formatting Data for Output | 329

This produces:

1234.568

Notice how it is rounding the result in the usual way.

The # symbol will never produce a leading or trailing zero. Take a look at Exam-
ple 10-23.

Example 10-23. Placeholders and leading or trailing zeros

double value = 0.46;
string text = value.ToString("#.###");
Console.WriteLine(text);

The preceding example will produce the following output:

.46

The comma serves two purposes, depending on where you put it. First, it can introduce
a separator for showing digits in “groups” of three (so you can easily see the thousands,
millions, billions, etc.). We get this behavior when we put a comma between a couple
of digit placeholders (the placeholders being either # or 0), as Example 10-24 shows.

Example 10-24. Comma for grouping digits

int value = 12345678;
string text = value.ToString("#,#");
Console.WriteLine(text);

Our output string now looks like this:

12,345,678

On the other hand, commas placed just to the left of the decimal point act as a scale
on the number. Each comma divides the result by 1,000. Example 10-25 shows two
commas, dividing the output by 1,000,000. (It also includes a comma for grouping,
although that will not have any effect with this particular value.)

Example 10-25. Comma for scaling down output

int value = 12345678;
string text = value.ToString("#,#,,.");
Console.WriteLine(text);

This produces:

12

Format strings don’t have to have a decimal point, but you can still use commas to scale
the number down even when there’s no decimal point for the commas to be to the left
of—they just appear at the end of the format string instead. In effect, there’s an implied
decimal point right at the end of the string if you leave it off, so in Example 10-26, the
commas are still considered to be to the left of the point even though you can’t see it.

330 | Chapter 10: Strings

Example 10-26. Implied decimal point

int value = 12345678;
string text = value.ToString("#,#,,");
Console.WriteLine(text);

Again, this produces:

12

The division rounds the result, so 12745638 would produce 13 with the same formatting.

You can also add your own arbitrary text to be included “as is” in the format string, as
Example 10-27 shows.

Example 10-27. Arbitrary text in a custom format string

int value = 12345678;
string text = value.ToString("###-### but ###");
Console.WriteLine(text);

This time, the output is:

12-345 but 678

Notice how it includes the extra characters we included (the - and the but).

Were you expecting the output to be 123-456 but 78?

The framework applies the placeholder rule for the lefthand side of the
decimal point, so it drops the first nonrequired placeholder, not the last
one. Remember that this is a numeric conversion, not something like a
telephone-number format. The behavior may be easier to understand if
you replace each # with 0. In that case, we’d get 012-345 but 678. Using
just loses the leading zero.

If you want to include one of the special formatting characters, you can do so by es-
caping it with a backslash. Don’t forget that the C# compiler will attempt to interpret
backslash as an escape character in a literal string, but in this case, we don’t want that—
we want to include a backslash in the string that we pass to ToString. So unless you are
using the @ symbol as a literal string prefix, you’ll need to escape the escape character
as Example 10-28 shows.

Example 10-28. Escaping characters in a custom format string

int value = 12345678;
string text = value.ToString("###-### \\# ###");
Console.WriteLine(text);

Example 10-29 shows the @-quoted equivalent.

Formatting Data for Output | 331

Example 10-29. @-quoting a custom format string

int value = 12345678;
string text = value.ToString(@"###-### \# ###");
Console.WriteLine(text);

Both will produce this output:

12-345 # 678

You can also include literal strings (with or without special characters), by wrapping
them in single quotes as Example 10-30 shows.

Example 10-30. Literal string in a custom format string

int value = 12345678;
string text = value.ToString(@"###-### \# ### 'is a number'");
Console.WriteLine(text);

This produces the output:

12-345 # 678 is a number

Finally, you can also get the multiply-by-100 behavior for predivided percentage values
using the % symbol, as shown in Example 10-31.

Example 10-31. Percentage in a custom format string

double value = 0.95;
string text = value.ToString("#0.##%");
Console.WriteLine(text);

Notice that this also includes the percentage symbol in the output:

95%

There is also a per-thousand (per-mille) symbol (‰), which is Unicode
character 2030. You can use this in the same way as the percentage
symbol, but it multiplies up by 1,000. We’ll learn more about Unicode
characters later in this chapter.

Dates and Times
It is not just numeric types that support formatting when they are converted to strings.
The DateTime, DateTimeOffset, and TimeSpan types follow a similar pattern.

DateTimeOffset is generally the preferred way to represent a particular point in time
inside a program, because it builds in information about the time zone (and daylight
saving if applicable), leaving no scope for ambiguity regarding the time it represents.
However, DateTime is a more natural way to present times to users, partly because it
has more scope for ambiguity. People very rarely explicitly say what time zone they’re
thinking of—we’re used to learning that a shop opens at 9:00 a.m., or that our flight

332 | Chapter 10: Strings

is due to arrive at 8:30 p.m. DateTime lives in this same slightly fuzzy world, where 9:00
a.m. is, in some sense, the same time before and after daylight saving comes into effect.
So if you have a DateTimeOffset that you wish to display, unless you want to show the
time zone information in the user interface, you will most likely convert it to a
DateTime that’s relative to the local time zone, as Example 10-32 shows.

Example 10-32. Preparing to present a DateTimeOffset to the user

DateTimeOffset tmo = GetTimeFromSomewhere();
DateTime localDateTime = tmo.ToLocalTime().DateTime;

There are two benefits to this. First, this gets the time into a representation likely to
align with how end users normally think of times, that is, relative to whatever time zone
they’re in right now. Second, DateTime makes formatting slightly easier than
DateTimeOffset: DateTimeOffset supports the same ToString formats as DateTime, but
DateTime offers some additional convenient methods.

First, DateTime offers an overload of the ToString method which can accept a range of
standard format strings. Some of the more popular ones (such as d, the short date
format, and D, the long date format) are also exposed as methods. Example 10-33 il-
lustrates this.

Example 10-33. Showing the date in various formats

DateTime time = new DateTime(2001, 12, 24, 13, 14, 15, 16);
Console.WriteLine(time.ToString("d"));
Console.WriteLine(time.ToShortDateString());
Console.WriteLine(time.ToString("D"));
Console.WriteLine(time.ToLongDateString());

This produces:

12/24/2001
12/24/2001
24 December 2001
24 December 2001

There are also format strings and methods for the time part only, as Example 10-34
shows.

Example 10-34. Getting just the time

DateTime time = new DateTime(2001, 12, 24, 13, 14, 15, 16);
Console.WriteLine(time.ToString("t"));
Console.WriteLine(time.ToShortTimeString());
Console.WriteLine(time.ToString("T"));
Console.WriteLine(time.ToLongTimeString());

Formatting Data for Output | 333

This will result in:

13:14
13:14
13:14:15
13:14:15

Or, as Example 10-35 shows, you can combine the two.

Example 10-35. Getting both the time and date

DateTime time = new DateTime(2001, 12, 24, 13, 14, 15, 16);
Console.WriteLine(time.ToString("g"));
Console.WriteLine(time.ToString("G"));
Console.WriteLine(time.ToString("f"));
Console.WriteLine(time.ToString("F"));

Notice how the upper- and lowercase versions of all these standard formats are used
to choose between the short and long time formats:

24/12/2001 13:14
24/12/2001 13:14:15
24 December 2001 13:14
24 December 2001 13:14:15

Another common format is the “round trip” shown in Example 10-36. As for the nu-
meric types, this is designed for scenarios where you expect to convert both to and from
strings, without loss of precision.

Example 10-36. Round-trip DateTime format

DateTime time = new DateTime(2001, 12, 24, 13, 14, 15, 16);
Console.WriteLine(time.ToString("O"));

This produces:

2001-12-24T13:14:15.0160000

(If you use a DateTimeOffset, this last format will add the time zone on the end; for
example, +01:00 would indicate that the time is from a zone one hour ahead of UTC.)
This round-trip format is sortable using standard string precedence rules. Another for-
mat with that characteristic is the universal sortable form, shown in Example 10-37.
This converts from local time to UTC before doing the format.

Example 10-37. Universal sortable format

DateTime time = new DateTime(2001, 12, 24, 13, 14, 15, 16);
Console.WriteLine(time.ToString("u"));

Because I am currently in the GMT time zone, and daylight saving is not in operation,
I am at an offset of zero from UTC, so no apparent conversion takes place. But note
the suffix Z which indicates a UTC time:

2001-12-24 13:14:15Z

334 | Chapter 10: Strings

Dealing with dates and times is notoriously difficult, especially if you
have to manage multiple time zones in a single application. There is no
“silver bullet” solution. Even using DateTimeOffset internally and con-
verting to local time for output is not necessarily a complete solution.
You must beware of hidden problems like times that don’t exist (because
we skipped forward an hour when we applied daylight saving time), or
exist twice (because we skipped back an hour when we left daylight
saving time).

As with the numeric conversions, you also have the option of custom format strings.

The key components are:

d: day
M: month (note that this is uppercase to distinguish it from m for minute)
y: year
h: hour (12-hour format)
H: hour (24-hour format)
m: minute
s: seconds
f: fractions of a second

The / character will be substituted with the appropriate date separator for your locale,
and : with the time separator.

You can repeat the substitution character to obtain shorter/longer forms of the relevant
part of the date or time.

For example, you can format the day part like Example 10-38 does.

Example 10-38. Formatting the day

DateTime time = new DateTime(2001, 12, 24, 13, 14, 15, 16);
Console.WriteLine(time.ToString("dddd"));
Console.WriteLine(time.ToString("ddd"));
Console.WriteLine(time.ToString("dd"));

This will produce:

Monday
Mon
24

(As you saw in Example 10-33, a single d means something else: it shows the whole
date, in short form.) Other useful formatting characters include:

z: offset from UTC (with zzz providing hours and minutes)
tt: the a.m./p.m. designator

As with the numeric formats, you can also include string literals, escaping special char-
acters in the usual way.

Formatting Data for Output | 335

Going the Other Way: Converting Strings to Other Types
Now that we know how to control the formatting of various types when we convert
them to a string, let’s take a step aside for a moment to look at converting back. If we’ve
got a string, how do we convert that to a numeric type, for instance?

Probably the easiest way is to use the static methods on the Convert class, as Exam-
ple 10-39 shows.

Example 10-39. Converting a string to an int

int converted = Convert.ToInt32("35");

This class also supports numeric conversions from a variety of different bases (specif-
ically 2, 8, 10, and 16), shown in Example 10-40.

Example 10-40. Converting hexadecimal strings to ints

int converted = Convert.ToInt32("35", 16);
int converted = Convert.ToInt32("0xFF", 16);

Although we get to specify the base as a number, only binary, octal, decimal, and hex-
adecimal are actually supported. If you request any other base (e.g., 7) the method will
throw an ArgumentException.

What happens if we pass a string that doesn’t represent an instance of the type to which
we want to convert, as Example 10-41 does?

Example 10-41. Attempting to convert a nonnumeric string to a number

double converted = Convert.ToDouble("Well, what do you think?");

As this string cannot be converted to a double, we see a FormatException.

Throwing (and catching) exceptions is a relatively expensive operation, and sometimes
we want to try a particular conversion, then, if it fails, try another. We’d rather not pay
for the exception if we don’t have to.

Fortunately, the individual numeric types (and DateTime) give us the means to do this.
Instead of using Convert, we can use the various TryParse methods they provide.

Rather than returning the parsed value, it returns a bool which indicates whether the
parse was successful. The parsed value is retrieved via an out parameter. Exam-
ple 10-42 shows that in use.

Example 10-42. Avoiding exceptions with TryParse

int parsed;
if (!int.TryParse("Well, how about that", out parsed))
{
 Console.WriteLine("That didn't parse");
}

336 | Chapter 10: Strings

For each of the TryParse methods, there is an equivalent Parse, which throws a
FormatException on failure and returns the parsed value on success. For many appli-
cations, you can use these as an alternative to the Convert methods.

Some parse methods can also offer you additional control over the process. Date
Time.ParseExact, for example, allows you to provide an exact format specification for
the date/time string, as Example 10-43 shows.

Example 10-43. DateTime.ParseExact

DateTime dt =
 DateTime.ParseExact("12^04^2008","dd^MM^yyyy",CultureInfo.CurrentCulture);

This can be useful if you expect a nonstandard format for your string, coming from a
legacy system, perhaps.

Composite Formatting with String.Format
The previous examples have all turned exactly one piece of information into a single
string (or vice versa). Very often, though, we need to compose multiple pieces of in-
formation into our final output string, with different conversions for each part. We
could do that by composing strings (something we’ll look at later in this chapter), but
it is often more convenient to use a helper method: String.Format. Example 10-44
shows a basic example.

Example 10-44. Basic use of String.Format

int val1 = 32;
double val2 = 123.457;
DateTime val3 = new DateTime(1999, 11, 1, 17, 22, 25);
string formattedString = String.Format("Val1: {0}, Val2: {1}, Val3: {2}",
 val1, val2, val3);
Console.WriteLine(formattedString);

This method takes a format string, plus a variable number of additional parameters.
Those additional parameters are substituted into the format string where indicated by
a format item. At its simplest, a format item is just an index into the additional parameter
array, enclosed in braces (e.g., {0}). The preceding code will therefore produce the
following output:

Val1: 32, Val2: 123.457, Val3: 01/11/1999 17:22:25

A specific format item can be referenced multiple times, and in any order in the format
string. You can also apply the standard and custom formatting we discussed earlier to
any of the individual format items. Example 10-45 shows that in action.

Example 10-45. Using format strings from String.Format

int first = 32;
double second = 123.457;
DateTime third = new DateTime(1999, 11, 1, 17, 22, 25);

Formatting Data for Output | 337

string output = String.Format(
 "Date: {2:d}, Time: {2:t}, Val1: {0}, Val2: {1:#.##}",
 first, second, third);
Console.WriteLine(output);

Notice the colon after the index, followed by the simple or custom formatting string,
which transforms the output:

Date: 01/11/1999, Time: 17:22, Val1: 32, Val2: 123.46

String.Format is a very powerful technique, but you should be aware that there is some
overhead in its use with value types. The additional parameters take the form of an
array of objects (so that we can pass in any type for each format item). This means that
the values passed in are boxed, and then unboxed. For many applications this overhead
will be irrelevant, but, as always, you should measure and be aware of the hidden cost.

Culture Sensitivity
Up to this point, we’ve quietly ignored a significantly complicating factor in string
manipulation: the fact that the rules for text vary considerably among cultures.

There are also lots of different types of rules in operation, from the characters to use
for particular types of separators, to the natural sorting order for characters and strings.
I’ve already called out an example where the output on my UK English machine was
different from that on a U.S. English computer. As another very simple example, the
decimal number we write as 1.8 in U.S. or UK English would be written 1,8 in French.
For the .NET Framework, these rules are encapsulated in an object of the type
System.Globalization.CultureInfo.

The CultureInfo class makes certain commonly used cultures accessible through static
properties. CurrentCulture returns the default culture, used by all the culture-sensitive
methods if you don’t supply a specific culture to a suitable overload. This value can be
controlled on a per-thread basis, and defaults to the Windows default user locale. An-
other per-thread value is the CurrentUICulture. By default, this is based on the current
user’s personally selected preferred language, falling back on the operating system de-
fault if the user hasn’t selected anything. This culture determines which resources the
system uses when looking up localized resources such as strings.

CurrentCulture and CurrentUICulture may sound very similar, but are
often different. For example, Microsoft does not provide a version of
Windows translated into British English—Windows offers British users
“Favorites” and “Colors” despite a national tendency to spell those
words as “Favourites” and “Colours.” But we do have the option to ask
for UK conventions for dates and currency, in which case CurrentCul
ture and CurrentUICulture will be British English and U.S. English,
respectively.

338 | Chapter 10: Strings

Finally, it’s sometimes useful to ensure that your code always behaves the same way,
regardless of the user’s culture settings. For example, if you’re formatting (or parsing)
text for persistent storage, you might need to read the text on a machine configured for
a culture other than that on which it was created, and you will want to ensure that it
is interpreted correctly. If you rely on the current culture, dates written out on a UK
machine will be processed incorrectly on U.S. machines because the month and day
are reversed. (In the UK, 3/12/2010 is a date in December.) The InvariantCulture
property returns a culture with rules which will not vary with different installed or user-
selected cultures.

If you’ve been looking at the IntelliSense as we’ve been building the
string format examples in this chapter, you might have noticed that none
of the obviously culture-sensitive methods seem to offer an overload
which takes a CultureInfo. However, on closer examination, you’ll no-
tice that CultureInfo also implements the IFormatProvider interface. All
of the formatting methods we’ve looked at do provide an overload which
takes an instance of an object which implements IFormatProvider. Prob-
lem solved!

You can also create a CultureInfo object for a specific culture, by providing that cul-
ture’s canonical name to the CreateSpecificCulture method on the CultureInfo object.

But what are the canonical names? You may have come across some of them in the
past. UK English, for instance, is en-GB, and French is fr. Example 10-46 gets a list of
all the known canonical names by calling another method on CultureInfo that lists all
the cultures the system knows about: GetCultures.

Example 10-46. Showing available cultures

var cultures = CultureInfo.GetCultures(CultureTypes.AllCultures).
 OrderBy(c => c.EnglishName);
foreach (var culture in cultures)
{
 Console.WriteLine("{0} : {1}", culture.EnglishName, culture.Name);
}

We won’t reproduce the output here, because it is a bit long. This is a short excerpt:

English (United Kingdom) : en-GB
English (United States) : en-US
English (Zimbabwe) : en-ZW
Estonian : et
Estonian (Estonia) : et-EE
Faroese : fo
Faroese (Faroe Islands) : fo-FO
Filipino : fil
Filipino (Philippines) : fil-PH
Finnish : fi
Finnish (Finland) : fi-FI
French : fr

Culture Sensitivity | 339

Notice that we’re showing the English version of the name, followed by the canonical
name for the culture.

Example 10-47 illustrates a difference in string formatting between two different
cultures.

Example 10-47. Formatting numbers for different cultures

CultureInfo englishUS = CultureInfo.CreateSpecificCulture("en-US");
CultureInfo french = CultureInfo.CreateSpecificCulture("fr");

double value = 1.8;

Console.WriteLine(value.ToString(englishUS));
Console.WriteLine(value.ToString(french));

This will produce the output we’d expect:

1.8
1,8

Exploring Formatting Rules
If you look at the CultureInfo class, you’ll see numerous properties, some of which
define the culture’s rules for formatting particular kinds of information. For example,
there are the DateTimeFormat and NumberFormat properties. These are instances of Date
TimeFormatInfo and NumberFormatInfo, respectively, and expose a large number of
properties with which you can control the formatting rules for the relevant types.

These types also implement IFormatProvider, so you can use these types to provide
your own custom formatting rules to the string formatting methods we looked at earlier.
Example 10-48 formats a number in an unusual way.

Example 10-48. Modifying the decimal separator

double value = 1.8;
NumberFormatInfo nfi = new NumberFormatInfo();
nfi.NumberDecimalSeparator = "^";

Console.WriteLine(value.ToString(nfi));

Here we use the NumberFormatInfo to change the decimal separator to the circumflex
(hat) symbol. The resultant output is:

1^8

You can use this to control all sorts of features of the formatting engine, such as the
default precision, percentage and positive/negative symbols, and separators.

Now that we know how to format strings of various kinds, we’ll go back to looking at
some of the features of the string itself. In particular, we’ll look at how to slice and dice
an existing string in various ways.

340 | Chapter 10: Strings

Accessing Characters by Index
Earlier, we saw how to enumerate the characters in a string; however, we often want
to be able to retrieve a character at a particular offset into the string. String defines an
indexer, so we can do just that. Example 10-49 uses the indexer to retrieve the character
at a particular (zero-based) index in the string.

Example 10-49. Retrieving characters with a string’s indexer

string myString = "Indexing";
char theThirdCharacter = myString[2];
Console.WriteLine(theThirdCharacter);

If you execute that code in a console application, you’ll see:

d

What if we try to use the indexer to assign a value (i.e., to replace the character at that
location in the string) as in Example 10-50?

Example 10-50. Trying to assign a value with a string’s indexer

string myString = "Indexing";
myString[2] = 'f'; // Will fail to compile

Well, that doesn’t compile. We get an error:

Property or indexer 'string.this[int]' cannot be assigned to -- it is read only

So, the indexer is read-only. This is a part of a very important constraint on a String
object.

Strings Are Immutable
Once a string has been created, it is immutable. You can’t slice it up into substrings,
trim characters off it, add characters to it, or replace one character or substring with
another.

“What?” I hear you ask. “Then how are we supposed to do our string processing?”
Don’t worry, you can still do all of those things, but they don’t affect the original
string—copies (of the relevant pieces) are made instead.

Why did the designers of the .NET Framework make strings immutable? All that copy-
ing is surely going to be an overhead. Well, yes, it is, and sometimes you need to be
aware of it.

That being said, there are balancing performance improvements when dealing with
unchanging strings. The framework can store a single instance of a string and then any
variables that reference that particular sequence of characters can reference the same
instance. This can actually save on allocations and reduce your working set. And in
multithreaded scenarios, the fact that strings never change means it’s safe to use them

Strings Are Immutable | 341

without the cross-thread coordination that is required when accessing modifiable data.
As usual, “performance” considerations are largely a compromise between the com-
peting needs of various possible scenarios.

In our view, an overridingly persuasive argument for immutability relates to the safe
use of strings as keys. Consider the code in Example 10-51.

Example 10-51. Using strings as keys in a dictionary

string myKey = "TheUniqueKey";
Dictionary<string, object> myDictionary = new Dictionary<string, object>();

myDictionary.Add(myKey, new object());

// Imagine you could do this...
myKey[2] = 'o';

Remember, a string is a reference type, so the myKey variable references a string object
which is initialized to "TheUniqueKey". When we add our object to the dictionary, we
pass a reference to that same string object, which the dictionary will use as a key. If you
cast your mind back to Chapter 9, you’ll remember that the dictionary relies on the
hash code for the key object when storing dictionary entries, which can then be dis-
ambiguated (if necessary) by the actual value of the key itself.

Now, imagine that we could modify the original string object, using the reference we
hold in that myKey variable. One characteristic of a (useful!) hash algorithm is that its
output changes for any change in the original data. So all of a sudden our key’s hash
code has changed. The hash for "TheUniqueKey" is different from the one for "ThoUnique
Key". Sadly, the dictionary has no way of knowing that the hash for that key has
changed; so, when we come to look up the value using our original reference to our
key, it will no longer find a match.

This can (and does!) cause all sorts of subtle bugs in applications built on runtimes that
allow mutable strings. But since .NET strings are immutable, this problem cannot occur
if you use strings as keys.

Another, related, benefit is that you avoid the buffer-overrun issues so prevalent on
other runtimes. Because you can’t modify an existing string, you can’t accidentally run
over the end of your allocation and start stamping on other memory, causing crashes
at best and security holes at worst. Of course, immutable strings are not the only way
the .NET designers could have addressed this problem, but they do offer a very simple
solution that helps the developer fall naturally into doing the right thing, without having
to think about it. We think that this is a very neat piece of design.

So, we can obtain (i.e., read) a character at a particular index in the string, using the
square-bracket indexer syntax. What about slicing and dicing the string in other ways?

342 | Chapter 10: Strings

Getting a Range of Characters
You can obtain a contiguous range of characters within a string by using the
Substring method. There are a couple of overloads of this method, and Exam-
ple 10-52 shows them in action.

Example 10-52. Using Substring

string myString = "This is the silliest stuff that ere I heard.";
string subString = myString.Substring(5);
string anotherSubString = myString.Substring(12, 8);
Console.WriteLine(subString);
Console.WriteLine(anotherSubString);

Notice that both of these overloads return a new string, containing the relevant portion
of the original string. The first overload starts with the character at the specified index,
and returns the rest of the string (regardless of how long it might be). The second starts
at the specified index, and returns as many characters as are requested.

A very common requirement is to get the last few characters from a string. Many plat-
forms have this as a built-in function, or feature of their strings, but the .NET Frame-
work leaves you to do it yourself. To do so depends on us knowing how many characters
there are in the string, subtracting the offset from the end, and using that as our starting
index, as Example 10-53 shows.

Example 10-53. Getting characters from the righthand end of a string

static string Right(string s, int length)
{
 int startIndex = s.Length - length;
 return s.Substring(startIndex);
}

Notice how we’re using the Length property on the string to determine the total number
of characters in the string, and then returning the substring from that offset (to the end).
We could then use this method to take the last six characters of our string, as Exam-
ple 10-54 does.

Example 10-54. Using our Right method

string myString =
 "This is the silliest stuff that ere I heard.";
string subString = Right(myString, 6);
Console.WriteLine(subString);

If you build and run this sample, you’ll see the following output:

heard.

Getting a Range of Characters | 343

Extension Methods for String
You will probably build up an armory of useful methods for dealing with strings. It can
be helpful to aggregate them together into a set of extension methods.

Here’s an example implementing the Right method that we’ve used as an example in
this chapter, but modifying it to work as an extension method, and also providing an
equivalent to the version of Substring that takes both a start position and a length:

public static class StringExtensions
{
 public static string Right(this string s,
 int length)
 {
 int startIndex = s.Length - length;
 return s.Substring(startIndex);
 }

 public static string Right(this string s,
 int offset, int length)
 {
 int startIndex = s.Length - offset;
 return s.Substring(startIndex, length);
 }
}

By implementing them as extension methods, we can now write code like this:

string myString =
 "This is the silliest stuff that ere I heard.";
string subString = myString.Right(6);
string subString2 = myString.Right(6, 5);
Console.WriteLine(subString);
Console.WriteLine(subString2);

This will produce output like the following:

heard.
heard

Notice that the Length of the string is the total number of characters in the string—
much as the length of an array is the total number of entities in the array, not the number
of bytes allocated to it (for example).

Composing Strings
You can create a new string by composing one or more other strings. Example 10-55
shows one way to do this.

Example 10-55. Concatenating strings

string fragment1 = "To be, ";
string fragment2 = "or not to be.";
string composedString = fragment1 + fragment2;
Console.WriteLine(composedString);

344 | Chapter 10: Strings

Here, we’ve used the + operator to concatenate two strings. The C# compiler turns this
into a call to the String class’s static method Concat, so Example 10-56 shows the
equivalent code.

Example 10-56. Calling String.Concat explicitly

string composedString2 = String.Concat(fragment1, fragment2);
Console.WriteLine(composedString2);

Don’t forget—we’re taking the first two strings, and then creating a new
string that is fragment1.Length + fragment2.Length characters long. The
original strings remain unchanged.

There are several overloads of Concat, all taking various numbers of strings—this ena-
bles you to concatenate multiple strings in a single step without producing intermediate
strings. One of the overloads, used in Example 10-57, can concatenate an entire array
of strings.

Example 10-57. Concatenating an array of strings

static void Main(string[] args)
{
 string[] strings = Soliloquize();
 string output = String.Concat(strings);
 Console.WriteLine(output);
 Console.ReadKey();
}

private static string[] Soliloquize()
{
 return new string[] {
 "To be, or not to be--that is the question:",
 "Whether 'tis nobler in the mind to suffer",
 "The slings and arrows of outrageous fortune",
 "Or to take arms against a sea of troubles",
 "And by opposing end them." };
}

If we build and run that example, we’ll see some output like this:

To be, or not to be--that is the question:Whether 'tis nobler in the mind to suf
ferThe slings and arrows of outrageous fortuneOr to take arms against a sea of t
roublesAnd by opposing end them.

That’s probably not quite what we meant. We’ve been provided with each line of
Hamlet’s soliloquy, and we really want the single output string to have breaks after
each line.

Instead of using String.Concat, we can instead use String.Join to concatenate all of
the strings as shown in Example 10-58. This lets us insert the string of our choice
between each string.

Composing Strings | 345

Example 10-58. String.Join

static void Main(string[] args)
{
 string[] strings = Soliloquize();
 string output = String.Join(Environment.NewLine, strings);
 Console.WriteLine(output);
 Console.ReadKey();
}

Here we’re using the Environment.NewLine constant to get the line-break string appro-
priate for our platform (rather than explicitly using "\n" or "\r" or "\r\n").

For historical reasons, not all operating systems use the same sequence
of characters to represent the end of a line. Windows (like DOS before
it) mimics old-fashioned printers, where you had to send two control
characters: a carriage return (ASCII value 13, or \r in a string or char-
acter literal) would cause the print head to move back to the beginning
of the line, and then a line feed (ASCII 10, or \n) would advance the
paper up by one line. This meant you could send a text file directly to a
printer without modification and it would print correctly, but it pro-
duced the slightly clumsy situation of requiring two characters to denote
the end of a line. Unix conventionally uses just a single line feed to mark
the end of a line. Environment.NewLine is offered so that you don’t have
to assume that you’re running on a particular platform. That being said,
Console is flexible, and treats either convention as a line end. But this
can matter if you’re saving files to disk.

If we build and run, we’ll see the following output:

To be, or not to be--that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune
Or to take arms against a sea of troubles
And by opposing end them.

Splitting It Up Again
As well as joining text up, we can also split it up into smaller pieces at a particular
breaking string or character. For example, we could split the final concatenated string
back up at whitespace or punctuation as in Example 10-59.

Example 10-59. Splitting a string

string[] strings = Soliloquize();
string output = String.Join(Environment.NewLine, strings);

string[] splitStrings = output.Split(
 new char[] { ' ', '\t', '\r', '\n', ',', '-', ':' });

bool first = true;

346 | Chapter 10: Strings

foreach (string splitBit in splitStrings)
{
 if(first)
 {
 first = false;
 }
 else
 {
 Console.Write(", ");
 }
 Console.Write(splitBit);
}

If we run again, we see the following output:

To, be, , or, not, to, be, , that, is, the, question, , , Whether, 'tis, nobler,
 in, the, mind, to, suffer, , The, slings, and, arrows, of, outrageous, fortune,
 , Or, to, take, arms, against, a, sea, of, troubles, , And, by, opposing, end,
them.

Notice how our separation characters were not included in the final output, but we do
seem to have some “blanks” (which are showing up here as multiple commas in a row
with nothing in between). These empty entries occur when you have multiple consec-
utive separation characters, and, most often, you would rather not have to deal with
them. The Split method offers an overload that takes an additional parameter of type
StringSplitOptions, shown in Example 10-60, which lets us eliminate these empty
entries.

Example 10-60. Eliminating empty strings in String.Split

string[] splitStrings = output.Split(
 new char[] { ' ', '\t', '\r', '\n', ',', '-', ':' },
 StringSplitOptions.RemoveEmptyEntries);

Our output is now the more manageable:

To, be, or, not, to, be, that, is, the, question, Whether, 'tis, nobler, in, the
, mind, to, suffer, The, slings, and, arrows, of, outrageous, fortune, Or, to, t
ake, arms, against, a, sea, of, troubles, And, by, opposing, end, them.

Upper- and Lowercase
Some of the words in that output list originally appeared at the beginning of a line, and
therefore have an initial uppercase letter, while others were in the body of a line, and
are therefore entirely lowercase. In our output, it might be nicer if we represented them
all consistently (in lower case, for example).

This is easily achieved with the ToUpper and ToLower members of String. We can change
our output line to the code shown in Example 10-61.

Example 10-61. Forcing strings to lowercase

Console.Write(splitBit.ToLower());

Composing Strings | 347

Our output is now consistently lowercase:

to, be, or, not, to, be, that, is, the, question, whether, 'tis, nobler, in, the
, mind, to, suffer, the, slings, and, arrows, of, outrageous, fortune, or, to, t
ake, arms, against, a, sea, of, troubles, and, by, opposing, end, them.

Upper- and lowercase rules vary considerably among cultures, and you
should be cautious when using ToUpper and ToLower for this purpose.
For culture-insensitive scenarios, there are also methods called ToUpper
Invariant and ToLowerInvariant whose results are not affected by the
current culture. MSDN provides a considerable amount of resources
devoted to culture-sensitive string operations. A good starting point can
be found here:

http://msdn.microsoft.com/en-us/library/5bz7d2f8

Manipulating Text
The result of the preceding section was nice and neat; but what if our array of strings
had come from a user? Users have a tendency to whack the Return key a few times
before they write anything at all, and add spurious spaces and tabs to the beginning
and end of lines, particularly when copying and pasting between applications. They
might also add commas or periods or something like that, again in the interest of tidi-
ness. They might spell things incorrectly. There’s no accounting for what users might
do. Let’s simulate that with a new function shown in Example 10-62.

Example 10-62. Simulating messy input

private static string[] SoliloquizeLikeAUser()
{
 return new string[] {
 "",
 null,
 " ",
 String.Empty,
 " To be, or not to be--that is the question: ",
 "Whether 'tis nobelr in the mind to suffer,",
 "\tThe slings and arrows of outrageous fortune ,",
 "",
 "\tOr to take arms against a sea of troubles, ",
 "And by opposing end them.",
 "",
 "",
 "",
 "",
 ""};
}

348 | Chapter 10: Strings

http://msdn.microsoft.com/en-us/library/5bz7d2f8

Notice their extensive use of the Return key, the tendency to put the odd comma at the
end of the line, and the occasional whack of the Tab key at the beginning of lines.

Sadly, if we use this function and then print the output using String.Concat like we did
in Example 10-57, we end up with output like this:

 To be, or not to be--that is the question:
Whether 'tis nobelr in the mind to suffer,
 The slings and arrows of outrageous fortune ,
 Or to take arms against a sea of troubles,
And by opposing end them.

We can write some code to tidy this up. We can build up our output string, concate-
nating the various strings, and cleaning it up as we go. This is going to involve iterating
through our array of strings, inspecting them, perhaps transforming them, and then
appending them to our resultant string. Example 10-63 shows how we could structure
this, although it does not yet include any of the actual cleanup code.

Example 10-63. Cleaning up input

string[] strings = SoliloquizeLikeAUser();
string output = String.Empty; // This is equivalent to ""
foreach (string line in strings)
{
 // Do something to look at the line...
 // then...
 output = output + line + Environment.NewLine;
}
Console.WriteLine(output);

This would work just fine; but look at what happens every time we go round the loop.
We create a new string and store a reference to it in output, throwing away whatever
was in output before. That’s potentially very wasteful of resources, if we do this a lot.

Fortunately, the .NET Framework provides us with another type we can use for pre-
cisely these circumstances: StringBuilder.

Mutable Strings with StringBuilder
Having said that a String is immutable, we are now going to look at a class that is very,
very much like a string, and yet it can be modified. Example 10-64 shows it in action.

Manipulating Text | 349

Example 10-64. Building up strings with StringBuilder

string[] strings = SoliloquizeLikeAUser();
StringBuilder output = new StringBuilder();
foreach (string line in strings)
{
 // Do something to look at the line...
 // then...
 output.AppendLine(line);
}
Console.WriteLine(output.ToString());

After we’ve retrieved our array of strings, we create an (empty) instance of a
StringBuilder. For each string in our array, we then call the AppendLine method to
append the string, along with a suitable line-end character. Notice that we don’t keep
creating new instances of the StringBuilder as we go along. Instead, it automatically
handles the job of allocating an appropriate amount of internal storage and appending
each new string we pass it.

When we construct the StringBuilder, it allocates a chunk of memory in which we can
build the string—initially it allocates enough space for 16 characters. If we append
something that would make the string too long to fit, it allocates a new chunk of mem-
ory. Crucially, it allocates more than it needs, the idea being to have enough spare space
to satisfy a few more appends without needing to allocate yet another chunk of memory.
The precise details of the allocation strategy are not documented, but we’ll see it in
action shortly.

In an ideal world, we would avoid overallocating, and avoid repeatedly having to allo-
cate more space. If we have some way of knowing in advance how long the final
string will be, we can do this, because we can specify the initial capacity of the
StringBuilder in its constructor. Example 10-65 illustrates the effect.

Example 10-65. Capacity versus Length

StringBuilder builder1 = new StringBuilder();
StringBuilder builder2 = new StringBuilder(1024);

Console.WriteLine(builder1.Capacity);
Console.WriteLine(builder1.Length);

Console.WriteLine(builder2.Capacity);
Console.WriteLine(builder1.Length);

This would produce the output:

16
0
1024
0

350 | Chapter 10: Strings

Notice how we’re using the Capacity to see how many characters we could have in the
StringBuilder, and the Length to determine how many we do have. We can now append
some content to these two strings, as Example 10-66 shows.

Example 10-66. Exploring capacity

StringBuilder builder1 = new StringBuilder();
StringBuilder builder2 = new StringBuilder(1024);

Console.WriteLine(builder1.Capacity);
Console.WriteLine(builder1.Length);
Console.WriteLine(builder2.Capacity);
Console.WriteLine(builder2.Length);

builder1.Append('A', 24);
builder2.Append('A', 24);

Console.WriteLine(builder1.Capacity);
Console.WriteLine(builder1.Length);
Console.WriteLine(builder2.Capacity);
Console.WriteLine(builder2.Length);

We’re using a different overload of the Append method on StringBuilder. This one takes
a Char as its first parameter, and then a repeat count. So, in each case, we append a
string with 24 As.

If we run this, we get the output:

16
0
1024
0
32
24
1024
24

The first four lines are the same as before, but now we see that the capacity of the first
StringBuilder has increased to 32 characters, and the string it holds is 24 characters
long. The second StringBuilder has retained its capacity of 1,024 characters, because
that was plenty to hold the 24 characters we appended.

What if we append another 12 characters to that first StringBuilder, as Exam-
ple 10-67 shows?

Example 10-67. Appending more text

builder1.Append('B', 12);
Console.WriteLine(builder1.Capacity);
Console.WriteLine(builder1.Length);

The additional two lines of output look like this:

64
36

Manipulating Text | 351

We’ve gone from a capacity of 16 to 32 to 64 characters. OK; can you guess what
happens if we append another 30 characters (to push ourselves over the 64-character
limit) as Example 10-68 does?

Example 10-68. Appending yet more text

builder1.Append('C', 30);
Console.WriteLine(builder1.Capacity);
Console.WriteLine(builder1.Length);

Yup, the last two lines of output now read:

128
66

There is a geometric progression—the capacity is doubling each time we exceed its
previous capacity. It does this in an attempt to minimize the amount of allocation it
has to do, but in order to prevent things from getting totally out of hand, overallocation
will never grow the capacity by more than 8,000 characters (in the current version of
the framework, at least). Of course, if you append a string that is longer than 8,000
characters, StringBuilder will have to allocate enough space, but it won’t overallocate
in that case.

You may have noticed that in the preceding examples, the String
Builder had to reallocate each time we called Append. How is that any
better than just appending strings? Well, it isn’t, but that’s only because
we deliberately contrived the examples to show what happens when you
exceed the capacity. You won’t usually see such optimally bad
behavior—in practice, you’ll see fewer allocations than appends.

If we know we’re going to need a particular amount of space, we can manually ensure
that the builder has appropriate capacity, as shown in Example 10-69.

Example 10-69. Ensuring capacity

builder1.EnsureCapacity(32000);
Console.WriteLine(builder1.Capacity);
Console.WriteLine(builder1.Length);

The last two lines of output indicate that it has complied with our wishes:

32000
66

What if we then call EnsureCapacity with a smaller number? Example 10-70 tries to do
this.

352 | Chapter 10: Strings

Example 10-70. Attempting to reduce capacity

builder1.EnsureCapacity(70);
Console.WriteLine(builder1.Capacity);
Console.WriteLine(builder1.Length);

Here’s the output:

32000
66

Nope—it doesn’t reduce the capacity. EnsureCapacity only guarantees that the capacity
is at least what you ask for, so it does nothing if there’s more than you need.

OK, so StringBuilder is going to accumulate the string for us, making sure there’s
enough space as we go along. What about finishing off the method we were writing so
that it tidies up that user input as it goes along?

The first thing we’d like to do is to correct that mistake where the user seems to have
misspelled “nobler” as “nobelr”.

Finding and Replacing Content
Find-and-replace is a very common requirement when processing strings. Fortunately,
the .NET Framework provides us with a couple of options.

If we just want to find a piece of text we can use one of several overloads of the
IndexOf method. This takes some text for which to look, and an index at which to start
looking. By calling the method repeatedly, using the last index returned as the basis of
the start index for the next search, we can find all instances of the relevant text in the
input string, as Example 10-71 shows.

Example 10-71. Searching for text

string inputString =
 "If a dog and a man go into a bar, " +
 "is it necessarily the beginning of a joke?";
int index = −1;
do
{
 index += 1;
 index = inputString.IndexOf(" a ", index);
 Console.WriteLine(index);
}
while (index >= 0);

This produces the output:

2
12
26
68
−1

Finding and Replacing Content | 353

Notice how the method returns −1 when it cannot find a further match.

That’s finding content. What we really want to be able to do is to replace content,
though. As you might expect, string also offers us a Replace function, which is shown
in Example 10-72.

Example 10-72. Replacing text

string original = "Original text.";
string replaced = original.Replace("Original", "Replaced");
Console.WriteLine(original);
Console.WriteLine(replaced);

This takes any match for the first parameter found in the source, and replaces it with
the text in the second parameter. In this case, the output looks like this:

Original text.
Replaced text.

As you know, strings are immutable, so Replace creates a new string containing our
substitutions.

Replace offers no control over how many replacements to make, and from where to
start the replacement; both of these are common requirements in text processing. For-
tunately, StringBuilder has a family of Replace methods which address all of these
issues, performing an in-place replace with optional start index and number of re-
placements to make.

Remember that we had the code shown in Example 10-73.

Example 10-73. Code from earlier for tidying up the text

string[] strings = SoliloquizeLikeAUser();
StringBuilder output = new StringBuilder();
foreach (string line in strings)
{
 // Do something to look at the line...
 // then...
 output.AppendLine(line);
}
Console.WriteLine(output.ToString());

We can now add our replacement line, by adding the code in Example 10-74 just before
the final output to the console.

Example 10-74. Fixing a specific typo

output.Replace("nobelr", "nobler");
Console.WriteLine(output.ToString());

The relevant line now appears without the spelling error:

Whether 'tis nobler in the mind to suffer

OK, the next thing we’d like to do is to ignore completely blank lines.

354 | Chapter 10: Strings

All Sorts of “Empty” Strings
Let’s start by leaving out lines that have no content at all. There’s a special constant for
the empty string; we saw it earlier: String.Empty. Let’s see what happens if we use the
code in Example 10-75, which writes the line to the console only if it is not equal to
String.Empty.

Example 10-75. Detecting empty strings

foreach (string line in strings)
{
 if (line != String.Empty)
 {
 output.AppendLine(line);
 }
 else
 {
 System.Diagnostics.Debug.WriteLine("Found a blank line");
 }
}

You might be wondering exactly how string comparisons are performed. Some lan-
guages base string comparison on object identity so that "Abc" is not equal to a different
string object that also contains "Abc". (That may seem weird, but in one sense it’s
consistent: comparing reference types always means asking “do these two variables
refer to the same thing?”) But in C#, when you have distinct string objects, it performs
a “character-like” comparison between strings, so any two strings containing the same
sequence of characters are equal. This is different from how most reference types work,
but by treating strings as a special case, the result is closer to what most people would
expect. (Or at least to what most people who hadn’t already become accustomed to
the oddities of another language might expect.)

Because not all languages use by-value string comparison, the .NET
Framework supports the by-identity style too. Consequently, you get
by-value comparison only if the C# compiler knows it’s dealing with
strings. If you store two strings in variables of type object, the C# com-
piler loses track of the fact that they are strings, so if you compare these
variables with the == operator, it doesn’t know it should provide the
string-specific by-value comparison, and will instead do the default by-
identity comparison you get for most reference types.

For the sake of working out what is going on, we’re also writing a message to the debug
output each time we find a blank line.

If we build and run, the output to the console looks like this:

 To be, or not to be--that is the question:
Whether 'tis nobelr in the mind to suffer,
 The slings and arrows of outrageous fortune ,

All Sorts of “Empty” Strings | 355

 Or to take arms against a sea of troubles,
And by opposing end them.

The debug output indicates that the code found and removed eight blank lines. (If you
can’t see the Output panel in Visual Studio, you can show it with the View→Output
menu item. Ensure that the “Show output from” drop down has Debug selected.) But
apparently it missed some, judging by the output.

So which are the eight “blank” lines—that is, the lines that are the equivalent of
String.Empty? If you single-step through the debugger, you’ll see that they are the ones
that look like "" and String.Empty.

The ones that contain just whitespace account for some of the remaining blanks in the
output. While visibly blank, these are clearly not “empty”—they contain whitespace
characters. We’ll deal with that in a minute. The other line that looks “empty” but isn’t
is the null string.

As we said earlier, strings are reference types. There is, therefore, a considerable dif-
ference between a null reference to a string, and an empty string, as far as the .NET
runtime is concerned. However, a lot of applications don’t care about this distinction,
so it can sometimes be useful to treat a null string in much the same way as an empty
string. The String class offers a static method that lets us test for nullness-or-emptiness
with a single call, which Example 10-76 uses.

Example 10-76. Testing for either blank or null

foreach (string line in strings)
{
 if (!String.IsNullOrEmpty(line))
 {
 output.AppendLine(line);
 }
 else
 {
 System.Diagnostics.Debug.WriteLine("Found a blank line");
 }
}

Notice we have to use the ! operator, as the static method returns true if the string is
null or empty. Our output is now stripped of “blank” lines except the one that contains
just whitespace. If you check the debug output panel, you’ll see that nine lines have
been ignored:

 To be, or not to be--that is the question:
Whether 'tis nobelr in the mind to suffer,
 The slings and arrows of outrageous fortune ,
 Or to take arms against a sea of troubles,
And by opposing end them.

So, what can we do about that remaining blank line at the start? We can deal with this
by stripping out spurious whitespace, and then looking to see whether anything is left.

356 | Chapter 10: Strings

Not only will this fix our blank-line problem, but it will also remove any whitespace
that the user has left at the start and end of the line.

Trimming Whitespace
You often (but not always) want to trim whitespace from the beginning and/or end of
a piece of text; especially user-provided text. When storing data in a SQL database, for
example, it is frequently desirable to trim this whitespace.

With that in mind, the framework provides us with the Trim, TrimStart, and TrimEnd
methods. Example 10-77 uses Trim to remove the whitespace at the start and end of
every line.

Example 10-77. Trimming whitespace

foreach (string line in strings)
{
 if (line != null)
 {
 string trimmedLine = line.Trim();
 if (trimmedLine.Length != 0)
 {
 output.AppendLine(trimmedLine);
 }
 else
 {
 System.Diagnostics.Debug.WriteLine(
 "Found a blank line (after trimming)");
 }
 }
 else
 {
 System.Diagnostics.Debug.WriteLine("Found a null line");
 }
}

Notice how we’re trimming the line once, and storing a reference to the result in a
variable, then using that trimmed string in our subsequent tests. Because we’re calling
a method on our string instance, we need to test it for nullness before we do that, or
we’ll get a null reference exception. This means that we don’t need to call IsNullOr
Empty in our later test. We know that it cannot be null. Instead, we do a quick test for
emptiness. It turns out that the most efficient way to do this is not to compare against
String.Empty but to check the Length of our string.

If we build and run this, we see the following output:

To be, or not to be--that is the question:
Whether 'tis nobler in the mind to suffer,
The slings and arrows of outrageous fortune ,
Or to take arms against a sea of troubles,
And by opposing end them.

Trimming Whitespace | 357

And in the output window:

Found a blank line (after trimming)
Found a null line
Found a blank line (after trimming)
Found a blank line (after trimming)
Found a blank line (after trimming)
Found a blank line (after trimming)
Found a blank line (after trimming)
Found a blank line (after trimming)
Found a blank line (after trimming)

You’ll notice that Trim has successfully removed all the whitespace at the beginning
and end of each line, both spaces and tab characters, but left the whitespace in the
middle of the line alone.

Trim isn’t limited to removing whitespace characters, though. Another overload allows
us to specify the array of characters we want to trim from the beginning or end of the
line. We could use this to get rid of those spurious commas, too, using the code in
Example 10-78.

Example 10-78. Trimming specific characters

string trimmedLine = line.Trim(' ', '\t', ',');

This overload of Trim uses the parameter array syntax, so we can specify the characters
we want to trim as a simple parameter list. In this case, we tell it to trim spaces, tabs,
and commas.

Our output, then, looks like this:

To be, or not to be--that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune
Or to take arms against a sea of troubles
And by opposing end them.

Of course, although the output is correct for this particular input, it isn’t quite the same
as the original Trim function—it isn’t removing all possible whitespace characters, just
the ones we happened to remember to list. There are a surprising number of different
characters that represent whitespace—as well as your basic ordinary space, .NET rec-
ognizes a character for an en space (one the same width as the letter N), an em space
(the same width as M), a thin space, and a hair space, to name just a few. There are
more than 20 of the things!

Example 10-79 shows a function that will trim all whitespace, plus any additional
characters we specify.

Example 10-79. Trimming any whitespace and specific additional characters

private static string TrimWhitespaceAnd(
 string inputString,
 params char[] characters)

358 | Chapter 10: Strings

{
 int start = 0;
 while (start < inputString.Length)
 {
 // If it is neither whitespace nor a character from our list
 // then we've hit the first non-trimmable character, so we can stop
 if (!char.IsWhiteSpace(inputString[start]) &&
 !characters.Contains(inputString[start]))
 {
 break;
 }
 // Work forward a character
 start++;
 }
 // Work backwards from the end
 int end = inputString.Length −1;
 while (end >= start)
 {
 // If it is neither whitespace nor a character from our list
 // then we've hit the first non-trimmable character
 if (!char.IsWhiteSpace(inputString[end]) &&
 !characters.Contains(inputString[end]))
 {
 break;
 }
 // Work back a character
 end--;
 }
 // Work out how long our string is for the
 // substring function
 int length = (end - start) + 1;
 if (length == inputString.Length)
 {
 // If we didn't trim anything, just return the
 // input string (don't create a new one
 return inputString;
 }
 // If the length is zero, then return the empty string
 if (length == 0)
 {
 return string.Empty;
 }
 return inputString.Substring(start, length);
}

This method works by iterating through our string, examining each character and
checking to see whether it should be trimmed. If so, then we increment the start position
by one character, and check the next one, until we hit a character that should not be
trimmed, or the end of the string. We then do the same thing starting from the end of
the string, and reversing character by character until we reach the start point.

Trimming Whitespace | 359

If you wanted to write the equivalent of TrimStart or TrimEnd you would
just optionally leave out the end or start checking, respectively.

Finally, we create our new output string, by using the Substring method we looked at
earlier. Notice how we’ve avoided creating strings unnecessarily; we don’t build up the
results as we go along, and we don’t create new strings in the “no change” and “empty”
cases. (We could have written a much shorter function if we weren’t worried about
this: inputString.Trim().Trim(characters) would have done the whole job! However,
with two calls to Trim, we end up generating two new strings instead of one. You’d
need to measure your code’s performance in realistic test scenarios to find out whether
the more complex code in Example 10-79 is worth the effort. We’re showing it mainly
to illustrate how to dig around inside a string.)

The interesting new bit of code, though, is that char.IsWhitespace method.

Checking Character Types
We’re generally familiar with the idea that characters might be numbers, letters, white-
space, or punctuation. This is formalized in the .NET Framework, and char provides
us with a bunch of static helper functions to do the categorization for us.

Several are fairly self-explanatory:

IsWhitespace, IsLetter, IsDigit, IsLetterOrDigit, IsPunctuation

There are also a couple of useful items for testing whether a character is upper- or
lowercase:

IsUpper, IsLower

Then there are a few less intuitively obvious items:

IsNumber (you might wonder whether there was a difference between this and IsDigit?)

IsSeparator, IsControl

IsHighSurrogate, IsLowSurrogate

Even the self-explanatory items turn out to be a little more complicated than you might
think. These categories come from Unicode, and to understand that, we need to delve
a little more deeply into the way that characters are encoded.

Encoding Characters
When we give a char variable the value 'A', what exactly is that value?

360 | Chapter 10: Strings

We’ve already alluded to the fact that there is some kind of encoding going on—
remember that we mentioned the IBM-derived Latin1 scheme when we were discussing
escaped character literals.

Computers work with binary values, typically made up of one or more bytes, and we
clearly need some kind of mapping between the binary values in these bytes and the
characters we want them to represent. We’ve all got to agree on what the binary values
mean, or we can’t exchange information. To that end, the American Standards Asso-
ciation convened a committee in the 1960s which defined (and then redefined, tweaked,
and generally improved over subsequent decades) a standard called ASCII (pronounced
ass‡-key): the American Standard Code for Information Interchange.

This defined 128 characters, represented using 7 bits of a byte. The first 32 values from
0x00–0x19, and also the very last value, 0x7F, are called control characters, and include
things like the tab character (0x09), backspace (0x09), bell (0x07), and delete (0x7F).

The rest are called the printable characters, and include space (0x20), which is not a
control character, but a “blank” printable character; all the upper and lowercase letters;
and most of the punctuation marks in common use in English.

This was a start, but it rapidly became apparent that ASCII did not have enough char-
acters to deal with a lot of the common Western (“Latin”) scripts; the accented char-
acters in French, or Spanish punctuation marks, for example. It also lacked common
characters like the international copyright symbol ©, or the registered trademark
symbol ®.

Since ASCII uses only 7 bits, and most computers use 8-bit bytes, the obvious solution
was to put the necessary characters into byte values not used by ASCII. Unfortunately,
different mappings between byte values and characters emerged in different countries.
These mappings are called code pages. If you bought a PC in, say, Norway, it would
use a code page that offered all of the characters required to write in Norwegian, but if
you tried to view the same file on a PC bought in Greece, the non-ASCII characters
would look like gibberish because the PC would be configured with a Greek code page.
IBM defined Latin-1 (much later updated and standardized as ISO-8859-1) as a single
code page that provides most of what is required by most of the European languages
that use Latin letters. Microsoft defined the Windows-1252 code page, which is mostly
(but not entirely) compatible. Apple defined the Mac-Roman encoding, which has the
same goal, but is completely different again.

All of these encodings were designed to provide a single solution for Western European
scripts, but they all fall short in various different ways—Dutch, for example, is missing
some of its diphthongs. This is largely because 8 bits just isn’t enough to cover all
possible characters in all international languages. Chinese alone has well over 100,000
characters.

‡ A sort of donkey, before anyone complains.

Encoding Characters | 361

In the late 1980s and early 1990s, standardization efforts were underway to define an
internationally acceptable encoding that would allow characters from all scripts to be
represented in a reasonably consistent manner. This became the Unicode standard, and
is the one that is in use in the .NET Framework.

Unicode is a complex standard, as might be expected from something that is designed
to deal with all current (and past) human languages, and have sufficient flexibility to
deal with most conceivable future changes, too. It uses numbers to define more than 1
million code points in a codespace. A code point is roughly analogous to a character in
other encodings, including formal definitions of special categories such as graphic char-
acters, format characters, and control characters. It’s possible to represent a sequence
of code points as a sequence of 16-bit values.

You might be wondering how we can handle more than 1 million characters, when
there are only 65,536 different values for 16-bit numbers. The answer is that we can
team up pairs of characters. The first is called a high surrogate; if this is then followed
by a low surrogate, it defines a character outside the normal 16-bit range.

Unicode also defines complex ways of combining characters. Characters and their di-
acritical marks can appear consecutively in a string, with the intention that they become
combined in their ultimate visual representation; or you can use multiple characters to
define special ligatures (characters that are joined together, like Æ).

The .NET Framework Char, then, is a 16-bit value that represents a Unicode code point.

This encoding is called UTF-16, and is the common in-memory repre-
sentation for strings in most modern platforms. Throughout the Win-
dows API, this format is referred to as “Unicode”. This is somewhat
imprecise, as there are numerous different Unicode formats. But since
none were in widespread use at the time Windows first introduced Uni-
code support, Microsoft apparently felt that “UTF-16” was an unnec-
essarily confusing name. But in general, when you see “Unicode” in
either Windows or the .NET Framework, it means UTF-16.

From that, we can see that those IsNumber, IsLetter, IsHighSurrogate, and
IsLowSurrogate methods correspond to tests for particular Unicode categories.

Why Encodings Matter
You may ask: why do we need to know about encodings when “it just works”? That’s
all very well for our in-memory representation of a string, but what happens when we
save some text to disk, encrypt it, or send it across the Web as HTML? We may not
want the 16-bit Unicode encoding we’ve got in memory, but something else. These
encodings are really information interchange standards, as much as they are internal
choices about how we represent strings.

362 | Chapter 10: Strings

Most XML documents, for example, are encoded using the UTF-8 encoding. This is an
encoding that lets us represent any character in the Unicode codespace, and is com-
patible with ASCII for the characters in the 7-bit set. It achieves this by using variable-
length characters: a single byte for the ASCII range, and two to six bytes for the rest. It
takes advantage of special marker values (with the high bit set) to indicate the start of
two to six byte sequences.

While UTF-8 and ASCII are compatible in the sense that any file that
contains ASCII text happens to be a valid UTF-8 file (and has the same
meaning whether you interpret it as ASCII or UTF-8), there are two
caveats. First, a lot of people are sloppy with their terminology and will
describe any old 8-bit text encoding as ASCII, which is wrong. ASCII is
strictly 7-bit. Latin1 text that uses characters from the top-bit-set range
is not valid UTF-8. Second, it’s possible to construct a valid UTF-8 file
that only uses characters from the 7-bit range, and yet is not a valid
ASCII file. (For example, if you save a file from Windows Notepad as
UTF-8, it will not be valid ASCII.) That’s because UTF-8 is allowed to
contain certain non-ASCII features. One is the so-called BOM (Byte
Order Mark), which is a sequence of bytes at the start of the file unam-
biguously representing the file as UTF-8. (The bytes are 0xEF, 0xBB,
0xBF.) The BOM is optional, but Notepad always adds it if you save as
UTF-8, which is likely to confuse any program that only understands
how to process ASCII.

We’re not going to look at any more details of these specific encodings. If you’re writing
an encoder or decoder by hand, you’ll want to refer to the relevant specifications and
vast bodies of work on their interpretation.

Fortunately, for the rest of us mortals, the .NET Framework provides us with standard
implementations of most of the encodings, so we can convert between the different
representations fairly easily.

Encoding and Decoding
Encoding is the process of turning a text string into a sequence of bytes. Conversely,
decoding is the process of turning a byte sequence into a text string. The .NET APIs for
encoding and decoding represents these sequences as byte arrays.

Let’s look at the code in Example 10-80 that illustrates this. First, we’ll encode some
text using the UTF-8 and ASCII encodings, and write the byte values we see to the
console.

Example 10-80. Encoding text

static void Main(string[] args)
{
 string listenUp = "Listen up!";

Encoding Characters | 363

 byte[] utf8Bytes = Encoding.UTF8.GetBytes(listenUp);
 byte[] asciiBytes = Encoding.ASCII.GetBytes(listenUp);

 Console.WriteLine("UTF-8");
 Console.WriteLine("-----");
 foreach (var encodedByte in utf8Bytes)
 {
 Console.Write(encodedByte);
 Console.Write(" ");
 }

 Console.WriteLine();
 Console.WriteLine();

 Console.WriteLine("ASCII");
 Console.WriteLine("-----");
 foreach (var encodedByte in asciiBytes)
 {
 Console.Write(encodedByte);
 Console.Write(" ");
 }

 Console.ReadKey();
}

The framework provides us with the Encoding class. This has a set of static properties
that provide us with specific instances of an Encoding object for a particular scheme. In
this case, we’re using UTF8 and ASCII, which actually return instances of UTF8Encoding
and ASCIIEncoding, respectively.

Under normal circumstances, you do not need to know the actual type
of these instances; you can just talk to the object returned through its
Encoding base class.

GetBytes returns us the byte array that corresponds to the actual in-memory represen-
tation of a string, encoded using the relevant scheme.

If we build and run this code, we see the following output:

UTF-8

76 105 115 116 101 110 32 117 112 33

ASCII

76 105 115 116 101 110 32 117 112 33

Notice that our encodings are identical in this case, just as promised. For basic Latin
characters, UTF-8 and ASCII are compatible. (Unlike Notepad, the .NET UTF8Encod
ing does not choose to add a BOM by default, so unless you use characters outside the

364 | Chapter 10: Strings

ASCII range this will in fact produce files that can be understood by anything that
knows how to process ASCII.)

Let’s make a quick change to the string we’re trying to change, and translate it into
French. Replace the first line inside the Main method with Example 10-81. Notice that
we’ve got a capital E with an acute accent at the beginning.

Example 10-81. Using a nonASCII character

string listenUp = "Écoute-moi!";

If you don’t have a French keyboard and you’re wondering how to insert that E-acute
character, there are a number of ways to do it.

If you know the decimal representation of the Unicode code point, you can hold down
the Alt key and type the number on the numeric keypad (and then release the Alt key).
So Alt-0163 will insert the symbol for the UK currency, £, and Alt-0201 produces É.
This doesn’t work for the normal number keys, though, so if you don’t have a numeric
keypad—most laptops don’t—this isn’t much help.

Possibly the most fun, though, is to run the charmap.exe application. The program icon
for it in the Start menu is buried pretty deeply, so it’s easier to type charmap into a
command prompt, the Start→Run box, or the Windows 7 Start menu search box. This
is very instructive, and allows you to explore the various different character sets and (if
you check the “Advanced view” box) encodings. You can see an image of it in Fig-
ure 10-2.

Alternatively, you could just escape the character—the string literal "\u00C9coutez
moi" will produce the same result. And this has the advantage of not requiring non-
ASCII values in your source file. Visual Studio is perfectly able to edit various file en-
codings, including UTF-8, so you can put non-ASCII characters in strings without
having to escape them, and you can even use them in identifiers. But some text-oriented
tools are not so flexible, so there may be advantages in keeping your source code purely
ASCII.

Now, when we run again, we get the following output:

UTF-8

195 137 99 111 117 116 101 45 109 111 105 33

ASCII

63 99 111 117 116 101 45 109 111 105 33

We’ve quite clearly not got the same output in each case. The UTF-8 case starts with
195, 137, while the ASCII starts with 63. After this preamble, they’re again identical.

So, let’s try decoding those two byte arrays back into strings, and see what happens.

Insert the code in Example 10-82 before the call to Console.ReadKey.

Encoding Characters | 365

Example 10-82. Decoding text

string decodedUtf8 = Encoding.UTF8.GetString(utf8Bytes);
string decodedAscii = Encoding.ASCII.GetString(asciiBytes);

Console.WriteLine();
Console.WriteLine();

Console.WriteLine("Decoded UTF-8");
Console.WriteLine("-------------");
Console.WriteLine(decodedUtf8);

Console.WriteLine();
Console.WriteLine();

Console.WriteLine("Decoded ASCII");
Console.WriteLine("-------------");
Console.WriteLine(decodedAscii);

Figure 10-2. Charmap.exe in action

366 | Chapter 10: Strings

We’re now using the GetString method on our Encoding objects, to decode the byte
array back into a string. Here’s the output:

UTF-8

195 137 99 111 117 116 101 45 109 111 105 33

ASCII

63 99 111 117 116 101 45 109 111 105 33

Decoded UTF-8

Écoute-moi!

Decoded ASCII

?coute-moi!

The UTF-8 bytes have decoded back to our original string. This is because the UTF-8
encoding supports the E-acute character, and it does so by inserting two bytes into the
array: 195 137.

On the other hand, our ASCII bytes have been decoded and we see that the first char-
acter has become a question mark.

If you look at the encoded bytes, you’ll see that the first byte is 63, which (if you look
it up in an ASCII table somewhere) corresponds to the question mark character. So this
isn’t the fault of the decoder. The encoder, when faced with a character it didn’t un-
derstand, inserted a question mark.

So, you need to be careful that any encoding you choose is capable of
supporting the characters you are using (or be prepared for the infor-
mation loss if it doesn’t).

OK, we’ve seen an example of the one-byte-per-character ASCII representation, and
the at-least-one-byte-per-character UTF-8 representation. Let’s have a look at the un-
derlying at-least-two-bytes-per-character UTF-16 encoding that the framework uses
internally—Example 10-83 uses this.

Example 10-83. Using UTF-16 encoding

static void Main(string[] args)
{
 string listenUpFR = "Écoute-moi!";

 byte[] utf16Bytes = Encoding.Unicode.GetBytes(listenUpFR);

 Console.WriteLine("UTF-16");
 Console.WriteLine("-----");
 foreach (var encodedByte in utf16Bytes)
 {

Encoding Characters | 367

 Console.Write(encodedByte);
 Console.Write(" ");
 }

 Console.ReadKey();
}

Notice that we’re using the Unicode encoding this time.

If we compile and run, we see the following output:

UTF-16

201 0 99 0 111 0 117 0 116 0 101 0 45 0 109 0 111 0 105 0 33 0

It is interesting to compare this with the ASCII output we had before:

ASCII

63 99 111 117 116 101 45 109 111 105 33

The first character is different, because UTF-16 can encode the E-acute correctly;
thereafter, every other byte in the UTF-16 array is zero, and the next byte corresponds
to the ASCII value. As we said earlier, the Unicode standard is highly compatible with
ASCII, and each 16-bit value (i.e., pair of bytes) corresponds to the equivalent 7-bit
value in the ASCII encoding.

There’s one more note to make about this byte array, which has to do with the order
of the bytes. This is easier to see if we first update the program to show the values in
hex, using the formatting function we learned about earlier, as Example 10-84 shows.

Example 10-84. Showing byte values of encoded text

static void Main(string[] args)
{
 string listenUpFR = "Écoute-moi!";

 byte[] utf16Bytes = Encoding.Unicode.GetBytes(listenUpFR);

 Console.WriteLine("UTF-16");
 Console.WriteLine("-----");
 foreach (var encodedByte in utf16Bytes)
 {
 Console.Write(string.Format("{0:X2}", encodedByte));
 Console.Write(" ");
 }

 Console.ReadKey();
}

If we run again, we now see our bytes written out in hex format:

UTF-16

C9 00 63 00 6F 00 75 00 74 00 65 00 2D 00 6D 00 6F 00 69 00 21 00

368 | Chapter 10: Strings

But remember that each UTF-16 code point is represented by a 16-bit value, so we need
to think of each pair of bytes as a character. So, our second character is 63 00. This is
the 16-bit hex value 0x0063, represented in the little-endian form. That means we get
the least-significant byte (LSB) first, followed by the most-significant byte (MSB).

For good (but now largely historical) reasons of engineering efficiency, the Intel x86
family is natively a little-endian architecture. It always expects the LSB followed by the
MSB, so the default Unicode encoding is little-endian. On the other hand, platforms
like the 680x0 series used in “classic” Macs are big-endian—they expect the MSB,
followed by the LSB. Some chip architectures (like the later versions of the ARM chip
used in most phones) can even be switched between flavors!

Another historical note: one of your authors is big-endian (he used the
Z80 and 68000 when he was a baby developer) and the other is little
endian (he used the 6502, and early pre-endian-switching versions of
the ARM when he was growing up).

Consequently, one of us has felt like every memory dump he’s looked
at since about 1995 has been “backwards”. The other takes the contra-
rian position that it’s so-called “normal” numbers that are written
backwards. So take a deep breath and count to 01.

Should you need to communicate with something that expects its UTF-16 in a big-
endian byte array, you can ask for it. Replace the line in Example 10-84 that initializes
the utf16Bytes variable with the code in Example 10-85.

Example 10-85. Using big-endian UTF-16

byte[] utf16Bytes = Encoding.BigEndianUnicode.GetBytes(listenUpFR);

As you might expect, we get the following output:

UTF-16

00 C9 00 63 00 6F 00 75 00 74 00 65 00 2D 00 6D 00 6F 00 69 00 21

And let’s try it once more, but with Arabic text, as Example 10-86 shows.

Example 10-86. Big-endian Arabic

static void Main(string[] args)
{
 string listenUpArabic = "ّ إليّ أنصت ";

 byte[] utf16Bytes = Encoding.BigEndianUnicode.GetBytes(listenUpArabic);

 Console.WriteLine("UTF-16");
 Console.WriteLine("-----");
 foreach (var encodedByte in utf16Bytes)
 {
 Console.Write(string.Format("{0:X2}", encodedByte));

Encoding Characters | 369

 Console.Write(" ");
 }

 Console.ReadKey();
}

And our output is:

UTF-16

06 23 06 46 06 35 06 2A 00 20 06 25 06 44 06 4A 06 51

(Just to prove that you do get values bigger than 0xFF in Unicode!)

Why Represent Strings As Byte Sequences?
In the course of the chapters on file I/O (Chapter 11) and networking (Chapter 13),
we’re going to see a number of communications and storage APIs that deal with writing
arrays of bytes to some kind of target device. The byte format in which those strings
go down the wires is clearly very important, and, while the framework default choices
are often appropriate, knowing how (and why) you might need to choose a different
encoding will ensure that you’re equipped to deal with mysterious bugs—especially
when wrangling text in a language other than your own, or to/from a non-Windows
platform.§

Summary
In this chapter, we delved into the workings of strings, looking at the difference between
the immutable String and its mutable cousin, StringBuilder. We saw how to convert
other data types to and from strings, and how to control that formatting, especially
when we consider cultures and languages other than our own.

We saw the various ways in which we can compose strings, and the performance trade-
offs of each technique. Finally, we looked at how strings are actually represented in
memory, and how we may need to convert between different encodings for different
applications, platforms, and configurations.

§ Yes, other platforms do exist.

370 | Chapter 10: Strings

CHAPTER 11

Files and Streams

Almost all programmers have to deal with storing, retrieving, and processing informa-
tion in files at some time or another. The .NET Framework provides a number of classes
and methods we can use to find, create, read, and write files and directories In this
chapter we’ll look at some of the most common.

Files, though, are just one example of a broader group of entities that can be opened,
read from, and/or written to in a sequential fashion, and then closed. .NET defines a
common contract, called a stream, that is offered by all types that can be used in this
way. We’ll see how and why we might access a file through a stream, and then we’ll
look at some other types of streams, including a special storage medium called isolated
storage which lets us save and load information even when we are in a lower-trust
environment (such as the Silverlight sandbox). Finally, we’ll look at some of the other
stream implementations in .NET by way of comparison. (Streams crop up in all sorts
of places, so this chapter won’t be the last we see of them—they’re important in net-
working, for example.)

Inspecting Directories and Files
We, the authors of this book, have often heard our colleagues ask for a program to help
them find duplicate files on their system. Let’s write something to do exactly that. We’ll
pass the names of the directories we want to search on the command line, along with
an optional switch to determine whether we want to recurse into subdirectories or not.
In the first instance, we’ll do a very basic check for similarity based on filenames and
sizes, as these are relatively cheap options. Example 11-1 shows our Main function.

Example 11-1. Main method of duplicate file finder

static void Main(string[] args)
{
 bool recurseIntoSubdirectories = false;

 if (args.Length < 1)
 {

371

 ShowUsage();
 return;
 }

 int firstDirectoryIndex = 0;

 if (args.Length > 1)
 {
 // see if we're being asked to recurse
 if (args[0] == "/sub")
 {
 if (args.Length < 2)
 {
 ShowUsage();
 return;
 }
 recurseIntoSubdirectories = true;
 firstDirectoryIndex = 1;
 }
 }

 // Get list of directories from command line.
 var directoriesToSearch = args.Skip(firstDirectoryIndex);

 List<FileNameGroup> filesGroupedByName =
 InspectDirectories(recurseIntoSubdirectories, directoriesToSearch);

 DisplayMatches(filesGroupedByName);

 Console.ReadKey();
}

The basic structure is pretty straightforward. First we inspect the command-line argu-
ments to work out which directories we’re searching. Then we call InspectDirecto
ries (shown later) to build a list of all the files in those directories. This groups the files
by filename (without the full path) because we do not consider two files to be duplicates
if they have different names. Finally, we pass this list to DisplayMatches, which displays
any potential matches in the files we have found. DisplayMatches refines our test for
duplicates further—it considers two files with the same name to be duplicates only if
they have the same size. (That’s not foolproof, of course, but it’s surprisingly effective,
and we will refine it further later in the chapter.)

Let’s look at each of these steps in more detail.

The code that parses the command-line arguments does a quick check to see that we’ve
provided at least one command-line argument (in addition to the /sub switch if present)
and we print out some usage instructions if not, using the method shown in
Example 11-2.

372 | Chapter 11: Files and Streams

Example 11-2. Showing command line usage

private static void ShowUsage()
{
 Console.WriteLine("Find duplicate files");
 Console.WriteLine("====================");
 Console.WriteLine(
 "Looks for possible duplicate files in one or more directories");
 Console.WriteLine();
 Console.WriteLine(
 "Usage: findduplicatefiles [/sub] DirectoryName [DirectoryName] ...");
 Console.WriteLine("/sub - recurse into subdirectories");
 Console.ReadKey();
}

The next step is to build a list of files grouped by name. We define a couple of classes
for this, shown in Example 11-3. We create a FileNameGroup object for each distinct
filename. Each FileNameGroup contains a nested list of FileDetails, providing the full
path of each file that has that name, and also the size of that file.

Example 11-3. Types used to keep track of the files we’ve found

class FileNameGroup
{
 public string FileNameWithoutPath { get; set; }
 public List<FileDetails> FilesWithThisName { get; set; }
}

class FileDetails
{
 public string FilePath { get; set; }
 public long FileSize { get; set; }
}

For example, suppose the program searches two folders, c:\One and c:\Two, and sup-
pose both of those folders contain a file called Readme.txt. Our list will contain a
FileNameGroup whose FileNameWithoutPath is Readme.txt. Its nested FilesWithThis
Name list will contain two FileDetails entries, one with a FilePath of c:\One
\Readme.txt and the other with c:\Two\Readme.txt. (And each FileDetails will contain
the size of the relevant file in FileSize. If these two files really are copies of the same
file, their sizes will, of course, be the same.)

We build these lists in the InspectDirectories method, which is shown in Exam-
ple 11-4. This contains the meat of the program, because this is where we search the
specified directories for files. Quite a lot of the code is concerned with the logic of the
program, but this is also where we start to use some of the file APIs.

Inspecting Directories and Files | 373

Example 11-4. InspectDirectories method

private static List<FileNameGroup> InspectDirectories(
 bool recurseIntoSubdirectories,
 IEnumerable<string> directoriesToSearch)
{
 var searchOption = recurseIntoSubdirectories ?
 SearchOption.AllDirectories : SearchOption.TopDirectoryOnly;

 // Get the path of every file in every directory we're searching.
 var allFilePaths = from directory in directoriesToSearch
 from file in Directory.GetFiles(directory, "*.*",
 searchOption)
 select file;

 // Group the files by local filename (i.e. the filename without the
 // containing path), and for each filename, build a list containing the
 // details for every file that has that filename.
 var fileNameGroups = from filePath in allFilePaths
 let fileNameWithoutPath = Path.GetFileName(filePath)
 group filePath by fileNameWithoutPath into nameGroup
 select new FileNameGroup
 {
 FileNameWithoutPath = nameGroup.Key,
 FilesWithThisName =
 (from filePath in nameGroup
 let info = new FileInfo(filePath)
 select new FileDetails
 {
 FilePath = filePath,
 FileSize = info.Length
 }).ToList()
 };

 return fileNameGroups.ToList();
}

To get it to compile, you’ll need to add:

using System.IO;

The parts of Example 11-4 that use the System.IO namespace to work with files and
directories have been highlighted. We’ll start by looking at the use of the Directory
class.

Examining Directories
Our InspectDirectories method calls the static GetFiles method on the Directory class
to find the files we’re interested in. Example 11-5 shows the relevant code.

374 | Chapter 11: Files and Streams

Example 11-5. Getting the files in a directory

var searchOption = recurseIntoSubdirectories ?
 SearchOption.AllDirectories : SearchOption.TopDirectoryOnly;

// Get the path of every file in every directory we're searching.
var allFilePaths = from directory in directoriesToSearch
 from file in Directory.GetFiles(directory, "*.*",
 searchOption)
 select file;

The overload of GetFiles we’re calling takes the directory we’d like to search, a filter
(in the standard command-line form), and a value from the SearchOption enumeration,
which determines whether to recurse down through all the subfolders.

We’re using LINQ to Objects to build a list of all the files we require.
As you saw in Chapter 8, a query with multiple from clauses works in a
similar way to nested foreach loops. The code in Example 11-5 will end
up calling GetFiles for each directory passed on the command line, and
it will effectively concatenate the results of all those calls into a single
list of files.

The GetFiles method returns the full path for each file concerned, but when it comes
to finding matches, we just want the filename. We can use the Path class to get the
filename from the full path.

Manipulating File Paths
The Path class provides methods for manipulating strings containing file paths. Imagine
we have the path c:\directory1\directory2\MyFile.txt. Table 11-1 shows you how you
can slice that with various different Path methods.

Table 11-1. The effect of various Path methods

Method name Result

GetDirectoryName c:\directory1\directory2

GetExtension .txt (note the leading “.”)

GetFileName MyFile.txt

GetFileNameWithoutExtension MyFile

GetFullPath c:\directory1\directory2\MyFile.txt

GetPathRoot c:\

What if we use a network path? Table 11-2 shows the results of the same methods when
applied to this path:

\\MyPC\Share1\directory2\MyFile.txt

Manipulating File Paths | 375

Table 11-2. The effect of various Path methods with a network path

Method name Result

GetDirectoryName \\MyPC\Share1\directory2

GetExtension .txt

GetFileName MyFile.txt

GetFileNameWithoutExtension MyFile

GetFullPath \\MyPC\Share1\directory2\MyFile.txt

GetPathRoot \\MyPC\Share1

Notice how the path root includes the network hostname and the share name.

What happens if we don’t use a full path, but one relative to the current directory? And
what’s the current directory anyway?

Path and the Current Working Directory
The framework maintains a process-wide idea of the current working directory, which
is the root path relative to which any file operations that do not fully qualify the path
are made. The Directory class (as you might imagine) gives us the ability to manipulate
it. Rather than a static property, there are two static methods to query and set the
current value: GetCurrentDirectory and SetCurrentDirectory. Example 11-6 shows a
call to the latter.

Example 11-6. Setting the current directory

Directory.SetCurrentDirectory(@"c:\");

Table 11-3 shows the results we’d get if we passed @"directory2\MyFile.txt" to the
various Path methods after having run the code in Example 11-6. As you can see, most
of the results reflect the fact that we’ve not provided a full path, but there’s one excep-
tion: GetFullPath uses the current working directory if we provide it with a relative path.

Table 11-3. The effect of various Path methods with a relative path

Method name Result

GetDirectoryName directory2

GetExtension .txt

GetFileName MyFile.txt

GetFileNameWithoutExtension MyFile

GetFullPath c:\directory2\MyFile.txt

GetPathRoot <blank>

376 | Chapter 11: Files and Streams

Path doesn’t check that the named file exists. It only looks at the input
string and, in the case of GetFullPath, the current working directory.

OK, in our example, we just want the filename without the path, so we use Path.Get
FileName to retrieve it. Example 11-7 shows the relevant piece of Example 11-4.

Example 11-7. Getting the filename without the full path

var fileNameGroups = from filePath in allFilePaths
 let fileNameWithoutPath = Path.GetFileName(filePath)
 group filePath by fileNameWithoutPath into nameGroup
 select ...

We then use the LINQ group operator (which was described in Chapter 8) to group
all of the files by name.

Path contains a lot of other useful members that we’ll need a little bit later; but we can
leave it for the time being, and move on to the other piece of information that we need
for our matching code: the file size. The .NET Framework provides us with a class
called FileInfo that contains a whole bunch of members that help us to discover things
about a file.

Examining File Information
The various functions from the System.IO classes we’ve dealt with so far have all been
static, but when it comes to retrieving information such as file size, we have to create
an instance of a FileInfo object, passing its constructor the path of the file we’re in-
terested in. That path can be either an absolute path like the ones we’ve seen already,
or a path relative to the current working directory. FileInfo has a lot of overlapping
functionality with other classes. For example, it provides a few helpers similar to
Path to get details of the directory, filename, and extension.

However, the only method we’re really interested in for our example is its Length prop-
erty, which tells us the size of the file. Every other member on FileInfo has a functional
equivalent on other classes in the framework. Even Length is duplicated on the stream
classes we’ll come to later, but it is simpler for us to use FileInfo if we don’t intend to
open the file itself.

We use FileInfo in the final part of InspectDirectories, to put the file size into the per-
file details. Example 11-8 shows the relevant excerpt from Example 11-4.

Example 11-8. Getting the file size

...
select new FileNameGroup
{
 FileNameWithoutPath = nameGroup.Key,
 FilesWithThisName =

Examining File Information | 377

 (from filePath in nameGroup
 let info = new FileInfo(filePath)
 select new FileDetails
 {
 FilePath = filePath,
 FileSize = info.Length
 }).ToList()
};

We’re now only one method short of a sort-of-useful program, and that’s the one that
trawls through this information to find and display matches: DisplayMatches, which is
shown in Example 11-9.

Example 11-9. DisplayMatches

private static void DisplayMatches(
 IEnumerable<FileNameGroup> filesGroupedByName)
{
 var groupsWithMoreThanOneFile = from nameGroup in filesGroupedByName
 where nameGroup.FilesWithThisName.Count > 1
 select nameGroup;

 foreach (var fileNameGroup in groupsWithMoreThanOneFile)
 {
 // Group the matches by the file size, then select those
 // with more than 1 file of that size.
 var matchesBySize = from file in fileNameGroup.FilesWithThisName
 group file by file.FileSize into sizeGroup
 where sizeGroup.Count() > 1
 select sizeGroup;

 foreach (var matchedBySize in matchesBySize)
 {
 string fileNameAndSize = string.Format("{0} ({1} bytes)",
 fileNameGroup.FileNameWithoutPath, matchedBySize.Key);
 WriteWithUnderlines(fileNameAndSize);
 // Show each of the directories containing this file
 foreach (var file in matchedBySize)
 {
 Console.WriteLine(Path.GetDirectoryName(file.FilePath));
 }
 Console.WriteLine();
 }
 }
}

private static void WriteWithUnderlines(string text)
{
 Console.WriteLine(text);
 Console.WriteLine(new string('-', text.Length));
}

We start with a LINQ query that looks for the filenames that crop up in more than one
folder, because those are the only candidates for being duplicates. We iterate through

378 | Chapter 11: Files and Streams

each such name with a foreach loop. Inside that loop, we run another LINQ query that
groups the files of that name by size—see the first emphasized lines in Example 11-9.
If InspectDirectories discovered three files called Program.cs, for example, and two of
them were 278 bytes long while the other was 894 bytes long, this group clause would
separate those three files into two groups. The where clause in the same query removes
any groups that contain only one file.

So the matchesBySize variable refers to a query that returns a group for each set of two
or more files that have the same size (and because we’re inside a loop that iterates
through the names, we already know they have the same name). Those are our duplicate
candidates. We then write out the filename and size (and an underline separator of the
same length). Finally, we write out each file location containing candidate matches
using Path.GetDirectoryName.

If we compile and run that lot, we’ll see the following output:

Find duplicate files
====================
Looks for possible duplicate files in one or more directories

Usage: findduplicatefiles [/sub] DirectoryName [DirectoryName] ...
/sub - recurse into subdirectories

We haven’t given it anywhere to look! How are we going to test our application? Well,
we could provide it with some command-line parameters. If you open the project
properties and switch to the Debug tab, you’ll see a place where you can add command-
line arguments (see Figure 11-1).

Figure 11-1. Setting command-line arguments

However, we could do a bit better for test purposes. Example 11-10 shows a modified
Main that supports a new /test command-line switch, which we can use to create test
files and exercise the function.

Example 11-10. Adding a /test switch

static void Main(string[] args)
{
 bool recurseIntoSubdirectories = false;

 if (args.Length < 1)
 {
 ShowUsage();

Examining File Information | 379

 return;
 }

 int firstDirectoryIndex = 0;
 IEnumerable<string> directoriesToSearch = null;
 bool testDirectoriesMade = false;

 try
 {
 // Check to see if we are running in test mode
 if (args.Length == 1 && args[0] == "/test")
 {
 directoriesToSearch = MakeTestDirectories();
 testDirectoriesMade = true;
 recurseIntoSubdirectories = true;
 }
 else
 {
 if (args.Length > 1)
 {
 // see if we're being asked to recurse
 if (args[0] == "/sub")
 {
 if (args.Length < 2)
 {
 ShowUsage();
 return;
 }
 recurseIntoSubdirectories = true;
 firstDirectoryIndex = 1;
 }
 }

 // Get list of directories from command line.
 directoriesToSearch = args.Skip(firstDirectoryIndex);
 }

 List<FileNameGroup> filesGroupedByName =
 InspectDirectories(recurseIntoSubdirectories, directoriesToSearch);

 DisplayMatches(filesGroupedByName);
 Console.ReadKey();
 }
 finally
 {
 if(testDirectoriesMade)
 {
 CleanupTestDirectories(directoriesToSearch);
 }
 }

}

380 | Chapter 11: Files and Streams

In order to operate in test mode, we’ve added an alternative way to initialize the variable
that holds the list of directories (directoriesToSearch). The original code, which initi-
alizes it from the command-line arguments (skipping over the /sub switch if present),
is still present. However, if we find the /test switch, we initialize it to point at some
test directories we’re going to create (in the MakeTestDirectories method). The rest of
the code can then be left as it was (to avoid running some completely different program
in our test mode). Finally, we add a bit of cleanup code at the end to remove any test
directories if we created them.

So, how are we going to implement MakeTestDirectories? We want to create some
temporary files, and write some content into them to exercise the various matching
possibilities.

Creating Temporary Files
A quick look at Path reveals the GetTempFileName method. This creates a file of zero
length in a directory dedicated to temporary files, and returns the path to that file.

It is important to note that the file is actually created, whether you use
it or not, and so you are responsible for cleaning it up when you are
done, even if you don’t make any further use of it.

Let’s create another test console application, just to try out that method. We can do
that by adding the following to our main function:

string fileName = Path.GetTempFileName();
// Display the filename
Console.WriteLine(fileName);
// And wait for some input
Console.ReadKey();

But wait! If we just compile and run that, we’ll leave the file we created behind on the
system. We should make sure we delete it again when we’re done. There’s nothing
special about a temporary file. We create it in an unusual way, and it ends up in a
particular place, but once it has been created, it’s just like any other file in the filesystem.
So, we can delete it the same way we’d delete any other file.

Deleting Files
The System.IO namespace provides the File class, which offers various methods for
doing things with files. Deleting is particularly simple: we just use the static Delete
method, as Example 11-11 shows.

Deleting Files | 381

Example 11-11. Deleting a file

string fileName = Path.GetTempFileName();
try
{
 // Use the file
 // ...
 // Display the filename
 Console.WriteLine(fileName);
 // And wait for some input
 Console.ReadKey();
}
finally
{
 // Then clean it up
 File.Delete(fileName);
}

Notice that we’ve wrapped the code in which we (could) manipulate the file further in
a try block, and deleted it in a finally block. This ensures that whatever happens, we’ll
always attempt to clean up after ourselves.

If you compile and run this test project now, you’ll see some output like this:

C:\Users\yourusername\AppData\Local\Temp\tmpCA8F.tmp

The exact text will depend on your operating system version, your username, and (of
course) the random filename that was created for you. If you browse to that path, you
will see a zero-length file of that name.

If you then press a key, allowing Console.ReadKey to return, it will drop through to the
finally block, where we delete the temporary file, using the static Delete method on
the File class.

There are lots of scenarios where this sort of temporary file creation is just fine, but it
doesn’t really suit our example application’s needs. We want to create multiple tem-
porary files, in multiple different directories. GetTempFileName doesn’t really do the job
for us.

If we look at Path again, though, there’s another likely looking method: GetRandomFi
leName. This returns a random string of characters that can be used as either a file or a
directory name. It uses a cryptographically strong random number generator (which
can be useful in some security-conscious scenarios), and is statistically likely to produce
a unique name, thus avoiding clashes. Unlike GetTempFileName it doesn’t actually create
the file (or directory); that’s up to us.

If you run the code in Example 11-12:

Example 11-12. Showing a random filename

Console.WriteLine(Path.GetRandomFileName());

382 | Chapter 11: Files and Streams

you’ll see output similar to this:

xnicz3rs.juc

(Obviously, the actual characters you see will, hopefully, be different, or the statistical
uniqueness isn’t all that unique!)

So, we can use that method to produce our test file and directory names. But where are
we going to put the files? Perhaps one of the various “well-known folders” Windows
offers would suit our needs.

Well-Known Folders
Most operating systems have a bunch of well-known filesystem locations, and Win-
dows is no exception. There are designated folders for things like the current user’s
documents, pictures, or desktop; the program files directory where applications are
installed; and the system folder.

The .NET Framework provides a class called Environment that provides information
about the world our program runs in. Its static method GetFolderPath is the one that
interests us right now, because it will return the path of various well-known folders.
We pass it one of the Environment.SpecialFolder enumeration values. Exam-
ple 11-13 retrieves the location of one of the folders in which applications can store
per-user data.

Example 11-13. Getting a well-known folder location

string path = Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData);

Table 11-4 lists all of the well-known folders that GetFolderPath can return, and the
location they give on the installed copy of Windows 7 (64-bit) belonging to one of the
authors.

Table 11-4. Special folders

Enumeration Example location Purpose

ApplicationData C:\Users\mwa\

AppData\Roaming

A place for applications to store their own private infor-
mation for a particular user; this may be located on a shared
server, and available across multiple logins for the same
user, on different machines, if the user’s domain policy is
configured to do so.

CommonApplicationData C:\ProgramData A place for applications to store their own private infor-
mation accessible to all users.

CommonProgramFiles C:\Program Files\Common
Files

A place where shared application components can be
installed.

Cookies C:\Users\mwa\

AppData\Roaming\

The location where Internet cookies are stored for this user;
another potentially roaming location.

Well-Known Folders | 383

Enumeration Example location Purpose
Microsoft\Windows\Cookies

Desktop C:\Users\mwa\

Desktop

The current user’s desktop (virtual) folder.

DesktopDirectory C:\Users\mwa\

Desktop

The physical directory where filesystem objects on the
desktop are stored (currently, but not necessarily, the same
as Desktop).

Favorites C:\Users\mwa\

Favorites

The directory containing the current user’s favorites links.

History C:\Users\mwa\

AppData\Local\

Microsoft\Windows\

History

The directory containing the current user’s Internet history.

InternetCache C:\Users\mwa\

AppData\Local\

Microsoft\Windows\

Temporary Internet Files

The directory that contains the current user’s Internet
cache.

LocalApplicationData C:\Users\mwa\

AppData\Local

A place for applications to store their private data associ-
ated with the current user. This is guaranteed to be on the
local machine (as opposed to ApplicationData which
may roam with the user).

MyComputer <blank> This is always an empty string because there is no real folder
that corresponds to My Computer.

MyDocuments C:\Users\mwa\

Documents

The folder in which the current user’s documents (as op-
posed to private application datafiles) are stored.

MyMusic C:\Users\mwa\

Music

The folder in which the current user’s music files are stored.

MyPictures C:\Users\mwa\

Pictures

The folder in which the current user’s picture files are stored.

Personal C:\Users\mwa\

Documents

The folder in which the current user’s documents are stored
(synonymous with MyDocuments).

ProgramFiles C:\Program Files The directory in which applications are installed. Note that
there is no special folder enumeration for the 32-bit ap-
plications directory on 64-bit Windows.

Programs C:\Users\mwa\

AppData\Roaming\

Microsoft\Windows\

The location where application shortcuts in the Start
menu’s Programs section are stored for the current user.
This is another potentially roaming location.

384 | Chapter 11: Files and Streams

Enumeration Example location Purpose
Start Menu\Programs

Recent C:\Users\mwa\

AppData\Roaming\

Microsoft\Windows\

Recent

The folder where links to recently used documents are
stored for the current user. This is another potentially
roaming location.

SendTo C:\Users\mwa\

AppData\Roaming\

Microsoft\Windows\

SendTo

The location that contains the links that form the Send To
menu items in the shell. This is another potentially roaming
location.

StartMenu C:\Users\mwa\

AppData\Roaming\

Microsoft\Windows\

Start Menu

The folder that contains the Start menu items for the current
user. This is another potentially roaming location.

Startup C:\Users\mwa\

AppData\Roaming\

Microsoft\Windows\

Start Menu\Programs

\Startup

The folder that contains links to programs that will run
each time the current user logs in. This is another poten-
tially roaming location.

System C:\Windows\

system32

The Windows system folder.

Templates C:\Users\mwa\

AppData\Roaming\

Microsoft\Windows\

Templates

A location in which applications can store document tem-
plates for the current user. Again, this is a potentially
roaming location.

Notice that this doesn’t include all of the well-known folders we have
these days, because the set of folders grows with each new version of
Windows. Things like Videos, Games, Downloads, Searches, and Con-
tacts are all missing. It also doesn’t support Windows 7 libraries in any
meaningful sense. This is (sort of) by design. The method provides a
lowest common denominator approach to finding useful folders on the
system, in a way that works across all supported versions of the frame-
work (including Windows Mobile).

So, we need to choose a path in which our current user is likely to have permission to
create/read/write and delete files and directories. It doesn’t have to be one that the user

Well-Known Folders | 385

can see under normal circumstances. In fact, we’re going to create files with extensions
that are not bound to any applications and we should not do that in a place that’s visible
to the user if we want our application to be a good Windows citizen.

If you create a file in a place that’s visible to the user, like Documents
or Desktop, you should ensure that it always has a default application
associated with it.

There are two candidates for this in Table 11-4: LocalApplicationData and
ApplicationData. Both of these offer places for applications to store files that the user
wouldn’t normally see. (Of course, users can find these folders if they look hard enough.
The goal here is to avoid putting our temporary test files in the same folders as the user’s
documents.)

The difference between these two folders is that if the user has a roaming profile, files
in the latter folder will be copied around the network as they move from one machine
to another, while files in the former folder remain on the machine on which they were
created. We’re building temporary files for test purposes, so LocalApplicationData
looks like the right choice.

So, let’s return to our demo application, and start to implement the MakeTestDirecto
ries method. The first thing we need to do is to create a few test directories. Exam-
ple 11-14 contains some code to do that.

Example 11-14. Creating test directories

private static string[] MakeTestDirectories()
{
 string localApplicationData = Path.Combine(
 Environment.GetFolderPath(
 Environment.SpecialFolder.LocalApplicationData),
 @"Programming CSharp\FindDuplicates");

 // Let's make three test directories
 var directories = new string[3];
 for (int i = 0; i < directories.Length; ++i)
 {
 string directory = Path.GetRandomFileName();
 // Combine the local application data with the
 // new random file/directory name
 string fullPath = Path.Combine(localApplicationData, directory);
 // And create the directory
 Directory.CreateDirectory(fullPath);
 directories[i] = fullPath;
 Console.WriteLine(fullPath);
 }
 return directories;
}

386 | Chapter 11: Files and Streams

First, we use the GetFolderPath method to get the LocalApplicationData path. But we
don’t want to work directly in that folder—applications are meant to create their own
folders underneath this. Normally you’d create a folder named either for your company
or for your organization, and then an application-specific folder inside that—we’ve
used Programming CSharp as the organization name here, and FindDuplicates as the
application name. We then use a for loop to create three directories with random names
inside that. To create these new directories, we’ve used a couple of new methods:
Path.Combine and Directory.CreateDirectory.

Concatenating Path Elements Safely
If you’ve written any code that manipulates paths before, you’ll have come across the
leading/trailing slash dilemma. Does your path fragment have one or not? You also
need to know whether the path fragment you’re going to append really is a relative
path—are there circumstances under which you might need to deal with a fully quali-
fied path instead? Path.Combine does away with all that anxiety. Not only will it check
all those things for you and do the right thing, but it will even check that your paths
contain only valid path characters.

Table 11-5 contains some example paths, and the result of combining them with
Path.Combine.

Table 11-5. Example results of Path.Combine

Path 1 Path 2 Combined

C:\hello\ world C:\hello\world

C:\hello world C:\hello\world

C:\hello\ \world C:\hello\world

hello world hello\world

C:\hello world.exe c\hello\world.exe

\\mybox\hello world \\mybox\hello\world

world C:\hello C:\hello

The last entry in that table is particularly interesting: notice that the second path is
absolute, and so the combined path is “optimized” to just that second path.

In our case, Example 11-14 combines the well-known folder with a subfolder name to
get a folder location specific to this example. And then it combines that with our new
temporary folder names, ready for creation.

Concatenating Path Elements Safely | 387

Creating and Securing Directory Hierarchies
Directory.CreateDirectory is very straightforward: it does exactly what its name sug-
gests. In fact, it will create any directories in the whole path that do not already exist,
so you can create a deep hierarchy with a single call. (You’ll notice that Exam-
ple 11-14 didn’t bother to create the Programming CSharp\FindDuplicates folder—
those will get created automatically the first time we run as a result of creating the
temporary folders inside them.) A side effect of this is that it is safe to call it if all of the
directories in the path already exist—it will just do nothing.

In addition to the overload we’ve used, there’s a second which also takes a Directory
Security parameter:

Directory.CreateDirectory(string path, DirectorySecurity directorySecurity)

The DirectorySecurity class allows you to specify filesystem access controls with a
relatively simple programming model. If you’ve tried using the Win32 ACL APIs, you’ll
know that it is a nightmare of GUIDs, SSIDs, and lists sensitive to item ordering. This
model does away with much of the complexity.

Let’s extend our create function to make sure that only our current user has read/write/
modify permissions on these directories. Example 11-15 modifies the previous example
by explicitly granting the current user full control of the newly created folders. The new
or changed lines are highlighted.

Example 11-15. Configuring access control on new directories

private static string[] MakeTestDirectories()
{
 string localApplicationData = Path.Combine(
 Environment.GetFolderPath(
 Environment.SpecialFolder.LocalApplicationData),
 @"Programming CSharp\FindDuplicates");

 // Get the name of the logged in user
 string userName = WindowsIdentity.GetCurrent().Name;
 // Make the access control rule
 FileSystemAccessRule fsarAllow =
 new FileSystemAccessRule(
 userName,
 FileSystemRights.FullControl,
 AccessControlType.Allow);
 DirectorySecurity ds = new DirectorySecurity();
 ds.AddAccessRule(fsarAllow);

 // Let's make three test directories
 var directories = new string[3];
 for (int i = 0; i < directories.Length; ++i)
 {
 string directory = Path.GetRandomFileName();
 // Combine the local application data with the
 // new random file/directory name

388 | Chapter 11: Files and Streams

 string fullPath = Path.Combine(localApplicationData, directory);

 // And create the directory
 Directory.CreateDirectory(fullPath, ds);

 directories[i] = fullPath;
 Console.WriteLine(fullPath);
 }
 return directories;
}

You’ll need to add a couple of using directives to the top of the file before you can
compile this code:

using System.Security.AccessControl;
using System.Security.Principal;

What do these changes do? First, we make use of a type called WindowsIdentity to find
the current user, and fish out its name. If you happen to want to specify the name
explicitly, rather than get the current user programmatically, you can do so (e.g.,
MYDOMAIN\SomeUserId).

Then, we create a FileSystemAccessRule, passing it the username, the FileSystem
Rights we want to set, and a value from the AccessControlType enumeration which
determines whether we are allowing or denying those rights.

If you take a look at the FileSystemRights enumeration in MSDN, you should recognize
the options from the Windows security permissions dialog in the shell. You can com-
bine the individual values (as it is a Flags enumeration), or use one of the precanned
sets as we have here.

If you compile this application, and modify the debug settings to pass just the /test
switch as the only command-line argument, when you run it you’ll see output similar
to the following (but with your user ID, and some different random directory names):

C:\Users\yourId\AppData\Local\Programming CSharp\FindDuplicates\yzw0iw3p.ysq
C:\Users\yourId\AppData\Local\Programming CSharp\FindDuplicates\qke5k2ql.5et
C:\Users\yourId\AppData\Local\Programming CSharp\FindDuplicates\5hkhspqa.osc

If we take a look at the folder in Explorer, you should see your new directories (some-
thing like Figure 11-2).

If you right-click on one of these and choose Properties, then examine the Security tab,
you should see something like Figure 11-3.

Notice how the only user with permissions on this directory is the currently logged on
user (in this case ian, on a domain called idg.interact). All of the usual inherited
permissions have been overridden. Rather than the regular read/modify/write check-
boxes, we’ve apparently got special permissions. This is because we set them explicitly
in the code.

Creating and Securing Directory Hierarchies | 389

Figure 11-2. Newly created folders

Figure 11-3. Permissions on the new directory

390 | Chapter 11: Files and Streams

We can have a look at that in more detail if we click the Advanced button, and switch
to the Effective Permissions tab. Click the Select button to pick a user (see Fig-
ure 11-4). First, let’s look at the effective permissions for the local administrator (this
is probably MachineName\Administrator, unless you’ve changed your default adminis-
trator name to try to make things slightly harder for an attacker).

Figure 11-4. Selecting a user

If you click OK, you’ll see the effective permissions for Administrator on that folder
(Figure 11-5).

You can scroll the scroll bar to prove it for yourself, but you can see that even Admin-
istrator cannot actually access your folder! (This is not, of course, strictly true. Admin-
istrators can take ownership of the folder and mess with the permissions themselves,
but they cannot access the folder without changing the permissions first.) Try again
with your own user ID. You will see results similar to Figure 11-6—we have full control.
Scroll the list and you’ll see that everything is ticked.

What if we wanted “not quite” full control? Say we wanted to deny the ability to write
extended attributes to the file. Well, we can update our code and add a second
FileSystemAccessRule. Example 11-16 shows the additional code required.

Example 11-16. Denying permissions

private static string[] MakeTestDirectories()
{
 // ...
 FileSystemAccessRule fsarAllow =
 new FileSystemAccessRule(
 userName,
 FileSystemRights.FullControl,
 AccessControlType.Allow);

Creating and Securing Directory Hierarchies | 391

 ds.AddAccessRule(fsarAllow);

 FileSystemAccessRule fsarDeny =
 new FileSystemAccessRule(
 userName,
 FileSystemRights.WriteExtendedAttributes,
 AccessControlType.Deny);
 ds.AddAccessRule(fsarDeny);

 // ...
}

Notice that we’re specifying AccessControlType.Deny.

Before you compile and run this, delete the folders you created with the last run, using
Explorer—we’ll write some code to do that automatically in a minute, because it will
get very boring very quickly!

You should see very similar output to last time (just with some new directory names):

C:\Users\yourId\AppData\Local\Programming CSharp\FindDuplicates\slhwbtgo.sop
C:\Users\yourId\AppData\Local\Programming CSharp\FindDuplicates\bsfndkgn.ucm
C:\Users\yourId\AppData\Local\Programming CSharp\FindDuplicates\tayf1uvg.y4y

Figure 11-5. Effective permissions for Administrator on the new folder

392 | Chapter 11: Files and Streams

Figure 11-6. Effective permissions for the current user on the new folder

If you look at the permissions, you will now see both the Allow and the new Deny
entries (Figure 11-7).

As a double-check, take a look at the effective permissions for your current user (see
Figure 11-8).

In Figure 11-8 you can see that we’ve no longer got Full control, because we’ve been
specifically denied Write extended attributes. Of course, we could always give that
permission back to ourselves, because we’ve been allowed Change permissions, but
that’s not the point!

Although that isn’t the point, security permissions of all kinds are a
complex affair. If your users have local or domain administrator per-
missions, they can usually work around any other permissions you try
to manage. You should always try to abide by the principle of least per-
mission: don’t grant people more privileges than they really need to do
the job. Although that will require a little more thinking up front, and
can sometimes be a frustrating process while you try to configure a sys-
tem, it is much preferable to a wide-open door.

Creating and Securing Directory Hierarchies | 393

OK, delete those new directories using Explorer, and we’ll write some code to clean up
after ourselves. We need to delete the directories we’ve just created, by implementing
our CleanupTestDirectories method.

Deleting a Directory
You’re probably ahead of us by now. Yes, we can delete a directory using
Directory.Delete, as Example 11-17 shows.

Example 11-17. Deleting a directory

private static void CleanupTestDirectories(IEnumerable<string> directories)
{
 foreach (var directory in directories)
 {
 Directory.Delete(directory);
 }
}

We’re just iterating through the set of new directories we stashed away earlier, deleting
them.

Figure 11-7. Permissions now that we’ve denied write extended attributes

394 | Chapter 11: Files and Streams

OK, we’ve got our test directories. We’d now like to create some test files to use. Just
before we return from MakeTestDirectories, let’s add a call to a new method to create
our files, as Example 11-18 shows.

Example 11-18. Creating files in the test directories

...
CreateTestFiles(directories);
return directories;

Example 11-19 shows that method.

Example 11-19. The CreateTestFiles method

private static void CreateTestFiles(IEnumerable<string> directories)
{
 string fileForAllDirectories = "SameNameAndContent.txt";
 string fileSameInAllButDifferentSizes = "SameNameDifferentSize.txt";

 int directoryIndex = 0;
 // Let's create a distinct file that appears in each directory
 foreach (string directory in directories)

Figure 11-8. Effective permissions with write extended attributes denied

Deleting a Directory | 395

 {
 directoryIndex++;

 // Create the distinct file for this directory
 string filename = Path.GetRandomFileName();
 string fullPath = Path.Combine(directory, filename);
 CreateFile(fullPath, "Example content 1");

 // And now the one that is in all directories, with the same content
 fullPath = Path.Combine(directory, fileForAllDirectories);
 CreateFile(fullPath, "Found in all directories");

 // And now the one that has the same name in
 // all directories, but with different sizes
 fullPath = Path.Combine(directory, fileSameInAllButDifferentSizes);

 StringBuilder builder = new StringBuilder();
 builder.AppendLine("Now with");
 builder.AppendLine(new string('x', directoryIndex));
 CreateFile(fullPath, builder.ToString());
 }
}

As you can see, we’re running through the directories, and creating three files in each.
The first has a different, randomly generated filename in each directory, and remember,
our application only considers files with the same names as being possible duplicates,
so we expect the first file we add to each directory to be considered unique. The second
file has the same filename and content (so they will all be the same size) in every folder.
The third file has the same name every time, but its content varies in length.

Well, we can’t put off the moment any longer; we’re going to have to create a file, and
write some content into it. There are lots and lots and lots (and lots) of different ways
of doing that with the .NET Framework, so how do we go about picking one?

Writing Text Files
Our first consideration should always be to “keep it simple,” and use the most con-
venient method for the job. So, what is the job? We need to create a file, and write some
text into it. File.WriteAllText looks like a good place to start.

Writing a Whole Text File at Once
The File class offers three methods that can write an entire file out in a single step:
WriteAllBytes, WriteAllLines, and WriteAllText. The first of these works with binary,
but our application has text. As you saw in Chapter 10, we could use an Encoding to
convert our text into bytes, but the other two methods here will do that for us. (They
all use UTF-8.)

396 | Chapter 11: Files and Streams

WriteAllLines takes a collection of strings, one for each line, but our code in Exam-
ple 11-19 prepares content in the form of a single string. So as Example 11-20 shows,
we use WriteAllText to write the file out with a single line of code. (In fact, we probably
didn’t need to bother putting this code into a separate method. However, this will make
it easier for us to illustrate some of the alternatives later.)

Example 11-20. Writing a string into a new file

private static void CreateFile(string fullPath, string contents)
{
 File.WriteAllText(fullPath, contents);
}

The path can be either relative or absolute, and the file will be created if it doesn’t
already exist, and overwritten if it does.

This was pretty straightforward, but there’s one problem with this technique: it requires
us to have the entire file contents ready at the point where we want to start writing text.
This application already does that, but this won’t always be so. What if your program
performs long and complex processing that produces very large volumes of text? Writ-
ing the entire file at once like this would involve having the whole thing in memory
first. But there’s a slightly more complex alternative that makes it possible to generate
gigabytes of text without consuming much memory.

Writing Text with a StreamWriter
The File class offers a CreateText method, which takes the path to the file to create
(either relative or absolute, as usual), and creates it for you if it doesn’t already exist. If
the file is already present, this method overwrites it. Unlike the WriteAllText method,
it doesn’t write any data initially—the newly created file will be empty at first. The
method returns an instance of the StreamWriter class, which allows you to write to the
file. Example 11-21 shows the code we need to use that.

Example 11-21. Creating a StreamWriter

private static void CreateFile(string fullPath, string p)
{
 using (StreamWriter writer = File.CreateText(fullPath))
 {
 // Use the stream writer here
 }
}

We’re no longer writing the whole file in one big lump, so we need to let the
StreamWriter know when we’re done. To make life easier for us, StreamWriter imple-
ments IDisposable, and closes the underlying file if Dispose is called. This means that
we can wrap it in a using block, as Example 11-21 shows, and we can be assured that
it will be closed even if an exception is thrown.

Writing Text Files | 397

So, what is a StreamWriter? The first thing to note is that even though this chapter has
“Stream” in the title, this isn’t actually a Stream; it’s a wrapper around a Stream. It
derives from a class called TextWriter, which, as you might guess, is a base for types
which write text into things, and a StreamWriter is a TextWriter that writes text into a
Stream. TextWriter defines lots of overloads of Write and WriteLine methods, very sim-
ilar to those we’ve been using on Console in all of our examples so far.

If it is so similar in signature, why doesn’t Console derive from Text
Writer? TextWriter is intended to be used with some underlying resource
that needs proper lifetime management, so it implements IDisposable.
Our code would be much less readable if we had to wrap every call on
Console with a using block, or remember to call Dispose—especially as
it isn’t really necessary. So, why make TextWriter implement IDisposa
ble? We do that so that our text-writing code can be implemented in
terms of this base class, without needing to know exactly what sort of
TextWriter we’re talking to, and still handle the cleanup properly.

The File class’s CreateText method calls a constructor on StreamWriter which opens
the newly created file, and makes it ready for us to write; something like this:

return new StreamWriter(fullPath, false);

There’s nothing to stop you from doing this yourself by hand, and there
are many situations where you might want to do so; but the helper
methods on File tend to make your code smaller, and more readable,
so you should consider using those first. We’ll look at using Stream
Writer (and its partner, StreamReader) in this way later in the chapter,
when we’re dealing with different sorts of underlying streams.

Hang on, though. We’ve snuck a second parameter into that constructor. What does
that Boolean mean? When you create a StreamWriter, you can choose to overwrite any
existing file content (the default), or append to what is already there. The second Boo-
lean parameter to the constructor controls that behavior. As it happen, passing false
here means we want to overwrite.

This is a great example of why it’s better to define nicely named enu-
merations, rather than controlling this sort of thing with a bool. If the
value had not been false, but some mythical value such as OpenBehav
ior.Overwrite, we probably wouldn’t have needed to explain what it
did. C# 4.0 added the ability to use argument names when calling
methods, so we could have written new StreamWriter(fullPath,
append: false), which improves matters slightly, but doesn’t help you
when you come across code that hasn’t bothered to do that.

398 | Chapter 11: Files and Streams

So, now we can easily complete the implementation of our CreateFile method, as
shown in Example 11-22.

Example 11-22. Writing a string with StreamWriter

private static void CreateFile(string fullPath, string p)
{
 using (StreamWriter writer = File.CreateText(fullPath))
 {
 writer.Write(p);
 }
}

We just write the string we’ve been provided to the file. In this particular application,
Example 11-22 isn’t an improvement on Example 11-20—we’re just writing a single
string, so WriteAllText was a better fit. But StreamWriter is an important technique for
less trivial scenarios.

StreamReader/Writer and Text Encodings
We learned in Chapter 10 that there are a number of different encodings that can be
used for text characters (like ASCII, UTF-8, and Unicode). Those encodings determine
exactly what sequence of bytes represents any particular character. StreamWriter (and
StreamReader) need to take account of those encodings when they write or read data
from a stream.

By default, writers use a UTF-8 encoding, while readers attempt to determine the en-
coding from the content of the file, but you can override that and provide your own
Encoding to the constructor. Likewise, the File.WriteAllText method used in Exam-
ple 11-20 defaults to UTF-8, but it too offers an overload that accepts an Encoding.

OK, let’s build and run this code again (press F5 to make sure it runs in the debugger).
And everything seems to be going very well. We see the output we’d hoped for:

C:\Users\mwa\AppData\Local\up022gsm.241
C:\Users\mwa\AppData\Local\gdovysqk.cqn
C:\Users\mwa\AppData\Local\xyhazu3n.4pw
SameNameAndContent.txt

C:\Users\mwa\AppData\Local\up022gsm.241
C:\Users\mwa\AppData\Local\gdovysqk.cqn
C:\Users\mwa\AppData\Local\xyhazu3n.4pw

That is to say, one file is found duplicated in three directories. All the others have failed
to match, exactly as we’d expect.

Unfortunately, almost before we’d had a chance to read that, the debugger halted ex-
ecution to report an unhandled exception. It crashes in the code we added in Exam-
ple 11-17 to delete the directories, because the directories are not empty.

Writing Text Files | 399

For now, we’re going to have to clean up those directories by hand again, and make
another change to our code. Clearly, the problem is that the Directory.Delete method
doesn’t delete the files and directories inside the directory itself.

This is easily fixed, because there is another overload of that method which does allow
us to delete the files recursively—you just pass a Boolean as the second parameter
(true for recursive deletes, and false for the default behavior).

Don’t add this parameter unless you’re absolutely sure that the code is
working correctly, looking only at the test directory, and not executing
this code in nontest mode. We don’t want a host of emails appearing
telling us that we deleted your entire, non-backed-up source and docu-
ment tree because you followed this next instruction, having deviated
slightly from the earlier instructions.

If you want to avoid having to clean up the directories by hand, though,
and you’re really, really sure everything is fine, you could add this, at
your own risk:

Directory.Delete(directory, true);

So far, we have quietly ignored the many, many things that can go wrong when you’re
using files and streams. Now seems like a good time to dive into that murky topic.

When Files Go Bad: Dealing with Exceptions
Exceptions related to file and stream operations fall into three broad categories:

• The usual suspects you might get from any method: incorrect parameters, null
references, and so on

• I/O-related problems

• Security-related problems

The first category can, of course, be dealt with as normal—if they occur (as we discussed
in Chapter 6) there is usually some bug or unexpected usage that you need to deal with.

The other two are slightly more interesting cases. We should expect problems with file
I/O. Files and directories are (mostly) system-wide shared resources. This means that
anyone can be doing something with them while you are trying to use them. As fast as
you’re creating them, some other process might be deleting them. Or writing to them;
or locking them so that you can’t touch them; or altering the permissions on them so
that you can’t see them anymore. You might be working with files on a network share,
in which case different computers may be messing with the files, or you might lose
connectivity partway through working with a file.

This “global” nature of files also means that you have to deal with concurrency prob-
lems. Consider this piece of code, for example, that makes use of the (almost totally

400 | Chapter 11: Files and Streams

redundant) method File.Exists, shown in Example 11-23, which determines whether
a file exists.

Example 11-23. The questionable File.Exists method

if (File.Exists("SomeFile.txt"))
{
 // Play with the file
}

Is it safe to play with the file in there, on the assumption that it exists?

No.

In another process, even from another machine if the directory is shared, someone could
nip in and delete the file or lock it, or do something even more nefarious (like substitute
it for something else). Or the user might have closed the lid of his laptop just after the
method returns, and may well be in a different continent by the time he brings it out
of sleep mode, at which point you won’t necessarily have access to the same network
shares that seemed to be visible just one line of code ago.

So you have to code extremely defensively, and expect exceptions in your I/O code,
even if you checked that everything looked OK before you started your work.

Unlike most exceptions, though, abandoning the operation is not always the best
choice. You often see transient problems, like a USB drive being temporarily unavail-
able, for example, or a network glitch temporarily hiding a share from us, or aborting
a file copy operation. (Transient network problems are particularly common after a
laptop resumes from suspend—it can take a few seconds to get back on the network,
or maybe even minutes if the user is in a hotel and has to sign up for an Internet con-
nection before connecting back to the office VPN. Abandoning the user’s data is not a
user-friendly response to this situation.)

When an I/O problem occurs, the framework throws one of several exceptions derived
from IOException (or, as we’ve already seen, IOException itself) listed here:

IOException
This is thrown when some general problem with I/O has occurred. This is the base
for all of the more specific exception types, but it is sometimes thrown in its own
right, with the Message text describing the actual problem. This makes it somewhat
less useful for programmatic interpretation; you usually have to allow the user to
intervene in some way when you catch one of these.

DirectoryNotFoundException
This is thrown when an attempt is made to access a directory that does not exist.
This commonly occurs because of an error in constructing a path (particularly
when relative paths are in play), or because some other process has moved or de-
leted a directory during an operation.

When Files Go Bad: Dealing with Exceptions | 401

DriveNotFoundException
This is thrown when the root drive in a path is no longer available. This could be
because a drive letter has been mapped to a network location which is no longer
available, or a removable device has been removed. Or because you typed the
wrong drive letter!

FileLoadException
This is a bit of an anomaly in the family of IOExceptions, and we’re including it in
this list only because it can cause some confusion. It is thrown by the runtime when
an assembly cannot be loaded; as such, it has more to do with assemblies than files
and streams.

FileNotFoundException
This is thrown when an attempt is made to access a file that does not exist. As with
DirectoryNotFoundException, this is often because there has been some error in
constructing a path (absolute or relative), or because something was moved or
deleted while the program was running.

PathTooLongException
This is an awkward little exception, and causes a good deal of confusion for de-
velopers (which is one reason correct behavior in the face of long paths is a part of
Microsoft’s Designed For Windows test suite). It is thrown when a path provided
is too long. But what is “too long”? The maximum length for a path in Windows
used to be 260 characters (which isn’t very long at all). Recent versions allow paths
up to about (but not necessarily exactly) 32,767 characters, but making use of that
from .NET is awkward. There’s a detailed discussion of Windows File and Path
lengths if you fall foul of the problem in the MSDN documentation at http://msdn
.microsoft.com/library/aa365247, and a discussion of the .NET-specific issues at
http://go.microsoft.com/fwlink/?LinkID=163666.

If you are doing anything with I/O operations, you will need to think about most, if
not all, of these exceptions, deciding where to catch them and what to do when they
occur.

Let’s look back at our example again, and see what we want to do with any exceptions
that might occur. As a first pass, we could just wrap our main loop in a try/catch block,
as Example 11-24 does. Since our application’s only job is to report its findings, we’ll
just display a message if we encounter a problem.

Example 11-24. A first attempt at handling I/O exceptions

try
{
 List<FileNameGroup> filesGroupedByName =
 InspectDirectories(recurseIntoSubdirectories, directoriesToSearch);

 DisplayMatches(foundFiles);
 Console.ReadKey();
}

402 | Chapter 11: Files and Streams

http://msdn.microsoft.com/library/aa365247
http://msdn.microsoft.com/library/aa365247
http://go.microsoft.com/fwlink/?LinkID=163666

catch (PathTooLongException ptlx)
{
 Console.WriteLine("The specified path was too long");
 Console.WriteLine(ptlx.Message);
}
catch (DirectoryNotFoundException dnfx)
{
 Console.WriteLine("The specified directory was not found");
 Console.WriteLine(dnfx.Message);
}
catch (IOException iox)
{
 Console.WriteLine(iox.Message);
}
catch (UnauthorizedAccessException uax)
{
 Console.WriteLine("You do not have permission to access this directory.");
 Console.WriteLine(uax.Message);
}
catch (ArgumentException ax)
{
 Console.WriteLine("The path provided was not valid.");
 Console.WriteLine(ax.Message);
}
finally
{
 if (testDirectoriesMade)
 {
 CleanupTestDirectories(directoriesToSearch);
 }
}

We’ve decided to provide specialized handling for the PathTooLongException and
DirectoryNotFoundException exceptions, as well as generic handling for IOException
(which, of course, we have to catch after the exceptions derived from it).

In addition to those IOException-derived types, we’ve also caught UnauthorizedAcces
sException. This is a security exception, rather than an I/O exception, and so it derives
from a different base (SystemException). It is thrown if the user does not have permission
to access the directory concerned.

Let’s see that in operation, by creating an additional test directory and denying our-
selves access to it. Example 11-25 shows a function to create a directory where we deny
ourselves the ListDirectory permission.

Example 11-25. Denying permission

private static string CreateDeniedDirectory(string parentPath)
{
 string deniedDirectory = Path.GetRandomFileName();
 string fullDeniedPath = Path.Combine(parentPath, deniedDirectory);
 string userName = WindowsIdentity.GetCurrent().Name;
 DirectorySecurity ds = new DirectorySecurity();
 FileSystemAccessRule fsarDeny =

When Files Go Bad: Dealing with Exceptions | 403

 new FileSystemAccessRule(
 userName,
 FileSystemRights.ListDirectory,
 AccessControlType.Deny);
 ds.AddAccessRule(fsarDeny);

 Directory.CreateDirectory(fullDeniedPath, ds);
 return fullDeniedPath;
}

We can call it from our MakeTestDirectories method, as Example 11-26 shows (along
with suitable modifications to the code to accommodate the extra directory).

Example 11-26. Modifying MakeTestDirectories for permissions test

private static string[] MakeTestDirectories()
{
 // ...
 // Let's make three test directories
 // and leave space for a fourth to test access denied behavior
 var directories = new string[4];
 for (int i = 0; i < directories.Length - 1; ++i)
 {
 ... as before ...
 }

 CreateTestFiles(directories.Take(3));

 directories[3] = CreateDeniedDirectory(localApplicationData);

 return directories;
}

But hold on a moment, before you build and run this. If we’ve denied ourselves per-
mission to look at that directory, how are we going to delete it again in our cleanup
code? Fortunately, because we own the directory that we created, we can modify the
permissions again when we clean up.

Finding and Modifying Permissions
Example 11-27 shows a method which can give us back full control over any directory
(providing we have the permission to change the permissions). This code makes some
assumptions about the existing permissions, but that’s OK here because we created the
directory in the first place.

Example 11-27. Granting access to a directory

private static void AllowAccess(string directory)
{
 DirectorySecurity ds = Directory.GetAccessControl(directory);

 string userName = WindowsIdentity.GetCurrent().Name;

404 | Chapter 11: Files and Streams

 // Remove the deny rule
 FileSystemAccessRule fsarDeny =
 new FileSystemAccessRule(
 userName,
 FileSystemRights.ListDirectory,
 AccessControlType.Deny);
 ds.RemoveAccessRuleSpecific(fsarDeny);

 // And add an allow rule
 FileSystemAccessRule fsarAllow =
 new FileSystemAccessRule(
 userName,
 FileSystemRights.FullControl,
 AccessControlType.Allow);
 ds.AddAccessRule(fsarAllow);

 Directory.SetAccessControl(directory, ds);
}

Notice how we’re using the GetAccessControl method on Directory to get hold of the
directory security information. We then construct a filesystem access rule which
matches the deny rule we created earlier, and call RemoveAccessRuleSpecific on the
DirectorySecurity information we retrieved. This matches the rule up exactly, and then
removes it if it exists (or does nothing if it doesn’t).

Finally, we add an allow rule to the set to give us full control over the directory, and
then call the Directory.SetAccessControl method to set those permissions on the di-
rectory itself.

Let’s call that method from our cleanup code, compile, and run. (Don’t forget, we’re
deleting files and directories, and changing permissions, so take care!)

Here’s some sample output:

C:\Users\mwa\AppData\Local\ufmnho4z.h5p
C:\Users\mwa\AppData\Local\5chw4maf.xyu
C:\Users\mwa\AppData\Local\s1ydovhu.0wk
You do not have permission to access this directory.
Access to the path 'C:\Users\mwa\AppData\Local\byjijkza.3cj\' is denied.

These methods make it relatively easy to manage permissions when you create and
manipulate files, but they don’t make it easy to decide what those permissions should
be! It is always tempting just to make everything available to anyone—you can get your
code compiled and “working” much quicker that way; but only for “not very secure”
values of “working,” and that’s something that has to be of concern for every developer.

Your application could be the one that miscreants decide to exploit to
turn your users’ PCs to the dark side.

When Files Go Bad: Dealing with Exceptions | 405

I warmly recommend that you crank UAC up to the maximum (and put up with the
occasional security dialog), run Visual Studio as a nonadministrator (as far as is possi-
ble), and think at every stage about the least possible privileges you can grant to your
users that will still let them get their work done. Making your app more secure benefits
everyone: not just your own users, but everyone who doesn’t receive a spam email or
a hack attempt because the bad guys couldn’t exploit your application.

We’ve now handled the exception nicely—but is stopping really the best thing we could
have done? Would it not be better to log the fact that we were unable to access particular
directories, and carry on? Similarly, if we get a DirectoryNotFoundException or FileNot
FoundException, wouldn’t we want to just carry on in this case? The fact that someone
has deleted the directory from underneath us shouldn’t matter to us.

If we look again at our sample, it might be better to catch the DirectoryNotFoundExcep
tion and FileNotFoundException inside the InspectDirectories method to provide a
more fine-grained response to errors. Also, if we look at the documentation for
FileInfo, we’ll see that it may actually throw a base IOException under some circum-
stances, so we should catch that here, too. And in all cases, we need to catch the security
exceptions.

We’re relying on LINQ to iterate through the files and folders, which means it’s not
entirely obvious where to put the exception handling. Example 11-28 shows the code
from InspectDirectories that iterates through the folders, to get a list of files. We can’t
put exception handling code into the middle of that query.

Example 11-28. Iterating through the directories

var allFilePaths = from directory in directoriesToSearch
 from file in Directory.GetFiles(directory, "*.*",
 searchOption)
 select file;

However, we don’t have to. The simplest way to solve this is to put the code that gets
the directories into a separate method, so we can add exception handling, as Exam-
ple 11-29 shows.

Example 11-29. Putting exception handling in a helper method

private static IEnumerable<string> GetDirectoryFiles(
 string directory, SearchOption searchOption)
{
 try
 {
 return Directory.GetFiles(directory, "*.*", searchOption);
 }
 catch (DirectoryNotFoundException dnfx)
 {
 Console.WriteLine("Warning: The specified directory was not found");
 Console.WriteLine(dnfx.Message);
 }
 catch (UnauthorizedAccessException uax)

406 | Chapter 11: Files and Streams

 {
 Console.WriteLine(
 "Warning: You do not have permission to access this directory.");
 Console.WriteLine(uax.Message);
 }

 return Enumerable.Empty<string>();
}

This method defers to Directory.GetFiles, but in the event of one of the expected
errors, it displays a warning, and then just returns an empty collection.

There’s a problem here when we ask GetFiles to search recursively: if
it encounters a problem with even just one directory, the whole opera-
tion throws, and you’ll end up not looking in any directories. So while
Example 11-29 makes a difference only when the user passes multiple
directories on the command line, it’s not all that useful when using
the /sub option. If you wanted to make your error handling more fine-
grained still, you could write your own recursive directory search. The
GetAllFilesInDirectory example in Chapter 7 shows how to do that.

If we modify the LINQ query to use this, as shown in Example 11-30, the overall pro-
gress will be undisturbed by the error handling.

Example 11-30. Iterating in the face of errors

var allFilePaths = from directory in directoriesToSearch
 from file in GetDirectoryFiles(directory,
 searchOption)
 select file;

And we can use a similar technique for the LINQ query that populates the
fileNameGroups—it uses FileInfo, and we need to handle exceptions for that. Exam-
ple 11-31 iterates through a list of paths, and returns details for each file that it was
able to access successfully, displaying errors otherwise.

Example 11-31. Handling exceptions from FileInfo

private static IEnumerable<FileDetails> GetDetails(IEnumerable<string> paths)
{
 foreach (string filePath in paths)
 {
 FileDetails details = null;
 try
 {
 FileInfo info = new FileInfo(filePath);
 details = new FileDetails
 {
 FilePath = filePath,
 FileSize = info.Length
 };

When Files Go Bad: Dealing with Exceptions | 407

 }
 catch (FileNotFoundException fnfx)
 {
 Console.WriteLine("Warning: The specified file was not found");
 Console.WriteLine(fnfx.Message);
 }
 catch (IOException iox)
 {
 Console.Write("Warning: ");
 Console.WriteLine(iox.Message);
 }
 catch (UnauthorizedAccessException uax)
 {
 Console.WriteLine(
 "Warning: You do not have permission to access this file.");
 Console.WriteLine(uax.Message);
 }

 if (details != null)
 {
 yield return details;
 }
 }
}

We can use this from the final LINQ query in InspectDirectories. Example 11-32
shows the modified query.

Example 11-32. Getting details while tolerating errors

var fileNameGroups = from filePath in allFilePaths
 let fileNameWithoutPath = Path.GetFileName(filePath)
 group filePath by fileNameWithoutPath into nameGroup
 select new FileNameGroup
 {
 FileNameWithoutPath = nameGroup.Key,
 FilesWithThisName = GetDetails(nameGroup).ToList()
 };

Again, this enables the query to process all accessible items, while reporting errors for
any problematic files without having to stop completely. If we compile and run again,
we see the following output:

C:\Users\mwa\AppData\Local\dcyx0fv1.hv3
C:\Users\mwa\AppData\Local\0nf2wqwr.y3s
C:\Users\mwa\AppData\Local\kfilxte4.exy
Warning: You do not have permission to access this directory.
Access to the path 'C:\Users\mwa\AppData\Local\r2gl4q1a.ycp\' is denied.
SameNameAndContent.txt

C:\Users\mwa\AppData\Local\dcyx0fv1.hv3
C:\Users\mwa\AppData\Local\0nf2wqwr.y3s
C:\Users\mwa\AppData\Local\kfilxte4.exy

408 | Chapter 11: Files and Streams

We’ve dealt cleanly with the directory to which we did not have access, and have con-
tinued with the job to a successful conclusion.

Now that we’ve found a few candidate files that may (or may not) be the same, can we
actually check to see that they are, in fact, identical, rather than just coincidentally
having the same name and length?

Reading Files into Memory
To compare the candidate files, we could load them into memory. The File class offers
three likely looking static methods: ReadAllBytes, which treats the file as binary, and
loads it into a byte array; File.ReadAllText, which treats it as text, and reads it all into
a string; and File.ReadLines, which again treats it as text, but loads each line into its
own string, and returns an array of all the lines. We could even call File.OpenRead to
obtain a StreamReader (equivalent to the StreamWriter, but for reading data—we’ll see
this again later in the chapter).

Because we’re looking at all file types, not just text, we need to use one of the binary-
based methods. File.ReadAllBytes returns a byte[] containing the entire contents of
the file. We could then compare the files byte for byte, to see if they are the same. Here’s
some code to do that.

First, let’s update our DisplayMatches function to do the load and compare, as shown
by the highlighted lines in Example 11-33.

Example 11-33. Updating DisplayMatches for content comparison

private static void DisplayMatches(
 IEnumerable<FileNameGroup> filesGroupedByName)
{
 var groupsWithMoreThanOneFile = from nameGroup in filesGroupedByName
 where nameGroup.FilesWithThisName.Count > 1
 select nameGroup;

 foreach (var fileNameGroup in groupsWithMoreThanOneFile)
 {
 // Group the matches by the file size, then select those
 // with more than 1 file of that size.
 var matchesBySize = from match in fileNameGroup.FilesWithThisName
 group match by match.FileSize into sizeGroup
 where sizeGroup.Count() > 1
 select sizeGroup;

 foreach (var matchedBySize in matchesBySize)
 {
 List<FileContents> content = LoadFiles(matchedBySize);
 CompareFiles(content);
 }
 }
}

Reading Files into Memory | 409

Notice that we want our LoadFiles function to return a List of FileContents objects.
Example 11-34 shows the FileContents class.

Example 11-34. File content information class

internal class FileContents
{
 public string FilePath { get; set; }
 public byte[] Content { get; set; }
}

It just lets us associate the filename with the contents so that we can use it later to
display the results. Example 11-35 shows the implementation of LoadFiles, which uses
ReadAllBytes to load in the file content.

Example 11-35. Loading binary file content

private static List<FileContents> LoadFiles(IEnumerable<FileDetails> fileList)
{
 var content = new List<FileContents>();
 foreach (FileDetails item in fileList)
 {
 byte[] contents = File.ReadAllBytes(item.FilePath);
 content.Add(new FileContents
 {
 FilePath = item.FilePath,
 Content = contents
 });
 }
 return content;
}

We now need an implementation for CompareFiles, which is shown in Example 11-36.

Example 11-36. CompareFiles method

private static void CompareFiles(List<FileContents> files)
{
 Dictionary<FileContents, List<FileContents>> potentiallyMatched =
 BuildPotentialMatches(files);

 // Now, we're going to look at every byte in each
 CompareBytes(files, potentiallyMatched);

 DisplayResults(files, potentiallyMatched);
}

This isn’t exactly the most elegant way of comparing several files. We’re building a big
dictionary of all of the potential matching combinations, and then weeding out the
ones that don’t actually match. For large numbers of potential matches of the same size
this could get quite inefficient, but we’ll not worry about that right now! Exam-
ple 11-37 shows the function that builds those potential matches.

410 | Chapter 11: Files and Streams

Example 11-37. Building possible match combinations

private static Dictionary<FileContents, List<FileContents>>
 BuildPotentialMatches(List<FileContents> files)
{
 // Builds a dictionary where the entries look like:
 // { 0, { 1, 2, 3, 4, ... N } }
 // { 1, { 2, 3, 4, ... N }
 // ...
 // { N - 1, { N } }
 // where N is one less than the number of files.
 var allCombinations = Enumerable.Range(0, files.Count - 1).ToDictionary(
 x => files[x],
 x => files.Skip(x + 1).ToList());

 return allCombinations;
}

This set of potential matches will be whittled down to the files that really are the same
by CompareBytes, which we’ll get to momentarily. The DisplayResults method, shown
in Example 11-38, runs through the matches and displays their names and locations.

Example 11-38. Displaying matches

private static void DisplayResults(
 List<FileContents> files,
 Dictionary<FileContents, List<FileContents>> currentlyMatched)
{
 if (currentlyMatched.Count == 0) { return; }

 var alreadyMatched = new List<FileContents>();

 Console.WriteLine("Matches");

 foreach (var matched in currentlyMatched)
 {
 // Don't do it if we've already matched it previously
 if (alreadyMatched.Contains(matched.Key))
 {
 continue;
 }
 else
 {
 alreadyMatched.Add(matched.Key);
 }
 Console.WriteLine("-------");
 Console.WriteLine(matched.Key.FilePath);
 foreach (var file in matched.Value)
 {
 Console.WriteLine(file.FilePath);
 alreadyMatched.Add(file);
 }
 }
 Console.WriteLine("-------");
}

Reading Files into Memory | 411

This leaves the method shown in Example 11-39 that does the bulk of the work, com-
paring the potentially matching files, byte for byte.

Example 11-39. Byte-for-byte comparison of all potential matches

private static void CompareBytes(
 List<FileContents> files,
 Dictionary<FileContents, List<FileContents>> potentiallyMatched)
{
 // Remember, this only ever gets called with files of equal length.
 int fileLength = files[0].Content.Length;
 var sourceFilesWithNoMatches = new List<FileContents>();
 for (int fileByteOffset = 0; fileByteOffset < fileLength; ++fileByteOffset)
 {
 foreach (var sourceFileEntry in potentiallyMatched)
 {
 byte[] sourceContent = sourceFileEntry.Key.Content;
 for (int otherIndex = 0; otherIndex < sourceFileEntry.Value.Count;
 ++otherIndex)
 {
 // Check the byte at i in each of the two files, if they don't
 // match, then we remove them from the collection
 byte[] otherContent =
 sourceFileEntry.Value[otherIndex].Content;
 if (sourceContent[fileByteOffset] != otherContent[fileByteOffset])
 {
 sourceFileEntry.Value.RemoveAt(otherIndex);
 otherIndex -= 1;
 if (sourceFileEntry.Value.Count == 0)
 {
 sourceFilesWithNoMatches.Add(sourceFileEntry.Key);
 }
 }
 }
 }
 foreach (FileContents fileWithNoMatches in sourceFilesWithNoMatches)
 {
 potentiallyMatched.Remove(fileWithNoMatches);
 }
 // Don't bother with the rest of the file if
 // there are no further potential matches
 if (potentiallyMatched.Count == 0)
 {
 break;
 }
 sourceFilesWithNoMatches.Clear();
 }
}

We’re going to need to add a test file that differs only in the content. In CreateTest
Files add another filename that doesn’t change as we go round the loop:

string fileSameSizeInAllButDifferentContent =
 "SameNameAndSizeDifferentContent.txt";

412 | Chapter 11: Files and Streams

Then, inside the loop (at the bottom), we’ll create a test file that will be the same length,
but varying by only a single byte:

// And now one that is the same length, but with different content
fullPath = Path.Combine(directory, fileSameSizeInAllButDifferentContent);

builder = new StringBuilder();
builder.Append("Now with ");
builder.Append(directoryIndex);
builder.AppendLine(" extra");
CreateFile(fullPath, builder.ToString());

If you build and run, you should see some output like this, showing the one identical
file we have in each file location:

C:\Users\mwa\AppData\Local\e33yz4hg.mjp
C:\Users\mwa\AppData\Local\ung2xdgo.k1c
C:\Users\mwa\AppData\Local\jcpagntt.ynd
Warning: You do not have permission to access this directory.
Access to the path 'C:\Users\mwa\AppData\Local\cmoof2kj.ekd\' is denied.
Matches

C:\Users\mwa\AppData\Local\e33yz4hg.mjp\SameNameAndContent.txt
C:\Users\mwa\AppData\Local\ung2xdgo.k1c\SameNameAndContent.txt
C:\Users\mwa\AppData\Local\jcpagntt.ynd\SameNameAndContent.txt

Needless to say, this isn’t exactly very efficient; and it is unlikely to work so well when
you get to those DVD rips and massive media repositories. Even your 64-bit machine
probably doesn’t have quite that much memory available to it.* There’s a way to make
this more memory-efficient. Instead of loading the file completely into memory, we can
take a streaming approach.

Streams
You can think of a stream like one of those old-fashioned news ticker tapes. To write
data onto the tape, the bytes (or characters) in the file are typed out, one at a time, on
the continuous stream of tape.

We can then wind the tape back to the beginning, and start reading it back, character
by character, until either we stop or we run off the end of the tape. Or we could give
the tape to someone else, and she could do the same. Or we could read, say, 1,000
characters off the tape, and copy them onto another tape which we give to someone to
work on, then read the next 1,000, and so on, until we run out of characters.

* In fact, it is slightly more constrained than that. The .NET Framework limits arrays to 2 GB, and will throw
an exception if you try to load a larger file into memory all at once.

Streams | 413

Once upon a time, we used to store programs and data in exactly this
way, on a stream of paper tape with holes punched in it; the basic tech-
nology for this was invented in the 19th century. Later, we got magnetic
tape, although that was less than useful in machine shops full of electric
motors generating magnetic fields, so paper systems (both tape and
punched cards) lasted well into the 1980s (when disk systems and other
storage technologies became more robust, and much faster).

The concept of a machine that reads data items one at a time, and can
step forward or backward through that stream, goes back to the very
foundations of modern computing. It is one of those highly resilient
metaphors that only really falls down in the face of highly parallelized
algorithms: a single input stream is often the choke point for scalability
in that case.

To illustrate this, let’s write a method that’s equivalent to File.ReadAllBytes using a
stream (see Example 11-40).

Example 11-40. Reading from a stream

private static byte[] ReadAllBytes(string filename)
{
 using (FileStream stream = File.OpenRead(filename))
 {
 long streamLength = stream.Length;
 if (streamLength > 0x7fffffffL)
 {
 throw new InvalidOperationException(
 "Unable to allocate more than 0x7fffffffL bytes" +
 "of memory to read the file");
 }
 // Safe to cast to an int, because
 // we checked for overflow above
 int bytesToRead = (int) stream.Length;
 // This could be a big buffer!
 byte[] bufferToReturn = new byte[bytesToRead];
 // We're going to start at the beginning
 int offsetIntoBuffer = 0;
 while (bytesToRead > 0)
 {
 int bytesRead = stream.Read(bufferToReturn,
 offsetIntoBuffer,
 bytesToRead);
 if (bytesRead == 0)
 {
 throw new InvalidOperationException(
 "We reached the end of file before we expected..." +
 "Has someone changed the file while we weren't looking?");
 }
 // Read may return fewer bytes than we asked for, so be
 // ready to go round again.
 bytesToRead -= bytesRead;
 offsetIntoBuffer += bytesRead;

414 | Chapter 11: Files and Streams

 }

 return bufferToReturn;
 }
}

The call to File.OpenRead creates us an instance of a FileStream. This class derives from
the base Stream class, which defines most of the methods and properties we’re going
to use.

First, we inspect the stream’s Length property to determine how many bytes we need
to allocate in our result. This is a long, so it can support truly enormous files, even if
we can allocate only 2 GB of memory.

If you try using the stream.Length argument as the array size without
checking it for size first, it will compile, so you might wonder why we’re
doing this check. In fact, C# converts the argument to an int first, and
if it’s too big, you’ll get an OverflowException at runtime. By checking
the size explicitly, we can provide our own error message.

Then (once we’ve set up a few variables) we call stream.Read and ask it for all of the
data in the stream. It is entitled to give us any number of bytes it likes, up to the number
we ask for. It returns the actual number of bytes read, or 0 if we’ve hit the end of the
stream and there’s no more data.

A common programming error is to assume that the stream will give
you as many bytes as you asked for. Under simple test conditions it
usually will if there’s enough data. However, streams can and sometimes
do return you less in order to give you some data as soon as possible,
even when you might think it should be able to give you everything. If
you need to read a certain amount before proceeding, you need to write
code to keep calling Read until you get what you require, as Exam-
ple 11-40 does.

Notice that it returns us an int. So even if .NET did let us allocate arrays larger than 2
GB (which it doesn’t) a stream can only tell us that it has read 2 GB worth of data at a
time, and in fact, the third argument to Read, where we tell it how much we want, is
also an int, so 2 GB is the most we can ask for. So while FileStream is able to work
with larger files thanks to the 64-bit Length property, it will split the data into more
modest chunks of 2 GB or less when we read. But then one of the main reasons for
using streams in the first place is to avoid having to deal with all the content in one go,
so in practice we tend to work with much smaller chunks in any case.

Streams | 415

So we always call the Read method in a loop. The stream maintains the current read
position for us, but we need to work out where to write it in the destination array
(offsetIntoBuffer). We also need to work out how many more bytes we have to read
(bytesToRead).

We can now update the call to ReadAllBytes in our LoadFile method so that it uses our
new implementation:

byte[] contents = ReadAllBytes(item.Filename);

If this was all you were going to do, you wouldn’t actually implement
ReadAllBytes yourself; you’d use the one in the framework! This is just
by way of an example. We’re going to make more interesting use of
streams shortly.

Build and run again, and you should see output with exactly the same form as before:

C:\Users\mwa\AppData\Local\1ssoimgj.wqg
C:\Users\mwa\AppData\Local\cjiymq5b.bfo
C:\Users\mwa\AppData\Local\diss5tgl.zae
Warning: You do not have permission to access this directory.
Access to the path 'C:\Users\mwa\AppData\Local\u1w0rj0o.2xe\' is denied.
Matches

C:\Users\mwa\AppData\Local\1ssoimgj.wqg\SameNameAndContent.txt
C:\Users\mwa\AppData\Local\cjiymq5b.bfo\SameNameAndContent.txt
C:\Users\mwa\AppData\Local\diss5tgl.zae\SameNameAndContent.txt

That’s all very well, but we haven’t actually improved anything. We wanted to avoid
loading all of those files into memory. Instead of loading the files, let’s update our
FileContents class to hold a stream instead of a byte array, as Example 11-41 shows.

Example 11-41. FileContents using FileStream

internal class FileContents
{
 public string FilePath { get; set; }
 public FileStream Content { get; set; }
}

We’ll have to update the code that creates the FileContents too, in our LoadFiles
method from Example 11-35. Example 11-42 shows the change required.

Example 11-42. Modifying LoadFiles

content.Add(new FileContents
 {
 FilePath = item.FilePath,
 Content = File.OpenRead(item.FilePath)
 });

416 | Chapter 11: Files and Streams

(You can now delete our ReadAllBytes implementation, if you want.)

Because we’re opening all of those files, we need to make sure that we always close
them all. We can’t implement the using pattern, because we’re handing off the refer-
ences outside the scope of the function that creates them, so we’ll have to find some-
where else to call Close.

DisplayMatches (Example 11-33) ultimately causes the streams to be created by calling
LoadFiles, so DisplayMatches should close them too. We can add a try/finally block in
that method’s innermost foreach loop, as Example 11-43 shows.

Example 11-43. Closing streams in DisplayMatches

foreach (var matchedBySize in matchesBySize)
{
 List<FileContents> content = LoadFiles(matchedBySize);
 try
 {
 CompareFiles(content);
 }
 finally
 {
 foreach (var item in content)
 {
 item.Content.Close();
 }
 }
}

The last thing to update, then, is the CompareBytes method. The previous version, shown
in Example 11-39, relied on loading all the files into memory upfront. The modified
version in Example 11-44 uses streams.

Example 11-44. Stream-based CompareBytes

private static void CompareBytes(
 List<FileContents> files,
 Dictionary<FileContents, List<FileContents>> potentiallyMatched)
{
 // Remember, this only ever gets called with files of equal length.
 long bytesToRead = files[0].Content.Length;
 // We work through all the files at once, so allocate a buffer for each.
 Dictionary<FileContents, byte[]> fileBuffers =
 files.ToDictionary(x => x, x => new byte[1024]);

 var sourceFilesWithNoMatches = new List<FileContents>();
 while (bytesToRead > 0)
 {
 // Read up to 1k from all the files.
 int bytesRead = 0;
 foreach (var bufferEntry in fileBuffers)
 {
 FileContents file = bufferEntry.Key;
 byte[] buffer = bufferEntry.Value;

Streams | 417

 int bytesReadFromThisFile = 0;
 while (bytesReadFromThisFile < buffer.Length)
 {
 int bytesThisRead = file.Content.Read(
 buffer, bytesReadFromThisFile,
 buffer.Length - bytesReadFromThisFile);
 if (bytesThisRead == 0) { break; }
 bytesReadFromThisFile += bytesThisRead;
 }
 if (bytesReadFromThisFile < buffer.Length
 && bytesReadFromThisFile < bytesToRead)
 {
 throw new InvalidOperationException(
 "Unexpected end of file - did a file change?");
 }
 bytesRead = bytesReadFromThisFile; // Will be same for all files
 }
 bytesToRead -= bytesRead;

 foreach (var sourceFileEntry in potentiallyMatched)
 {
 byte[] sourceFileContent = fileBuffers[sourceFileEntry.Key];

 for (int otherIndex = 0; otherIndex < sourceFileEntry.Value.Count;
 ++otherIndex)
 {
 byte[] otherFileContent =
 fileBuffers[sourceFileEntry.Value[otherIndex]];
 for (int i = 0; i < bytesRead; ++i)
 {
 if (sourceFileContent[i] != otherFileContent[i])
 {
 sourceFileEntry.Value.RemoveAt(otherIndex);
 otherIndex -= 1;
 if (sourceFileEntry.Value.Count == 0)
 {
 sourceFilesWithNoMatches.Add(sourceFileEntry.Key);
 }
 break;
 }
 }
 }
 }
 foreach (FileContents fileWithNoMatches in sourceFilesWithNoMatches)
 {
 potentiallyMatched.Remove(fileWithNoMatches);
 }
 // Don't bother with the rest of the file if there are
 // not further potential matches
 if (potentiallyMatched.Count == 0)
 {
 break;
 }
 sourceFilesWithNoMatches.Clear();

418 | Chapter 11: Files and Streams

 }
}

Rather than reading entire files at once, we allocate small buffers, and read in 1 KB at
a time. As with the previous version, this new one works through all the files of a
particular name and size simultaneously, so we allocate a buffer for each file.

We then loop round, reading in a buffer’s worth from each file, and perform compar-
isons against just that buffer (weeding out any nonmatches). We keep going round
until we either determine that none of the files match or reach the end of the files.

Notice how each stream remembers its position for us, with each Read starting where
the previous one left off. And since we ensure that we read exactly the same quantity
from all the files for each chunk (either 1 KB, or however much is left when we get to
the end of the file), all the streams advance in unison.

This code has a somewhat more complex structure than before. The all-in-memory
version in Example 11-39 had three loops—the outer one advanced one byte at a time,
and then the inner two worked through the various potential match combinations. But
because the outer loop in Example 11-44 advances one chunk at a time, we end up
needing an extra inner loop to compare all the bytes in a chunk. We could have sim-
plified this by only ever reading a single byte at a time from the streams, but in fact,
this chunking has delivered a significant performance improvement. Testing against a
folder full of source code, media resources, and compilation output containing 4,500
files (totaling about 500 MB), the all-in-memory version took about 17 seconds to find
all the duplicates, but the stream version took just 3.5 seconds! Profiling the code re-
vealed that this performance improvement was entirely a result of the fact that we were
comparing the bytes in chunks. So for this particular application, the additional com-
plexity was well worth it. (Of course, you should always measure your own code against
representative problems—techniques that work well in one scenario don’t necessarily
perform well everywhere.)

Moving Around in a Stream
What if we wanted to step forward or backward in the file? We can do that with the
Seek method. Let’s imagine we want to print out the first 100 bytes of each file that we
reject, for debug purposes. We can add some code to our CompareBytes method to do
that, as Example 11-45 shows.

Example 11-45. Seeking within a stream

if (sourceFileContent[i] != otherFileContent[i])
{
 sourceFileEntry.Value.RemoveAt(otherIndex);
 otherIndex -= 1;
 if (sourceFileEntry.Value.Count == 0)
 {
 sourceFilesWithNoMatches.Add(sourceFileEntry.Key);

Streams | 419

 }
#if DEBUG
 // Remember where we got to
 long currentPosition = sourceFileEntry.Key.Content.Position;
 // Seek to 0 bytes from the beginning
 sourceFileEntry.Key.Content.Seek(0, SeekOrigin.Begin);
 // Read 100 bytes from
 for (int index = 0; index < 100; ++index)
 {
 var val = sourceFileEntry.Key.Content.ReadByte();
 if (val < 0) { break; }
 if (index != 0) { Console.Write(", "); }
 Console.Write(val);
 }
 Console.WriteLine();
 // Put it back where we found it
 sourceFileEntry.Key.Content.Seek(currentPosition, SeekOrigin.Begin);
#endif
 break;
}

We start by getting hold of the current position within the stream using the Position
property. We do this so that the code doesn’t lose its place in the stream. (Even though
we’ve detected a mismatch here, remember we’re comparing lots of files here—perhaps
this same file matches one of the other candidates. So we’re not necessarily finished
with it yet.)

The first parameter of the Seek method tells us how far we are going to seek from our
origin—we’re passing 0 here because we want to go to the beginning of the file. The
second tells us what that origin is going to be. SeekOrigin.Begin means the beginning
of the file, SeekOrigin.End means the end of the file (and so the offset counts
backward—you don’t need to say −100, just 100).

There’s also SeekOrigin.Current which allows you to move relative to the current po-
sition. You could use this to read 10 bytes ahead, for example (maybe to work out what
you were looking at in context), and then seek back to where you were by calling
Seek(-10, SeekOrigin.Current).

Not all streams support seeking. For example, some streams represent
network connections, which you might use to download gigabytes of
data. The .NET Framework doesn’t remember every single byte just in
case you ask it to seek later on, so if you attempt to rewind such a stream,
Seek will throw a NotSupportedException. You can find out whether
seeking is supported from a stream’s CanSeek property.

420 | Chapter 11: Files and Streams

Writing Data with Streams
We don’t just have to use streaming APIs for reading. We can write to the stream, too.

One very common programming task is to copy data from one stream to another. We
use this kind of thing all the time—copying data, or concatenating the content of several
files into another, for example. (If you want to copy an entire file, you’d use
File.Copy, but streams give you the flexibility to concatenate or modify data, or to work
with nonfile sources.)

Example 11-46 shows how to read data from one stream and write it into another. This
is just for illustrative purposes—.NET 4 added a new CopyTo method to Stream which
does this for you. In practice you’d need Example 11-46 only if you were targeting an
older version of the .NET Framework, but it’s a good way to see how to write to a
stream.

Example 11-46. Copying from one stream to another

private static void WriteTo(Stream source, Stream target, int bufferLength)
{
 bufferLength = Math.Max(100, bufferLength);
 var buffer = new byte[bufferLength];
 int bytesRead;

 do
 {
 bytesRead = source.Read(buffer, 0, buffer.Length);
 if (bytesRead != 0)
 {
 target.Write(buffer, 0, bytesRead);
 }
 } while (bytesRead > 0);
}

We create a buffer which is at least 100 bytes long. We then Read from the source and
Write to the target, using the buffer as the intermediary. Notice that the Write method
takes the same parameters as the read: the buffer, an offset into that buffer, and the
number of bytes to write (which in this case is the number of bytes read from the source
buffer, hence the slightly confusing variable name). As with Read, it steadily advances
the current position in the stream as it writes, just like that ticker tape. Unlike Read,
Write will always process as many bytes as we ask it to, so with Write, there’s no need
to keep looping round until it has written all the data.

Obviously, we need to keep looping until we’ve read everything from the source stream.
Notice that we keep going until Read returns 0. This is how streams indicate that we’ve
reached the end. (Some streams don’t know in advance how large they are, so you can
rely on the Length property for only certain kinds of streams such as FileStream. Testing
for a return value of 0 is the most general way to know that we’ve reached the end.)

Streams | 421

Reading, Writing, and Locking Files
So, we’ve seen how to read and write data to and from streams, and how we can move
the current position in the stream by seeking to some offset from a known position. Up
until now, we’ve been using the File.OpenRead and File.OpenWrite methods to create
our file streams. There is another method, File.Open, which gives us access to some
extra features.

The simplest overload takes two parameters: a string which is the path for the file, and
a value from the FileMode enumeration. What’s the FileMode? Well, it lets us specify
exactly what we want done to the file when we open it. Table 11-6 shows the values
available.

Table 11-6. FileMode enumeration

FileMode Purpose

CreateNew Creates a brand new file. Throws an exception if it already existed.

Create Creates a new file, deleting any existing file and overwriting it if necessary.

Open Opens an existing file, seeking to the beginning by default. Throws an exception if the file does not exist.

OpenOrCreate Opens an existing file, or creates a new file if it doesn’t exist.

Truncate Opens an existing file, and deletes all its contents. The file is automatically opened for writing only.

Append Opens an existing file and seeks to the end of the file. The file is automatically opened for writing only. You
can seek in the file, but only within any information you’ve appended—you can’t touch the existing content.

If you use this two-argument overload, the file will be opened in read/write mode. If
that’s not what you want, another overload takes a third argument, allowing you to
control the access mode with a value from the FileAccess enumeration. Table 11-7
shows the supported values.

Table 11-7. FileAccess enumeration

FileAccess Purpose

Read Open read-only.

Write Open write-only.

ReadWrite Open read/write.

All of the file-opening methods we’ve used so far have locked the file for our exclusive
use until we close or Dispose the object—if any other program tries to open the file
while we have it open, it’ll get an error. However, it is possible to play nicely with other
users by opening the file in a shared mode. We do this by using the overload which
specifies a value from the FileShare enumeration, which is shown in Table 11-8. This
is a flags enumeration, so you can combine the values if you wish.

422 | Chapter 11: Files and Streams

Table 11-8. FileShare enumeration

FileShare Purpose

None No one else can open the file while we’ve got it open.

Read Other people can open the file for reading, but not writing.

Write Other people can open the file for writing, but not reading (so read/write will fail, for example).

ReadWrite Other people can open the file for reading or writing (or both). This is equivalent to Read | Write.

Delete Other people can delete the file that you’ve created, even while we’ve still got it open. Use with care!

You have to be careful when opening files in a shared mode, particularly one that
permits modifications. You are open to all sorts of potential exceptions that you could
normally ignore (e.g., people deleting or truncating it from underneath you).

If you need even more control over the file when you open it, you can create a
FileStream instance directly.

FileStream Constructors
There are two types of FileStream constructors—those for interop scenarios, and the
“normal” ones. The “normal” ones take a string for the file path, while the interop ones
require either an IntPtr or a SafeFileHandle. These wrap a Win32 file handle that you
have retrieved from somewhere. (If you’re not already using such a thing in your code,
you don’t need to use these versions.) We’re not going to cover the interop scenarios
here.

If you look at the list of constructors, the first thing you’ll notice is that quite a few of
them duplicate the various permutations of FileShare, FileAccess, and FileMode over-
loads we had on File.Open.

You’ll also notice equivalents with one extra int parameter. This allows you to provide
a hint for the system about the size of the internal buffer you’d like the stream to use.
Let’s look at buffering in more detail.

Stream Buffers
Many streams provide buffering. This means that when you read and write, they actually
use an intermediate in-memory buffer. When writing, they may store your data in an
internal buffer, before periodically flushing the data to the actual output device. Simi-
larly, when you read, they might read ahead a whole buffer full of data, and then return
to you only the particular bit you need. In both cases, buffering aims to reduce the
number of I/O operations—it means you can read or write data in relatively small
increments without incurring the full cost of an operating system API call every time.

FileStream Constructors | 423

There are many layers of buffering for a typical storage device. There might be some
memory buffering on the actual device itself (many hard disks do this, for example),
the filesystem might be buffered (NTFS always does read buffering, and on a client
operating system it’s typically write-buffered, although this can be turned off, and is
off by default for the server configurations of Windows). The .NET Framework pro-
vides stream buffering, and you can implement your own buffers (as we did in our
example earlier).

These buffers are generally put in place for performance reasons. Although the default
buffer sizes are chosen for a reasonable trade-off between performance and robustness,
for an I/O-intensive application, you may need to hand-tune this using the appropriate
constructors on FileStream.

As usual, you can do more harm than good if you don’t measure the
impact on performance carefully on a suitable range of your target sys-
tems. Most applications will not need to touch this value.

Even if you don’t need to tune performance, you still need to be aware of buffering for
robustness reasons. If either the process or the OS crashes before the buffers are written
out to the physical disk, you run the risk of data loss (hence the reason write buffering
is typically disabled on the server). If you’re writing frequently to a Stream or
StreamWriter, the .NET Framework will flush the write buffers periodically. It also
ensures that everything is properly flushed when the stream is closed. However, if you
just stop writing data but you leave the stream open, there’s a good chance data will
hang around in memory for a long time without getting written out, at which point
data loss starts to become more likely.

In general, you should close files as early as possible, but sometimes you’ll want to keep
a file open for a long time, yet still ensure that particular pieces of data get written out.
If you need to control that yourself, you can call Flush. This is particularly useful if you
have multiple threads of execution accessing the same stream. You can synchronize
writes and ensure that they are flushed to disk before the next worker gets in and messes
things up! Later in this chapter, we’ll see an example where explicit flushing is extremely
important.

Setting Permissions During Construction
Another parameter we can set in the constructor is the FileSystemRights. We used this
type earlier in the chapter to set filesystem permissions. FileStream lets us set these
directly when we create a file using the appropriate constructor. Similarly, we can also
specify an instance of a FileSecurity object to further control the permissions on the
underlying file.

424 | Chapter 11: Files and Streams

Setting Advanced Options
Finally, we can optionally pass another enumeration to the FileStream constructor,
FileOptions, which contains some advanced filesystem options. They are enumerated
in Table 11-9. This is a flags-style enumeration, so you can combine these values.

Table 11-9. FileOptions enumeration

FileOptions Purpose

None No options at all.

WriteThrough Ignores any filesystem-level buffers, and writes directly to the output device. This affects only the O/S,
and not any of the other layers of buffering, so it’s still your responsibility to call Flush.

RandomAccess Indicates that we’re going to be seeking about in the file in an unsystematic way. This acts as a hint to
the OS for its caching strategy. We might be writing a video-editing tool, for example, where we expect
the user to be leaping about through the file.

SequentialScan Indicates that we’re going to be sequentially reading from the file. This acts as a hint to the OS for its
caching strategy. We might be writing a video player, for example, where we expect the user to play
through the stream from beginning to end.

Encrypted Indicates that we want the file to be encrypted so that it can be decrypted and read only by the user
who created it.

DeleteOnClose Deletes the file when it is closed. This is very handy for temporary files. If you use this option, you never
hit the problem where the file still seems to be locked for a short while even after you’ve closed it
(because its buffers are still flushing asynchronously).

Asynchronous Allows the file to be accessed asynchronously.

The last option, Asynchronous, deserves a section all to itself.

Asynchronous File Operations
Long-running file operations are a common bottleneck. How many times have you
clicked the Save button, and seen the UI lock up while the disk operation takes place
(especially if you’re saving a large file to a network location)?

Developers commonly resort to a background thread to push these long operations off
the main thread so that they can display some kind of progress or “please wait” UI (or
let the user carry on working). We’ll look at that approach in Chapter 16; but you don’t
necessarily have to go that far. You can use the asynchronous mode built into the stream
instead. To see how it works, look at Example 11-47.

Example 11-47. Asynchronous file I/O

static void Main(string[] args)
{
 string path = "mytestfile.txt";
 // Create a test file
 using (var file = File.Create(path, 4096, FileOptions.Asynchronous))

Asynchronous File Operations | 425

 {
 // Some bytes to write
 byte[] myBytes = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 IAsyncResult asyncResult = file.BeginWrite(
 myBytes,
 0,
 myBytes.Length,
 // A callback function, written as an anonymous delegate
 delegate(IAsyncResult result)
 {
 // You *must* call EndWrite() exactly once
 file.EndWrite(result);
 // Then do what you like
 Console.WriteLine(
 "Called back on thread {0} when the operation completed",
 System.Threading.Thread.CurrentThread.ManagedThreadId);
 },
 null);

 // You could do something else while you waited...
 Console.WriteLine(
 "Waiting on thread {0}...",
 System.Threading.Thread.CurrentThread.ManagedThreadId);
 // Waiting on the main thread
 asyncResult.AsyncWaitHandle.WaitOne();
 Console.WriteLine(
 "Completed {0} on thread {1}...",
 asyncResult.CompletedSynchronously ?
 "synchronously" : "asynchronously",
 System.Threading.Thread.CurrentThread.ManagedThreadId);
 Console.ReadKey();
 return;
 }
}

If you put this code in a new console application, and then compile and run, you’ll get
output similar to this (the actual thread IDs will vary from run to run):

Waiting on thread 10...
Completed asynchronously on thread 10...
Called back on thread 6 when the operation completed

So, what is happening?

When we create our file, we use an overload on File.Create that takes the
FileOptions we discussed earlier. (Yes, back then we showed that by constructing the
FileStream directly, but the File class supports this too.) This lets us open the file with
asynchronous behavior enabled.

Then, instead of calling Write, we call BeginWrite. This takes two additional parameters.
The first is a delegate to a callback function of type AsyncCallback, which the framework
will call when it has finished the operation to let us know that it has completed. The
second is an object that we can pass in, that will get passed back to us in the callback.

426 | Chapter 11: Files and Streams

This user state object is common to a lot of asynchronous operations,
and is used to get information from the calling site to callbacks from the
worker thread. It has become less useful in C# with the availability of
lambdas and anonymous methods which have access to variables in
their enclosing state.

We’ve used an anonymous method to provide the callback delegate. The first thing we
do in that method is to call file.EndWrite, passing it the IAsyncResult we’ve been
provided in the callback. You must call EndWrite exactly once for every time you call
BeginWrite, because it cleans up the resources used to carry out the operation asyn-
chronously. It doesn’t matter whether you call it from the callback, or on the main
application thread (or anywhere else, for that matter). If the operation has not com-
pleted, it will block the calling thread until it does complete, then do its cleanup. Should
you call it twice with the same IAsyncResult for any reason the framework will throw
an exception.

In a typical Windows Forms or WPF application, we’d probably put up some progress
dialog of some kind, and just process messages until we got our callback. In a server-
side application we’re more likely to want to kick off several pieces of work like this,
and then wait for them to finish. To do this, the IAsyncResult provides us with an
AsyncWaitHandle, which is an object we can use to block our thread until the work is
complete.

So, when we run, our main thread happens to have the ID 10. It blocks until the oper-
ation is complete, and then prints out the message about being done. Notice that this
was, as you’d expect, on the same thread with ID 10. But after that, we get a message
printed out from our callback, which was called by the framework on another thread
entirely.

It is important to note that your system may have behaved differently. It is possible that
the callback might occur before execution continued on the main thread. You have to
be extremely careful that your code doesn’t depend on these operations happening in
a particular order.

We’ll discuss these issues in a lot more detail in Chapter 16. We
recommend you read that before you use any of these asynchronous
techniques in production code.

Remember that we set the FileOptions.Asynchronous flag when we opened the file to
get this asynchronous behavior? What happens if we don’t do that? Let’s tweak the
code so that it opens with FileOptions.None instead, and see. Example 11-48 shows
the statements from Example 11-47 that need to be modified

Asynchronous File Operations | 427

Example 11-48. Not asking for asynchronous behavior

...
// Create a test file
using (var file = File.Create(path, 4096, FileOptions.None))
{
...

If you build and run that, you’ll see some output similar to this:

Waiting on thread 9...
Completed asynchronously on thread 9...
Called back on thread 10 when the operation completed

What’s going on? That all still seemed to be asynchronous!

Well yes, it was, but under the covers, the problem was solved in two different ways.
The first one used the underlying support Windows provides for asynchronous I/O in
the filesystem to handle the asynchronous file operation. In the second case, the .NET
Framework had to do some work for us to grab a thread from the thread pool, and
execute the read operation on that to deliver the asynchronous behavior.

That’s true right now, but bear in mind that these are implementation
details and could change in future versions of the framework. The prin-
ciple will remain the same, though.

So far, everything we’ve talked about has been related to files, but we can create streams
over other things, too. If you’re a Silverlight developer, you’ve probably been skimming
over all of this a bit—after all, if you’re running in the web browser you can’t actually
read and write files in the filesystem. There is, however, another option that you can
use (along with all the other .NET developers out there): isolated storage.

Isolated Storage
In the duplicate file detection application we built earlier in this chapter, we had to go
to some lengths to find a location, and pick filenames for the datafiles we wished to
create in test mode, in order to guarantee that we don’t collide with other applications.
We also had to pick locations that we knew we would (probably) have permission to
write to, and that we could then load again.

Isolated storage takes this one stage further and gives us a means of saving and loading
data in a location unique to a particular piece of executing code. The physical location
itself is abstracted away behind the API; we don’t need to know where the runtime is
actually storing the data, just that the data is stored safely, and that we can retrieve it
again. (Even if we want to know where the files are, the isolated storage API won’t tell
us.) This helps to make the isolated storage framework a bit more operating-system-
agnostic, and removes the need for full trust (unlike regular file I/O). Hence it can be

428 | Chapter 11: Files and Streams

used by Silverlight developers (who can target other operating systems such as Mac OS
X) as well as those of us building server or desktop client applications for Windows.

This compartmentalization of the information by characteristics of the executing code
gives us a slightly different security model from regular files. We can constrain access
to particular assemblies, websites, and/or users, for instance, through an API that is
much simpler (although much less sophisticated) than the regular file security.

Although isolated storage provides you with a simple security model to
use from managed code, it does not secure your data effectively against
unmanaged code running in a relatively high trust context and trawling
the local filesystem for information. So, you should not trust sensitive
data (credit card numbers, say) to isolated storage. That being said, if
someone you cannot trust has successfully run unmanaged code in a
trusted context on your box, isolated storage is probably the least of
your worries.

Stores
Our starting point when using isolated storage is a store and you can think of any given
store as being somewhat like one of the well-known directories we dealt with in the
regular filesystem. The framework creates a folder for you when you first ask for a store
with a particular set of isolation criteria, and then gives back the same folder each time
you ask for the store with the same criteria. Instead of using the regular filesystem APIs,
we then use special methods on the store to create, move, and delete files and directories
within that store.

First, we need to get hold of a store. We do that by calling one of several static members
on the IsolatedStorageFile class. Example 11-49 starts by getting the user store for a
particular assembly. We’ll discuss what that means shortly, but for now it just means
we’ve got some sort of a store we can use. It then goes on to create a folder and a file
that we can use to cache some information, and retrieve it again on subsequent runs of
the application.

Example 11-49. Creating folders and files in a store

static void Main(string[] args)
{
 IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForAssembly();
 // Create a directory - safe to call multiple times
 store.CreateDirectory("Settings");
 // Open or create the file
 using (IsolatedStorageFileStream stream = store.OpenFile(
 "Settings\\standardsettings.txt",
 System.IO.FileMode.OpenOrCreate,
 System.IO.FileAccess.ReadWrite))
 {
 UseStream(stream);
 }

Isolated Storage | 429

 Console.ReadKey();
}

We create a directory in the store, called Settings. You don’t have to do this; you could
put your file in the root directory for the store, if you wanted. Then, we use the
OpenFile method on the store to open a file. We use the standard file path syntax to
specify the file, relative to the root for this store, along with the FileMode and FileAc
cess values that we’re already familiar with. They all mean the same thing in isolated
storage as they do with normal files. That method returns us an IsolatedStorageFile
Stream. This class derives from FileStream, so it works in pretty much the same way.

So, what shall we do with it now that we’ve got it? For the purposes of this example,
let’s just write some text into it if it is empty. On a subsequent run, we’ll print the text
we wrote to the console.

Reading and Writing Text
We’ve already seen StreamWriter, the handy wrapper class we can use for writing text
to a stream. Previously, we got hold of one from File.CreateText, but remember we
mentioned that there’s a constructor we can use to wrap any Stream (not just a
FileStream) if we want to write text to it? Well, we can use that now, for our Isolated
StorageFileStream. Similarly, we can use the equivalent StreamReader to read text from
the stream if it already exists. Example 11-50 implements the UseStream method that
Example 11-49 called after opening the stream, and it uses both StreamReader and
StreamWriter.

Example 11-50. Using StreamReader and StreamWriter with isolated storage

static void UseStream(Stream stream)
{
 if (stream.Length > 0)
 {
 using (StreamReader reader = new StreamReader(stream))
 {
 Console.WriteLine(reader.ReadToEnd());
 }
 }
 else
 {
 using (StreamWriter writer = new StreamWriter(stream))
 {
 writer.WriteLine(
 "Initialized settings at {0}", DateTime.Now.TimeOfDay);
 Console.WriteLine("Settings have been initialized");
 }
 }
}

In the case where we’re writing, we construct our StreamWriter (in a using block, be-
cause we need to Dispose it when we’re done), and then use the WriteLine method to

430 | Chapter 11: Files and Streams

write our content. Remember that WriteLine adds an extra new line on the end of the
text, whereas Write just writes the text provided.

In the case where we are reading, on the other hand, we construct a StreamReader (also
in a using block), and then read the entire content using ReadToEnd. This reads the entire
content of the file into a single string.

So, if you build and run this once, you’ll see some output that looks a lot like this:

Settings have been initialized

That means we’ve run through the write path. Run a second (or subsequent) time, and
you’ll see something more like this:

Initialized settings at 10:34:47.7014833

That means we’ve run through the read path.

When you run this, you’ll notice that we end up outputting an extra
blank line at the end, because we’ve read a whole line from the file—we
called writer.WriteLine when generating the file—and then used
Console.WriteLine, which adds another end of line after that. You have
to be a little careful when manipulating text like this, to ensure that you
don’t end up with huge amounts of unwanted whitespace because ev-
eryone in some processing chain is generously adding new lines or other
whitespace at the end!

This is a rather neat result. We can use all our standard techniques for reading and
writing to an IsolatedStorageFileStream once we’ve acquired a suitable file: the other
I/O types such as StreamReader don’t need to know what kind of stream we’re using.

Defining “Isolated”
So, what makes isolated storage “isolated”? The .NET Framework partitions informa-
tion written into isolated storage based on some characteristics of the executing code.

Several types of isolated store are available to you:

• Isolation by user and assembly (optionally supporting roaming)

• Isolation by user, domain, and assembly (optionally supporting roaming)

• Isolation by user and application (optionally supporting roaming)

• Isolation by user and site (only on Silverlight)

• Isolation by machine and assembly

• Isolation by machine, domain, and assembly

• Isolation by machine and application

Silverlight supports only two of these: by user and site, and by user and application.

Isolated Storage | 431

Isolation by user and assembly

In Example 11-50, we acquired a store isolated by user and assembly, using the static
method IsolatedStorageFile.GetUserStoreForAssembly. This store is unique to a par-
ticular user, and the assembly in which the calling code is executing. You can try this
out for yourself. If you log in to your box as a user other than the one under which
you’ve already run our example app, and run it again, you’ll see some output like this:

Settings have been initialized

That means our settings file doesn’t exist (for this user), so we must have been given a
new store.

As you might expect, the user is identified by the authenticated principal for the current
thread. Typically, this is the logged-on user that ran the process; but this could have
been changed by impersonation (in a web application, for example, you might be run-
ning in the context of the web user, rather than that of the ASP.NET process that hosts
the site).

Identifying the assembly is slightly more complex. If you have signed the assembly, it
uses the information in that signature (be it a strong name signature, or a software
publisher signature, with the software publishing signature winning if it has both).

If, on the other hand, the assembly is not signed, it will use the URL for the assembly.
If it came from the Internet, it will be of the form:

http://some/path/to/myassembly.dll

If it came from the local filesystem, it will be of the form:

file:///C:/some/path/to/myassembly.dll

Figure 11-9 illustrates how multiple stores get involved when you have several users
and several different assemblies. User 1 asks MyApp.exe to perform some task, which
asks for user/assembly isolated storage. It gets Store 1. Imagine that User 1 then asks
MyApp.exe to perform some other task that requires the application to call on MyAs-
sembly.dll to carry out the work. If that in turn asks for user/assembly isolated storage,
it will get a different store (labeled Store 2 in the diagram). We get a different store,
because they are different assemblies.

When a different user, User 2, asks MyApp.exe to perform the first task, which then
asks for user/assembly isolated storage, it gets a different store again—Store 3 in the
diagram—because they are different users.

OK, what happens if we make two copies of MyApp.exe in two different locations, and
run them both under the same user account? The answer is that it depends....

If the applications are not signed the assembly identification rules mean that they don’t
match, and so we get two different isolated stores.

If they are signed the assembly identification rules mean that they do match, so we get
the same isolated store.

432 | Chapter 11: Files and Streams

Our app isn’t signed, so if we try this experiment, we’ll see the standard “first run”
output for our second copy.

Be very careful when using isolated storage with signed assemblies. The
information used from the signature includes the Name, Strong Name
Key, and Major Version part of the version info. So, if you rev your
application from 1.x to 2.x, all of a sudden you’re getting a different
isolated storage scope, and all your existing data will “vanish.” One way
to deal with this is to use a distinct DLL to access the store, and keep its
version numbers constant.

Isolation by user, domain, and assembly

Isolating by domain means that we look for some information about the application
domain in which we are running. Typically, this is the full URL of the assembly if it
was downloaded from the Web, or the local path of the file.

Notice that this is the same rule as for the assembly identity if we didn’t sign it! The
purpose of this isolation model is to allow a single signed assembly to get different
stores if it is run from different locations. You can see a diagram that illustrates this in
Figure 11-10.

Figure 11-9. User and assembly isolation

Isolated Storage | 433

To get a store with this isolation level, we can call the IsolatedStorageFile class’s
GetUserStoreForDomain method.

Isolation by user and application

A third level of isolation is by user and application. What defines an “application”?
Well, you have to sign the whole lot with a publisher’s (Authenticode) signature. A
regular strong-name signature won’t do (as that will identify only an individual
assembly).

If you want to try this out quickly for yourself, you can run the Click-
Once Publication Wizard on the Publish tab of your example project
settings. This will generate a suitable test certificate and sign the app.

To get a store with user and application isolation, we call the IsolatedStorageFile
class’s GetUserStoreForApplication method.

Figure 11-10. Assembly and domain isolation compared

434 | Chapter 11: Files and Streams

If you haven’t signed your application properly, this method will throw
an exception.

So, it doesn’t matter which assembly you call from; as long as it is a part of the same
application, it will get the same store. You can see this illustrated in Figure 11-11.

Figure 11-11. Application isolation

This can be particularly useful for settings that might be shared between
several different application components.

Machine isolation

What if your application or component has some data you want to make available to
all users on the system? Maybe you want to cache common product information or
imagery to avoid a download every time you start the app. For these scenarios you need
machine isolation.

Isolated Storage | 435

As you saw earlier, there is an isolation type for the machine which corresponds to each
isolation type for the user. The same resolution rules apply in each case. The methods
you need are:

GetMachineStoreForApplication
GetMachineStoreForDomain
GetMachineStoreForAssembly

Managing User Storage with Quotas
Isolated storage has the ability to set quotas on particular storage scopes. This allows
you to limit the amount of data that can be saved in any particular store. This is par-
ticularly important for applications that run with partial trust—you wouldn’t want
Silverlight applications automatically loaded as part of a web page to be able to store
vast amounts of data on your hard disk without your permission.

You can find out a store’s current quota by looking at the Quota property on a particular
IsolatedStorageFile. This is a long, which indicates the maximum number of bytes
that may be stored. This is not a “bytes remaining” count—you can use the Available
FreeSpace property for that.

Your available space will go down slightly when you create empty di-
rectories and files. This reflects the fact that such items consume space
on disk even though they are nominally empty.

The quota can be increased using the IncreaseQuotaTo method, which takes a long
which is the new number of bytes to which to limit the store. This must be larger than
the previous number of bytes, or an ArgumentException is thrown. This call may or may
not succeed—the user will be prompted, and may refuse your request for more space.

You cannot reduce the quota for a store once you’ve set it, so take care!

Managing Isolated Storage
As a user, you might want to look at the data stored in isolated storage by applications
running on your machine. It can be complicated to manage and debug isolated storage,
but there are a few tools and techniques to help you.

First, there’s the storeadm.exe tool. This allows you to inspect isolated storage for the
current user (by default), or the current machine (by specifying the /machine option)
or current roaming user (by specifying /roaming).

436 | Chapter 11: Files and Streams

So, if you try running this command:

storeadm /MACHINE /LIST

you will see output similar to this (listing the various stores for this machine, along with
the evidence that identifies them):

Microsoft (R) .NET Framework Store Admin 4.0.30319.1
Copyright (c) Microsoft Corporation. All rights reserved.

Record #1
[Assembly]
<StrongName version="1"
Key="0024000004800000940000000602000000240000525341310004000001000100A5FE84898F
190EA6423A7D7FFB1AE778141753A6F8F8235CBC63A9C5D04143C7E0A2BE1FC61FA6EBB52E7FA9B
48D22BAF4027763A12046DB4A94FA3504835ED9F29CD031600D5115939066AABE59A4E61E932AEF
0C24178B54967DD33643FDE04AE50786076C1FB32F64915E8200729301EB912702A8FDD40F63DD5
A2DE218C7"
Name="ConsoleApplication7"
Version="1.0.0.0"/>

 Size : 0
Record #2
[Domain]
<StrongName version="1"
Key="0024000004800000940000000602000000240000525341310004000001000100A5FE84898F
190EA6423A7D7FFB1AE778141753A6F8F8235CBC63A9C5D04143C7E0A2BE1FC61FA6EBB52E7FA9B
48D22BAF4027763A12046DB4A94FA3504835ED9F29CD031600D5115939066AABE59A4E61E932AEF
0C24178B54967DD33643FDE04AE50786076C1FB32F64915E8200729301EB912702A8FDD40F63DD5
A2DE218C7"
Name="ConsoleApplication7"
Version="1.0.0.0"/>

[Assembly]
<StrongName version="1"
Key="0024000004800000940000000602000000240000525341310004000001000100A5FE84898F
190EA6423A7D7FFB1AE778141753A6F8F8235CBC63A9C5D04143C7E0A2BE1FC61FA6EBB52E7FA9B
48D22BAF4027763A12046DB4A94FA3504835ED9F29CD031600D5115939066AABE59A4E61E932AEF
0C24178B54967DD33643FDE04AE50786076C1FB32F64915E8200729301EB912702A8FDD40F63DD5
A2DE218C7"
Name="ConsoleApplication7"
Version="1.0.0.0"/>

 Size : 0

Notice that there are two stores in that example. One is identified by some assembly
evidence (the strong name key, name, and major version info). The other is identified
by both domain and assembly evidence. Because the sample application is in a single
assembly, the assembly evidence for both stores happens to be identical!

You can also add the /REMOVE parameter which will delete all of the
isolated storage in use at the specified scope. Be very careful if you do
this, as you may well delete storage used by another application entirely.

Isolated Storage | 437

That’s all very well, but you can’t see the place where those files are stored. That’s
because the actual storage is intended to be abstracted away behind the API. Sometimes,
however, it is useful to be able to go and pry into the actual storage itself.

Remember, this is an implementation detail, and it could change be-
tween versions. It has been consistent since the first version of the .NET
Framework, but in the future, Microsoft could decide to store it all in
one big file hidden away somewhere, or using some mystical API that
we don’t have access to.

We can take advantage of the fact that the debugger can show us the private innards
of the IsolatedStorageFile class. If we set a breakpoint on the store.CreateFile line
in our sample application, we can inspect the IsolatedStorageFile object that was
returned by GetUserStoreForApplication in the previous line. You will see that there is
a private field called m_RootDir. This is the actual root directory (in the real filesystem)
for the store. You can see an example of that as it is on my machine in Figure 11-12.

Figure 11-12. IsolatedStorageFile internals

If you copy that path and browse to it using Windows Explorer, you’ll see something
like the folder in Figure 11-13.

There’s the Settings directory that we created! As you might expect, if you were to look
inside, you’d see the standardsettings.txt file our program created.

438 | Chapter 11: Files and Streams

Figure 11-13. An isolated storage folder

As you can see, this is a very useful debugging technique, allowing you to inspect and
modify the contents of files in isolated storage, and identify exactly which store you
have for a particular scope. It does rely on implementation details, but since you’d only
ever do this while debugging, the code you ultimately ship won’t depend on any non-
public features of isolated storage.

OK. So far, we’ve seen two different types of stream; a regular file, and an isolated
storage file. We use our familiar stream tools and techniques (like StreamReader and
StreamWriter), regardless of the underlying type.

So, what other kinds of stream exist? Well, there are lots; several subsystems in the .NET
framework provide stream-based APIs. We’ll see some networking ones in Chap-
ter 13, for example. Another example is from the .NET Framework’s security features:
CryptoStream (which is used for encrypting and decrypting a stream of data). There’s
also a MemoryStream in System.IO which uses memory to store the data in the stream.

Streams That Aren’t Files
In this final section, we’ll look at a stream that is not a file. We’ll use a stream
from .NET’s cryptographic services to encrypt a string. This encrypted string can be
decrypted later as long as we know the key. The test program in Example 11-51 illus-
trates this.

Example 11-51. Using an encryption stream

static void Main(string[] args)
{
 byte[] key;
 byte[] iv;

 // Get the appropriate key and initialization vector for the algorithm
 SelectKeyAndIV(out key, out iv);

Streams That Aren’t Files | 439

 string superSecret = "This is super secret";

 Console.WriteLine(superSecret);

 string encryptedText = EncryptString(superSecret, key, iv);

 Console.WriteLine(encryptedText);

 string decryptedText = DecryptString(encryptedText, key, iv);

 Console.WriteLine(decryptedText);

 Console.ReadKey();
}

It is going to write a message to the console, encrypt it, write the encrypted text to the
console, decrypt it, and write the result of that back to the console. All being well, the
first line should be the same as the last, and the middle line should look like gibberish!

Of course, it’s not very useful to encrypt and immediately decrypt again.
This example illustrates all the parts in one program—in a real appli-
cation, decryption would happen in a different place than encryption.

The first thing we do is get a suitable key and initialization vector for our cryptographic
algorithm. These are the two parts of the secret key that are shared between whoever
is encrypting and decrypting our sensitive data.

A detailed discussion of cryptography is somewhat beyond the scope of this book, but
here are a few key points to get us going. Unenciphered data is known as the plain
text, and the encrypted version is known as cipher text. We use those terms even if we’re
dealing with nontextual data. The key and the initialization vector (IV) are used by a
cryptographic algorithm to encrypt the unenciphered data. A cryptographic algorithm
that uses the same key and IV for both encryption and decryption is called a symmetric
algorithm (for obvious reasons). Asymmetric algorithms also exist, but we won’t be
using them in this example.

Needless to say, if an unauthorized individual gets hold of the key and IV, he can happily
decrypt any of your cipher text, and you no longer have a communications channel free
from prying eyes. It is therefore extremely important that you take care when sharing
these secrets with the people who need them, to ensure that no one else can intercept
them. (This turns out to be the hardest part—key management and especially human
factors turn out to be security weak points far more often than the technological details.
This is a book about programming, so we won’t even attempt to solve that problem.
We recommend the book Secrets and Lies: Digital Security in a Networked World by
Bruce Schneier [John Wiley & Sons] for more information.)

440 | Chapter 11: Files and Streams

We’re calling a method called SelectKeyAndIV to get hold of the key and IV. In real life,
you’d likely be sharing this information between different processes, usually even on
different machines; but for the sake of this demonstration, we’re just creating them on
the fly, as you can see in Example 11-52.

Example 11-52. Creating a key and IV

private static void SelectKeyAndIV(out byte[] key, out byte[] iv)
{
 var algorithm = TripleDES.Create();
 algorithm.GenerateIV();
 algorithm.GenerateKey();

 key = algorithm.Key;
 iv = algorithm.IV;
}

TripleDES is an example of a symmetric algorithm, so it derives from a class called
SymmetricAlgorithm. All such classes provide a couple of methods called GenerateIV
and GenerateKey that create cryptographically strong random byte arrays to use as an
initialization vector and a key. See the sidebar below for an explanation of why we need
to use a particular kind of random number generator when cryptography is involved.

How Random Are Random Numbers?
What does “cryptographically strong” mean when we’re talking about random num-
bers? Well, it turns out that most random number generators are not all that random.
The easiest way to illustrate this is with a little program that seeds the standard .NET
Framework random number generator with an arbitrary integer (3), and then displays
some random numbers to the console:

static void Main(string[] args)
{
 Random random = new Random(3);
 for (int i = 0; i < 5; ++i)
 {
 Console.WriteLine(random.Next());
 }
 Console.ReadKey();
}

If you compile and run, you should see this output:

630327709
1498044246
1857544709
426253993
1203643911

No, I’m not Nostradamus. It is just that the “random” algorithm is actually entirely
predictable, given a particular seed. Normally that seed comes from Environment.Tick
Count, which means that you normally see different behavior each time. Thus, we have
the illusion of “randomness.” But this isn’t good enough for encryption purposes;

Streams That Aren’t Files | 441

encryption schemes have been broken in the past because attackers were able to guess
a computer’s tick count.

Then there’s the question of how uniformly distributed those “random” numbers are,
or whether the algorithm has a tendency to generate clusters of random numbers. Get-
ting a smooth, unpredictable stream of random numbers from an algorithm is a very
hard problem, and the smoother you want it the more expensive it gets (in general).

Lack of randomness (i.e., predictability) in your random number generator can signif-
icantly reduce the strength of a cryptographic algorithm based on its results.

The upshot of this is that you shouldn’t use System.Random if you are particularly sen-
sitive to the randomness of your random numbers. This isn’t just limited to security
applications—you might want to think about your approach if you were building an
online casino application, for example.

OK, with that done, we can now implement our EncryptString method. This takes the
plain text string, the key, and the initialization vector, and returns us an encrypted
string. Example 11-53 shows an implementation.

Example 11-53. Encrypting a string

private static string EncryptString(string plainText, byte[] key, byte[] iv)
{
 // Create a crypto service provider for the TripleDES algorithm
 var serviceProvider = new TripleDESCryptoServiceProvider();

 using (MemoryStream memoryStream = new MemoryStream())
 using (var cryptoStream = new CryptoStream(
 memoryStream,
 serviceProvider.CreateEncryptor(key, iv),
 CryptoStreamMode.Write))
 using (StreamWriter writer = new StreamWriter(cryptoStream))
 {
 // Write some text to the crypto stream, encrypting it on the way
 writer.Write(plainText);
 // Make sure that the writer has flushed to the crypto stream
 writer.Flush();
 // We also need to tell the crypto stream to flush the final block out to
 // the underlying stream, or we'll
 // be missing some content...
 cryptoStream.FlushFinalBlock();

 // Now, we want to get back whatever the crypto stream wrote to our memory
 // stream.
 return GetCipherText(memoryStream);
 }
}

We’re going to write our plain text to a CryptoStream, using the standard Stream
Writer adapter. This works just as well over a CryptoStream as any other, but instead
of coming out as plain text, it will be enciphered for us. How does that work?

442 | Chapter 11: Files and Streams

An Adapting Stream: CryptoStream
CryptoStream is quite different from the other streams we’ve met so far. It doesn’t have
any underlying storage of its own. Instead, it wraps around another Stream, and then
uses an ICryptoTransform either to transform the data written to it from plain text into
cipher text before writing it to that output stream (if we put it into CryptoStream
Mode.Write), or to transform what it has read from the underlying stream and turning
it back into plain text before passing it on to the reader (if we put it into CryptoStream
Mode.Read).

So, how do we get hold of a suitable ICryptoTransform? We’re making use of a factory
class called TripleDESCryptoServiceProvider. This has a method called CreateEncryp
tor which will create an instance of an ICryptoTransform that uses the TripleDES algo-
rithm to encrypt our plain text, with the specified key and IV.

A number of different algorithms are available in the framework, with
various strengths and weaknesses. In general, they also have a number
of different configuration options, the defaults for which can vary be-
tween versions of the .NET Framework and even versions of the oper-
ating system on which the framework is deployed. To be successful,
you’re going to have to ensure that you match not just the key and the
IV, but also the choice of algorithm and all its options. In general, you
should carefully set everything up by hand, and avoid relying on the
defaults (unlike this example, which, remember, is here to illustrate
streams).

We provide all of those parameters to its constructor, and then we can use it (almost)
like any other stream.

In fact, there is a proviso about CryptoStream. Because of the way that most crypto-
graphic algorithms work on blocks of plain text, it has to buffer up what is being written
(or read) until it has a full block, before encrypting it and writing it to the underlying
stream.

This means that, when you finish writing to it, you might not have filled up the final
block, and it might not have been flushed out to the destination stream. There are two
ways of ensuring that this happens:

• Dispose the CryptoStream.

• Call FlushFinalBlock on the CryptoStream.

In many cases, the first solution is the simplest. However, when you call Dispose on the
CryptoStream it will also Close the underlying stream, which is not always what you
want to do. In this case, we’re going to use the underlying stream some more, so we
don’t want to close it just yet. Instead, we call Flush on the StreamWriter to ensure that
it has flushed all of its data to the CryptoStream, and then FlushFinalBlock on the

Streams That Aren’t Files | 443

CryptoStream itself, to ensure that the encrypted data is all written to the underlying
stream.

We can use any sort of stream for that underlying stream. We could use a file stream
on disk, or one of the isolated storage file streams we saw earlier in this chapter, for
example. We could even use one of the network streams we’re going to see in Chap-
ter 13. However, for this example we’d like to do everything in memory, and the frame-
work has just the class for us: the MemoryStream.

In Memory Alone: The MemoryStream
MemoryStream is very simple in concept. It is just a stream that uses memory as its backing
store. We can do all of the usual things like reading, writing, and seeking. It’s very useful
when you’re working with APIs that require you to provide a Stream, and you don’t
already have one handy.

If we use the default constructor (as in our example), we can read and write to the
stream, and it will automatically grow in size as it needs to accommodate the data being
written. Other constructors allow us to provide a start size suitable for our purposes (if
we know in advance what that might be).

We can even provide a block of memory in the form of a byte[] array to use as the
underlying storage for the stream. In that case, we are no longer able to resize the stream,
and we will get a NotSupportedException if we try to write too much data. You would
normally supply your own byte[] array when you already have one and need to pass it
to something that wants to read from a stream.

We can find out the current size of the underlying block of memory (whether we allo-
cated it explicitly, or whether it is being automatically resized) by looking at the stream’s
Capacity property. Note that this is not the same as the maximum number of bytes
we’ve ever written to the stream. The automatic resizing tends to overallocate to avoid
the overhead of constant reallocation when writing. In general, you can determine how
many bytes you’ve actually written to by looking at the Position in the stream at the
beginning and end of your write operations, or the Length property of the MemoryStream.

Having used the CryptoStream to write the cipher text into the stream, we need to turn
that into a string we can show on the console.

Representing Binary As Text with Base64 Encoding
Unfortunately, the cipher text is not actually text at all—it is just a stream of bytes. We
can’t use the UTF8Encoding.UTF8.GetString technique we saw in Chapter 10 to turn the
bytes into text, because these bytes don’t represent UTF-8 encoded characters.

Instead, we need some other sort of text-friendly representation if we’re going to be
able to print the encrypted text to the console. We could write each byte out as hex
digits. That would be a perfectly reasonable string representation.

444 | Chapter 11: Files and Streams

However, that’s not very compact (each byte is taking five characters in the string!):

0x01 0x0F 0x03 0xFA 0xB3

A much more compact textual representation is Base64 encoding. This is a very popular
textual encoding of arbitrary data. It’s often used to embed binary in XML, which is a
fundamentally text-oriented format.

And even better, the framework provides us with a convenient static helper method to
convert from a byte[] to a Base64 encoded string: Convert.ToBase64String.

If you’re wondering why there’s no Encoding class for Base64 to corre-
spond to the Unicode, ASCII, and UTF-8 encodings we saw in Chap-
ter 10, it’s because Base64 is a completely different kind of thing. Those
other encodings are mechanisms that define binary representations of
textual information. Base64 does the opposite—it defines a textual rep-
resentation for binary information.

Example 11-54 shows how we make use of that in our GetCipherText method.

Example 11-54. Converting to Base64

private static string GetCipherText(MemoryStream memoryStream)
{
 byte[] buffer = memoryStream.ToArray();
 return System.Convert.ToBase64String(buffer, 0, buffer.Length);
}

We use a method on MemoryStream called ToArray to get a byte[] array containing all
the data written to the stream.

Don’t be caught out by the ToBuffer method, which also returns a
byte[] array. ToBuffer returns the whole buffer including any “extra”
bytes that have been allocated but not yet used.

Finally, we call Convert.ToBase64String to get a string representation of the underlying
data, passing it the byte[], along with a start offset into that buffer of zero (so that we
start with the first byte), and the length.

That takes care of encryption. How about decryption? That’s actually a little bit easier.
Example 11-55 shows how.

Example 11-55. Decryption

private static string DecryptString(string cipherText, byte[] key, byte[] iv)
{
 // Create a crypto service provider for the TripleDES algorithm
 var serviceProvider = new TripleDESCryptoServiceProvider();

 // Decode the cipher-text bytes back from the base-64 encoded string

Streams That Aren’t Files | 445

 byte[] cipherTextBytes = Convert.FromBase64String(cipherText);

 // Create a memory stream over those bytes
 using (MemoryStream memoryStream = new MemoryStream(cipherTextBytes))
 // And create a cryptographic stream over the memory stream,
 // using the specified algorithm
 // (with the provided key and initialization vector)
 using (var cryptoStream =
 new CryptoStream(
 memoryStream,
 serviceProvider.CreateDecryptor(key, iv),
 CryptoStreamMode.Read))
 // Finally, create a stream reader over the stream, and recover the
 // original text
 using (StreamReader reader = new StreamReader(cryptoStream))
 {
 return reader.ReadToEnd();
 }
}

First, we use Convert.FromBase64String to convert our Base64 encoded string back to
an array of bytes. We then construct a MemoryStream over that byte[] by passing it to
the appropriate constructor.

As before, we wrap the MemoryStream with a CryptoStream, this time passing it the
ICryptoTransform created by a call to CreateDecryptor on our TripleDESCryptoService
Provider, and putting it into CryptoStreamMode.Read.

Finally, we construct our old friend the StreamReader over the CryptoStream, and read
the content back as a string.

So, what’s actually happening here?

CryptoStream uses the ICryptoTransform to take care of turning the cipher text in the
MemoryStream back into plain text. If you remember, that plain text is actually the set
of UTF-8 encoded bytes we originally wrote to the stream with the StreamWriter back
in the encryption phase. So, the StreamReader takes those and converts them back into
a string for us. You can see that illustrated in Figure 11-14.

This is a very powerful example of how we can plug together various components in a
kind of pipeline to achieve quite complex processing, from simple, easily understood
building blocks that conform to a common pattern, but which have no dependencies
on each other’s implementation details. The Stream abstraction is the key to this
flexibility.

446 | Chapter 11: Files and Streams

Figure 11-14. Encryption and decryption pipeline using streams

Summary
In this chapter we looked at the classes in the System.IO namespace that relate to files
and streams. We saw how we can use static methods on the File, Directory, and
Path classes to manage and manipulate files and folders in the filesystem, including
creating, deleting, appending, and truncating data, as well as managing their access
permissions.

We saw how to use StreamReader and StreamWriter to deal with reading and writing
text from files, and how we can also read and write binary data using the underlying
Stream objects themselves, including the ability to Seek backward and forward in the
file.

Summary | 447

We then looked at a special type of file stream called isolated storage. This gives us the
ability to manage the scope of file access to particular users, machines, applications, or
even assemblies. We gain control over quotas (the maximum amount of space any
particular store is allowed to use), and get to use local file storage in normally restricted
security contexts like that of a Silverlight application, for example.

Finally, we looked at some streams that aren’t files, including MemoryStream, which uses
memory as its underlying storage mechanism, and CryptoStream, which has no storage
of its own, delegating that responsibility to another stream. We showed how these
patterns can be used to plug streams together into a processing pipeline.

448 | Chapter 11: Files and Streams

CHAPTER 12

XML

XML (the eXtensible Markup Language) provides an industry-standard method for
encoding structured information. It defines syntactic and structural rules that enable
software applications to process XML files even when they don’t understand all of the
data.

XML specifications are defined and maintained by the World Wide Web Consortium
(W3C). The latest version is XML 1.1 (Second Edition). However, XML 1.0 (currently
in its fifth edition) is the most popular version, and is supported by all XML parsers.
W3C states that:

You are encouraged to create or generate XML 1.0 documents if you do not need the
new features in XML 1.1; XML Parsers are expected to understand both XML 1.0 and
XML 1.1 (see http://www.w3.org/xml/core/#publications/).

This chapter will introduce XML 1.0 only, and in fact, will focus on just the most
commonly used XML features. We’ll introduce you to the XDocument and XElement
classes first, and you’ll learn how to create and manipulate XML documents.

Of course, once you have a large document, you’ll want to be able to find substrings,
and we’ll show you two different ways to do that, using LINQ. The .NET Framework
also allows you to serialize your objects as XML, and deserialize them at their destina-
tion. We’ll cover those methods at the end of the chapter.

XML Basics (A Quick Review)
XML is a markup language, not unlike HTML, except that it is extensible—that is,
applications that use XML can (and do) create new kinds of elements and attributes.

449

http://www.w3.org/xml/core/#publications/

Elements
In XML, a document is a hierarchy of elements. An element is typically defined by a
pair of tags, called the start and end tags. In the following example, FirstName is an
element:

<FirstName>Orlando</FirstName>

A start tag contains the element name surrounded by a pair of angle brackets:

<FirstName>

An end tag is similar, except that the element name is preceded by a forward slash:

</FirstName>

An element may contain content between its start and end tags. In this example, the
element contains text, but content can also contain child elements. For example, this
Customer element has three child elements:

 <Customer>
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
 </Customer>

The top-level element in an XML document is called its root element. Every document
has exactly one root element.

An element does not have to contain content, but every element (except for the root
element) has exactly one parent element. Elements with the same parent element are
called sibling elements.

In this example, Customers (plural) is the root. The children of the root element,
Customers, are the three Customer (singular) elements:

<Customers>
 <Customer>
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Keith</FirstName>
 <LastName>Harris</LastName>
 <EmailAddress>keith0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Donna</FirstName>
 <LastName>Carreras</LastName>
 <EmailAddress>donna0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Janet</FirstName>
 <LastName>Gates</LastName>
 <EmailAddress>janet1@hotmail.com</EmailAddress>

450 | Chapter 12: XML

 </Customer>
 <Customer>
 <FirstName>Lucy</FirstName>
 <LastName>Harrington</LastName>
 <EmailAddress>lucy0@hotmail.com</EmailAddress>
 </Customer>
</Customers>

Each Customer has one parent (Customers) and three children (FirstName, LastName, and
EmailAddress). Each of these, in turn, has one parent (Customer) and zero children.

When an element has no content—no child elements and no text—you can optionally
use a more compact representation, where you write just a single tag, with a slash just
before the closing angle bracket. For example, this:

<Customers/>

means exactly the same as this:

<Customers></Customers>

This empty element tag syntax is the only syntax in which an element is represented by
just a single tag. Unless you are using this form, it is illegal to omit the closing tag.

XHTML
XHTML is an enhanced standard of HTML that follows the stricter rules of XML val-
idity. The two most important XML rules that make XHTML different from plain
HTML follow:

• No elements may overlap, though they may nest. So this is legal, because the
elements are nested:

<element 1>
 <element2>
 ...
 </element 2>
</element 1>

You may not write:

<element 1>
 <element2>
 ...
 </element 1>
</element 2>

because in the latter case, element2 overlaps element1 rather than being neatly nes-
ted within it. (Ordinary HTML allows this.)

• Every element must be closed, which means that for each opened element, you
must have a closing tag (or the element tag must be self-closing). So while plain
old HTML permits:

XML Basics (A Quick Review) | 451

in XHTML we must either write this:

</br>

or use the empty element tag form:

X Stands for eXtensible
The key point of XML is to provide an extensible markup language. Here’s an incredibly
short pop-history lesson: HTML was derived from the Standard Generalized Markup
Language (SGML). HTML has many wonderful attributes (if you’ll pardon the pun),
but if you want to add a new element to HTML, you have two choices: apply to the
W3C and wait, or strike out on your own and be “nonstandard.”

There was a strong need for the ability for two organizations to get together and specify
tags that they could use for data exchange. Hey! Presto! XML was born as a more
general-purpose markup language that allows users to define their own tags. This is the
critical distinction of XML.

Creating XML Documents
Because XML documents are structured text documents, you can create them using a
text editor and process them using string manipulation functions. To paraphrase David
Platt, you can also have an appendectomy through your mouth, but it takes longer and
hurts more.

To make the job easier, .NET implements classes and utilities that provide XML func-
tionality. There are several to choose from. There are the streaming XML APIs (which
support XmlReader and XmlWriter), which never attempt to hold the whole document
in memory—you work one element at a time, and while that enables you to handle
very large documents without using much memory, it can be tricky to code for. So there
are simpler APIs that let you build an object model that represents an XML document.
Even here, you have a choice. One set of XML APIs is based on the XML Document
Object Model (DOM), a standard API implemented in many programming systems,
not just .NET. However, the DOM is surprisingly cumbersome to work with, so .NET
3.5 introduced a set of APIs that are easier to use from .NET. These are designed to
work well with LINQ, and so they’re often referred to as LINQ to XML. These are now
the preferred XML API if you don’t need streaming. (Silverlight doesn’t even offer the
XML DOM APIs, so LINQ to XML is your only nonstreaming option there.)

Despite the name, it’s not strictly necessary to use LINQ when using the LINQ to XML
classes—Example 12-1 uses this API to write a list of customers to an XML document.

452 | Chapter 12: XML

Example 12-1. Creating an XML document

using System;
using System.Collections.Generic;
using System.Xml.Linq;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 var customerXml = new XDocument();
 var rootElem = new XElement("Customers");
 customerXml.Add(rootElem);
 foreach (Customer customer in customers)
 {
 // Create new element representing the customer object.
 var customerElem = new XElement("Customer");

 // Add element representing the FirstName property
 // to the customer element.
 var firstNameElem = new XElement("FirstName",
 customer.FirstName);
 customerElem.Add(firstNameElem);

 // Add element representing the LastName property
 // to the customer element.
 var lastNameElem = new XElement("LastName",
 customer.LastName);
 customerElem.Add(lastNameElem);

 // Add element representing the EmailAddress property
 // to the customer element.
 var emailAddress = new XElement("EmailAddress",
 customer.EmailAddress);
 customerElem.Add(emailAddress);

 // Finally add the customer element to the XML document
 rootElem.Add(customerElem);
 }

 Console.WriteLine(customerXml.ToString());
 Console.Read();
 }

Creating XML Documents | 453

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer { FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@hotmail.com"},
 new Customer { FirstName = "Keith",
 LastName = "Harris",
 EmailAddress = "keith0@hotmail.com" },
 new Customer { FirstName = "Donna",
 LastName = "Carreras",
 EmailAddress = "donna0@hotmail.com" },
 new Customer { FirstName = "Janet",
 LastName = "Gates",
 EmailAddress = "janet1@hotmail.com" },
 new Customer { FirstName = "Lucy",
 LastName = "Harrington",
 EmailAddress = "lucy0@hotmail.com" }
 };
 return customers;
 }
 }
}

The program will produce this output:

<Customers>
 <Customer>
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Keith</FirstName>
 <LastName>Harris</LastName>
 <EmailAddress>keith0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Donna</FirstName>
 <LastName>Carreras</LastName>
 <EmailAddress>donna0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Janet</FirstName>
 <LastName>Gates</LastName>
 <EmailAddress>janet1@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Lucy</FirstName>
 <LastName>Harrington</LastName>
 <EmailAddress>lucy0@hotmail.com</EmailAddress>
 </Customer>
</Customers>

454 | Chapter 12: XML

As it happens, this example would have needed less code if we had used
LINQ, but for this first example, we wanted to keep things simple. We’ll
show the LINQ version shortly.

In .NET, the System.Xml.Linq namespace contains the LINQ to XML classes we can
use to create and process XML documents.

The Customer class and the CreateCustomerList function in the main Tester class con-
tain straightforward code to give us some data to work with, so we will not go over
them. The main attraction in this example is the XML creation in the Main function.
First, we create a new XML document object:

var customerXml = new XDocument();

Next, we create the root element and add it to the document:

var rootElem = new XElement("Customers");
customerXml.Add(rootElem);

After these two operations, the customerXml object represents an XML document con-
taining an empty element, which might look either like this:

<Customers></Customers>

or like this:

<Customers />

LINQ to XML tends to use the empty element tag form where possible, so if you were
to call ToString() on customerXml at this point, it would produce that second version.

Of course, you may already have an XML document, and you may want to turn that
into an XDocument object. Example 12-2 shows how to load a string into a new XDocument.

Example 12-2. Loading XML from a string

XDocument doc = XDocument.Parse("<Customers><Customer /></Customers>");

There’s also a Load method, which has several overloads. You can pass in a URL, in
which case it will fetch the XML from there and then parse it. You can also pass in a
Stream or a TextReader, the abstract types from the System.IO namespace that represent
a stream of bytes (such as a file), or a source of text (such as a file of some known
character encoding).

XML Elements
With the root element in hand, you can add each customer as a child node:

foreach (Customer customer in customers)
{
 // Create new element representing the customer object.
 var customerElem = new XElement("Customer");

Creating XML Documents | 455

In this example, we make each property of the customer object a child element of the
customer element:

 // Add element representing the FirstName property to the Customer element.
 var firstNameElem = new XElement("FirstName", customer.FirstName);
 cstomerElem.Add(firstNameElem);

This adds the FirstName child element. We’re passing the customer’s first name as the
second constructor argument, which will make that the content of the element. The
result will look like this:

<FirstName>Orlando</FirstName>

The other two properties, LastName and EmailAddress, are added to the customer ele-
ment in exactly the same way. Here’s an example of the complete customer element:

<Customer>
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

Finally, the newly created customer element is added to the XML document as a child
of the root element:

 // Finally add the customer element to the XML document
 rootElem.Add(customerElem);
}

Once all customer elements are created, this example prints the XML document:

Console.WriteLine(customerXml.ToString());

When you call ToString() on any of the LINQ to XML objects (whether they represent
the whole document, as in this case, or just some fragment of a document such as an
XElement), it produces the XML text, and it formats it with indentation, making it easy
to read. There are ways to produce more compact representations—if you’re sending
the XML across a network to another computer, size may be more important than
readability. To see a terser representation, we could do this:

Console.WriteLine(customerXml.ToString(SaveOptions.DisableFormatting));

That will print the XML as one long line with no spaces.

XML Attributes
An XML element may have a set of attributes, which store additional information about
the element. An attribute is a key/value pair contained in the start tag of an XML
element:

<Customer FirstName="Orlando" LastName="Gee"></Customer>

If you’re using an empty element tag, the attributes appear in the one and only tag:

<Customer FirstName="Orlando" LastName="Gee" />

456 | Chapter 12: XML

The next example demonstrates how you can mix the use of child elements and at-
tributes. It creates customer elements with the customer’s name stored in attributes
and the email address stored as a child element:

<Customer FirstName="Orlando" LastName="Gee">
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

The only difference between this and Example 12-1 is that we create XAttribute objects
for the FirstName and LastName properties instead of XElement objects:

// Add an attribute representing the FirstName property
// to the customer element.
var firstNameAttr = new XAttribute("FirstName", customer.FirstName);
customerElem.Add(firstNameAttr);
// Add an attribute representing the LastName property
// to the customer element.
var lastNameAttr = new XAttribute("LastName", customer.LastName);
customerElem.Add(lastNameAttr);

As with elements, we just add the attribute to the parent element. Example 12-3 shows
the complete sample code and output.

Example 12-3. Creating an XML document containing elements and attributes

using System;
using System.Collections.Generic;
using System.Xml.Linq;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 12-1
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 var customerXml = new XDocument();
 var rootElem = new XElement("Customers");
 customerXml.Add(rootElem);
 foreach (Customer customer in customers)
 {
 // Create new element representing the customer object.
 var customerElem = new XElement("Customer");

 // Add an attribute representing the FirstName property
 // to the customer element.
 var firstNameAttr = new XAttribute("FirstName",

Creating XML Documents | 457

 customer.FirstName);
 customerElem.Add(firstNameAttr);

 // Add an attribute representing the LastName property
 // to the customer element.
 var lastNameAttr = new XAttribute("LastName",
 customer.LastName);
 customerElem.Add(lastNameAttr);

 // Add element representing the EmailAddress property
 // to the customer element.
 var emailAddress = new XElement("EmailAddress",
 customer.EmailAddress);
 customerElem.Add(emailAddress);

 // Finally add the customer element to the XML document
 rootElem.Add(customerElem);
 }

 Console.WriteLine(customerXml.ToString());
 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer { FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@hotmail.com"},
 new Customer { FirstName = "Keith",
 LastName = "Harris",
 EmailAddress = "keith0@hotmail.com" },
 new Customer { FirstName = "Donna",
 LastName = "Carreras",
 EmailAddress = "donna0@hotmail.com" },
 new Customer { FirstName = "Janet",
 LastName = "Gates",
 EmailAddress = "janet1@hotmail.com" },
 new Customer { FirstName = "Lucy",
 LastName = "Harrington",
 EmailAddress = "lucy0@hotmail.com" }
 };
 return customers;
 }
 }
}

Output:
<Customers>
 <Customer FirstName="Orlando" LastName="Gee">
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
 </Customer>

458 | Chapter 12: XML

 <Customer FirstName="Keith" LastName="Harris">
 <EmailAddress>keith0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Donna" LastName="Carreras">
 <EmailAddress>donna0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Janet" LastName="Gates">
 <EmailAddress>janet1@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Lucy" LastName="Harrington">
 <EmailAddress>lucy0@hotmail.com</EmailAddress>
 </Customer>
</Customers>

While it’s often convenient to be able to create and add elements and attributes one
step at a time, these classes offer constructors that allow us to do more work in a single
step. If we know exactly what we want to put in an element, this can lead to neater
looking code. For example, we can replace the foreach loop with the code in
Example 12-4.

Example 12-4. Constructing an XElement all at once

 foreach (Customer customer in customers)
 {
 // Create new element representing the customer object.
 var customerElem = new XElement("Customer",
 new XAttribute("FirstName", customer.FirstName),
 new XAttribute("LastName", customer.LastName),
 new XElement("EmailAddress", customer.EmailAddress)
);

 // Finally add the customer element to the XML document
 rootElem.Add(customerElem);
 }

The only difference is that we’re passing all the XAttribute and XElement objects to the
containing XElement constructor, rather than passing them to Add one at a time. As well
as being more compact, it’s pretty easy to see how this code relates to the structure of
the XML element being produced. We can also use this technique in conjunction with
LINQ.

Putting the LINQ in LINQ to XML
We’ve seen several examples that construct an XElement, passing the name as the first
argument, and the content as the second. We’ve passed strings, child elements, and
attributes, but we can also provide an implementation of IEnumerable<T>. So if we add
a using System.Linq; directive to the top of our file, we could use a LINQ query as the
second constructor argument as Example 12-5 shows.

Creating XML Documents | 459

Example 12-5. Generating XML elements with LINQ

var customerXml = new XDocument(new XElement("Customers",
 from customer in customers
 select new XElement("Customer",
 new XAttribute("FirstName", customer.FirstName),
 new XAttribute("LastName", customer.LastName),
 new XElement("EmailAddress", customer.EmailAddress)
)));

This generates the whole of the XML document in a single statement. So the work that
took 25 lines of code in Example 12-1 comes down to just seven. Example 12-6 shows
the whole example, with its much simplified Main method.

Example 12-6. Building XML with LINQ

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 12-1
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 var customerXml = new XDocument(new XElement("Customers",
 from customer in customers
 select new XElement("Customer",
 new XAttribute("FirstName", customer.FirstName),
 new XAttribute("LastName", customer.LastName),
 new XElement("EmailAddress", customer.EmailAddress)
)));

 Console.WriteLine(customerXml.ToString());
 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer { FirstName = "Orlando",
 LastName = "Gee",

460 | Chapter 12: XML

 EmailAddress = "orlando0@hotmail.com"},
 new Customer { FirstName = "Keith",
 LastName = "Harris",
 EmailAddress = "keith0@hotmail.com" },
 new Customer { FirstName = "Donna",
 LastName = "Carreras",
 EmailAddress = "donna0@hotmail.com" },
 new Customer { FirstName = "Janet",
 LastName = "Gates",
 EmailAddress = "janet1@hotmail.com" },
 new Customer { FirstName = "Lucy",
 LastName = "Harrington",
 EmailAddress = "lucy0@hotmail.com" }
 };
 return customers;
 }
 }
}

We’re not really doing anything special here—this LINQ query is just relying on plain
old LINQ to Objects—the same techniques we already saw in Chapter 8. But this is
only half the story. LINQ to XML is not just about creating XML. It also supports
reading XML.

Being able to create XML documents to store data to be processed or exchanged is
great, but it would not be of much use if you could not find information in them easily.
LINQ to XML lets you use the standard LINQ operators to search for information in
XML documents.

Searching in XML with LINQ
We’ll need an example document to search through. Here’s the document from Ex-
ample 12-3, reproduced here for convenience:

<Customers>
 <Customer FirstName="Orlando" LastName="Gee">
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Keith" LastName="Harris">
 <EmailAddress>keith0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Donna" LastName="Carreras">
 <EmailAddress>donna0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Janet" LastName="Gates">
 <EmailAddress>janet1@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Lucy" LastName="Harrington">
 <EmailAddress>lucy0@hotmail.com</EmailAddress>
 </Customer>
</Customers>

Searching in XML with LINQ | 461

Example 12-7 lists the code for the example.

Example 12-7. Searching an XML document using LINQ

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;

namespace Programming_CSharp
{
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }
 }

 public class Tester
 {
 private static XDocument CreateCustomerListXml()
 {
 List<Customer> customers = CreateCustomerList();
 var customerXml = new XDocument(new XElement("Customers",
 from customer in customers
 select new XElement("Customer",

 new XAttribute("FirstName", customer.FirstName),
 new XAttribute("LastName", customer.LastName),
 new XElement("EmailAddress", customer.EmailAddress)
)));

 return customerXml;
 }

 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer {FirstName = "Douglas",
 LastName = "Adams",
 EmailAddress = "dAdams@foo.com"},
 new Customer {FirstName = "Richard",
 LastName = "Dawkins",
 EmailAddress = "rDawkins@foo.com"},
 new Customer {FirstName = "Kenji",
 LastName = "Yoshino",
 EmailAddress = "kYoshino@foo.com"},
 new Customer {FirstName = "Ian",
 LastName = "McEwan",
 EmailAddress = "iMcEwan@foo.com"},
 new Customer {FirstName = "Neal",
 LastName = "Stephenson",
 EmailAddress = "nStephenson@foo.com"},
 new Customer {FirstName = "Randy",

462 | Chapter 12: XML

 LastName = "Shilts",
 EmailAddress = "rShilts@foo.com"},
 new Customer {FirstName = "Michelangelo",
 LastName = "Signorile ",
 EmailAddress = "mSignorile@foo.com"},
 new Customer {FirstName = "Larry",
 LastName = "Kramer",
 EmailAddress = "lKramer@foo.com"},
 new Customer {FirstName = "Jennifer",
 LastName = "Baumgardner",
 EmailAddress = "jBaumgardner@foo.com"}
 };
 return customers;
 }

 static void Main()
 {
 XDocument customerXml = CreateCustomerListXml();

 Console.WriteLine("Search for single element...");
 var query =
 from customer in
 customerXml.Element("Customers").Elements("Customer")
 where customer.Attribute("FirstName").Value == "Douglas"
 select customer;
 XElement oneCustomer = query.SingleOrDefault();

 if (oneCustomer != null)
 {
 Console.WriteLine(oneCustomer);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 Console.WriteLine("\nSearch using descendant axis... ");
 query = from customer in customerXml.Descendants("Customer")
 where customer.Attribute("FirstName").Value == "Douglas"
 select customer;
 oneCustomer = query.SingleOrDefault();
 if (oneCustomer != null)
 {
 Console.WriteLine(oneCustomer);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 Console.WriteLine("\nSearch using element values... ");
 query = from emailAddress in
 customerXml.Descendants("EmailAddress")
 where emailAddress.Value == "dAdams@foo.com"

Searching in XML with LINQ | 463

 select emailAddress;
 XElement oneEmail = query.SingleOrDefault();
 if (oneEmail != null)
 {
 Console.WriteLine(oneEmail);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 Console.WriteLine("\nSearch using child element values... ");
 query = from customer in customerXml.Descendants("Customer")
 where customer.Element("EmailAddress").Value
 == "dAdams@foo.com"
 select customer;
 oneCustomer = query.SingleOrDefault();
 if (oneCustomer != null)
 {
 Console.WriteLine(oneCustomer);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 } // end main
 } // end class
} // end namespace

Output:
Search for single element...
<Customer FirstName="Douglas" LastName="Adams">
 <EmailAddress>dAdams@foo.com</EmailAddress>
</Customer>

Search using descendant axis...
<Customer FirstName="Douglas" LastName="Adams">
 <EmailAddress>dAdams@foo.com</EmailAddress>
</Customer>

Search using element values...
<EmailAddress>dAdams@foo.com</EmailAddress>

Search using child element values...
<Customer FirstName="Douglas" LastName="Adams">
 <EmailAddress>dAdams@foo.com</EmailAddress>
</Customer>

This example refactors Example 12-3 by extracting the creation of the sample customer
list XML document into the CreateCustomerListXml() method. You can now simply
call this function in the Main() function to create the XML document.

464 | Chapter 12: XML

Searching for a Single Node
The first search in Example 12-7 is to find a customer whose first name is “Douglas”:

var query =
 from customer in
 customerXml.Element("Customers").Elements("Customer")
 where customer.Attribute("FirstName").Value == "Douglas"
 select customer;
XElement oneCustomer = query.SingleOrDefault();

if (oneCustomer != null)
{
 Console.WriteLine(oneCustomer);
}
else
{
 Console.WriteLine("Not found");
}

In general, you will have some ideas about the structure of XML documents you are
going to process; otherwise, it will be difficult to find the information you want. Here
we know the node we are looking for sits just one level below the root element. So the
source of the LINQ query—the part after the in keyword—fetches the root
Customers element using the singular Element method, and then asks for all of its chil-
dren called Customers by using the plural Elements method:

from customer in
 customerXml.Element("Customers").Elements("Customer")

We specify the search conditions with a where clause, as we would do in any LINQ
query. In this case, we want to search on the value of the FirstName attribute:

where customer.Attribute("FirstName").Value == "Douglas"

The select clause is trivial—we just want the query to return all matching elements.
Finally, we execute the query using the standard LINQ SingleOrDefault operator,
which, as you may recall, returns the one result of the query, unless it failed to match
anything, in which case it will return null. (And if there are multiple matches, it throws
an exception.) We therefore test the result against null before attempting to use it:

if (oneCustomer != null)
{
 Console.WriteLine(oneCustomer);
}
else
{
 Console.WriteLine("Not found");
}

In this example, the method is successful, and the resultant element is displayed.

Searching in XML with LINQ | 465

Search Axes
In practice, you don’t always know exactly where the information you require will be
in the XML document when you write the code. For these cases, LINQ to XML provides
the ability to search in different ways—if you are familiar with the XPath query lan-
guage* for XML, this is equivalent to the XPath concept of a search axis. This specifies
the relationship between the element you’re starting from and the search target nodes.

The Element and Elements methods we used earlier only ever search one level—they
look in the children of whatever object you call them on. But we can instead use the
Descendants method to look not just in the children, but also in their children’s children,
and so on. So the source for the next query in Example 12-7 looks for all elements called
Customer anywhere in the document. This is more compact, but also less precise.

query = from customer in customerXml.Descendants("Customer")

Other methods available for querying along different axes include Parent, Ancestors,
ElementsAfterSelf, ElementsBeforeSelf, and Attributes. The first two look up the tree
and are similar to Elements and Descendants, in that Parent looks up just one level, while
Ancestors will search up through the document all the way to the root. ElementsBefor
eSelf and ElementsAfterSelf search for elements that have the same parent as the cur-
rent item, and which appear either before or after it in the document. Attributes
searches in an element’s attributes rather than its child elements. (If you are familiar
with XPath, you will know that these correspond to the parent, ancestor, following-
sibling, preceding-sibling, and attribute axes.)

Where Clauses
The first query in Example 12-7 included a where clause that looked for a particular
attribute value on an element. You can, of course, use other criteria. The third query
looks at the content of the element itself—it uses the Value property to extract the
content as text:

where emailAddress.Value == "dAdams@foo.com"

You can get more ambitious, though—the where clause can dig further into the structure
of the XML. The fourth query’s where clause lets through only those elements whose
child EmailAddress element has a particular value:

where customer.Element("EmailAddress").Value == "dAdams@foo.com"

* XPath is supported by both LINQ to XML and the DOM APIs. (Unless you’re using Silverlight, in which case
the DOM API is missing entirely, and the XPath support is absent from LINQ to XML.) So if you prefer that,
you can use it instead, or you can use a mixture of LINQ and XPath.

466 | Chapter 12: XML

XML Serialization
So far, our code has constructed the objects representing the Customer XML elements
by hand. As XML is becoming popular, especially with the increasingly widespread use
of web services, it can be useful to automate this process. If you expect to work with
XML elements that always have a particular structure, it can be convenient to serialize
objects to or from XML. Working with conventional objects can be a lot easier than
using lots of explicit XML code.

The .NET Framework provides a built-in serialization mechanism to reduce the coding
efforts by application developers. The System.Xml.Serialization namespace defines
the classes and utilities that implement methods required for serializing and deserial-
izing objects. Example 12-8 illustrates this.

Example 12-8. Simple XML serialization and deserialization

using System;
using System.IO;
using System.Xml.Serialization;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 Customer c1 = new Customer
 {
 FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@hotmail.com"
 };

 XmlSerializer serializer = new XmlSerializer(typeof(Customer));
 StringWriter writer = new StringWriter();

XML Serialization | 467

 serializer.Serialize(writer, c1);
 string xml = writer.ToString();
 Console.WriteLine("Customer in XML:\n{0}\n", xml);

 Customer c2 = serializer.Deserialize(new StringReader(xml))
 as Customer;
 Console.WriteLine("Customer in Object:\n{0}", c2.ToString());

 Console.ReadKey();
 }
 }
}

Output:
Customer in XML:
<?xml version="1.0" encoding="utf-16"?>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

Customer in Object:
Orlando Gee
Email: orlando0@hotmail.com

To serialize an object using .NET XML serialization, you need to create an
XmlSerializer object:

XmlSerializer serializer = new XmlSerializer(typeof(Customer));

You must pass in the type of the object to be serialized to the XmlSerializer constructor.
If you don’t know the object type at design time, you can discover it by calling its
GetType() method:

XmlSerializer serializer = new XmlSerializer(c1.GetType());

You also need to decide where the serialized XML document should be stored. In this
example, you simply send it to a StringWriter:

StringWriter writer = new StringWriter();

serializer.Serialize(writer, c1);
string xml = writer.ToString();
Console.WriteLine("Customer in XML:\n{0}\n", xml);

The resultant XML string is then displayed on the console:

<?xml version="1.0" encoding="utf-16"?>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

468 | Chapter 12: XML

The first line is an XML declaration. This is to let the consumers (human users and
software applications) of this document know that this is an XML file, the official ver-
sion to which this file conforms, and the encoding format used. This is optional in
XML, but this code always produces one.

The root element here is the Customer element, with each property represented as a
child element. The xmlns:xsi and xmlns:xsd attributes relate to the XML Schema spec-
ification. They are optional, and don’t do anything useful in this example, so we will
not explain them further. If you are interested, please read the XML specification or
other documentation, such as the MSDN Library, for more details.

Aside from those optional parts, this XML representation of the Customer object is
equivalent to the one created in Example 12-1. However, instead of writing numerous
lines of code to deal with the XML specifics, you need only three lines using .NET XML
serialization classes.

Furthermore, it is just as easy to reconstruct an object from its XML form:

Customer c2 = serializer.Deserialize(new StringReader(xml))
 as Customer;
Console.WriteLine("Customer in Object:\n{0}", c2.ToString());

All it needs is to call the XmlSerializer.Deserialize method. It has several overloaded
versions, one of which takes a TextReader instance as an input parameter. Because
StringReader is derived from TextReader, you just pass an instance of StringReader to
read from the XML string. The Deserialize method returns an object, so it is necessary
to cast it to the correct type.

Of course, there’s a price to pay. XML serialization is less flexible than working with
the XML APIs directly—with serialization you decide exactly what XML elements and
attributes you expect to see when you write the code. If you need to be able to adapt
dynamically to elements whose names you only learn at runtime, you will need to stick
with the XML-aware APIs.

Customizing XML Serialization Using Attributes
By default, all public read/write properties are serialized as child elements. You can
customize your classes by specifying the type of XML node you want for each of your
public properties, as shown in Example 12-9.

Example 12-9. Customizing XML serialization with attributes

using System;
using System.IO;
using System.Xml.Serialization;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer

XML Serialization | 469

 {
 [XmlAttribute]
 public string FirstName { get; set; }

 [XmlIgnore]
 public string LastName { get; set; }

 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 Customer c1 = new Customer
 {
 FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@hotmail.com"
 };

 //XmlSerializer serializer = new XmlSerializer(c1.GetType());
 XmlSerializer serializer = new XmlSerializer(typeof(Customer));
 StringWriter writer = new StringWriter();

 serializer.Serialize(writer, c1);
 string xml = writer.ToString();
 Console.WriteLine("Customer in XML:\n{0}\n", xml);

 Customer c2 = serializer.Deserialize(new StringReader(xml)) as
 Customer;
 Console.WriteLine("Customer in Object:\n{0}", c2.ToString());

 Console.ReadKey();
 }
 }
}

Output:
Customer in XML:
<?xml version="1.0" encoding="utf-16"?>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 FirstName="Orlando">
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

470 | Chapter 12: XML

Customer in Object:
Orlando
Email: orlando0@hotmail.com

The only changes in this example are a couple of XML serialization attributes added in
the Customer class:

[XmlAttribute]
public string FirstName { get; set; }

The first change is to specify that you want to serialize the FirstName property into an
attribute of the Customer element by adding the XmlAttributeAttribute to the property:

[XmlIgnore]
public string LastName { get; set; }

The other change is to tell XML serialization that you in fact do not want the Last
Name property to be serialized at all. You do this by adding the XmlIgnoreAttribute to
the property. As you can see from the sample output, the Customer object is serialized
without LastName, exactly as we asked.

However, you have probably noticed that when the object is deserialized, its Last
Name property is lost. Because it is not serialized, the XmlSerializer is unable to assign
it any value. Therefore, its value is left as the default, which is an empty string. So in
practice, you would exclude from serialization only those properties you don’t need or
can compute or can retrieve in other ways.

Summary
In this chapter, we saw how to use the LINQ to XML classes to build objects repre-
senting the structure of an XML document, which can then be converted into an XML
document, and we saw how the same classes can be used to load XML from a string or
file back into memory as objects. These classes support LINQ, both for building new
XML documents and for searching for information in existing XML documents. And
we also saw how XML serialization can hide some of the details of XML handling
behind ordinary C# classes in situations where you know exactly what structure of
XML to expect.

Summary | 471

CHAPTER 13

Networking

Most interesting computer systems are distributed these days—it’s increasingly un-
usual for a program to run in isolation on a single machine. So .NET provides various
ways to communicate across networks. The array of networking options looks a little
bewildering at first: there are 10 namespaces whose names start with System.Net con-
taining more than 250 classes, and that’s not even the complete set—there’s an even
bigger API for producing and consuming web services.

Fortunately, it’s simpler than this makes it seem—despite the large API surface area
most of the options fall into three categories. There’s WCF—the Windows Commu-
nication Foundation, a framework for building and using web services. There are lower-
level APIs for working directly with web protocols. Or you can use sockets if you need
very low-level control. We’ll start by discussing how to choose the most appropriate
style of communication for your application, and then we’ll look at these three options
in more detail.

Choosing a Networking Technology
The first step in choosing the right networking API is to decide on the nature of the
communication your application requires. There are many different styles of distrib-
uted applications. Perhaps you are building a public-facing web service designed to be
used by a diverse range of clients. Conversely, you might be writing client code that
uses someone else’s web service. Or maybe you’re writing software that runs at both
ends of the connection, but even then there are some important questions. Are you
connecting a user interface to a service in a tightly controlled environment where
you can easily deploy updates to the client and the server at the same time? Or perhaps
you have very little control over client updates—maybe you’re selling software to thou-
sands of customers whose own computers will connect back to your service, and you
expect to have many different versions of the client program out there at any one time.
Maybe it doesn’t even make sense to talk about clients and servers—you might be
creating a peer-to-peer system. Or maybe your system is much simpler than that, and
has just two computers talking to each other.

473

The variations are endless, so no single approach can work well for all systems. The
next few sections will look at some common scenarios, and discuss the pros and cons
of the various networking options .NET offers. Even within a specific scenario there
will often be more than one way to make things work. There are no hard-and-fast rules,
because each project has different requirements. So this section won’t tell you what to
do—it’ll just describe the issues you’ll need to consider. Ultimately, only you can decide
on the right solution for your system. We’ll start with a very common web-based
scenario.

Web Application with Client-Side Code
Web user interfaces have been getting smarter lately. A few years ago, most of a web
application’s logic would live on the server, with client-side code in the web browser
typically doing little more than making buttons light up and menus fly out in response
to the mouse. But now, we expect more from our web user interfaces. Whether you
use AJAX (Asynchronous JavaScript and XML), or a RIA (Rich Internet Application)
technology such as Silverlight or Flash, web applications often communicate constantly
with the web server, and not just when navigating between pages.

If you’re writing the server-side parts of this sort of application in C#, you will typically
use ASP.NET to provide a web user interface. But what should you use for program-
matic communication—the messages that flow between the web UI and the server once
a page is already loaded?

WCF is a flexible choice here, because as Figure 13-1 illustrates, you can make a single
set of remote services accessible to many common browser-based user interface tech-
nologies. A WCF service can be configured to communicate in several different ways
simultaneously. You could use JSON (JavaScript Object Notation), which is widely
used in AJAX-based user interfaces because it’s is a convenient message format for
JavaScript client code. Or you could use XML-based web services. Note that using WCF
on the server does not require WCF on the client. These services could be used by
clients written in other technologies such as Java, as long as they also support the same
web service standards as WCF.

Looking specifically at the case where your web application uses C# code on the
client side, this would mean using either Silverlight or WPF. (You can put WPF in a
web page by writing an XBAP—a Xaml Browser Application. This will work only if the
end user has WPF installed.) If you’re using C# on both the client and the server, the
most straightforward choice is likely to be WCF on both ends.

What if your server isn’t running .NET, but you still want to use .NET on the web
client? There are some restrictions on WCF in this scenario. Silverlight’s version of
WCF is much more limited than the version in the full .NET Framework—whereas the
full version can be configured to use all manner of different protocols, Silverlight’s WCF
supports just two options. There’s the so-called basic profile for web services, in which
only a narrow set of features is available, and there’s a binary protocol unique to WCF,

474 | Chapter 13: Networking

which offers the same narrow set of features but makes slightly more efficient use of
network bandwidth than the XML-based basic profile. So if you want a Silverlight client
to use WCF to communicate with a non-.NET web service, as Figure 13-2 illustrates,
this will work only if your service supports the basic profile.

Figure 13-1. Web application clients and a WCF service

Figure 13-2. Silverlight client and non-.NET web service

More surprisingly, similar restrictions exist with a WPF XBAP. Even though XBAPs use
the full version of the .NET Framework, certain features of WCF are disabled for se-
curity purposes—client code in web browsers shouldn’t have complete freedom to
connect to anywhere on the Internet, because that would make life too easy for hackers.

Choosing a Networking Technology | 475

So WCF offers only a very limited version of its services to .NET applications running
inside web browsers, meaning that XBAPs have similar WCF limitations to Silverlight.

If you’re writing a Silverlight client and you want to talk to a service that does not
conform to the web services basic profile, that’s not necessarily a showstopper. It just
rules out WCF—you will need to use the lower-level web-based APIs instead, or even
the socket APIs, depending on the service.

Note that while WCF is usually a good default choice on the server side for web ap-
plications with client-side code, there are a few cases where you might not want to use
it. ASP.NET provides its own mechanism for supporting AJAX clients, and while it’s
considerably less flexible than WCF, you might not need the flexibility. The simplicity
of using just one framework on the server instead of two might end up looking like a
better option.

There’s a subtler reason why WCF might not always be the best fit: the style of com-
munication. If you use WCF in a web application, the communication it supports will
tend to involve the following steps:

1. Some code in the client (browser script, C# code, or Flash ActionScript) decides
to send a message to the server.

2. The server receives the message and runs some code that does whatever it needs
to do to process the message.

3. Once the code has finished, the server sends a message back to the client containing
any data returned by the code (or if there is no data to return, just a message to say
the work is complete).

This is, in effect, a remote method invocation—it’s a way for the client to ask the server
to run some code and optionally get a return value. (WCF is more flexible than this in
general, but in the context of a web application, your communication patterns are
constrained because clients will typically be behind a firewall.) That’s likely to be a
perfectly good pattern for operations such as looking up a stock price or retrieving a
weather forecast. However, if you are building a photograph browser application, this
would not be a great way to retrieve pictures. You could make it work, but it’s easier
to use the mechanisms already built into the web browser for downloading images—
you’d almost certainly want to make the bitmaps available for download via HTTP
rather than using WCF. HTML and Silverlight have UI elements that know how to
render images downloaded with HTTP. Browsers are usually able to start rendering
images without having to wait for the download to finish, and that’s difficult to achieve
with a method invocation idiom. And by using normal HTTP image download, you’d
also get to take advantage of standard HTTP caching in your web browser and any
caching proxies you may be using. Plain old HTTP works better here than trying to
fetch a bitmap using something resembling a method call.

476 | Chapter 13: Networking

More generally, if the information your client code works with looks like a set of re-
sources that might be identified with URIs (Uniform Resource Identifiers; for instance,
http://oreilly.com/) and accessed via HTTP you might want to stick with ordinary HTTP
rather than using WCF. Not only do you get the benefits of normal HTTP caching
when reading data, but it may also simplify security—you might be able to take what-
ever mechanism you use to log people into the website and secure access to web pages,
and use it to secure the resources you fetch programmatically.

A service that presents a set of resources identified by URIs to be ac-
cessed via standard HTTP mechanisms is sometimes described as a
RESTful service. REST, short for Representational State Transfer, is an
architectural style for distributed systems. More specifically, it’s the
style used by the World Wide Web. The term comes from the PhD thesis
of one of the authors of the HTTP specification (Roy Fielding). REST is
a much misunderstood concept, and many people think that if they’re
doing HTTP they must be doing REST, but it’s not quite that straight-
forward. It’s closer to the truth to say that REST means using HTTP in
the spirit in which HTTP was meant to be used. For more information
on the thinking behind REST, we recommend the book RESTful Web
Services by Sam Ruby and Leonard Richardson, (O’Reilly).

Using WCF typically requires less effort than designing a RESTful service—you can get
up and running with a good deal less thought and forward planning (although you
might not consider a lack of thought and planning to be a good thing for your particular
application). But if the communication you require with your server doesn’t sound like
it fits well into a method-call-like style, you’ll probably want to consider alternatives
to WCF.

Occasionally, neither WCF nor plain HTTP will be the best approach when connecting
a web UI to a service. With Silverlight, you have the option to use TCP or UDP sockets
from the web browser. (The UDP support is somewhat constrained. Silverlight 4, the
current version at the time of writing this, only supports UDP for multicast client sce-
narios.) This is a lot more work, but it can support more flexible communication
patterns—you’re not constrained to the request/response style offered by HTTP.
Games and chat applications might need this flexibility, because it provides a way for
the server to notify the client anytime something interesting happens. Sockets can also
offer lower communication latency than HTTP, which can be important for games.

.NET Client and .NET Server
Fashionable though web applications are, they’re not the only kind of distributed sys-
tem. Traditional Windows applications built with WPF or Windows Forms are still
widely used, as they can offer some considerable advantages over web applications for
both users and developers. Obviously, they’re an option only if all your end users are

Choosing a Networking Technology | 477

http://oreilly.com/
http://oreilly.com/catalog/9780596529260/
http://oreilly.com/catalog/9780596529260/

running Windows, but for many applications that’s a reasonable assumption. Assum-
ing clients are running Windows, the main downside of this kind of application is that
it’s hard to control deployment compared to a web application. With web applications,
you only have to update an application on the server, and all your clients will be using
the new version the next time they request a new page.

Out-of-browser Internet applications could well blur this distinction.
Both Silverlight and Flash make it possible for Internet applications to
have parts that are installed on the user’s machine and run like normal
applications outside the web browser. So the considerations in this sec-
tion could apply if that’s the sort of web application you’re building.

To update a classic Windows application, you need to somehow get a new version of
the program onto the end users’ machines. Since it’s rarely practical to install a new
version on every single user’s machine simultaneously, you need to handle the possi-
bility of having several different versions of the client software all trying to talk to your
server. The extent to which this can cause problems will depend on how much control
you have over the client computers.

Tightly controlled deployment

Some applications are deployed in tightly controlled environments. For example, sup-
pose you’re writing a line-of-business application in WPF that will only ever be de-
ployed to machines owned by your business. If your IT department has an iron grip on
the company’s computers, you might be able to exert considerable control over what
versions of your application are out there. Network administrators could forcibly up-
grade users to the latest version. So new versions might overlap with old versions for
only a day or so. You could even go further and arrange for your application to check
for updates and refuse to continue running when a newer version is available.

This is a happy situation for a developer, because it makes it much easier to introduce
changes to your server. Chances are that at some point you’ll want to add new services
to support new features in your application. You might also want to modify existing
services, which is usually more problematic than completely new features—if you’re
using WCF, it’s not easy to modify the way an existing service works without breaking
that service for older clients. It’s possible, but it’s hard, and it’s often easier to run
multiple versions of the service simultaneously during the transition period. The nice
thing about having sufficient control to remove old versions of the application is that
you can know when you’ve reached the end of a transition period and can shut down
the older version of the service. This won’t be the case if you can’t force that sort of
change on the client.

478 | Chapter 13: Networking

Weakly controlled deployment

If your application’s customers don’t all work for your company, life becomes more
complex, because it’s harder to force upgrades on your customers. It’s not impossible—
for example, Microsoft’s Windows Live Messenger program occasionally tells you that
if you don’t upgrade you won’t be able to carry on using the service. Mind you, it’s a
free service, so it gets to dictate its terms of use; you might find that paying customers
won’t put up with that, insisting that the product they’ve bought carries on working
without needing to install regular upgrades.

The implication is that you might need to support old versions of your service indefi-
nitely. At this point, WCF might not look like such a good choice. One of the attractive
features of WCF is that it does a lot of work for you under the covers, but that’s a
double-edged sword—it works really well when both ends of the connection evolve
simultaneously, but it can become a burden over time if the two ends do not move
forward in tandem. If you want a service to be able to evolve while the client does not,
you end up needing to understand exactly how WCF presents your service, and how
the changes you have in mind might affect its operation. For example, if you decide
that a method in your service requires an extra argument, what happens when an old
client invokes the operation without that new argument? In practice, it might actually
be easier just to work directly with HTTP and XML, because that way you have com-
plete control over what messages go across the network.

That’s not to say that WCF is definitely the wrong choice here. You could deal with
the problem described by maintaining multiple versions of the service, or by dropping
down to WCF’s lower-level messaging API, for example. But the trade-off between
WCF and HTTP is altered by the nature of your deployment. In a tightly controlled
deployment, WCF is likely to be a good choice, but when you have less control, the
lower-level APIs can start to look like they’re worth the extra effort.

Regardless of how much control you have over deployment, as with the web application
case there are some specialized scenarios in which neither WCF-based web services nor
web APIs are the best fit. If you need communication patterns that don’t fit well with
HTTP, be aware that with this style of application, you can use the full range of com-
munication styles offered by WCF—as we’ll see, it supports more than just the typical
web communication patterns. This means that sockets are an even more unusual choice
in this scenario, and would typically be useful only if you need very precise control over
the way in which messages are constructed and delivered.

.NET Client and External Party Web Service
You won’t necessarily write the code at both ends of a connection. You might build
a .NET client which talks to a web service provided by someone else. For example, you
could write a WPF frontend to an online social media site such as Twitter, or a Silver-
light client that accesses an external site such as Digg.

Choosing a Networking Technology | 479

In this case, your choice of communication technology will be determined largely by
the service you’re connecting to. If it presents information in a way that WCF is able
to consume, use WCF. How would you know that this is the case? You could try asking
the service provider’s support staff if their service works with WCF, but if they’re not
sure, it’ll be down to the nature of the service. If your service provider uses the so-called
WS-* family of web service standards, there’s a good chance WCF will be able to talk
to the service.

If you were hoping for something more definitive than “a good chance,”
you’re out of luck. The mere fact that two systems have both opted to
use the same set of standards is no guarantee that they’ll be able to
communicate successfully, even if both ends conform strictly to the
standards. If this information is news to you, welcome to the world of
systems integration!

If WCF works in your scenario, that’s great, but when it is not an option, use .NET’s
HTTP-based APIs. Unless, of course, the service in question is not HTTP-based, and
requires you to work directly with TCP or UDP, in which case you would use sockets.
In short, you’re at the mercy of the server, and you’ll just have to pick whichever option
happens to work.

Note that because Silverlight’s version of WCF is considerably more limited than the
full .NET Framework version, a Silverlight client is more likely to have to drop down
to the HTTP APIs than a full .NET client.

External Client and .NET Web Service
If you are writing a web service in .NET that you would like to be accessible to client
programs written by people other than you, the choice of technology will be determined
by two things: the nature of the service and the demands of your clients.* If it’s some-
thing that fits very naturally with HTTP—for example, you are building a service for
retrieving bitmaps—writing it as an ordinary ASP.NET application may be the best bet
(in which case, refer to Chapter 21). But for services that feel more like a set of remotely
invocable methods, WCF is likely to be the best bet. You can configure WCF to support
a wide range of different network protocols even for a single service, thus supporting
a wide range of clients.

As with the other application types, you would use sockets only if your application has
unusual requirements that cannot easily be met using the communication patterns
offered by HTTP.

So having looked at some common scenarios and seen which communication options
are more or less likely to fit, let’s look at how to use those options.

* More accurately, the demands to which you feel inclined to accede.

480 | Chapter 13: Networking

WCF
WCF is a framework for building and using remotely accessible services. It’s particu-
larly well suited to XML-based web standards, although it’s not limited to these. It
provides a programming model that supports many different underlying communica-
tion mechanisms; as well as supporting numerous web service standards, WCF also
offers high-performance proprietary protocols that you can use in end-to-end .NET
systems, and it’s extensible, so support for other protocols can be added. WCF’s design
makes many of these details a matter of configuration—you write services and clients
in the same way no matter what communication mechanisms are in use.

To explore WCF, we’ll build a very simple instant messaging application to allow
multiple users to chat with one another. So that we can focus on the communication
code, the client will be a simple console application.

Creating a WCF Project
We’ll start with the server for our chat application. If you want to build your own copy
of the project as you read, open Visual Studio’s New Project dialog (Ctrl-Shift-N) and
in the template list on the left, select Visual C#→WCF. Choose the WCF Service Library
project template. Call the project ChatServerLibrary. Ensure that the “Create directory
for solution” checkbox is checked, and call the solution WcfChat.

This project will produce a DLL as its output, because the WCF Service Library project
template doesn’t commit to hosting the WCF service in any particular container ap-
plication. WCF can run inside IIS, a Windows Service, a console application, or indeed
pretty much any .NET application. If you want to use a particular kind of host, you
can just create the relevant type of project—for example, instead of creating a WCF
Service Library, you could create an ASP.NET web application project if you wanted
to host your WCF service in there. (You can add a WCF service as a new item to an
existing web project, so you don’t need a WCF-specific project type.) But there are a
couple of benefits to this library-based template: as you’ll see shortly, it provides an
easy way to do simple manual testing of the service. Also, it means you can host the
service in multiple different host applications, which can be useful for automated
testing—you can test the service without having to deploy it into its intended
environment.

Visual Studio will have added a single service to the project, called Service1. This con-
tains some example code that does things we don’t need in our chat application, so
we’ll ignore that. (Feel free to delete them if you’re building your own version as you
read this.) We’ll add a new WCF Service item to the project with the Add New Item
dialog, called ChatService. Visual Studio adds two files to the project: ChatService.cs
and IChatService.cs. This reflects the fact that WCF makes a distinction between the
code that implements a service, and the contract for that service.

WCF | 481

WCF Contracts
When two systems communicate over a network, they need to agree on what infor-
mation is to be sent back and forth. WCF formalizes this with what it calls contracts.
So the IChatService interface added by the wizard represents a service contract. The
service contract defines the operations the service offers. As Example 13-1 shows, the
interface is marked with a ServiceContract attribute to make it clear that it’s a contract
definition.

Example 13-1. A service contract

[ServiceContract]
public interface IChatService
{
 [OperationContract]
 void DoWork();
}

Each method in the interface that defines an operation offered by the service must be
marked with an OperationContract. You might have thought that it would be enough
that the interface is marked as ServiceContract—why do we also need to annotate each
method? WCF requires you to be explicit so that it’s always obvious when you’re de-
fining some aspect of your system that will be visible across the network. A method call
to a local object is a quite different kind of operation than using a remote service—the
performance and reliability characteristics are poles apart—so it’s important for such
boundaries to be clearly visible in the code.

Although we’re defining a method for each operation, ultimately the
contract defines what messages can go in and out of the service. To
invoke an operation, a client will need to send a message to the server
over the network. When you add a method marked with OperationCon
tract to an interface marked with ServiceContract, you are really de-
fining the logical structure of the message that will be sent to invoke that
operation, and also of the message that will be sent back to the client
when the operation is complete. WCF lets you represent these message
formats as method signatures because it’s a convenient abstraction for
developers.

WCF supports other ways of defining message formats—you can write
a contract in WSDL, the Web Service Definition Language, and then
generate types from that. This approach is beyond the scope of this
book.

Our service is designed to let people chat, so it will need to provide clients with a way
to send a short bit of text, which we’ll refer to as a note. (A more obvious name would
be message, but that would introduce ambiguity—WCF sends messages to and from
the server for every operation, so to call one of the pieces of information that crops up

482 | Chapter 13: Networking

in certain messages a message would be confusing.) To keep things simple, we’ll just
have one big chat room where everyone can see every note; we’re not going to support
private conversations. To support sending notes, we’ll get rid of the DoWork method
provided by Visual Studio, and replace it with the code in Example 13-2.

Example 13-2. Modifying the contract

[OperationContract]
void PostNote(string from, string note);

If you attempt to build your project in Visual Studio, you’ll get a compiler error:

error CS0535: 'ChatServerLibrary.ChatService' does not implement interface
 member 'ChatServerLibrary.IChatService.PostNote(string, string)'

Remember that Visual Studio added two files: IChatService.cs (the contract) and Chat-
Service.cs (the service implementation). The compiler is pointing out to us that our
service implementation no longer conforms to the contract for the service. So in Chat-
Service.cs, we need to replace the DoWork method with this code:

public void PostNote(string from, string note)
{
 Debug.WriteLine("{0}: {1}", from, note);
}

For this to compile, you’ll need to add a using System.Diagnostics; directive to the
top of your file.

There’s an obvious security question with this service: how do we know
that the note comes from the person it claims to come from? The answer
is that we don’t—identification is a complex topic, with many possible
solutions. The appropriate choice of solution would depend on the
context in which the application will be used—on a corporate network,
integrated Windows security might be best, but that wouldn’t work for
a public-facing Internet application. The way to solve these problems is
currently an area of debate, and could easily fill a chapter. Since this
example just illustrates the basic mechanics of WCF, we are using the
naïve trust model for identity: users can claim to be whoever they want
to be, and our application will believe them.

WCF Test Client and Host
You can now build and run the application—either press F5 or choose Debug→Start
Debugging. Normally, you’d get an error if you tried to run a library project, because
you can’t run a DLL. However, Visual Studio knows this is a WCF project, and it has
a special feature for running and testing WCF libraries. When you run the project,
you’ll see a balloon pop up in the taskbar notification area, as Figure 13-3 shows.

WCF | 483

Figure 13-3. WCF test service host

The WCF Service Host (or WcfSvcHost, as it’s abbreviated in the pop up) is a program
provided by Visual Studio that loads your WCF DLL and makes its services available
for local access for debugging purposes. Visual Studio also launches a second program,
the WCF Test Client—this is a Windows application that provides a UI for invoking
operations on your service to try it out. As Figure 13-4 shows, it presents a tree view
listing all the services defined by your project, and all the operations available in each
service. (If you’ve deleted the unwanted IService1 mentioned earlier in your code,
you’ll only see one service.)

Figure 13-4. Services listed in the WCF Test Client

The test client has found both the original Service1 service that we chose to ignore and
the ChatService we added. Double-clicking on the PostNote item that represents the
operation we defined for the chat service shows a tab on the right that lets us try out
the service—the test client’s job is to let us try invoking service operations without
having to write a whole program just to do that. Figure 13-5 shows this tab with argu-
ments. If you look at the Value column, you’ll see arguments for the from and note
parameters of the PostNote operation—you can just type these directly into the Value
column.

Clicking the Invoke button invokes the PostNote operation on the service. We can verify
that the information typed into the WCF Test Client made it through, by looking in
Visual Studio’s Output window—that’s where text sent to Debug.WriteLine appears.
(There’s an item on the View menu to make the Output window visible, if it’s not
already open.) The Output window gets fairly busy, so you might have to look quite

484 | Chapter 13: Networking

carefully, but somewhere in the noise, you’ll see that the from and note argument values
are both shown, for example:

Ian: Hello, world

If you’re trying this yourself, it’s possible you’ll see an error back in the
WCF Test Client if you set breakpoints in Visual Studio—the client
program will time out if you spend too long suspended at a breakpoint.
It’s common with networking systems to give up after a certain length
of time. If a client doesn’t get a response, all manner of things could be
wrong—there may be a network problem, perhaps locally, or maybe at
the server end, or somewhere in between. Maybe the server is offline,
or just too busy to respond to the request. The client can’t easily tell—
all it knows is it’s not getting a response. So by default, WCF gives up
after a minute and throws an exception. The WCF Test Client reports
this with an error dialog.

Figure 13-5. Passing arguments with the WCF Test Client

Once the test client has received a response from the service, it indicates this in the
bottom half of the tab. Our PostNote operation has a return type of void, which means
that it sends back an empty response. (It still sends a response to report that the oper-
ation has finished. It just contains no data.)

You may be curious to know what the messages being sent between the client and the
server look like. And if you’re not, we’d recommend becoming curious about such
things. It’s difficult to design good, nontrivial distributed systems (and impossible to
diagnose problems with them) if you don’t know what the messages they send look
like. Sadly, some developers are happy to be ignorant about this sort of thing, but they

WCF | 485

frequently get stuck and have to ask for help from people who know what they’re doing
anytime something goes wrong. If you’d rather be one of the wizards who can fix these
problems, you need to learn what the messages that go over the network really look
like. You can see the messages in the WCF Test Client by clicking on the XML tab at
the bottom. It’s beyond the scope of this book about C# to explain the structure of
these WCF messages in detail, but it’s easy to see where the data you sent ended up in
this example. If you want to learn more, the book Learning WCF by Michele Leroux
Bustamante (O’Reilly) would be a good place to start, or for a more advanced treatment,
you could try Programming WCF Services by Juval Lowy (O’Reilly).

If you plan to do any real work with network communications, one of
the most useful things you can do is get familiar with a tool that lets you
inspect the contents of the messages being sent and received by your
computer’s network card. Microsoft’s Network Monitor program is
available for free, as is the open source Wireshark. They can seem a little
intimidating at first because of the sheer level of detail they offer, but
they’re an indispensable tool for diagnosing communication problems,
because they show you exactly what messages were sent and what they
contained.

The WCF Service Host and Test Client are useful for very simple interactive testing,
but a real, useful service needs to be hosted somewhere more permanent. So next, we’ll
look at how .NET programs can host WCF services.

Hosting a WCF Service
WCF services are flexible about their location—any ordinary .NET application can
host WCF services, so there’s no such thing as a specialized WCF Service Host project
template in Visual Studio. You can host WCF services inside ASP.NET web applica-
tions, Windows Services, console applications, or even applications with GUIs built
with Windows Forms or WPF. Any process that can accept incoming network con-
nections should work, so about the only place you can’t host a WCF service is in a
process where security constraints prevent inbound connections, such as a web
browser. (For example, Silverlight clients can make outbound WCF connections, but
they can’t host a service that accepts incoming connections.)

ASP.NET web applications are a particularly popular host environment for WCF serv-
ices, because ASP.NET solves a lot of the problems you need to solve for an online
service. Web applications automatically become available when a machine starts up—
there’s no need for anyone to log in and start a program. ASP.NET provides a robust
hosting environment—it’s able to restart after errors, and integrate into diagnostic
management systems so that system administrators can discover when problems occur.
There are well-understood ways to load-balance web applications across multiple serv-
ers. ASP.NET can make use of IIS security features such as integrated authentication.

486 | Chapter 13: Networking

http://oreilly.com/catalog/9780596101626/
http://oreilly.com/catalog/9780596526993/
http://www.wireshark.org/

However, ASP.NET is not always the right choice. A WCF service hosted in a web
application can’t use the full range of protocols supported by WCF—incoming mes-
sages have to arrive by HTTP. Also, web applications usually get to run code only while
they are actively handling a request from a client. If you need to perform long-running
work that continues even when there are no clients connected right now, a web appli-
cation host might be a bad idea, because in some configurations ASP.NET will restart
web applications from time to time, or may even shut them down completely when
they’ve had no incoming requests lately. So in some situations it might make more sense
to write your own host. A Windows Service might be a good bet, as it can start auto-
matically when the machine starts.

Sometimes it’s useful to host a WCF service inside a normal Windows application.
Imagine a WPF application providing some sort of advertising display on a screen in a
shop window—it could be useful to build a WCF service into this to enable the display
to be controlled without needing physical access to the machine.

The techniques for hosting look much the same in all cases. And since we won’t be
getting on to ASP.NET until later in the book, we’ll keep it simple by hosting our service
in a console application. It’ll be easy enough to move it into different hosting environ-
ments later because the service itself is in a separate DLL project—we could just add
it to a Windows Service or a web application.

Regardless of the type of host, one of the most important parts of WCF hosting is the
configuration file.

WCF configuration

If you look in the ChatServerLibrary project, you’ll find an App.config file. You’ll find
one of these, or its web equivalent, web.config, in lots of different kinds of .NET ap-
plications, but an App.config in a library project is something of an anomaly—
application configuration files configure applications, and a library is not an application.
Normally, adding an App.config file to a project that builds a DLL does nothing useful,
but WCF projects are an exception because of the WCF Service Host we saw earlier.
The test host loads the contents of this file into its own application configuration.
Normally, application configuration files must go either into projects that build exe-
cutable applications, or into web projects.

The App.config in a WCF Service Library project is used only by the
WCF Service Host. You will always need to copy the configuration into
your real service host application.

WCF | 487

So that we can have an application to configure, we’ll add a console application called
ChatHost to our WcfChat solution. This console application will host our WCF service,
so we’ll add a reference to the ChatServerLibrary. And since we’ll be using this console
application as the host from now on instead of WcfSvcHost, we’ll need to copy the
configuration in the ChatServerLibrary project’s App.config into the ChatHost project’s
App.config. (Once we’ve done this, we can delete the App.config in the ChatServerLi
brary project.)

We’ll look at each of the App.config file’s sections to understand how the file works.
Everything lives inside the root <configuration> element—all App.config and
web.config files have one of these, no matter what sort of application you’re writing.
The first child element will be this:

<system.web>
 <compilation debug="true" />
</system.web>

Our example doesn’t need this, so it’s safe to delete it. The WCF Service Library tem-
plate adds this in case you are planning to host the project in a web application—this
enables debugging in web apps. But since we’re not writing a web application, it’s not
needed here.

Next is a <system.serviceModel> element—in fact, all the remaining contents of the
App.config file are inside this element. This is where all WCF configuration lives, re-
gardless of the type of host application.

The first element inside the WCF configuration is <services>. This contains a
<service> element for each service the program will host. Visual Studio has added two:
one for the Service1 service that we’re not using, and one for the ChatService we wrote.
Since we don’t need the Service1 service, we can delete that first <service> element
and everything it contains. This leaves the <service> element for our ChatService. It
begins:

<service name="ChatServerLibrary.ChatService">

The name attribute is the name of the class that implements the service, including the
namespace. Inside the <service> element we find some <endpoint> elements. Remem-
ber that earlier we said WCF can make a single service implementation accessible
through multiple communication mechanisms. You do that by adding one endpoint
for each mechanism you wish to support. Here’s the first endpoint Visual Studio added
for us:

<endpoint address=""
 binding="wsHttpBinding"
 contract="ChatServerLibrary.IChatService">
 <identity>
 <dns value="localhost" />
 </identity>
</endpoint>

488 | Chapter 13: Networking

An endpoint is defined by three things: an address, a binding, and a contract—
sometimes referred to collectively as the ABC of WCF. The address is typically a URL
—it’s the address a client would use to connect to the service. In this case the address
is blank, which means WCF will deduce the address for us—we’ll see how in a moment.

The binding determines the communication technology that WCF will use on this
endpoint. Here we’ve used one of the built-in bindings called wsHttpBinding. The “ws”
denotes that this uses the various web service standards that begin with WS-. So this
binding supports standards such as WS-ADDRESSING and WS-SECURITY. This is a
feature-rich binding, and it may use features that some clients don’t understand—it’s
not supported by Silverlight, for example. If you wanted to use the basic profile that
Silverlight clients support, you’d specify basicHttpBinding here instead. But for this
application, you can leave the binding as it is.

Finally, the contract attribute here contains the name of the interface type that defines
the operation contract for our service. We already looked at contracts—this refers to
the interface we saw in Example 13-1 and modified in Example 13-2.

Inside the <endpoint> element you’ll see an <identity> element. This is intended for
scenarios where the service needs to be able to identify itself securely to a client—for
example, in a banking application you’d want to be confident that you’re really talking
to your bank. But we’re not going to get into security in this example, so we can delete
the <identity> element and its contents.

Visual Studio added a second endpoint to the App.config when we created the
ChatService:

<endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange" />

This enables something called metadata exchange—this endpoint doesn’t provide a
way to use the service, and instead makes it possible to get a description of the service.
We’ll be using this later when we build a client for our service.

Finally, after the two <endpoint> elements, you’ll see a <host> element, as Exam-
ple 13-3 shows. (This contains a very long line, which has been split across two lines
here to make it fit on the page.) This <host> element is still inside the <service> element,
so like the two <endpoint> elements, this entry is still describing one particular service—
our ChatService.

Example 13-3. Host element with default base address

<host>
 <baseAddresses>
 <add baseAddress=
"http://localhost:8732/Design_Time_Addresses/ChatServerLibrary/ChatService/" />
 </baseAddresses>
</host>

WCF | 489

This element contains hosting information that applies to all of this service’s
endpoints—this is how WCF works out what address to use for each endpoint. The
baseAddress attribute is combined with the contents of the address attribute for each
<endpoint> element to work out the effective address for that endpoint. Since the first
endpoint’s address is empty, that endpoint’s address will be the baseAddress specified
here. The second endpoint’s address was mex, so that endpoint for the service will be
available at:

http://localhost:8732/Design_Time_Addresses/ChatServerLibrary/ChatService/mex

If you’re wondering why Visual Studio chose this slightly peculiar-looking address as
the default base address for our service, see the sidebar below.

Endpoints, Security, and Administrative Privileges
Any process that hosts WCF services needs to be able to accept incoming network
messages. If you’re using an HTTP-based binding such as the default wsHttpBinding,
or the basic-profile-compatible basicHttpBinding, your service host is likely not to be
the only program on the machine that wants to receive incoming HTTP requests. Win-
dows has a mechanism for working out which HTTP requests should be handled by
which applications—programs can register to listen for requests on particular URLs,
or URLs that begin with a particular prefix.

However, programs are not necessarily allowed to listen on any old address. Some
programs may reserve certain URL prefixes, preventing other programs from handling
them. For example, if you have an edition of Windows that includes Windows Media
Center, your system will enable media center extenders (such as an Xbox 360) to con-
nect to http://<yourmachine>:10243/WMPNSSv4/, and Media Center reserves this
address using a security feature of Windows: you can apply an access control list (ACL)
to a URL prefix to say which accounts are allowed to listen for incoming requests on
any URL that starts with the reserved string. Only a program running with the special
user account used by the Windows Media services will get to use this URL prefix. You
can see which URLs are reserved for which user accounts by running the following
command from a command prompt:

netsh http show urlacl

(If you’re running Windows 2003, Windows XP, or earlier, you’ll need to track down
a different program, called httpcfg, but on Windows Vista or later netsh is the com-
mand to use.)

Unless you’re running with administrative rights enabled, attempting to listen on a URL
that your user account hasn’t been granted access to (i.e., most URLs) will fail. Running
with admin rights enabled is akin to running with scissors, so you wouldn’t want to do
that, but this seems like it might present a problem for developers writing WCF services.
When you deploy your application for real, its installer can configure a suitable ACL
for the URL on the target machine to ensure that the program is able to listen correctly,
but what do you do on a development machine?

490 | Chapter 13: Networking

To make life easy for developers, Visual Studio’s installer sets up a special range of
addresses with an ACL that makes it open for any user logged in to the machine. Lis-
tening on anything starting with http://localhost:8732/Design_Time_Addresses/ will
work, even if you’re logged on with a nonadministrative account. That’s why Visual
Studio chooses the base address you see in Example 13-3—it means you don’t need to
run with elevated privileges.

After the <services> element you’ll see a <behaviors> element in your App.config, con-
taining a <serviceBehaviors> element which contains a <behavior> element. This sec-
tion allows various WCF features to be switched on or off. You might wonder why
these settings don’t just go into the <services> section. The reason is that you might
want to host multiple services, all of which share common behavior configuration. You
can define a single named <behavior> element, and then point multiple <service> ele-
ments’ behaviorConfiguration attributes at that behavior, reducing clutter in your con-
figuration file. Or, as in this case, you can create an unnamed <behavior> element, which
defines default behavior that applies to all services in this host process. Since we’re
hosting only one service here, this doesn’t offer much advantage, but this separation
can be useful when hosting multiple services.

The <behavior> element that Visual Studio provides has some comments telling you
what you might want to change and why, but paring it down to the essential content
leaves just this:

<behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="True" />
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
</behaviors>

This configures a couple of optional features. The first is related to the metadata ex-
change mentioned earlier—it just ensures that the service description can be fetched
in a certain way. Again, we’ll come back to metadata when we get to the client, so you
can ignore that for now.

The second behavior here—the serviceDebug element—doesn’t have any effect, be-
cause it sets the includeExceptionDetailInFaults property to its default value, False.
Nothing would change if you removed this. The only reason Visual Studio puts this
here at all is to help you out when debugging—sometimes it’s useful to set this to
True temporarily, and putting this entry in the file saves you from having to look up the
name of the setting. Making this True will mean that if your service throws an exception,
the full exception details including stack trace will be sent back to the client in the
response.

Generally speaking, you should never do this, because sending stack traces to your
clients reveals implementation details about your system. If some of your clients are

WCF | 491

evil hackers, this might make it easier for them to break into your system. (Technically,
if your system is completely secure, a stack trace won’t help them, but when did you
last hear about a computer system that was completely secure? It’s safe to presume that
everything has security flaws, so the less help you give hackers the better—this is often
described as reducing the attack surface area of your system.) While you don’t normally
want to send stack traces over the network, doing so can sometimes make it easier to
diagnose problems during development. So you might switch this setting on tempora-
rily to make your life easier. But remember to turn it off before you ship!

That’s everything Visual Studio put into our configuration file. This shows just a tiny
fraction of all the settings we could put in there, but this isn’t a book about WCF, so
that’ll do for now.

After all that, our program still isn’t ready to host the service. As well as putting con-
figuration entries into the application configuration file, our program needs to make
an API call to tell WCF that it wants to host services. (If we were writing a web appli-
cation, we wouldn’t need to do this—having the configuration in the web.config file
would be enough. But for other application types, we need to do this one last step.)

So we need to add a reference to the System.ServiceModel component—that’s
the main .NET Framework class library DLL for WCF—and we also need to add
using System.ServiceModel; and using ChatServerLibrary; directives to the top of the
Program.cs file in our ChatHost project. We can then write our Main method to look like
Example 13-4.

Example 13-4. Hosting a WCF service

static void Main(string[] args)
{
 using (ServiceHost host = new ServiceHost(typeof(ChatService)))
 {
 host.Open();

 Console.WriteLine("Service ready");
 Console.ReadKey();
 }
}

This creates a ServiceHost object that will make the ChatService available. WCF will
load the configuration from our App.config file to work out how to host it. And we need
to make sure our program hangs around—the service will be available only for as long
as the program that hosts it. So we leave the program running until a key is pressed.

If you want to try this out, you’ll need to make sure the host console application is the
program Visual Studio runs by default—right now it won’t be because the ChatServer
Library is still set as the default. You’ll need to right-click on ChatHost in the Solution
Explorer and select Set as Startup Project. Now pressing F5 will run the program, and
a console window will appear showing the message “Service ready” once the
ServiceHost is ready.

492 | Chapter 13: Networking

If you didn’t delete the App.config file in the ChatServerLibrary project
earlier, you’ll now get an error. Even when you set ChatHost as the
startup application, Visual Studio will still attempt to launch the WCF
Service Host for the ChatServerLibrary project. That would be useful in
a solution that has just a WCF client and a service DLL. It’s unhelpful
here because we end up with two programs trying to host the same server
on the same URL—whichever one gets there second will fail.

If you don’t want to delete the App.config in that project, you can disable
the WCF Service Host by opening the ChatServerLibrary project’s Prop-
erties, going to the WCF Options tab, and unchecking the relevant
checkbox.

Now what? We no longer have the WCF Test Client, because Visual Studio thinks
we’re running a normal console application. Since the default wsHttpBinding for our
service endpoint uses HTTP we could try pointing a web browser at it. Remember, the
service is running on the address in the configuration file:

http://localhost:8732/Design_Time_Addresses/ChatServerLibrary/ChatService/

Strictly speaking, the service isn’t really designed to support a web browser. This chap-
ter is all about enabling programs to communicate with one another, not how to build
web user interfaces. However, WCF is rather generous here—it notices when we con-
nect with a web browser, and decides to be helpful. It generates a web page that pa-
tiently explains that the thing we’ve connected to is a service, and shows how to write
code that could talk to the service. And that’s exactly what we’re going to do next.

Writing a WCF Client
We need to create a client program to talk to our service. Again, to keep things simple
we’ll make it a console application. We’ll add this to the same solution, calling the
project ChatClient. (Obviously, you’ll need to stop the ChatHost program first if you’re
trying this out and it’s still running in the debugger.)

When you right-click on a project’s References item in Visual Studio’s Solution Ex-
plorer, you’re offered an Add Service Reference menu item as well as the normal Add
Reference entry. We’re going to use that to connect our client to our server via WCF.

The Add Service Reference dialog offers a Discover button (shown in Figure 13-6) which
attempts to locate services in your current solution. Disappointingly, if we were to click
it with our code as it is now, it would report that it didn’t find any services. That’s
because we wrote all the hosting code by hand for ChatHost—Visual Studio doesn’t
realize that our console application is hosting services. It usually looks only in web
projects—if we’d hosted the service in an ASP.NET web application, it would have
found it. But with the approach we’re taking here, it needs a little help.

WCF | 493

If you left the App.config file in place in the ChatServerLibrary project,
it would find that and would launch the WCF Service Host for you when
you click Discover. But be careful—ChatHost is our real service, and
when we start modifying settings in its App.config (which we’ll do later)
it’s important that the Add Service Reference dialog is talking to the
right service. That’s why we suggested deleting the App.config from the
DLL project earlier—it avoids any possibility of accidentally configuring
your client for the wrong service host.

For Visual Studio to be able to connect to our console-hosted service we need the service
to be up and running before the Add Service Reference dialog is open. The easiest way
to do this is to run the project, without debugging it. Instead of pressing F5, we choose
Debug→Start Without Debugging, or we press Ctrl-F5. This runs the ChatHost program
without debugging, leaving Visual Studio free for other tasks, such as adding a service
reference.

We’ll need the address of the service handy, and since it’s quite long, it’s easiest to open
our host’s App.config and copy the service address to the clipboard. (It’s the
baseAddress attribute in the <host> section.) Then we can go to the ChatClient project
and add a Service Reference. If we paste the address of the service into the Address box
and then click the Go button, after a few seconds we’ll see the Services panel on the
left display a ChatService entry. Expanding this shows an IChatService item repre-
senting the contract, and selecting this shows the one operation available in our con-
tract, PostNote, as Figure 13-6 shows.

While the list of services, contracts, and operations in the Add Service Reference dialog
is useful for verifying that we have the service we wanted, the significance of the infor-
mation here goes a little deeper—it’s part of an important feature of how systems
communicate in WCF. Remember that we defined a contract earlier, to describe the
operations our service provides to its clients. For the client to communicate successfully
with the server, it also needs a copy of that contract. So the best way to think of the
Add Service Reference dialog is that it’s a tool for getting hold of the contract from a
service.

Figure 13-6. Add Service Reference

494 | Chapter 13: Networking

This is the purpose of the metadata exchange entry we saw earlier when we looked at
the configuration Visual Studio generated for our WCF service. Metadata exchange is
just a fancy way of saying that a service provides a way for a client to discover the
contract and related information about the service. The Add Service Reference dialog
uses this information to configure a client application to communicate with the service,
and to provide it with a copy of the contract.

To see the results of this, we’ll finish with this dialog. In the Namespace text box near
the bottom, we’ll type ChatService—Visual Studio will put the contract and any other
types relating to this service into this namespace. When we click OK a Service Refer-
ences item appears in the project in the Solution Explorer, and it will contain an entry
called ChatService. (Now that we’ve done this, we can stop the service host console
window we ran earlier.)

Visual Studio generates some code when adding a service reference. By default, it hides
this, but we can take a look at it. At the top of the Solution Explorer, there’s a toolbar,
and if you hover your mouse pointer over the buttons you’ll find that one has a tool tip
of Show All Files. This button toggles each time you click it. When it’s pressed in, the
ChatService service reference can be expanded, as Figure 13-7 shows.

Figure 13-7. Generated files in a service reference

The most interesting file in here is Reference.cs, inside the Reference.svcmap item. Inside
this file, near the top, there’s a copy of IChatService—the contract we wrote earlier:

[System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel",
 "4.0.0.0")]
[System.ServiceModel.ServiceContractAttribute(
 ConfigurationName="ChatService.IChatService"]
public interface IChatService
{

 [System.ServiceModel.OperationContractAttribute(
 Action="http://tempuri.org/IChatService/PostNote",
 ReplyAction="http://tempuri.org/IChatService/PostNoteResponse")]
 void PostNote(string from, string note);
}

WCF | 495

It looks a little more complex than the original, because Visual Studio has annotated it
with various attributes, but it’s simply being explicit about the values that WCF fills in
by default.† Aside from these extra details, you can see that it is essentially a copy of
the original contract.

Sharing contracts

You might wonder why we jumped through all these hoops rather than just copying
IChatService from the service project to the client. In fact, that would have worked,
and we could even have written a separate DLL project to define the contract interface
and shared that DLL across the two projects. As you’ll see shortly, Visual Studio gen-
erated a few other useful things for us as part of this Add Service Reference process,
but as it happens, sharing the contract definition directly is sometimes a perfectly rea-
sonable thing to do—you’re not obliged to use metadata exchange.

Of course, you won’t always own the code at both ends. If you need to connect to a
service on the Internet provided by someone else, metadata exchange becomes more
important—it provides a way to get hold of a contract you didn’t write. And since the
metadata exchange mechanisms are standards-based, this can work even when the
service is not written in .NET.

Metadata exchange is not universally supported. In practice, contract
discovery can happen in all sorts of ways, including (and we’re not
making this up) being faxed a printout showing samples of the messages
the service expects to send and receive.‡ If you’re getting the contract
through that kind of informal channel, you’ll need to write an interface
(by hand) in your client program to represent the service contract.

The process of metadata import also highlights an important point about service evo-
lution. You might modify the ChatService after the ChatClient has added its reference.
If these modifications involve changing the contract, it’s clear that there’s a problem:
the client’s copy of the contract is out of date. You might think that sharing the interface
directly through a common DLL would be a good way to avoid this problem, but it
might only make the problem harder to see: what if you’ve already deployed a version
of the client? If you then modify the contract the modified code might run fine on your
machine, but if you deploy an update to the service with this changed contract any
copies of the old client out there will now be in trouble because they’re still working
with an old copy of the contract. Explicitly going through the metadata exchange

† In fact, it has revealed a small problem: the tempuri.org that appears in the URL indicates something
temporary that we’re supposed to fill in—the ServiceContract attribute on the original service definition has
a Namespace attribute, and we’re supposed to pick a URI that is unique to our service. It’s not mandatory in
this particular scenario because everything works with the default, but a temporary-looking URI doesn’t look
entirely professional.

‡ It could be worse. See http://www.neopoleon.com/home/blogs/neo/archive/2003/09/29/5458
.aspx.

496 | Chapter 13: Networking

http://www.neopoleon.com/home/blogs/neo/archive/2003/09/29/5458.aspx
http://www.neopoleon.com/home/blogs/neo/archive/2003/09/29/5458.aspx

doesn’t make this problem any easier to solve, of course, but it makes it less likely for
changes to creep in by accident and go undetected. A complete solution to the problem
of service evolution is beyond the scope of this book, so for now, just be aware that
changing a contract should not be undertaken lightly.

Michele Leroux Bustamante’s Learning WCF (O’Reilly) discusses ver-
sioning of service contracts.

Proxy

Looking further through the Reference.cs file generated by adding the service reference,
the next most interesting feature after the contract is a class called ChatServiceClient.
This implements IChatService, because it acts as a proxy for the service. If we want to
communicate with the service, all we need to do is create an instance of this proxy and
invoke the method representing the operation we’d like to perform. So if we add a
using ChatClient.ChatService; directive to the top of Program.cs in ChatClient, we
can then modify its Main method as shown in Example 13-5.

Example 13-5. Invoking a web service with a WCF proxy

static void Main(string[] args)
{
 using (ChatServiceClient chatProxy = new ChatServiceClient())
 {

 chatProxy.PostNote("Ian", "Hello again, world");
 }
}

Notice the using statement—it’s important to ensure that you dispose of WCF proxies
when you have finished using them. When the client calls this method on the proxy,
WCF builds a message containing the inputs, and it sends that to the service. Over in
the service (which is running in a separate process, perhaps on a different machine)
WCF will receive that message, unpack the inputs, and pass them to the PostNote
method in the ChatService class.

To try this out, we’re going to need to run both the client and the server simultaneously.
This means configuring the solution in Visual Studio a little differently. If you right-
click on the WcfChat solution in the Solution Explorer and select Set Startup Projects,
the dialog that opens offers three radio buttons. If you select the Multiple Startup
Projects radio button, you can choose which of your projects you’d like to run when
debugging. In this case, we want to change the Action for both the ChatClient and
ChatHost projects from None to Start. (We leave the ChatServerLibrary Action as
None—we don’t need to run that project, because our ChatHost project hosts the server
library.) Also, we want to give the service a head start so that it’s running before the

WCF | 497

http://oreilly.com/catalog/9780596101626/

client tries to use it, so select ChatHost and click the up arrow next to the list, to tell
Visual Studio to run it first. (In theory, this is not a reliable technique, because there’s
no guarantee that the server will get enough of a head start. In practice, it appears to
work well enough for this sort of debugging exercise.) Figure 13-8 shows how these
settings should look.

Figure 13-8. Starting multiple projects simultaneously

If we run the program by pressing F5, two console windows will open, one for the client
and one for the service.

If you’re following along, it’s possible that you’ll see an AddressAlrea
dyInUseException with an error message complaining that “Another ap-
plication has already registered this URL with HTTP.SYS.” This usually
means you have a copy of ChatHost still running—somewhere on your
desktop you’ll find a console window running the service host. Or pos-
sibly, the WCF Service Host is still running. This error occurs when you
launch a second copy of the service because it tries to listen on the same
address as the first, and only one program can receive requests on a
particular URL at any one time.

Visual Studio displays the message in its Output window because of the call to
Debug.WriteLine in PostNote, just like it did when using the WCF Test Client earlier,
verifying that the proxy was able to invoke an operation on the service. (You might

498 | Chapter 13: Networking

need to look carefully to see this—the message can get buried among the various other
notifications that appear in the Output window.)

Notice that in Example 13-5 we didn’t need to tell the proxy what address to use. That’s
because the Add Service Reference dialog imported more than just the contract defi-
nition. It adds information to the ChatClient project’s App.config file, shown in all its
gory detail in Example 13-6.

Example 13-6. Generated client-side App.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name="WSHttpBinding_IChatService"
 closeTimeout="00:01:00" openTimeout="00:01:00"
 receiveTimeout="00:10:00" sendTimeout="00:01:00"
 bypassProxyOnLocal="false" transactionFlow="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
 messageEncoding="Text" textEncoding="utf-8"
 useDefaultWebProxy="true"
 allowCookies="false">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <reliableSession ordered="true"
 inactivityTimeout="00:10:00" enabled="false" />
 <security mode="Message">
 <transport clientCredentialType="Windows"
 proxyCredentialType="None" realm="" />
 <message clientCredentialType="Windows"
 negotiateServiceCredential="true"
 algorithmSuite="Default" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
 <client>
 <endpoint address="http://localhost:8732/Design_Time_Addresses/
 ChatServerLibrary/ChatService/"
 binding="wsHttpBinding"
 bindingConfiguration="WSHttpBinding_IChatService"
 contract="ChatService.IChatService"
 name="WSHttpBinding_IChatService">
 <identity>
 <userPrincipalName value="ian@idg.interact" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

WCF | 499

Like the service configuration we examined earlier, this also has an <endpoint> element
with an address, binding, and contract, although being on the client side, this
<endpoint> appears inside a <client> element instead of a <service> element. The proxy
gets the address from this endpoint definition.

You can provide the proxy with an address from code if you want to. It
offers various constructor overloads, some of which accept a URL. But
if you don’t provide one, it will look in the configuration file.

Notice that the endpoint also has a bindingConfiguration attribute—this refers to a
<binding> element earlier in the file that contains information on exactly how the
wsHttpBinding should be configured. There was nothing like this in the service, because
we were just using the defaults. But the Add Service Reference dialog always generates
a binding configuration entry, even if you happen to be using the defaults.

Our “chat” application is demonstrating the ability for the client to send a note to the
server, but it’s not complete yet. The client needs a couple of extra features. To make
our conversation a bit less one-sided, we should be able to see notes written by other
people. And unless our conversations are all going to be exceptionally brief, we need
to be able to type in more than just one note.

We’ll fix that second problem by modifying the code in Example 13-5. We’ll put the
call to the proxy inside a loop, and we’ll also ask for the user’s name, so we can support
notes from people who may not be called Ian (see Example 13-7).

Example 13-7. Client with input loop

static void Main(string[] args)
{
 ChatServiceClient chatProxy = new ChatServiceClient();

 Console.WriteLine("Please enter your name:");
 string name = Console.ReadLine();
 while (true)
 {
 Console.WriteLine("Type a note (or hit enter to quit):");
 string note = Console.ReadLine();
 if (string.IsNullOrEmpty(note))
 {
 break;
 }
 chatProxy.PostNote(name, note);
 }
}

500 | Chapter 13: Networking

We’ll also modify the server so that it prints out the note, rather than sending it to the
debug output—that’ll make it a bit easier to see when notes are coming in. So change
PostNote in ChatService to this:

public void PostNote(string from, string note)
{
 Console.WriteLine("{0}: {1}", from, note);
}

If you run both programs again by pressing F5, the client program will ask you to type
in your name, and will then let you type in as many notes as you like. Each new note
will be sent to the server, and you should see the notes appear in the server console
window.

This is an improvement, but there’s still no way for the client to find out when other
users have typed notes. For this, we’ll need to add bidirectional communication.

Bidirectional Communication with Duplex Contracts
The contract for our chat service is a one-sided affair—it’s all about the notes the client
sends to the server. But WCF supports duplex contracts, which provide a means for the
server to call the client back. (Note that there are some issues with HTTP that can make
duplex communication tricky—see the sidebar on the next page.) A duplex contract
involves two interfaces—as well as an interface that the server implements, we also
define an interface that the client must implement if it wants to use the service. In our
example, the service wants to notify clients whenever any user posts a note. So the
client-side interface, shown in Example 13-8, looks pretty similar to our current server
interface.

Example 13-8. Callback interface for duplex contract

public interface IChatClient
{
 [OperationContract]
 void NotePosted(string from, string note);
}

Notice that while methods in a callback interface require the usual OperationCon
tract attribute, the interface itself does not need to be marked with ServiceContract.
That’s because this callback interface is not a contract in its own right—it’s one half of
a duplex contract. So we need to modify the existing IChatService to associate it with
this new callback interface (see Example 13-9).

WCF | 501

Duplex Communication, HTTP, and Firewalls
Bidirectional communication is problematic on the Internet today. The vast majority
of computers are behind firewalls. Firewalls are usually configured to reject most in-
coming connections. There will be exceptions for machines such as web servers and
mail servers—administrators set up firewalls to allow certain kinds of traffic through
to such machines—but the default presumption is that any incoming attempts to con-
nect to a service should be blocked unless the firewall has been explicitly told to leave
it open.

This is a good default from a security perspective, because the vast majority of unex-
pected incoming connections are from hackers. Any machine connected directly to the
Internet without a firewall will be subject to a continuous stream of traffic from hackers
looking for machines that they might try to break into. Typical firewall configuration
insulates machines from this stream of attacks, providing an extra line of defense, just
in case you get behind on installing OS updates or some hacker uses a so-called zero-
day attack that exploits a bug which hasn’t yet been fixed.

One problem with this is that it makes bidirectional communication difficult if you’re
using HTTP. HTTP operations can be initiated only by the computer that opened the
connection in the first place—there’s no way to open a connection to a web server and
then wait for it to send a message to you. HTTP is asymmetric, in that nothing happens
until the client sends a request. (The lower-level protocol that HTTP runs on top of
[TCP] is more flexible than this, by the way—that’s one reason for using sockets. Either
party in a TCP connection is free to send data at any time regardless of which end
originally initiated the connection.)

To enable full bidirectional communication over HTTP, you need both ends to be
running an HTTP server. When using duplex communication with WCF in conjunc-
tion with an HTTP-based binding, WCF runs what is effectively a miniature web server
in the client process. Of course, this is only any use if the server is able to connect back
to that client-side mini server.

If both the client and the server are behind the same firewall, that won’t be a problem.
But if the server is on the Internet, publicly accessible to anyone, it almost certainly
won’t be able to connect back to most clients. So the technique that is shown in Ex-
ample 13-8 works only for private networks. To make a chat program that works over
the Internet requires the use of either TCP and sockets, or some slightly hacky HTTP
tricks that are beyond the scope of this book.

The upshot of this is that you’ll want to avoid duplex contracts for Internet-facing
applications.

Example 13-9. Duplex contract

[ServiceContract(
 CallbackContract=typeof(IChatClient),
 SessionMode=SessionMode.Required)]
public interface IChatService
{

502 | Chapter 13: Networking

 [OperationContract]
 bool Connect(string name);

 [OperationContract]
 void PostNote(string note);

 [OperationContract]
 void Disconnect();
}

By setting the ServiceContract attribute’s CallbackContract property, we’ve declared
that this is a duplex contract, and have identified the interface that defines the client
side of the contract. Example 13-9 also makes a couple of other changes that turn out
to be necessary for our service to work as intended: we’ve set the SessionMode property
of the ServiceContract attribute, and we’ve added a couple of extra methods to enable
clients to connect and disconnect. We’ve also removed the string name argument from
PostNote—as you’ll see, this will turn out to be redundant. All of these changes are
related to sessions.

Session-based communication

The ServiceContract attribute’s SessionMode property determines the nature of the re-
lationship between the server and any particular client. By default, the relationship is
presumed to be transient, not necessarily lasting any longer than a single operation.
This reflects the fact that WCF is designed to support web services, and HTTP does
not offer any idea of a connection between the client and the server that lasts longer
than a single request.

It’s true that HTTP allows a single TCP connection to be reused across
multiple requests, but this is just a performance optimization, and noth-
ing is allowed to depend on it. Either the client or the server is free to
close the connection at the end of a request, forcing a new one to be
established for the next operation, without changing the semantics of
the operations. (And even if the client and server both want to keep the
connection alive between requests, a proxy in the middle is free to over-
rule them.) Logically speaking, each HTTP request is completely disas-
sociated from the ones that came before or after.

This connectionless behavior is very useful for scalability and robustness—it means
you can load-balance across large numbers of web servers, and it doesn’t greatly matter
whether all of a particular client’s requests are handled by the same machine. It’s often
possible to take a single machine in a web farm out of service without disrupting any
of the clients. However, the absence of connections is sometimes unhelpful—some
applications need some sort of session concept. For example, it would be annoying to
have to type in your username and password every time you move from one page to
another in a website—once you’ve logged in to a website, you want it to remember

WCF | 503

who you are. Likewise, if our chat application is going to be able to call clients back to
notify them that notes have arrived, that implies that the application needs to know
which clients are currently connected.

Although HTTP has no standard way to represent a session, various ad hoc systems
have been developed to add such a feature. Websites typically use cookies. (Cookies
are not part of the HTTP specification, but they are supported by all popular web
browsers. Some users disable them, though, so they’re not necessarily universally avail-
able.) The web service standards supported by WCF prefer a slightly different
solution—it’s similar to how cookies work, but it puts the relevant information in the
messages being sent, rather than in the HTTP headers.§

Since our contract is now duplex, it requires the ability to maintain a connection be-
tween each client and the server. We tell WCF this by setting the SessionMode property
to SessionMode.Required. Note that this doesn’t actually switch on sessions; it merely
says that anything that wants to communicate using this contract had better do so with
sessions enabled. Remember, the contract is separate from implementations that con-
form to the contract. The effect of this setting is that WCF will produce an error if you
try to use this contract without enabling sessions; we’ll see how to enable sessions by
modifying the client and server configuration files once we’ve finished modifying the
code.

A session will be established the first time a client connects to a service, which presents
our application with another problem. WCF won’t send a message until it has some-
thing to send, so our chat client will first connect to the service when we send our first
note. (Creating an instance of the ChatServiceProxy does not connect—nothing goes
over the network until the first time you try to invoke an operation.) But we want clients
to be able to receive notes straight away, without being required to post one first. So
we need a way for clients to announce their presence to the service without sending a
note. That’s why Example 13-9 adds a Connect method. And we’ve also provided a
Disconnect method for clients to announce that they are leaving so that the chat server
doesn’t attempt to send notes to clients that are no longer there. (Without this, the
server would get an exception the next time it tried to send a message. Although it
would notice that the clients had gone, an explicit disconnect is a bit neater—it also
makes it possible to tell the difference between users who deliberately leave the con-
versation and users who get cut off due to problems.)

We now need to update the server to implement the modified contract, and to track
the clients.

§ In general, the WS-* family of web service protocols avoids depending on HTTP. This may seem like a peculiar
tendency for web service standards, but a lot of the organizations involved in creating these specifications
wanted the message formats to be useful in message-queue-based systems as well as HTTP. So in general,
they tend to avoid transport-specific mechanisms.

504 | Chapter 13: Networking

Calling the client from the server

Our service is going to need to maintain a list of connected clients so that it can notify
every client when it receives each note. We can store the list as private data in our service
class, but since that one list needs to be available across all sessions, we need to tell
WCF that we only ever want it to create one instance of that class.

WCF offers several different modes for creating instances of your service class. It can
create one per client session—that’s useful when you want per-session state. But in our
case, all notes get sent to everyone, so the only interesting state is global. Since our
application state is global, we don’t have much use for per-client instances here. WCF
can also create a new instance of your service class for every single request—if you don’t
hold any state in the service class itself this is a reasonable thing to do. But in our case,
we want one instance for the lifetime of the service. We can indicate this like so:

[ServiceBehavior(
 InstanceContextMode=InstanceContextMode.Single,
 ConcurrencyMode=ConcurrencyMode.Reentrant)]
public class ChatService : IChatService
{

We added a ServiceBehavior attribute to the code to specify this single-instance be-
havior. Notice that we also asked for a ConcurrencyMode of Reentrant. This tells WCF
to have our service work on requests for only one session at a time—if requests from
multiple clients come in simultaneously, WCF will service them one after another. This
is convenient as it means that as long as any single client does only one thing at a time,
we don’t need to write any code to ensure the thread safety of our state handling.

An alternative to the single-instance context mode would have been to
store our state in a static field. This would share the data across all
clients, which is what we need. But then we’d be on our own for thread
safety. The ConcurrencyMode property applies only to any particular in-
stance of the service, so if you don’t choose the single-instance mode,
WCF will let different instances of your service execute simultaneously.

In practice, real applications are likely to need to do their own thread
synchronization. Here we’re relying on clients making only one call at
a time, which might work in a small, controlled example but is a risky
thing to do if you don’t completely trust your client machines. (Even
with only one session at a time, a single client session could invoke
multiple operations simultaneously.) You may be wondering why we
didn’t use ConcurrencyMode.Single, which enforces a completely strict
one-at-a-time model. Unfortunately, that turns out to prevent you from
calling back into clients while you’re in the middle of handling a call
from a client—a blocking outbound call from a nonreentrant single-
threaded context presents an opportunity for deadlocks, so WCF for-
bids it.

WCF | 505

Next, we’ll add a field to hold the state—a collection of currently connected clients:

private Dictionary<IChatClient, string> clientsAndNames =
 new Dictionary<IChatClient, string>();

This is a dictionary where the key type is the client callback interface we defined earlier.
The value is the client’s name. To see how this gets used, here’s the Connect
implementation:

public bool Connect(string name)
{
 if (clientsAndNames.ContainsValue(name))
 {
 // Name already in use, so refuse connection
 return false;
 }

 IChatClient clientCallback =
 OperationContext.Current.GetCallbackChannel<IChatClient>();

 // clientsAndNames is shared state, but we're not locking
 // here, because we're relying on ConcurrentMode.Reentrant
 // to give us messages one at a time.
 clientsAndNames.Add(clientCallback, name);
 Console.WriteLine(name + " connected");

 return true;
}

The first thing we do is check that the username is unique. Now that we’re maintaining
a list of connected clients, we’re in a position to prevent multiple users from picking
the same name. If a new user is trying to sign up with a duplicate name, we return
false. (A return code here makes more sense than an exception because this isn’t really
an exceptional condition.)

If the name looks OK, we retrieve the client callback interface with the following
expression:

OperationContext.Current.GetCallbackChannel<IChatClient>()

OperationContext is a WCF class whose Current property provides information about
the operation that your code is handling right now. One of the services it provides is
the ability to retrieve the callback interface when a duplex contract is in use.
GetCallbackChannel returns a proxy object similar to the one the client uses to talk to
the service, but this proxy goes in the other direction—it invokes operations on the
client that called our Connect method. We just add this to the dictionary of connected
clients, associating it with the client’s chosen name, and then return true to indicate
that we’re happy that the user’s name wasn’t previously in use and that we have ac-
cepted the user’s connection.

506 | Chapter 13: Networking

Next, let’s look at the modified PostNote:

public void PostNote(string note)
{
 IChatClient clientCallback =
 OperationContext.Current.GetCallbackChannel<IChatClient>();
 string name = clientsAndNames[clientCallback];

 Console.WriteLine("{0}: {1}", name, note);

 // ToArray() makes copy of the collection. This avoids an
 // exception due to the collection being modified if we have
 // to disconnect a client part way through the loop.
 KeyValuePair<IChatClient, string>[] copiedNames =
 clientsAndNames.ToArray();
 foreach (KeyValuePair<IChatClient, string> client in copiedNames)
 {
 // Avoid sending the message back to the client that just sent
 // it - they already know what they just typed.
 if (client.Key != clientCallback)
 {
 Console.WriteLine("Sending note to {0}", client.Value);
 try
 {
 client.Key.NotePosted(name, note);
 }
 catch (Exception x)
 {
 Console.WriteLine("Error: {0}", x);
 DisconnectClient(client.Key);
 }
 }
 }
}

Again, we begin by retrieving the callback interface for the current client. Remember,
our chat server will usually have multiple clients attached, and this lets us discover
which particular one is sending a note. The next line looks up the callback interface in
the dictionary to find out what name this user originally passed to Connect—this is why
we were able to remove the argument we previously had on this method in which the
caller passed her name. We remember her name from before—we have to remember
it to guarantee uniqueness—and since we’re remembering it, there’s no need to make
the client pass in the name every single time.

This code then iterates through all the connected clients in the clientsAndNames dic-
tionary, to deliver the new note to each client. It calls the NotePosted on the proxy.
Notice that we wrapped this in exception-handling code. If a client becomes inacces-
sible because of a network failure, a crash, a machine failure, or a programming error
that caused it to exit without remembering to call Disconnect, the proxy’s NotePosted
method will throw an exception. Our code catches this and removes the client from
the list, to avoid trying to send it any more notes.

WCF | 507

This code is a little simplistic, for two reasons. First, we might want to
be a little more lenient with errors—perhaps we should give the client
a chance to recover before giving up on it entirely. One way to do this
would be to have a second collection of connections to act as a kind of
sin bin—you could give failed clients another chance after a certain
amount of time. (Another strategy would be to require that the client
attempt to reconnect in the event of a failure, in which case the server’s
error handling is just fine as it is.)

Second, calling each client in turn using a loop will perform poorly as
the number of clients gets large, or if some clients are on slow connec-
tions. This code will be OK for small groups on a private network, but
for a larger scale, an asynchronous approach would work better. WCF
provides full support for asynchronous use of proxies, but the chapter
on threading and asynchronous programming is coming later, so we
can’t show you that just yet.

The code to disconnect clients is in a separate method, because it’s shared by the error-
handling code and the Disconnect method that’s part of the new contract. Here’s the
common code:

private void DisconnectClient(IChatClient clientCallback)
{
 string name = clientsAndNames[clientCallback];
 Console.WriteLine(name + " disconnected");
 clientsAndNames.Remove(clientCallback);
}

This just removes the client from the dictionary. This makes the Disconnect method
very simple:

public void Disconnect()
{
 IChatClient clientCallback =
 OperationContext.Current.GetCallbackChannel<IChatClient>();
 DisconnectClient(clientCallback);
}

Once again, we get hold of the callback interface, and then call the same disconnection
helper as the error-handling code.

We have one more modification to make on the server: the wsHttpBinding we’re using
doesn’t support the duplex behavior we require, so we need to modify the ChatHost
program’s configuration.

Server configuration for duplex and sessions

As we mentioned earlier, WCF lets us change the communication mechanism we’re
using by configuring a different binding. We don’t need to change any code to do this.
We just need to modify our host project’s App.config file, specifically the <endpoint> tag:

508 | Chapter 13: Networking

<endpoint address=""
 binding="wsHttpBinding"
 contract="ChatServerLibrary.IChatService">
</endpoint>

We change that binding attribute’s value to wsDualHttpBinding. This binding is very
similar to wsHttpBinding; it just adds support for callbacks. It also enables sessions
automatically. (Sessions are available with wsHttpBinding, but they are off by default,
so you’d need to add further configuration to switch them on if you wanted sessions
without duplex communication.)

Our server is now ready to work in duplex mode, so next we need to update the client.

Duplex client

We’ve made several changes to the contract: we modified the one existing method,
added two new methods, and turned it into a duplex contract. We also changed the
binding. Any one of these changes would need the client to be updated, because each
has an impact on the work done by the Add Service Reference operation. (All these
things change the contract, the configuration, or both.) However, we don’t need to
completely redo the work of adding the service reference. If you right-click on an item
in a client’s Service References in the Solution Explorer, you’ll see an Update Service
Reference item. This modifies the generated source code and application configuration,
saving you from having to build it all again from scratch. This refetches the metadata,
so the service needs to be running when you do this, just as when adding the reference
in the first place.

Once we’ve updated the reference, rebuilding the solution now produces two compiler
errors. The call to PostNote fails, because we’re passing in two arguments where the
new contract requires only one. And we also see the following error on the line where
we construct the ChatServiceClient proxy:

error CS1729: 'ChatClient.ChatService.ChatServiceClient' does not contain
a constructor that takes 0 arguments

Because the service now has a duplex contract, the generated proxy insists that the
client implement its half of the contract—we need to provide an implementation of the
callback interface and pass that to the proxy. Example 13-10 shows a straightforward
implementation of the interface.

Example 13-10. Implementing the client-side callback interface

[CallbackBehavior(ConcurrencyMode=ConcurrencyMode.Reentrant)]
class ChatCallback : IChatServiceCallback
{
 public void NotePosted(string from, string note)
 {
 Console.WriteLine("{0}: {1}", from, note);
 }
}

WCF | 509

The callback interface seems to have changed names. We called it IChat
Client on the server, but here it’s IChatServiceCallback. This is the
normal if slightly surprising behavior when using metadata exchange
through Visual Studio’s Add Service Reference feature. It’s nothing to
worry about. As far as WCF is concerned, a contract has only one name
(IChatService in this case), even when it happens to be split into server-
side and client-side pieces. WCF considers the name of the client-side
interface to be irrelevant, and doesn’t advertise it through metadata ex-
change. When you add or update a reference to a service with a duplex
contract, Visual Studio just makes up the client-side interface name by
appending Callback to the contract name.

Notice the CallbackBehavior attribute—it specifies a ConcurrencyMode just like on the
server. Again, we’ve specified Reentrant—this means that this particular callback han-
dler expects to be dealing with just one session at a time, but can cope with being called
back by the server while it’s waiting for the server to do something. We need this so
that the server can send notifications to the client inside its PostNote implementation.

We need to provide WCF with an instance of this callback implementation, so we
modify the code at the start of Main from Example 13-7 that creates the proxy:

ChatCallback callbackObject = new ChatCallback();
InstanceContext clientContext = new InstanceContext(callbackObject);
ChatServiceClient chatProxy = new ChatServiceClient(clientContext);

This wraps the callback object in an InstanceContext—this represents the session, and
is essentially the client-side counterpart of the object returned by OperationContext.Cur
rent on the server. It provides various utility members for managing the session, but
here the only thing we need it for is to pass our callback object to the proxy—the proxy
won’t take the callback directly and demands that we wrap it in an instance context.

We have a few more modifications to make. Remember that the client now needs to
tell the server that it wants to connect, so we can do that directly after asking for the
user’s name:

Console.WriteLine("Please enter your name:");
bool ok = false;
while (!ok)
{
 string name = Console.ReadLine();
 ok = chatProxy.Connect(name);
 if (!ok)
 {
 Console.WriteLine("That name is taken. Please try another.");
 }
}

This checks the return code to see if the name we entered was already in use, and asks
for a different name if it was. The end user can go through the relevant legal procedures
to change her name, and then try again.

510 | Chapter 13: Networking

The line that calls PostNote no longer needs to pass our name each time, because the
server now remembers our name based on our session:

chatProxy.PostNote(note);

And finally, we should add a line of code at the very end of Main to let the server know
we’re going away:

chatProxy.Disconnect();

We’re now ready to test the application. We can run the client and service as before,
but we want an extra client or two, to test out this multiuser chat service. Visual Studio
doesn’t provide a way to debug two instances of the same application, so we need to
run the extra instances manually. We can do this by finding the folder where the com-
piled program lives. This will be in a subfolder of the project folder—the program will
be in a bin\debug subfolder. Running a couple of instances of the client we can type in
some different names, and we see notes appear in the service’s console window as the
users connect:

Service ready
Ian connected
Matthew connected

When we type a note in one of the clients, it appears in all of the client console windows,
as well as the server.

Our application’s user interface has a long way to go before it’ll become the new live
chat tool of choice, but we have now demonstrated a complete, if rather basic, WCF-
based application. We have only scratched the surface of WCF, of course—it’s a large
enough technology to warrant a book in its own right. Learning WCF, a book we already
mentioned a couple of times, is a good choice if you’d like to learn more about what
WCF can do. Next, we’re going to look at how to work directly with HTTP.

HTTP
The .NET Framework class library provides various classes for working directly with
HTTP. Some of these are for client scenarios, and are useful when you need to fetch
resources from a web server such as bitmaps, or if you need to use an HTTP-based
service that WCF cannot easily work with. You can also provide server-side HTTP
support. You would normally do that by writing an ASP.NET web application, which
we’ll look at in a later chapter. But there is a class that enables other program types to
receive incoming HTTP requests, called HttpListener. (We won’t be covering that, and
we mention it mainly for completeness—it’s more normal to use ASP.NET, to which
we have devoted a whole chapter.)

HTTP | 511

WebClient
The most common starting point for client-side HTTP code is the WebClient class in
the System.Net namespace. It offers a few ways of working with HTTP, starting from
very simple but inflexible methods, through to relatively complex mechanisms that give
you complete control over detailed aspects of HTTP. We’ll start with the simplest ones.

Although the examples in this section are HTTP-based, WebClient sup-
ports other protocols, including https:, ftp:, and file: URLs. It is ex-
tensible, so in principle you can adapt it to support any protocol that
has a URL scheme.

Downloading resources

Example 13-11 illustrates one of the simplest ways of using the WebClient class. We
construct an instance, and then use its DownloadString method to fetch data at a par-
ticular URL. (You can specify the URL as either a string or a Uri object.)

URLs, URIs, and the Uri Class
HTTP resources are identified by Uniform Resource Locators (URLs), strings which
contain enough information for a computer to work out where to find the resource.
The specification for URLs defines them as being a special kind of Uniform Resource
Identifier (URI). A URI is a slightly more general idea—URIs give something a name,
and that name may or may not have anything to say about where the resource can be
found. All URLs are URIs, but only URIs that indicate a resource’s location are URLs.

These two kinds of identifiers have a common syntax, so .NET provides just one class
to deal with them: the Uri class, which is defined in the System namespace. It defines
helper properties that give you access to the various parts of the URI. Consider this
example:

Uri blog =
 new Uri("http://www.interact-sw.co.uk/iangblog/");

This represents the URL for one of the authors’ blogs. Its Scheme property’s value is
"http", its Host is "www.interact-sw.co.uk“, and there are properties for all the other
syntactic elements found in URIs.

Methods and properties in the .NET Framework class library that require a URL will
have a signature that accepts a Uri object. (Some APIs also offer overloads that accept
a string.)

Incidentally, there’s a peculiarly persistent and mistaken belief that the plural of URI
is URI. (Apparently this is on the basis that some Latin words have plurals that end in
i, but that conclusion requires an almost heroic misunderstanding of etymology.) Sir
Tim Berners-Lee calls them URIs and he would know, since he invented them (and,
not coincidentally, invented the World Wide Web too).

512 | Chapter 13: Networking

http://www.interact-sw.co.uk

Example 13-11. Fetching content with WebClient

WebClient client = new WebClient();
string pageContent = client.DownloadString("http://oreilly.com/");

Console.WriteLine(pageContent);

Of course, DownloadString succeeds only if the URL you’re fetching happens to contain
textual content. The URL in Example 13-11 is an HTML web page, which is a text-
based format, so it works just fine, but what if you’re fetching a bitmap, or a ZIP? In
that case, there’s DownloadData, which works in the same way, except it returns an array
of bytes instead of a string:

byte[] data =
 client.DownloadData("http://oreilly.com/images/oreilly/oreilly_large.gif");

There’s a third easy method for fetching data, DownloadFile. This downloads the re-
source into a local file:

client.DownloadFile("http://oreilly.com/", @"c:\temp\oreilly.html");

These three methods will block—they don’t return until they have finished fetching the
data you asked for (or they have tried and failed, in which case they’ll throw some kind
of exception). This could take awhile. You might be on a slow network, or talking to
a busy server, or just downloading a particularly large resource. If you’re building a
GUI, it’s a bad idea to call blocking APIs.‖ Fortunately, WebClient offers asynchronous
versions of all these methods. You use these by attaching an event handler to the rele-
vant completion event, for example:

client.DownloadFileCompleted += OnDownloadComplete;
client.DownloadFileAsync(new Uri ("http://oreilly.com/"), @"c:\temp\");

...

static void OnDownloadComplete(object sender, AsyncCompletedEventArgs e)
{
 MessageBox.Show("Download complete");
}

The DownloadXxxAsync methods all return straight away. WebClient raises the relevant
DownloadXxxCompleted event once the data has been fetched. (This means that you’ll
need to ensure that your application hangs around long enough for that to happen; if
you were to use these asynchronous techniques in a console application, you’d need
to take steps to make sure the program doesn’t exit before the work completes.) Of
course, DownloadStringAsync and DownloadDataAsync cannot provide the fetched data
as a return value, unlike their blocking counterparts, so they provide it as the Result
argument of their completion event argument.

‖ If it’s a multithreaded application, it’s usually OK to call a blocking API on a worker thread. It’s a bad idea
only if you’re on the UI thread, but that’s the thread that all the interesting UI stuff happens on, so it’s an
easy mistake to make.

HTTP | 513

If you’re writing a Silverlight client, you’ll find that WebClient offers
only the asynchronous versions. And in general, that’s true of all of Sil-
verlight’s networking support—since Silverlight is designed just for
building user interfaces, it doesn’t even offer you the blocking forms.

As well as providing completion event notifications, WebClient also offers progress no-
tifications through its DownloadProgressChanged event. This is raised from time to time
during asynchronous downloads, regardless of which of the three methods you used.
It provides two properties, BytesReceived and TotalBytesToReceive, which tell you how
far the download has gotten and how far it has to go.

If you use these asynchronous methods in a GUI built with either WPF
or Windows Forms, you don’t need to worry about threading issues. As
you’ll see in later chapters, that is not true for all asynchronous APIs,
but these automatically take care of UI threading for you—as long as
you start asynchronous operations from the UI thread, WebClient will
raise completion and progress events on the UI thread.

Uploading resources

WebClient offers the UploadString, UploadData, and UploadFile methods. These corre-
spond directly to the DownloadString, DownloadData, and DownloadFile methods, but
instead of fetching data with an HTTP GET, they send data to the server, typically using
an HTTP POST, although overloads are available that let you specify other verbs, such
as PUT.

Stream-based uploads and downloads

Lots of APIs in the .NET Framework work with the Stream abstraction defined in the
System.IO namespace. The XML classes can load data from a Stream, or write data into
one, for example. The bitmap decoding and encoding classes in WPF can also work
with streams. The first three lines of Example 13-12 obtain a stream for an Atom
feed# from a WebClient and use it to initialize an XDocument. The code then uses LINQ
to XML to extract the list of titles and links advertised by this particular feed.

Example 13-12. From HTTP to LINQ to XML via a Stream

WebClient client = new WebClient();
Stream feedStm = client.OpenRead("http://feeds.feedburner.com/oreilly/news");
XDocument feedXml = XDocument.Load(feedStm);

string ns = "http://www.w3.org/2005/Atom";
var entries = from entryElement in feedXml.Descendants(XName.Get("entry", ns))

#Atom is a common format for representing sets of items, such as blog entries or news articles. It’s similar to
RSS, but tries to avoid some of RSS’s inconsistencies and limitations.

514 | Chapter 13: Networking

 select new
 {
 Title = entryElement.Element(XName.Get("title", ns)).Value,
 Link = entryElement.Element(XName.Get("link", ns)).
 Attribute("href").Value
 };
foreach (var entry in entries)
{
 Console.WriteLine("{0}: {1}", entry.Title, entry.Link);
}

For sending data there’s an OpenWrite method. With HTTP or HTTPS, this defaults to
POST, but as with the Upload methods, you can call an overload that takes the verb as
well as the URL.

You can use streams asynchronously. Following the same pattern as the other methods
we’ve looked at so far, you’ll find OpenReadAsync and OpenWriteAsync methods, with
corresponding completion events. But streams add an extra dimension: the Stream ab-
stract base class also offers both synchronous and asynchronous operation. For exam-
ple, if you’re reading data, you can call either Read or BeginRead. You are free to use the
Stream in either mode, regardless of whether you obtained it from the WebClient syn-
chronously or asynchronously. But bear in mind that if you are trying to avoid blocking
in order to keep your user interface responsive, you’ll most likely want to get hold of
the stream asynchronously (e.g., use OpenReadAsync) and use the stream asynchro-
nously. When you open a stream asynchronously, the completion notification tells you
that the WebClient is ready to start reading (or writing) data, but that’s no guarantee
that you’ll be able to finish reading data immediately. For example, if you use
OpenReadAsync to fetch a 1 GB file by HTTP, WebClient won’t wait until it has down-
loaded the whole 1 GB before giving you a stream. You’ll get an OpenReadCompleted
event when it has begun to fetch data so that you can start processing it straight away,
but if you try to read data from the stream faster than your network connection can
download it, you’ll be made to wait. So if you want nonblocking behavior for the whole
download, you’ll need to use the Stream asynchronously too.

While the asynchronous methods offered by WebClient will call you back
on the correct thread in a GUI application, the asynchronous stream
methods will not, and you’ll have to deal with threading issues yourself.

The WebClient class’s most powerful mechanism is accessed through its GetWebRe
quest and GetWebResponse methods. But these turn out to be wrappers around another
set of classes altogether—WebClient just provides these wrappers as convenient helpers.
So we’ll move on to the classes that do the real work for these methods.

HTTP | 515

WebRequest and WebResponse
WebRequest and WebResponse are abstract base classes for a family of classes that provide
the most detailed level of control over web requests. The concrete HttpWebRequest and
HttpWebResponse classes add details specific to HTTP, and .NET also offers specialized
FtpWebRequest/Response and FileWebRequest/Response classes. This section will mainly
focus on the HTTP classes.

The main limitation with the WebClient-based mechanisms we’ve explored so far is that
they focus on the content of the request or the response. They don’t provide any way
to work with standard HTTP features such as the content type header, the UserAgent
string, cache settings, or proxy configuration. But if you use HttpWebRequest and
HttpWebResponse, all the detailed aspects of HTTP are available to you.

The cost of this power is additional verbosity. The main difference is that you end up
with one object to represent the request and one to represent the response, in addition
to streams representing the data being sent or received. Moreover, the only way to
access the data with these classes is through streams. To do the same job as Exam-
ple 13-11—fetching the data from a particular URL into a string—requires the rather
more complex code shown in Example 13-13.

Example 13-13. Fetching a string with HttpWebRequest and HttpWebResponse

HttpWebRequest req = (HttpWebRequest) WebRequest.Create("http://oreilly.com/");
using (HttpWebResponse resp = (HttpWebResponse) req.GetResponse())
using (Stream respStream = resp.GetResponseStream())
using (StreamReader reader = new StreamReader(respStream))
{
 string pageContent = reader.ReadToEnd();
 Console.WriteLine(pageContent);
}

The two casts on the first two lines of Example 13-13 are a little messy, but are, un-
fortunately, usually necessary. The WebRequest family of classes is extensible to multiple
protocols, so most of the methods are declared as returning the abstract base types,
rather than the concrete types—the exact type returned depends on the kind of URL
you use. So if you need access to a protocol-specific feature, you end up with a cast. In
fact, Example 13-13 isn’t using anything protocol-specific, so we could have avoided
the casts by declaring req and resp as WebRequest and WebResponse, respectively. How-
ever, the usual reason for using these classes is that you do in fact want access to HTTP-
specific information. For example, you might want to simulate a particular web browser
by setting the user agent string, as shown in Example 13-14.

Example 13-14. Changing the user agent header with HttpWebRequest

HttpWebRequest req = (HttpWebRequest) WebRequest.Create("http://oreilly.com/");
req.UserAgent = "Mozilla/5.0 (iPod; U; CPU iPhone OS 2_2_1 like Mac OS X; en-us)
AppleWebKit/525.18.1 (KHTML, like Gecko) Mobile/5H11a";

... as before

516 | Chapter 13: Networking

This code has been split across multiple lines, as the user agent string is too wide to fit.
This would let you discover what response a website would send if the request came
from an Apple iPhone. (Many websites adapt their content for different devices.)

As you’d expect, asynchronous operation is available so that you can avoid blocking
the current thread while waiting for network operations to complete. But it looks
slightly different from the WebClient mechanisms we’ve seen so far, because of the way
in which the methods you call can change when the request gets sent. No network
communication happens at the point where you create the request, so there is no asyn-
chronous method for that. Remember, the request object represents all the settings
you’d like to use for your HTTP request, so it won’t actually attempt to send anything
until you’ve finished setting the request’s properties and tell it you’re ready to proceed.

There are two ways in which you can cause an HttpWebRequest to send the request.
Asking for the response object will cause this, but so will asking for a request stream—
the request’s GetStream method returns a write-only stream that can be used to supply
the body of the request for POST or similar verbs (much like WebClient.OpenWrite). This
stream will start sending data over the network as soon as your code writes data into
the stream—it doesn’t wait until you close the stream to send the data all in one go.
(For all it knows, you might be planning to send gigabytes of data.) This means that by
the time it returns the stream, it needs to be ready to start sending data, which means
that the initial phases of the HTTP request must be complete—for example, if the
request is going to fail for some reason (e.g., the server is down, or the client machine
has lost its network connection), there’s no point in attempting to provide the data for
the request. So you’ll be notified of failures of this kind when you ask for the stream.

The upshot of all this is that GetStream is a blocking method—it won’t return until the
server has been contacted and the request is underway. So there’s an asynchronous
version of this. But WebRequest doesn’t support the event-based pattern that
WebClient uses. Instead, it uses the more complex but slightly more flexible method-
based Asynchronous Programming Model, in which you call BeginGetRequestStream,
passing in a delegate to a method that the request will call back once it’s ready to
proceed, at which point you call EndGetRequestStream. This Begin/End pattern is very
common in .NET and will be discussed in Chapter 16.

The second way in which the sending of the request can be triggered is to ask for the
response object—if you haven’t already asked for the request stream (e.g., because
you’re doing a GET, so there is no request body) the request will be sent at this point.
So GetResponse also has an asynchronous option. Again, this uses the method-based
asynchronous pattern. Example 13-15 shows a version of Example 13-13 modified to
get the response object asynchronously.

Example 13-15. Obtaining a response asynchronously

HttpWebRequest req = (HttpWebRequest) WebRequest.Create("http://oreilly.com/");
req.BeginGetResponse(delegate(IAsyncResult asyncResult)
{

HTTP | 517

 using (HttpWebResponse resp = (HttpWebResponse)
 req.EndGetResponse(asyncResult))
 using (Stream respStream = resp.GetResponseStream())
 using (StreamReader reader = new StreamReader(respStream))
 {
 string pageContent = reader.ReadToEnd();
 Console.WriteLine(pageContent);
 }
}, null);

This example uses an anonymous method as the completion callback, which allows
the code to retain a similar structure to the original, synchronous version. But you need
to be mindful that the code that handles the response in Example 13-15 is now a sep-
arate method, and could run some considerable length of time after the call to Begin
GetResponse returns, and probably on a different thread. So as with the event-based
pattern, you’ll need to ensure that your application runs for long enough for the oper-
ation to complete—having some outstanding asynchronous operations in progress will
not keep your process alive if all of the nonbackground threads exit.

This asynchronous pattern does not take care of UI threading issues
(unlike the event-based pattern seen previously). The completion call-
back will usually occur on some random thread, and attempting to up-
date the user interface from that code will fail. We’ll see how to handle
this in Chapter 16.

Example 13-14 shows just one of the HTTP protocol features you can customize—the
UserAgent string. Many similar settings are available, many of which are quite obscure,
so we won’t go through all of them here. That’s what the MSDN reference is for. But
we will cover the most common cases.

Authentication

HTTP defines various ways for a client to authenticate itself to the server. Note that
most public-facing websites don’t actually use any of these—a website that presents a
login UI where you type a username and password directly into fields in the web page
itself isn’t using HTTP authentication at all, and is usually relying on cookies instead
(more on this later). HTTP authentication gets involved in two main scenarios. The
most visible scenario is when the browser opens a small window asking for credentials
before it navigates to the web page—this is less common than logging in via a form on
a web page, but a few websites work this way. Slightly more subtly, HTTP authenti-
cation is used for integrated security scenarios—for example, when a client machine
belongs to a Windows domain, and the user’s identity is automatically available to an
intranet web server on the same domain. In this case, you don’t need to log in explicitly
to an intranet site, and yet it knows exactly who you are—this is thanks to implicit use
of HTTP authentication.

518 | Chapter 13: Networking

By default, HttpWebRequest will not attempt to authenticate the client to the server, even
in integrated authentication scenarios. (So it has a different default policy than Internet
Explorer—IE will automatically authenticate you to servers on your local network with
integrated authentication, but HttpWebRequest will not.) If you’re writing client code
and you want it to identify the user to the server, you must set the request’s
Credentials property.

For integrated authentication, there’s a special credentials object to represent the user’s
identity, provided by the CredentialCache class. Example 13-16 shows how to use this
to enable integrated authentication. (Obviously, this will only do anything if the server
is prepared to use it—so this code merely tells HttpWebRequest that we’re happy to use
integrated authentication if the server asks for it. If the server turns out not to require
authentication at all, you won’t see an error.)

Example 13-16. Enabling the use of integrated authentication

HttpWebRequest request =
 (HttpWebRequest) WebRequest.Create("http://intraweb/");
request.Credentials = CredentialCache.DefaultCredentials;

...

HTTP authentication isn’t always integrated with Windows security. It also supports
username- and password-based authentication. The HTTP specification supports two
ways of using this. Basic authentication just sends your username and password as part
of the request, so unless you’re using HTTPS, that’s not very secure. The alternative,
digest authentication, is better, but seems to be rarely used. In practice, basic authen-
tication over HTTPS seems to be the popular choice. For either kind of authentication,
you specify the username and password in the way shown in Example 13-17.

Example 13-17. Providing credentials for basic or digest authentication

HttpWebRequest request =
 (HttpWebRequest) WebRequest.Create("https://intraweb/");
request.Credentials = new NetworkCredential("user1", "p@ssw0rd");

...

This approach doesn’t let you specify whether to use basic or digest authentication
because the server gets to choose. Since you therefore don’t know whether the password
will be sent in the clear, you should normally provide credentials this way only when
using HTTPS. You can force the use of digest authentication by wrapping the Network
Credential in a CredentialCache object, which lets you specify the authentication
schemes you want to support. Even so, you might want to be wary of using digest
authentication without HTTPS—although digest authentication can be secure, some
servers implement it in an unsecure way.

HTTP | 519

Working with proxies

By default, web requests will look at the Internet Explorer settings to determine whether
a web proxy should be used. But you might not want this default behavior, so there are
a couple of ways you can change it.

Prior to .NET 2.0, IE proxy settings weren’t honored, so you may oc-
casionally come across code that goes to some lengths to work out
whether it needs to use a proxy. Usually such code is either old or written
by someone who didn’t know that .NET 2.0 fixed this issue.

You can add entries to your App.config file to modify the default proxy behavior.
Example 13-18 stops web requests using the configured default proxy by default.

Example 13-18. Configuring default proxy behavior

<configuration>
 <system.net>
 <defaultProxy enabled="false" />
 </system.net>
</configuration>

The default behavior, in the absence of any configuration, specifies that the use of the
default proxy is enabled, but the application will not use the user’s credentials to iden-
tify the user to the proxy server. (Authenticating the user to a proxy happens inde-
pendently of authenticating the user to the web server.) Some companies require users
to authenticate with the proxy in order to access the Internet, in which case you would
need to change the configuration, setting the <defaultProxy> element’s useDefaultCre
dentials attribute to true.

You can also modify the behavior in code. The HttpWebRequest class has a Proxy prop-
erty, and you can set this to null to disable the use of a proxy. Or you can set it to a
WebProxy object specifying a specific proxy and settings, as Example 13-19 shows.

Example 13-19. Setting an explicit proxy

HttpWebRequest request =
 (HttpWebRequest) WebRequest.Create("https://intraweb/");
request.Proxy = new WebProxy("http://corpwebproxy/");

Controlling cache behavior

Windows maintains a per-user cache of web resources, to avoid having to download
frequently used bitmaps, CSS, JavaScript, HTML pages, and other content again and
again. Internet Explorer uses this cache, but it’s also accessible to .NET code. By default,
your programs won’t use the cache, but you can enable caching by setting the request’s
CachePolicy, as Example 13-20 shows.

520 | Chapter 13: Networking

Example 13-20. Setting cache policy

HttpRequestCachePolicy cachePolicy = new HttpRequestCachePolicy(
 HttpRequestCacheLevel.CacheIfAvailable);
HttpWebRequest request =
 (HttpWebRequest) WebRequest.Create("https://intraweb/");
request.CachePolicy = cachePolicy;

The default policy is BypassCache, which means that not only will requests not look in
the cache, but any resources you fetch will not be added to the cache. Exam-
ple 13-20, on the other hand, will use a cached copy of the resource if one is available,
and if not, it will add the resource it downloads to the cache (unless headers in the
HTTP response indicate that it’s not a cacheable resource).

The HttpRequestCacheLevel enumeration supports various other caching options. If you
want to force the resource to be fetched anew, but would like the result to be added to
the cache, you can specify Reload. You can also force a check for freshness—HTTP
allows clients to tell the server that they have a cached version and that they want to
download the resource only if a newer version is available, and you can enable this
behavior with Revalidate. (Some more obscure options are also available, for devel-
opers who are familiar with the full complexities of HTTP caching and want complete
control.)

Using cookies

As far as the HTTP specification is concerned, each request is entirely unconnected
with any previous requests from the same client. But it’s often useful for a website to
be able to recognize a series of requests as having come from the same client, and so a
common mechanism to support this, called cookies, is widely used.* Cookies underpin
features such as shopping baskets, where a web application needs to maintain per-user
state—I expect to see only the things that I’ve put in my basket, and not the items that
any other users who are logged in right now have put in theirs. Cookies are also com-
monly used for managing logins—once the user has typed in his username and pass-
word in an HTML form, a cookie is often used, in effect, to authenticate the user from
then on.

If you’re using a web browser, cookies just work without needing any intervention
(unless you’ve disabled them, of course). But if you’re writing code, you need to take
specific steps to use them—by default, .NET will not use cookies at all, and does not
have access to the cookie store for Internet Explorer.† Nor does it implement a cookie
store of its own.

* Cookies are so widely supported that although they’re not technically part of the HTTP specification, they
might as well be.

† Silverlight applications are an exception. They rely on the web browser to make HTTP requests, and so your
requests will send whatever cookies the containing browser would normally send.

HTTP | 521

Often, ignoring cookies doesn’t cause any problems. But you may find that you some-
times need to write code that accesses a site that depends on cookies to work, in which
case you’ll need to write code on the client side to make that happen.

The basic idea behind cookies is that when a client receives a response from a server,
that response may include information that the server would like the client to remember
and to pass back the next time that client makes a request. The client isn’t expected to
do anything other than pass the information back verbatim—there’s no useful infor-
mation that the client can extract from the cookie. (Or at least there shouldn’t be,
although there are some infamous cases where people got this wrong. For example,
one online store made the mistake of putting prices of shopping basket entries into a
cookie, enabling devious customers to grant themselves discounts by manually editing
their cookies.) The client is just expected to hold onto the cookies it receives. (See
Example 13-21.)

Example 13-21. Getting the cookies from a response

CookieContainer container = new CookieContainer();

Uri address = new Uri("http://amazon.com/");
HttpWebRequest req = (HttpWebRequest) WebRequest.Create(address);
HttpWebResponse resp = (HttpWebResponse) req.GetResponse();

CookieCollection cookies = resp.Cookies;
container.Add(address, cookies);

We’re using the CookieContainer class provided by .NET to remember which cookies
we’ve seen from the various servers we’ve been talking to, and which addresses they
are associated with. When we come to make our next request, we can then supply this
container:

Uri address = new Uri("http://oreilly.com/");
HttpWebRequest newReq = (HttpWebRequest) WebRequest.Create(address);
newReq.CookieContainer = container;

Anytime we get a response, the server is allowed to return new cookies, or to modify
the value of existing cookies, so you would need to make sure you updated your cookie
container anytime you get a response, using the code in Example 13-21.

That’s it for HTTP. Finally, we’ll take a look at sockets.

Sockets
Sockets are the most powerful networking mechanism available in .NET—HTTP is
layered on top of sockets, and in most cases WCF is too. Sockets provide more or less
direct access to the underlying TCP/IP network services—they effectively let you speak
the native language of the network. This can offer some flexibility and performance
benefits over HTTP-based communications, but the downside is that you need to do
more work. Also, in corporate environments, communication with the outside world

522 | Chapter 13: Networking

with ad hoc use of sockets is often blocked, as firewalls may be configured to let through
only the traffic they understand and expect. But in cases where those restrictions do
not apply, and if the flexibility or (relatively small) performance benefits are worth the
effort, sockets are a useful tool.

The basic idea of a socket has been around for decades, and appears in many operating
systems. The central concept is to present network communication through the same
abstractions as file I/O. We already saw something like that with WebClient—it can
provide Stream support. However, those streams are concerned with the body of an
HTTP request or response. With sockets, the streams are at a lower level, encompassing
all the data. (If you used a socket-based stream to connect to a web server, you’d see
all of the details of the HTTP protocol in the stream, not just the body.)

Besides the file-like abstraction, socket APIs also have a standard set of operations for
establishing connections, and for controlling aspects of those connections’ behavior.

To understand sockets, you need some familiarity with the network protocols they
depend on, so as well as introducing the API features the next section incorporates a
very quick overview of the TCP/IP family of protocols. If you already know TCP/IP,
please feel free to skim through the next section and just look at the examples that
illustrate usage.

Sockets can be used with some other protocols besides those in the TCP/
IP family. For example, you can use sockets for IrDA (Infrared) or Blue-
tooth communications to communicate with local devices. There are
other network protocols too, but the TCP/IP family is the most widely
used.

IP, IPv6, and TCP
The Internet uses a family of protocols typically known collectively as TCP/IP. The
lowest level is IP, which is short for Internet Protocol. This is the means by which all
network traffic flows across the Internet—when you buy an Internet connection, you’re
buying the ability to deliver information from your computer to the Internet, and vice
versa, via IP.

IP’s main job is the ability to get packets (as individual messages are called in network-
ing) of data between different computer networks (hence internet). For example, data
sent by a web server in a data center out of its network port somehow needs to make
its way to your home WiFi network. These networks are connected together by rout-
ers, whose job is to work out where to send IP packets next; there are well-defined rules
for how they should do this, ensuring that data ends up at the machine it’s meant for.
This process depends on the IP address—a number that identifies a machine in a way
that makes it possible for routers to work out how to route messages to that machine.

Sockets | 523

If you’re using sockets, you will need to work with IP addresses because they’re how
you identify the machine you’d like to communicate with. You can typically just treat
them as opaque identifiers, wrapped by the IPAddress class in the System.Net name-
space. But there’s one aspect of IP addressing that it’s worth being aware of: the dis-
tinction between IPv4 and IPv6 addresses. See the sidebar below.

IPv4 and IPv6
There are two kinds of IP addresses because there are two versions of IP in use today.
Version 4 is the most widely used. (Previous version numbers were used only in the
Internet’s early experimental days, and you never see them on the Internet today.) IPv4
has a problem: its addresses are 32-bit numbers, meaning that there are only enough
unique addresses for around 4 billion computers. That may sound like a lot, but it’s
not enough, given how many computers and devices have Internet access and the rate
at which new ones are coming online. We are already using ungainly hacks to enable
multiple machines to share addresses, and limited IP address space is a big problem.

In IPv6, an address is a 128-bit number, which provides sufficient address space for the
foreseeable future, but there’s a problem. Old computers and routers don’t support
IPv6. Computers can often be fixed with software upgrades—Windows XP can have
IPv6 support installed (and it’s built into Windows Vista and later versions). But OS
support is not the whole story—applications may also need to be updated.

There’s a bigger problem for routers—a lot of them have the structure of IPv4 baked
into their hardware, so they need to be replaced to get IPv6 support. This makes IPv6
seem like an unattractive choice—would you want your web server to have an address
that will be inaccessible to anyone who hasn’t upgraded her network and Internet con-
nection to IPv6?

In fact, it’s not quite that bad, because there’s a special class of IPv6 addresses that are
effectively equivalent to IPv4 addresses, so it’s possible to provide an IPv6-based server
that’s accessible to IPv4 clients. But that means any public service you’re likely to want
to use will be accessible from IPv4, so there’s not a whole lot of incentive for end users
or corporate network administrators to throw out perfectly good IPv4 routers to up-
grade to IPv6, and it means that phone companies don’t have many customers de-
manding IPv6-capable DSL routers. Consequently, the transition to IPv6 is happening
incredibly slowly. Nonetheless, the IPv4 address space problem isn’t going to go away,
so you will need to write your software in a way that’s able to work with both IPv4 and
IPv6 addresses if you want it to continue to work as IPv6 adoption gradually picks up.

.NET tries to make this relatively easy in practice. Its IPAddress class can hold either
kind of address. For most applications, client-side code doesn’t even need to be aware
of which kind is in use. But occasionally, you’ll need to work with an IP address in its
numeric form, at which point the distinction matters.

While the Internet protocol uses numbers to identify machines, users are more familiar
with names such as oreilly.com and www.microsoft.com. The Internet has a system
called the Domain Name Service (DNS)—your Internet service provider gives you ac-

524 | Chapter 13: Networking

http://oreilly.com
http://www.microsoft.com

cess to this as part of your connection—whose job is to convert these textual names
into the IP addresses required to communicate with the machines (or hosts, as the
entities associated with IP addresses are conventionally called). Example 13-22 uses
the Dns class in the System.Net namespace to look up the IP addresses for a particular
hostname. DNS can associate multiple addresses with a name; for example, a DNS
name may have both an IPv4 and an IPv6 address. This code loops through all the
addresses, printing their type and value. (If you call ToString() on an IPAddress, which
is what Console.WriteLine will do in Example 13-22, it’ll return the standard string
representation for the numeric address.)

Example 13-22. Getting the IP addresses for a hostname

IPHostEntry hostDnsEntry = Dns.GetHostEntry("localhost");
foreach(IPAddress address in hostDnsEntry.AddressList)
{
 Console.WriteLine("Type: {0}, Address: {1}", address.AddressFamily,
 address);
}

This example looks up the special hostname localhost, which always refers to the local
machine on which the program is running. Both IPv4 and IPv6 define special addresses
that are reserved to refer to the local machine, so if you run Example 13-22, you’ll see
that it prints out two addresses, one for IPv6 and one for IPv4:

Type: InterNetworkV6, Address: ::1
Type: InterNetwork, Address: 127.0.0.1

For years, IPv4 was the only IP version in use, so it’s often not qualified
with a version number, which is why this IPv4 address’s AddressFam
ily property is just displayed as InterNetwork, and not InterNetworkV4.

Many DNS entries don’t have an IPv6 address, and if you modify Example 13-22 to
look up such an address (e.g., at the time of this writing, w3.org has only an IPv4
address) you’ll see just one address back from GetHostEntry:

Type: InterNetwork, Address: 128.30.52.45

Armed with an IP address for the machine we want to talk to, we now have enough
information for the Internet to deliver IP packets to the target machine. But there are
a couple of issues to resolve. First, there’s the question of how the receiving machine
will know what to do with the packet when it arrives. Second, there’s the problem that
the Internet is fundamentally unreliable. TCP (the Transmission Control Protocol) offers
a solution to both of these problems.

The Internet does not guarantee to deliver all IP packets. It can’t. Suppose you are using
a machine connected to the Internet with a 100 Mbps connection and you try to send
data at full speed to a machine that is connected with a 56 Kb modem. (Remember
those? In some parts of the world, they’re still used. If you get a chance, try using a

Sockets | 525

modern website via a 56 Kb dial-up connection, and then marvel at the fact that 56
kbps modems were once considered really fast.) As we send data to this bandwidth-
impoverished machine, the routers between us and them will initially try to manage
the speed difference—a router connecting a fast network to a slower network will store
incoming packets from the fast network in its memory, and they queue up while it plays
them out in slow motion to the target network. But eventually it’ll run out of memory,
at which point it’ll just start discarding packets.

At busy times of the day, packets may get discarded even if both ends of the connection
can operate at the same speed—perhaps the route the traffic needs to take through the
Internet between the two networks includes busy links that just don’t have the band-
width to support all the traffic that all of the ISP’s customers are trying to send. So
network congestion can also cause packet loss, even in the absence of speed
mismatches.

The upshot of this is that IP is not a reliable protocol—you get what’s sometimes called
a best effort service. In attempting to deliver your data, the Internet will give it its best
shot, but there are no guarantees. (You may have a service level agreement with your
ISP that makes statistical guarantees about the proportion of data it will successfully
deliver to and from the boundaries of the ISP’s network infrastructure, but there are
no guarantees for any single packet, nor can your ISP guarantee what will happen to
your data once it has been passed off to someone else’s network.)

To add to the fun, IP doesn’t even guarantee to deliver messages in the same order you
sent them. ISPs might have multiple routes through their network to ensure reliability
in the face of individual link failures, or just to ensure enough bandwidth to cope with
high loads. So if you send a series of IP packets to the same computer, not all of those
packets will necessarily take the same route—they might be split across two or more
routes. Some of those routes may prove to be quicker, meaning that the packets can
arrive at their destination in a different order than you sent them.

Writing networked applications can be challenging if you have no idea whether any
particular message will be received, nor any way of knowing in what order the ones
that do arrive will turn up. So to make life easier, we have the Transmission Control
Protocol—the TCP in TCP/IP. This is a protocol that sits on top of IP and adds some
useful features. It provides support for connections—rather than each packet being
handled in isolation, each transmission is part of the sequence of communication oc-
curring over the connection. TCP puts sequence numbers into each IP packet so that
it can detect when packets arrived out of order. And finally, the receiving machine
acknowledges receipt of each message. Clients use this to work out how fast the mes-
sages are getting through, which enables them to send data at a rate that matches the
network’s ability to deliver, avoiding problems with mismatched network speeds and
network congestion. And clients also use this to work out when data didn’t get through
and needs to be resent.

526 | Chapter 13: Networking

These features enable TCP to offer a data transmission service that sends data in order,
at a rate that will not try to exceed the capacity of the network routes available and in
a fashion that is reliable in the face of occasional packet loss. A socket is usually just
an API on top of a TCP connection that presents a stream-style API—your program
can write data into a socket stream, and the TCP/IP networking code running on the
computers at both ends uses TCP to ensure that the program at the receiving end has
another socket stream from which it can read the exact same sequence of bytes you
wrote into the stream. The programs don’t need to know about out-of-order delivery
or packet loss. As long as the networks are not hopelessly lossy, it looks like there is
perfectly reliable in-order transmission. TCP sockets are symmetrical, in that both ends
can send and receive data. And the directions are independent—communication can
be full duplex, so there’s no need for the two ends to take it in turns.

TCP also solves the problem of how the receiving computer knows what it’s supposed
to do with incoming data. A single computer may offer many network services—a small
company might run the intranet web server, file server, and email server on the same
computer, for example. So TCP adds the concept of port numbers. A service on a target
machine will be associated with a particular number. There’s a central administrative
body called IANA—the Internet Assigned Numbers Authority—which (among other
things) assigns and publishes port numbers for common services. For example, IANA
has designated port 80 as the TCP port on which HTTP servers usually accept incoming
requests. When a web browser (or the WebClient class we saw earlier) fetches a resource
via HTTP, it does so by opening a TCP connection to port 80.

A single client computer might open several simultaneous connections
to the same service—web browsers often do this in order to download
the various pictures, CSS, and JavaScript files concurrently, so as to be
able to display the web page sooner. To distinguish between them, each
connection has a client-side port number as well as a server-side port.
But while you need to know the server port in order to connect, the
client port number is usually picked for you dynamically by the OS.

Let’s look at a real example. We’re going to connect to a service using a very old and
very simple protocol called Daytime Protocol. This hasn’t changed since its specification
was published in 1983—you can find its definition in a document called RFC867 at
http://www.faqs.org/rfcs/rfc867.html. It’s remarkably simple: clients open a TCP con-
nection to port 13 on a server that offers the daytime service, and the server will send
back the time of day as text and then close the connection. The specification is pretty
vague about the format—it says this:

There is no specific syntax for the daytime. It is recommended that
 it be limited to the ASCII printing characters, space, carriage
 return, and line feed. The daytime should be just one line.

It then goes on to give examples of a couple of popular formats, but servers are free to
do pretty much anything they like.

Sockets | 527

http://www.faqs.org/rfcs/rfc867.html

This is a service that cannot be accessed with the WebClient or any of the WebRequest
family of classes—those types expect data to be layered inside HTTP (or sometimes
another higher-level protocol such as FTP), but Daytime Protocol just makes very basic,
direct use of plain TCP. So we need to use sockets if we want to access such a service.

The U.S. government’s National Institute of Standards and Technology (NIST) lists a
few servers that offer this daytime service. Once such machine, located in Redmond,
Washington, has the DNS name of time-nw.nist.gov. We’ll use that. To start with, we
need to look up its IP address, which we’ll do using a similar technique to Exam-
ple 13-22:

IPHostEntry hostDnsEntry = Dns.GetHostEntry("time-nw.nist.gov");
IPAddress serverIp = hostDnsEntry.AddressList[0];

Next, we need to open a TCP connection to port 13 (the daytime service port) on that
machine. To do this, we’ll need a Socket object.

Connecting to Services with the Socket Class
The System.Net.Sockets namespace defines the Socket class, which makes the socket
features of the underlying operating system available from .NET. We use a Socket when
we want to open a TCP connection to a remote service:

Socket daytimeSocket = new Socket(
 serverIp.AddressFamily,
 SocketType.Stream,
 ProtocolType.Tcp);

Socket implements IDisposable, so you will need to call Dispose at some
point. And while we would normally write a using statement to handle
that, that’s somewhat unusual with sockets, because they often have a
longer lifetime than any particular method. There isn’t one right way to
handle this, because the right moment to dispose a socket will depend
on the way in which your application uses the socket. The next few
examples therefore don’t show disposal, because we are illustrating as-
pects of the API that will be the same no matter how you are using
sockets. But be aware that you will always need to find a suitable place
to call Dispose.

The Socket constructor needs three pieces of information. It needs to know the address
family we will use to identify the server (e.g., IPv4 or IPv6). It also needs to know what
style of communication we’re expecting—we’re asking for stream-like communication.
(Some protocols support some other styles of communication, but with TCP you always
specify Stream here.) Finally, we specify the specific protocol we’d like to use—TCP in
this case.

528 | Chapter 13: Networking

If this constructor seems more complex than necessary, it’s because
sockets aren’t just for TCP/IP. The underlying Windows socket API
(WinSock) was introduced before TCP/IP had become the dominant
protocol, so it supports numerous protocols. Windows even supports
custom providers that add socket support for new protocols.

Note that we don’t specify where we’re connecting to yet. That information doesn’t go
in the constructor because not all sockets work the same way—some protocols support
transmission patterns other than simple point-to-point connections. So the Socket class
requires that we first say what sort of socket we want before going on to say what we’re
trying to communicate with. We supply that information when we connect to the
service:

daytimeSocket.Connect(serverIp, 13);

Remember, port 13 is the port number allocated by IANA for the daytime service. We’re
going to retrieve the time of day as text from this service, so we declare a variable to
hold the result:

string data;

Sockets represent all data as bytes. (Or more precisely, octets, which are 8-bit bytes.
Back in the old days, some computers used other byte sizes, and you occasionally come
across evidence of this—for example, some parts of the Internet email system guarantee
to transfer 8-bit bytes, and may truncate your data to seven bits per byte.) The Daytime
Protocol specification says that the service will return text using the ASCII encoding,
so we need something that can convert a stream of bytes containing ASCII into a .NET
string. Example 13-23 does this.

Example 13-23. Retrieving ASCII data from a TCP socket

using (Stream timeServiceStream = new NetworkStream(daytimeSocket, true))
using (StreamReader timeServiceReader = new StreamReader(timeServiceStream,
 Encoding.ASCII))
{
 data = timeServiceReader.ReadToEnd();
}

A few things are going on here. First, we constructed a NetworkStream—this class derives
from Stream, and it’s how .NET lets us treat a socket-based connection in the same way
as any other Stream. In general, the use of streams is optional because the Socket class
provides methods that let you read and write data directly. But in this example, getting
an actual Stream object is useful because we can plug it into a StreamReader. Stream
Reader takes a stream that contains text and can convert the bytes in that stream into
string objects. Example 13-23 uses the StreamReader class’s ReadToEnd method—this
asks to read all of the data in the stream to the very end and to return it as a single string.

Sockets | 529

Socket Read Granularity
Beware of a classic rookie mistake with TCP sockets. Developers often observe that if
they write, say, 20 bytes into a socket, and then on the receiving end they perform a
read operation that asks for more bytes (e.g., 1,000), that read usually returns 20 bytes
rather than waiting for the requested number of bytes to arrive. Many people mistakenly
assume this means TCP guarantees that data will arrive in chunks of the same size in
which it was sent. In practice, if a client sends a 20-byte chunk of data, the receiving
end may well return six bytes of that chunk from the first read, then another 13 in the
next, and then the last byte in the next read. Or even better, it might decide to aggregate
that final byte onto the front of the next lump of data sent by the client.

TCP sockets only attempt to deliver all the bytes in the order in which they were orig-
inally sent. Your code cannot make any assumptions about the granularity in which
the socket will return incoming data. TCP has no idea of a message or a frame—it offers
just a linear sequence of bytes. Your code needs to be ready to cope with data coming
out of the socket in arbitrarily sized lumps. (Asking the socket for data one byte at a
time is a way of simplifying this, although for high-bandwidth communications that
might not be the most efficient solution—you may get better throughput if you let the
socket give you data in slightly larger chunks.)

Notice that the first line of Example 13-23 passes true as a second argument to the
NetworkStream constructor. This tells the NetworkStream that we’d like it to take own-
ership of the Socket object—once we are done with the NetworkStream and call
Dispose on it, it will shut down the Socket object for us. That’ll happen at the end of
the block for the using statement here. This is important: we must close connections
when we have finished with them, because otherwise, we could end up hogging re-
sources on the server unnecessarily.

Having fetched the data and closed the socket, we finally print out the data:

Console.WriteLine(data);

Example 13-24 shows the whole example.

Example 13-24. Using a Socket to fetch data from a daytime server

IPHostEntry hostDnsEntry = Dns.GetHostEntry("time-nw.nist.gov");
IPAddress serverIp = hostDnsEntry.AddressList[0];

Socket daytimeSocket = new Socket(
 serverIp.AddressFamily,
 SocketType.Stream,
 ProtocolType.Tcp);

daytimeSocket.Connect(serverIp, 13);
string data;
using (Stream timeServiceStream = new NetworkStream(daytimeSocket, true))
using (StreamReader timeServiceReader = new StreamReader(timeServiceStream))
{

530 | Chapter 13: Networking

 data = timeServiceReader.ReadToEnd();
}
Console.WriteLine(data);

If you run the program, you’ll see something like this:

55059 09-08-16 06:29:42 50 0 0 912.5 UTC(NIST) *

It’s not strictly relevant to the use of sockets, but if you’re interested, here’s what the
numbers this particular server returns all mean. The first number is the number of days
that have elapsed since midnight on November 17, 1858. (If you’re curious to know
why anyone might find that useful, search the Web for “Modified Julian Date”.) The
set of three numbers that follows are the year, month, and date (2009, August 16 in
this example), followed by the time of day as UTC (time zone zero, or as we British
authors like to call it, Greenwich Mean Time). The 50 signifies that daylight saving
time is in effect where the server is located, and the following two zeros indicate re-
spectively that no leap second will be added this month and that the server believes it
is not currently experiencing any problems. The next number indicates that the server
is deliberately advancing times by 912.5 ms to compensate for transmission delays in
the Internet.

That’s all you need to do to use a service with sockets—construct a suitably configured
socket, call Connect, and then read data. If the service you’re using expects to be sent
data, you can also write data into the NetworkStream. Obviously, you need to be pre-
pared for errors—the Connect method will throw an exception if it is unable to connect
to the service, and you should also be prepared to get errors anytime you try to read or
write data with a socket; even if you connect successfully, parts of the network may
later fail, severing the connection to the service. Again, .NET indicates this by throwing
exceptions.

We’ve looked at only half of the story so far—what if you wanted to write a program
that implements a service like the daytime service? You can do this with the Socket class
too, but it’s a little more involved.

Implementing Services with the Socket Class
To implement a TCP-based service, we need to make sure our program is ready to
receive requests when they come in. If a computer receives an incoming TCP connection
request for some port number and no programs are currently listening for connections
on that port number, it will simply reject the request. So the first thing we need to do
is create a socket that listens for incoming connections (see Example 13-25).

Example 13-25. Listening for incoming TCP connections

using (Socket daytimeListener = new Socket(
 AddressFamily.InterNetworkV6,
 SocketType.Stream,
 ProtocolType.Tcp))
{

Sockets | 531

 daytimeListener.SetSocketOption(
 SocketOptionLevel.IPv6, (SocketOptionName) 27, 0);

 IPEndPoint daytimeEndpoint = new IPEndPoint(IPAddress.IPv6Any, 13);
 daytimeListener.Bind(daytimeEndpoint);

 daytimeListener.Listen(20);
 ...

As with the client side, we create a Socket object, once again specifying the address
family, socket type, and protocol. (In this particular example, the lifetime we require
for the Socket happens to be the same as the lifetime of our Main method, so a using
statement is an appropriate way to manage the socket’s disposal.) Whereas with the
client we could just use whichever IP address type came back from Dns.GetHostEntry,
when we write a server we need to state which sort of address we want to listen on.
Example 13-25 chooses the InterNetworkV6 family to enable the use of IPv6. If you want
to support just IPv4 you can specify InterNetwork. In fact, this example supports both
kinds of address—the call to SetSocketOption after the constructor puts this socket into
dual mode, meaning that it’s able to accept connections through either IPv4 or IPv6.
(The magic number 27 that appears in the call corresponds to a value defined by the
Windows SDK that doesn’t currently have an equivalent entry in the SocketOption
Name enumeration. So unfortunately, this is just a magic incantation that you need to
know in order to enable a socket to accept incoming connections on either IP version.)

Dual-mode sockets are supported only on Windows Vista or later ver-
sions of Windows. If you want to accept incoming connections on both
IPv4 and IPv6 on earlier versions of Windows, you’ll need to create two
sockets and listen for connections on both.

Next, we call Bind—this is how our application claims ownership of a particular TCP
port number. We’ve built an IPEndPoint object that specified port 13—the port number
for the daytime service—and also indicates which of the local machine’s addresses we’d
like to listen on. Machines often have multiple addresses—in fact, a connected machine
usually has at least two IPv4 and two IPv6 addresses. Earlier we saw the special machine
name localhost, and this corresponds to special IPv4 and IPv6 addresses. Even a com-
pletely disconnected machine has these addresses—the IPv4 address 127.0.0.1 and the
IPv6 address ::1 always refer to the local machine. On top of this, a machine usually
gets both an IPv4 and an IPv6 address when it connects to a network.

It’s possible to create sockets that listen on only the local addresses. That might not
sound very useful, as it means that you cannot connect to those sockets over the net-
work. In fact, this is quite handy for software developers. You can run services on your
machine that are inaccessible over the network but which programs running locally on
your machine can still connect to. This may allay the concerns of your IT administrators
who don’t like the idea of desktop machines running web servers or other services
because they (quite reasonably) consider such things to be a security risk. If you

532 | Chapter 13: Networking

configure a service to listen on only these local addresses, it won’t be visible on the
network, making it less likely to be a security liability. The test web server that Visual
Studio can set up for ASP.NET web projects works this way—it uses only a local ad-
dress, so it is accessible only to browsers running on the same machine. Note that this
technique is not very useful outside of a developer machine. A local socket cannot be
secured, so it will be accessible to any user logged in to the machine. For a developer
box that’s fine, but on server systems, this might constitute a security risk. So you
should avoid using local sockets.

Example 13-25 chooses the special address IPAddress.IPv6Any, which means that the
socket will accept incoming connections directed to any of the computer’s IPv6 ad-
dresses. And since we’ve configured this to be a dual-mode socket, it will also accept
incoming connections for any of the computer’s IPv4 addresses too.

If some other program on the computer is already using TCP port 13, the call to Bind
will throw an exception—any particular port number can be owned by only one process
on the machine at any one time. If Bind succeeds the port is now ours, and so we can
call Listen to indicate that we’re ready for incoming connection requests.

As you can see from the last line of Example 13-25, Listen takes a single argument.
This indicates the maximum backlog for this socket. The backlog allows for the situa-
tion where new connections arrive faster than our server can handle them. As you’ll
see shortly, we need to execute some code to accept each incoming connection, and at
busy times, we might lag behind—if a new connection request comes in before we’ve
managed to accept the last one, that new request goes into the backlog queue. If the
number of requests in the backlog gets as high as the number we pass to Listen, the
OS will start rejecting any further requests until our application catches up.

Our socket is now in a listening state, which means that if client programs start trying
to connect to our computer on port 13, the OS knows those connections are destined
for our program. The next thing our code has to do is accept those connections. Ex-
ample 13-26 does this in a loop so that it can keep accepting connection requests for
as long as the program runs.

Example 13-26. Accepting incoming connections

while (true)
{
 Socket incomingConnection = daytimeListener.Accept();
 using (NetworkStream connectionStream =
 new NetworkStream(incomingConnection, true))
 using (StreamWriter writer = new StreamWriter(connectionStream))
 {
 writer.WriteLine(DateTime.Now);
 }
}

This code calls Accept on the listening Socket. If there are currently no clients trying to
connect to the service, this call will block—it won’t return until there’s a client. Once

Sockets | 533

at least one client is attempting to use the service, this will return, handing back another
Socket object. The Socket API is designed to allow multiple simultaneous connections
to a single service, and so each call to Accept returns a new Socket. Your server will end
up with one Socket object for each distinct connected client, plus the one listening
Socket.

You never actually send or receive data on the listening socket. It doesn’t
represent a TCP connection—its only job is to return a new socket for
each incoming TCP connection you accept. Arguably it’s a little weird
to use the same Socket class for both jobs, because accepting incoming
connections feels like a pretty different kind of activity than representing
an active TCP connection. But that’s how sockets have worked for dec-
ades. .NET is merely continuing the slightly eccentric tradition.

Example 13-26 chooses to deal with the clients one at a time—the loop accepts a single
connection, sends a response, closes the connection, and then moves on to the next
client. So this particular server will have up to two active Socket objects at any one
time—the one for the client connection it’s currently handling, and the one Socket that
is listening for incoming connections. You don’t need to do this—it’s very common to
accept new connections on a listening socket when you already have open connections
that came from the same socket. (For example, a web server does not insist on finishing
the processing of whatever request it’s handling at the moment before starting work
on the next one. It’s common for a server to have hundreds of inbound connections
open simultaneously.) But since this particular service can do all the work it needs to
do and then close the connection immediately, it doesn’t have any particular reason to
open several connections simultaneously.

The code that does the work here is pretty similar to the client code we saw in Exam-
ple 13-24. As before, we create a NetworkStream, passing true to indicate that we want
to close the Socket when we dispose the stream. This time we create a StreamWriter
instead of a StreamReader, because we’re now implementing the server, and it’s going
to be sending data rather than receiving it. We call the writer’s WriteLine method,
passing the current date and time, which, as you may recall, was the whole point of
this service in the first place. Example 13-27 shows the completed code.

Example 13-27. The complete daytime service

using (Socket daytimeListener = new Socket(
 AddressFamily.InterNetworkV6,
 SocketType.Stream,
 ProtocolType.Tcp))
{
 daytimeListener.SetSocketOption(SocketOptionLevel.IPv6,
 (SocketOptionName) 27, 0);

 IPEndPoint daytimeEndpoint = new IPEndPoint(IPAddress.IPv6Any, 13);
 daytimeListener.Bind(daytimeEndpoint);

534 | Chapter 13: Networking

 daytimeListener.Listen(20);

 while (true)
 {
 Socket incomingConnection = daytimeListener.Accept();
 using (NetworkStream connectionStream =
 new NetworkStream(incomingConnection, true))
 using (StreamWriter writer = new StreamWriter(connectionStream,
 Encoding.ASCII))
 {
 writer.WriteLine(DateTime.Now);
 }
 }
}

The first time you run this code, you can expect to see the warning dialog shown in
Figure 13-9 (unless you’ve disabled your Windows Firewall). By default, the Windows
Firewall will notify you when programs start listening for incoming network connec-
tions out of the blue. Typically, a program that has a legitimate need to accept con-
nections will register itself with the firewall when it’s installed, so when a program that
the firewall knows nothing about suddenly starts listening for incoming connections,
that’s likely to be a sign of trouble—it’s exactly the sort of thing that malware would
do if it wanted to make your machine available to hackers for distributing spam or
launching distributed denial of service attacks. Of course, in this case, you know that
the code is legitimate because you just wrote it, and the reason your program hasn’t
gone through the official route of registering itself during installation is that you only
just wrote the code, and you haven’t written the Windows Installer .msi yet. So as a
developer, you expect to see this sort of warning for your own programs when they
listen for incoming connections. (You didn’t see this for the WCF example earlier be-
cause it was using the specially reserved design-time address space that Visual Studio
sets up when you install it. But that works only for HTTP—there’s no equivalent for
sockets.) You just need to click Unblock, and you shouldn’t see this warning again for
this particular program.

To test this program, you can use the client program you wrote earlier. The simplest
approach will be to run two copies of Visual Studio, one for the client and one for the
server. (Or you could configure Visual Studio to run both projects, as we did earlier.)
Run the server first. Then go to the client, modify the line that specifies the machine
name—replace time-nw.nist.gov with localhost—and then run the client. It should
print out the current time and date. The format will be different from the one used by
the NIST server—it’ll be the default used by the DateTime type. But that’s fine, because
the Daytime Protocol specification says we’re free to use any format we like as long as
it’s ASCII and it fits on a single line.

And that’s it for basic socket use. Sockets also support asynchronous versions of all the
methods—in fact, they support both the event-based and the method-based asynchro-
nous styles we encountered earlier. Since you’ve already seen this kind of code in action,

Sockets | 535

we won’t show it again here, but we’ll come back to asynchronous programming tech-
niques later in the book.

Other Networking Features
This chapter has touched on the most widely used networking types, but for com-
pleteness we should mention that some more specialized networking APIs are available.
For example, the System.Net.Mail namespace provides types for sending email through
an SMTP relay, and the related System.Net.Mime namespace supports MIME features,
which are the standard way to represent attachments for emails. The System.Net.Peer
ToPeer namespaces provide access to the peer-to-peer networking features of Windows.
(There are also WCF bindings that support this system.) The System.Net.NetworkIn
formation namespace provides types for discovering network status, through network
interface information, and TCP/IP ICMP mechanisms such as ping. The TLS/SSL in-
frastructure that enables HTTPS to send encrypted data is also available for you to use
directly, through the System.Net.Security namespace.

Figure 13-9. Firewall warning when listening for connections

536 | Chapter 13: Networking

Summary
We looked at three approaches to networked communication in this chapter. WCF
works at a fairly high level, enabling us to write servers that offer operations that can
be invoked by clients, modeling these remote invocations as method calls. We also
looked at the support for HTTP operations provided by the WebClient, HttpWebRe
quest, and HttpWebResponse classes. And finally, we looked at how to work at a very
low level, dealing directly with the bytes sent across the network with TCP, by using
the Socket class. There’s one particularly common form of communication that we’ve
not yet looked at: many applications need to talk to a database. We’ll look at this in
the next chapter.

Summary | 537

CHAPTER 14

Databases

Databases are one of computing’s most important inventions. They allow applications
to store massive quantities of information, with the ability to search through millions
of items and retrieve the ones you need in a fraction of a second. A high-quality database
can scale to large numbers of concurrent end users, while providing very reliable stor-
age, even in the face of system crashes. And even if you don’t need the scalability,
databases still look compelling if your program needs to remember data for any length
of time—applications that store valuable information usually rely on databases.

The .NET Framework provides several different ways to communicate with databases.
We will mainly be looking at its most recently introduced data access mechanism, the
Entity Framework, and how that works with the LINQ features of C#. But first, we’ll
take a quick look at all of the database features of the .NET Framework, to put the
Entity Framework in context.

The .NET Data Access Landscape
The main focus of this chapter, the Entity Framework, was first released as part of
Service Pack 1 for Visual Studio 2008, which emerged less than a year after the initial
(pre-Service-Pack) release of Visual Studio 2008. This was remarkable, since that first
release had already introduced a brand-new data access feature, LINQ to SQL, but then
Microsoft has released a lot of data access technologies over the years.

While the pace of change can sometimes seem daunting, each new piece has been a
useful advance, and despite the new APIs, the data access services that appeared
in .NET v1.0 are still relevant today. So we’re not in a state of continuous revolution—
new features mostly add layers of functionality. This means it’s useful to understand
all the parts in order to know what to choose for your applications, so we’ll review what
each is for and how the pieces build on one another.

539

Classic ADO.NET
.NET v1 provided a set of data access services called ADO.NET.* In more recent years,
ADO.NET seems to have grown into an umbrella term—as new data access features
have been added, most (but not all) appear in the ADO.NET section of the documen-
tation. But to understand the layers, it’s worth starting with the two parts that were in
the first version: interfaces for querying and updating databases, and classes that sup-
port disconnected use of data.

IDataReader and friends

ADO.NET defines a family of interfaces that provide a uniform way to perform basic
operations such as executing queries, inserting new rows into database tables, and
updating or deleting existing rows. Some data access features are common to many
different programming systems—if you’re familiar with ODBC, or with Java’s JDBC,
you could think of these ADO.NET interfaces as being the .NET equivalent of those
APIs.

These interfaces provide the most direct and efficient way to access the basic services
offered by relational databases, which is why the other data access features we’ll be
looking at in this chapter do not replace this part of ADO.NET. They build on this low-
level feature to provide higher-level services.

Because it’s not the main focus of this chapter, we won’t go into too much detail on
how this part of ADO.NET works, and will instead just provide a quick taste. Ta-
ble 14-1 shows the main ADO.NET base classes that represent the various things
needed to get a database to do some work.

Table 14-1. ADO.NET basic data access abstract base classes

Class Represents

DbConnection Connection to a database

DbCommand Command to be executed by a database

DbParameter Parameter for a command

DbDataRecord Single row of data returned by a query; alternatively, the IDataRecord interface represents the same
concept

DbDataReader Iterator over the full results returned by a query (potentially many rows and many row sets); implements
IDataRecord

DbTransaction Database transaction

* The name is a little confusing. In a sense, ADO.NET is a successor to ADO (ActiveX Data Objects), a data
access system that was around before .NET. So ADO.NET does for . NET what ADO did for Visual Basic 6.
But they are quite different technologies—ADO.NET makes no use of ADO, or ActiveX. ADO.NET can use
OLE DB, the technology underpinning ADO, but native ADO.NET providers are preferred—the OLE DB
provider is mainly for legacy sources.

540 | Chapter 14: Databases

Example 14-1 shows the typical pattern of communication. It starts by creating a con-
nection object—a SqlConnection here because this code connects to SQL Server, but
for other databases you’d use other types derived from DbConnection, such as Oracle
Connection. Next, it builds a command object, setting its CommandText to the SQL we
want the database to execute. This particular example is a parameterized command—
it selects addresses from a specified state, so we supply the command with a parameter
object specifying the state. Then we execute the command by calling ExecuteReader,
using the data reader object it returns to iterate through the rows produced by the query,
and we print out the values. (This particular example assumes you have a SQL Server
instance called .\SQLEXPRESS. If you installed the full edition or developer edition of
SQL Server, specify just . instead of .\SQLEXPRESS. See “Getting up and running with
SQL Server 2008 Express” on page 547 for information on getting the samples
installed.)

Example 14-1. Basic data access with ADO.NET

string sqlConnectionString = @"Data Source=.\sqlexpress;" +
 "Initial Catalog=AdventureWorksLT2008;Integrated Security=True";
string state = "California";

using (DbConnection conn = new SqlConnection(sqlConnectionString))
using (DbCommand cmd = conn.CreateCommand())
{
 cmd.CommandText =
 "SELECT AddressLine1, AddressLine2, City FROM SalesLT.Address WHERE " +
 "StateProvince=@state";
 DbParameter stateParam = cmd.CreateParameter();
 stateParam.ParameterName = "@state";
 stateParam.Value = state;
 cmd.Parameters.Add(stateParam);

 conn.Open();
 using (DbDataReader reader = cmd.ExecuteReader())
 {
 while (reader.Read())
 {
 string addressLine1 = reader.GetString(0);
 // AddressLine2 is nullable, so we need to be prepared to get
 // back either a string or a DBNull
 string addressLine2 = reader.GetValue(1) as string;
 string city = reader.GetString(2);

 Console.WriteLine(addressLine1);
 Console.WriteLine(addressLine2);
 Console.WriteLine(city);
 }
 }
}

The .NET Data Access Landscape | 541

You might be wondering why we’re fiddling around with parameter objects when it
would have been simpler to just put the state directly into the SQL string. This par-
ticular example hardcodes the state, so that would have worked, but the technique here
would be important if the value was picked at runtime. In general, building SQL queries
with string concatenation is a dangerous thing to do—if any of the text comes from
outside your code (e.g., from a form on a web page, or part of a URL) your code will
be vulnerable to a SQL injection attack. Imagine that Example 14-1 was part of a web
application, and state here came from part of a URL such as http://example.com/show-
info?state=California. Users are free to modify URLs—you can just type them into the
address bar—so a malicious user might decide to modify that part of the URL. If the
code just took the string from the URL and concatenated it directly into the SQL, we
would effectively be giving anyone with an Internet connection the ability to run arbi-
trary SQL commands on our database—SQL queries can contain multiple commands,
so users would be able to add extra commands to run after the SELECT. Parameters are
one way to avoid this, because the value of a parameter will not be treated as SQL. So
it’s a good idea to get in the habit of using parameters whenever some part of the query
needs to change at runtime.

The API we used here directly reflects the steps needed to communicate with a database,
so we have to write a lot of code to bridge between the queries, parameters, and columns
of the database world and the world of C#. Just as a sneak preview, Example 14-2
shows the equivalent code using the Entity Framework. Notice that instead of having
to build a parameter object for a parameterized query, we’ve just been able to use a
LINQ where clause and the C# == comparison syntax. (The Entity Framework performs
a parameterized query under the covers, so this is safe from SQL injection attacks.) Also
notice that all the database columns are available as object properties, so we don’t have
to call GetString or similar helpers to retrieve column values.

Example 14-2. LINQ to Entities versus ADO.NET

string state = "California";
using (var context = new AdventureWorksLT2008Entities())
{
 var addresses = from address in context.Addresses
 where address.StateProvince == state
 select address;

 foreach (var address in addresses)
 {
 Console.WriteLine(address.AddressLine1);
 Console.WriteLine(address.AddressLine2);
 Console.WriteLine(address.City);
 }
}

Example 14-1 has one obvious benefit in exchange for the complexity: we have com-
plete control over the SQL query. You can’t see the SQL in Example 14-2 because it
gets generated for you. In general, the low-level ADO.NET API gives us more direct

542 | Chapter 14: Databases

access to database features—for example, with SQL Server you can arrange to be no-
tified when a query you executed earlier will now return different results due to changes
in the database. (This can be useful in caching systems—ASP.NET’s cache can take
advantage of this. It needs to be used with care, however, because it requires you to
keep a database connection open at all times, which can cause severe scaling problems.)

Another potential benefit is that Example 14-1 does not require the application to
commit to the Entity Framework’s way of doing things. Not all applications necessarily
want to use databases in the way the Entity Framework chooses to.

The use of this old-style part of ADO.NET usually comes down to a need for control
over some specific aspects of data access, or occasionally because it offers performance
benefits in certain specialized scenarios. But for the majority of developers, this style
of data access will be unnecessarily low-level and verbose.

These interfaces are not the only part of ADO.NET v1—it has another piece whose job
is to manage data after the query that fetched it has completed.

ADO.NET data sets

ADO.NET defines the DataSet class, which is a collection of DataTable objects. A
DataTable is an in-memory copy of some tabular data. Typically, this would be fetched
from a database table or view, although it’s possible to build up a DataTable from any
information source—it provides methods for creating new rows from scratch.

A DataSet can be a convenient way of loading a small subset of a database’s contents
into client-side code, enabling information to be browsed locally using data binding.
It also supports some basic client-side processing of a kind that might normally be done
in the database—you can perform searching, filtering, and sorting, for example. In
Windows GUIs, moving this sort of work to the client side can improve
responsiveness—the user doesn’t have to wait for the database to respond to see results.
This is what’s meant by disconnected operation—you can still work with the data even
after closing the connection to the database.

DataSet objects are serializable, so it’s possible to save one to disk or send it across a
network. It can use an XML representation, which in theory makes it possible for
non-.NET code to access the information in a DataSet. However, while it’s certainly
workable, in practice this seems not to be a popular technique. This may be because
the XML representation is relatively complex and unique to the DataSet, so there’s not
much support for it outside of the .NET Framework.

Visual Studio is able to generate derived classes to build a so-called strongly typed
DataSet, whose tables offer row objects with .NET properties representing columns in
the corresponding database table. Strongly typed DataSets are often used to reduce the
amount of code required to bridge between C# and the database. However, since LINQ
to SQL and LINQ to Entities came along, this use of DataSets has become less popular,

The .NET Data Access Landscape | 543

because the LINQ-based approaches offer the same benefit but are typically easier to
use. So DataSets are somewhat out of favor today.

The low-level ADO.NET data access interfaces were the main way to access data
in .NET right up until .NET 3.5 and Visual Studio 2008 shipped, bringing LINQ.

LINQ and Databases
As we saw in Chapter 8, LINQ lets you perform tasks with collections of data including
filtering, sorting, and grouping. In that chapter, we were working only with objects,
but these are exactly the jobs that databases are good at. Moreover, one of the moti-
vations behind LINQ’s design was to make it easier to use databases from code. As you
can see in Example 14-2, LINQ blends data access seamlessly into C# code—this da-
tabase example looks very similar to the object examples we saw in the earlier chapter.

Database LINQ Providers
Database LINQ providers work very differently from the LINQ to Objects provider,
even though queries use the same syntax for both. In LINQ to Objects, a where clause
does all of its work inside the .NET Framework—it’s similar in action to a loop with
an if statement. But trying that with a database would be a disaster—if your where
clause is designed to select a single row out of 20 million, you absolutely don’t want
C# code to iterate through all 20 million rows! You want the database to do the filtering
so that it can use its indexes to locate the row efficiently.

And it works exactly as you’d want—the LINQ where clause in Example 14-2 is effec-
tively translated into a SQL WHERE clause. As you may recall, C# converts a LINQ query
expression into a series of method calls, and those method calls just end up building a
query object that knows how to return the results. LINQ uses deferred execution—the
query doesn’t start returning results until you ask for them. LINQ providers for data-
bases do something similar, but instead of working directly with IEnumerable<T>, they
use a specialized type that derives from IEnumerable<T>, called IQueryable<T>. Since
IQueryable<T> derives from IEnumerable<T>, you can still enumerate its contents in the
usual ways, but it’s only when you do this that it generates a suitable database query;
it won’t touch the database until you start asking to see elements. So we still have
deferred execution, but crucially, when you finally execute the query the complete chain
of processing that your LINQ query represents is turned into a single SQL query so that
the database can do all the work.

In short, whereas LINQ to Objects enumerates all the objects from the source and runs
the chain of processing inside your .NET application, database LINQ providers push
the processing to the database.

Example 14-2 uses LINQ to Entities—a LINQ provider for the Entity Framework. The
Entity Framework didn’t appear until Service Pack 1 of Visual Studio 2008, and there’s
an older database LINQ provider called LINQ to SQL that appeared in the first Visual
Studio 2008 release.

544 | Chapter 14: Databases

LINQ to SQL works only with SQL Server and SQL Server Compact 3.5, and has a
fairly narrow goal. It aims to reduce the overhead involved in writing data access code
by providing a convenient C# syntax for working with the data in a SQL Server
database.

The Entity Framework is similar, but it adds a couple of additional features. First, it is
designed to support multiple database vendors—it has an open provider model, ena-
bling support to be written for any database, and you can get providers for most popular
databases. Second, the Entity Framework allows the .NET representation to have a
different structure from your database schema if necessary. You can define a conceptual
model whose entities do not necessarily correspond directly to rows of particular
tables—an entity might include data that spans multiple tables in the database itself.
This entity can then be represented as a single object.

Of course, it’s possible to have your conceptual model correspond exactly to your
database model—you’re free to create a straightforward mapping where one entity
represents one row in one table. Used in this way the Entity Framework, in conjunction
with LINQ to Entities, makes LINQ to SQL look redundant. So why do we have both?

The main reason LINQ to SQL exists is that it was ready when Visual Studio 2008
shipped, whereas Microsoft hadn’t finished the Entity Framework at that point. LINQ
was a major part of that release, and since one of the main motivations behind LINQ
was data access, shipping without a LINQ-based data access feature would have been
a bit of a letdown. LINQ to SQL was developed by a different team (it came from the
LINQ team, and not the data access group), and it was ready earlier, due no doubt in
part to its less ambitious goals.

Microsoft has stated that while both technologies are fully supported, the Entity
Framework is where the majority of its efforts will now be focused. Visual Studio 2010
adds a few new LINQ to SQL features, but LINQ to Entities will see more development
in the long run.

That’s why this chapter’s focus is the Entity Framework (although a lot of the concepts
here apply equally to both technologies). That being said, both authors really like LINQ
to SQL. In scenarios where we’re using SQL Server and where we don’t need the con-
ceptual model and mapping features of the Entity Framework, we’re both more inclined
to use LINQ to SQL because of its simplicity and because we’ve already learned how
to use it. But if you learn only one data access technology for .NET, the Entity Frame-
work looks like the better choice for the long term.

Non-Microsoft Data Access Technologies
By the time Microsoft shipped the Entity Framework, various third-party options for
mapping relational data into object models had been around for a while. We’re not
going to talk about them in this book, but it’s useful to be aware that the Entity Frame-
work isn’t the only game in town.

The .NET Data Access Landscape | 545

Perhaps the best known alternative is NHibernate. This is a .NET version of Hibernate,
a popular Java ORM (Object Relational Mapper). NHibernate had already been around
for a few years by the time the Entity Framework emerged (and its Java progenitor is
considerably older). So in many respects it’s a more mature and more fully featured
ORM than the Entity Framework. On the other hand, NHibernate predates LINQ (and
Java currently has nothing resembling LINQ), so at the time of this writing, its LINQ
support is somewhat limited.

Many other ORMs are available for .NET, some free and some commercial. They are
too numerous to mention here, as a quick web search will confirm.

WCF Data Services
Most communication with databases happens over specialized, vendor-specific proto-
cols. Firewalls are usually configured not to let such protocols through, and with good
reason: from a security perspective, making your database directly accessible on the
Internet tends to look like a very bad idea. Nonetheless, some people want to do this,
and there are scenarios in which it’s not the terrible idea it might first seem, particularly
if you can exercise sufficient control over what gets exposed.

With WCF Data Services, you can present a relational data store over HTTP and XML
or JSON. You can be selective about what data you expose and to whom. Moreover,
the model you present doesn’t necessarily have to be the same as your underlying da-
tabase structure. In fact, there doesn’t have to be a database involved at all—there’s a
provider model that enables you to present any data through this mechanism, as long
as you can find a way to make it look like relational data.

You will normally use WCF Data Services in conjunction with the Entity Framework—
you can define the entities you’d like to present over HTTP, and use the framework’s
mapping services to bridge between that and the underlying data store. So we’ll be
looking at these services in more detail later in the chapter, once we’ve finished ex-
ploring the Entity Framework.

The focus of WCF Data Services is different than for the other data access features we’ve
discussed so far—it’s mainly about presenting data on the network, where everything
else has been about consuming data. However, there’s also a client-side component
that provides LINQ-based querying for such services. While it’s part of the WCF Data
Services technology, it’s optional—you’re not obliged to use it on the client. And this
client doesn’t strictly require WCF Data Services on the server—the client-side parts
could be used against any service that exposes data in the same way.

Silverlight and Data Access
Silverlight uses a seriously trimmed down version of the .NET Framework to keep its
download size and install time tolerably small. It doesn’t have much data access sup-
port. In fact, size is not the only reason—it wouldn’t normally make sense for a

546 | Chapter 14: Databases

http://nhforge.org/

Silverlight client application to attempt to connect directly to a database, because Sil-
verlight is a client-side web technology and most system administrators work to ensure
that their databases are not accessible via their native protocols over the Internet.

Of course, a direct connection to a database server might be an option in an intranet
scenario, but it’s not supported. Silverlight offers LINQ, but neither the LINQ to SQL
nor the LINQ to Entity Framework providers are available, because the underlying
database access mechanisms that these providers use are missing. The only supported
database access mechanism in Silverlight is the WCF Data Services client.

Databases
The full .NET Framework is designed to work with a wide range of databases. The
simple ADO.NET data access we started with uses interfaces to allow database vendors
to supply their own database-specific implementations. Likewise, the Entity Frame-
work is database-agnostic—it has an open provider model designed to allow support
for any relational database to be added. Of course, Microsoft ships a provider for its
own database, SQL Server, but other suppliers offer providers for various databases,
including Oracle, MySQL, PostgreSQL, SQLite, Sybase, and DB2.

In this book, we will use SQL Server. The examples work with SQL Server, which is
available for free. (Some editions of Visual Studio will automatically install SQL Server
2008 Express for you by default.) The Express edition of SQL Server is the same data-
base engine as the “real” versions, but with some limits on database size and with some
of the more advanced features missing. Despite being a trimmed down version, it’s
easily capable of supporting substantial websites. It can also be used on client appli-
cations written with WPF or Windows Forms, to support client-side data stores or
caching, although it can complicate the installation process for such an application—
installing a SQL Server instance is not a trivial task.

Getting up and running with SQL Server 2008 Express

If you want to follow the examples in this chapter, not only will you need a copy of
SQL Server 2008 Express installed, but you’ll also need to install a sample database.
We’ll be using the lightweight version of the Adventure Works database available from
http://msftdbprodsamples.codeplex.com/.

Getting this sample up and running is slightly fiddly, because there are numerous dif-
ferent versions of the Adventure Works sample—there are full and lightweight versions
for both SQL Server 2005 and SQL Server 2008, and each version of SQL Server comes
in various editions, not all of which put their datafiles in the same place. Because of all
the variations, it’s quite easy to find that the sample database has failed to appear even
though the installation appeared to proceed without error.

Moreover, the steps required to install the database change from time to time, as new
versions are released. We had been planning to provide detailed steps here, but while

The .NET Data Access Landscape | 547

http://msftdbprodsamples.codeplex.com/

we were writing this book, changes to the database installer rendered the first set of
instructions we had produced useless. Since that could well happen again between us
finishing the book and you reading it, we’re providing the instructions as part of the
sample code you can download for this book from the O’Reilly website so that we can
update them when necessary. You can find these at http://oreilly.com/catalog/
9780596159832/.

Now that we’ve finished a quick survey of the data access features available in .NET
and we’ve seen how to get the sample database installed, let’s look at the Entity Frame-
work in more detail. We’ll start with the model at the heart of the framework.

The Entity Data Model
The main goal of the Entity Framework (or EF for short) is to make it easier for your
code to work with data in the database. C# objects are quite different in nature than
the information stored in a relational database, and the process of managing these
differences, and transferring data between these two worlds, is called mapping. (So the
Entity Framework is a kind of ORM.) As Figure 14-1 illustrates, mapping happens in
both directions. As information is fetched from the database, it is loaded into objects.
And if your C# code modifies these objects or creates new ones, you can arrange for
the database to be correspondingly updated.

Figure 14-1. Models and mapping in the Entity Framework

The design of a database doesn’t always correspond directly to data structures con-
venient for our application code. There are many reasons we might want our code to
work with a model that looks slightly different from the data. The database may contain
information not required by the part of the application we’re writing, so we may need
only a subset. Information about a particular entity may have been split across multiple
tables for performance reasons. Naming conventions in the database might not suit our
code.

548 | Chapter 14: Databases

http://oreilly.com/catalog/9780596159832/
http://oreilly.com/catalog/9780596159832/

So the Entity Framework allows us to control the mapping. We can define a conceptual
model that describes the entities as we’d like to work with them from C#, along with
mappings that describe how that model maps onto the underlying storage. The EF also
requires us to provide a store schema, which is a definition of the structure we expect
it to find in the database. This may seem redundant—after all, the database knows its
own schema, so why would the EF need a copy? There are a couple of reasons. First,
it’s possible to define the model before you create the database—you can generate a
database schema from the store schema. Second, you can configure aspects of how the
Entity Framework uses the database, such as whether it uses queries or stored proce-
dures to access particular tables. Settings that are associated with the database itself
rather than what the EF does with data belong in the store schema rather than the
mappings or conceptual schema.

The three parts shown in Figure 14-1—the conceptual model, the storage model, and
the mappings between them—are collectively known as the Entity Data Model, or
EDM.

There are many constraints on the conceptual model, because the model
is useful only if you can construct a successful mapping. There are limits
on what mappings are able to do, so your existing database structure
will impose some restrictions on the model. Developers who are new to
the Entity Framework often find that they have a lot less freedom in the
design of the conceptual model than they first presumed. We’ll see what
mappings are possible in due course, but for now, do not imagine that
the EF is able to take any arbitrary conceptual model and bridge it to
any old database structure—there is necessarily a close relationship be-
tween the database and the conceptual model.

If you use the EF in the simplest way possible, your conceptual model will be the same
as your storage model, and the mapping will be very straightforward. If you use Visual
Studio’s wizard for adding EF support to a project, you’ll end up with exactly this sort
of direct mapping, with one entity type for each table or view you import. But you can
then tweak things to suit your needs. We’ll walk through the wizard now—even though
it produces a straightforward mapping where the conceptual model matches the storage
model, it still has to generate a complete set of model and mapping definitions, so it’s
instructive to look at what it produces.

You can add EF support to any .NET project (except for Silverlight projects). We’ll use
a console application for the examples. In the Add New Item dialog, we’ll select Visual
C# Items→Data, and then choose the ADO.NET Entity Data Model item template,
calling the new file “AdventureWorksModel”.

When you add an Entity Data Model to your project, Visual Studio asks whether you
want to start from scratch or base your model on an existing database. We’ll choose
that simpler second option. If you’ve previously told Visual Studio about any databases
you’re using—either via the Server Explorer toolbar or by using this or other

The Entity Data Model | 549

data-related wizards—it will show them in a drop down, but you can provide Visual
Studio with new connection details from within the wizard. For this walkthrough, we’re
going to connect to the AdventureWorksLT2008 sample database.

The wizard uses the name of your connection for one of the types that
it generates. You’ll see the identifier AdventureWorksLT2008Entities
cropping up in various examples later. If you happen to give your con-
nection a different name in Visual Studio, you’ll need to use that name
in the code.

Once you’ve chosen a database, Visual Studio will show a tree view of all the tables,
views, and stored procedures—you can use these as the starting point for your model.
For each item you select, it will add corresponding items to the store schema, the con-
ceptual schema, and the mappings. When you complete the wizard, it will generate
an .edmx file that defines the generated entity model. Visual Studio opens a graphical
view of this file—Figure 14-2 shows the conceptual model that appears if you select
the Customer, SalesOrderHeader, and SalesOrderDetail tables in the wizard and then
click Finish.

This view shows only the conceptual model. You can see slightly more of the EDM in
the Model Browser, shown in Figure 14-3. This will normally appear by default when
you open an EDM, but if you rearrange your windows and lose track of it, you can
right-click on the background of the model and choose Model Browser from the
context menu. The browser lists both the conceptual schema (under the
AdventureWorksLT2008Model node here) and the store schema (under Adventure
WorksLT2008Model.Store). The three selected tables are visible in both, and if you were
to expand them, you’d see that the properties of each entity in the conceptual model
correspond directly to the columns of the tables in the store schema.

Even the Model Browser doesn’t show the complete picture, as the Entity Data Model
has three parts: the conceptual schema, the store schema, and the mappings. To see
the mappings, you can select either entities or properties of entities. When you do this
in either the main .edmx editor view (Figure 14-2) or the Model Browser (Fig-
ure 14-3), the Mapping Details window, shown in Figure 14-4, will display the map-
pings for the selected item. The Mapping Details panel should appear automatically,
but if you don’t see it, you can open it with the View→Other Windows→Entity Data
Model Mapping Details menu item.

As Figure 14-4 shows, the generated mapping is pretty simple. On the left you can see
each column from the table definition in the store schema, and on the right you can
see which entity property it is mapped to. Since the store schema and conceptual model
were generated directly from the database schema, there’s nothing complicated going
on—the same names appear on either side, and the only difference is that the lefthand
side shows data types from the database world such as nvarchar and bit, while the
righthand side shows .NET data types such as String and Boolean.

550 | Chapter 14: Databases

Generated Code
Visual Studio puts the whole Entity Data Model definition in an .edmx file, which is
just XML. The wizards and editor windows we’ve seen so far are just convenient views
into that XML. If you look directly at the XML in the .edmx, you’ll see it contains
sections corresponding to the three parts of the model—storage schema, conceptual
schema, and mappings. But the whole point of this exercise was to make it easier to
use data from code. So Visual Studio generates code based on the contents of
any .edmx files in your project.

For each entity type you define, a corresponding .NET class will be generated. These
classes provide normal properties for each property in the entity type’s definition. So
when you create and edit entity types, you are in effect defining .NET types that you
can use from your C# code.

Figure 14-2. Conceptual model with three entities

The Entity Data Model | 551

Figure 14-3. EDM in the Model Browser

Figure 14-4. The EDM Mapping Details window

552 | Chapter 14: Databases

The generated types derive from EntityObject, a base class that enables
the object to participate in the Entity Framework. This includes features
such as change tracking so that the framework can know when it needs
to write updates to the database. The first version of the EF required
entities to derive from this base class or to implement certain EF inter-
faces, but .NET 4 introduced so-called POCO (Plain Old CLR Object)
support, which makes it possible to use an existing class hierarchy with
the Entity Framework without having to modify those classes (as long
as you can create a successful mapping). There’s more work to do that
way—if you don’t derive from EntityObject you need to write extra
supporting code to provide the EF with enough information to know
how it should handle change tracking, identity, and relationships for
your objects. Here we’re sticking with the simpler approach of letting
the wizard generate classes that derive from the EF’s base type.

Visual Studio also generates one extra class representing something called the object
context. You use this to obtain entity objects representing data already in the database
and it’s also where you go to add new data. And as we’ll see later, this object provides
other services for managing the data access operations. This type derives from
ObjectContext, and sometimes it’s just referred to as the context. Example 14-3 uses
this generated context type to retrieve rows from the SalesOrderHeader table for a par-
ticular date.

Example 14-3. Using generated entity types

using (var dbContext = new AdventureWorksLT2008Entities())
{
 DateTime orderDate = new DateTime(2004, 6, 1);
 var orders = from order in dbContext.SalesOrderHeaders
 where order.OrderDate == orderDate
 select order;

 foreach (SalesOrderHeader order in orders)
 {
 Console.WriteLine(order.TotalDue);
 }
}

Notice that this example wraps the context in a using statement—the object context
is a disposable resource because it does a lot of work behind the scenes, and it needs
to tidy up once you no longer need the state it builds up. So it’s important that you
dispose it when you’re done with it.

The object context’s type here is AdventureWorksLT2008Entities. By default, Visual
Studio will just append the word Entities to your database connection name. You can
change this by selecting the EntityContainer item in the Model Browser—you can see
this in the middle of Figure 14-3—and then use the Properties panel to choose its name.
But we’ll keep the default name in the examples.

The Entity Data Model | 553

Notice that the LINQ query in Example 14-3 uses the context’s SalesOrderHeaders
property as the query source. That’s not quite the same as the table name—the wizard
has added an s. By default, the Entity Framework wizard will attempt to pluralize and
depluralize words as appropriate—in general, it gives entity types singular names while
properties that return collections of entities are plural. (The names in our conceptual
model can differ slightly from our storage model thanks to the Entity Data Model’s
mapping.) If you don’t like this plural handling, there’s a checkbox to turn it off when
you import tables with the wizard.

Example 14-3 also uses the SalesOrderHeader class generated for the entity type of the
same name. The order range variable in the LINQ query is of this type, as is the
order iteration variable in the loop.

It’s this generated entity class that enables us to refer to database columns using normal
C# syntax. The LINQ query’s where clause uses that entity class’s OrderDate property
to build a query that uses the OrderDate column of the corresponding database table.
Likewise, the loop uses normal C# property syntax to retrieve TotalDue, which repre-
sents the column of the same name in the database.

If this seems rather uneventful, well, that’s the idea. Compare this to the much more
fiddly code in Example 14-1—by mapping database columns to properties, the Entity
Framework reduces the amount of friction involved in writing data access code.

You can find the generated source code for the entities in the Solution
Explorer by expanding the .edmx file—you’ll find a file with a similar
name, but with .Designer.cs in place of .edmx (so AdventureWorks.De-
signer.cs in this case). As with all generated code you should avoid mod-
ifying it—Visual Studio tends to regenerate code from scratch each time
any setting changes. But if you’d like to add features to these generated
classes, that’s easily done—all the classes are generated with the
partial keyword, meaning that you can put additional members in sep-
arate source files. You can add another class definition with the same
name as an entity type, marked with the partial keyword, to any source
file. The C# compiler will effectively merge your partial class with the
generated partial class.

Changing the Mapping
Let’s change things a bit, so the mapping has something to do. Most of the column
names in this example database happen to fit the usual .NET conventions for property
names, but there’s an exception: the rowguid column in SalesOrderHeader is not capi-
talized in the usual way. (This column exists to support SQL Server replication, so it’s
fairly unusual to want to use it from code, but in this example it’s the only column with
a funny-looking name.) If you change this name to RowGuid in the designer (either by
double-clicking on the property or by using the Properties panel) Visual Studio will
update the mapping, and the Mapping Details panel will show that the rowguid column

554 | Chapter 14: Databases

in the table is mapped to the RowGuid property of the entity. (If you’d prefer a less subtle
change, you could rename the Customer entity’s ModifiedDate to, say, LastChanged. The
mapping lets you use any names you like.)

Restrictions on Removing Mapped Properties
You might look at the large number of properties in the SalesOrderHeader entity and
decide that you’d like to remove some properties completely. While you can do this,
be aware that the EF requires certain columns to be mapped. For example, it needs the
columns that form the primary key to be mapped, because these are necessary to iden-
tify an object as representing a particular row in the database. Less obviously, the EF
also demands that you provide a mapping for any nonnullable columns that don’t have
default values, because without them it would be impossible to create new instances
of the entity. The database will insist that the INSERT statement the EF generates for
creating the new row provides values for all nonnullable columns that don’t have de-
fault values. The EF therefore requires that you provide mappings for such columns so
that it’s able to generate a valid INSERT.

This can be frustrating if you don’t actually need to create new items. For example,
your code might only need to read data that was added by some other part of the system.
It’s possible to create read-only entities as a way around this, but it’s not
straightforward—you need to define either a query view or a defining query, both of
which are advanced topics beyond the scope of a one-chapter description of the Entity
Framework.

Changing the names of a few columns isn’t very exciting. (And with this particular
example database it’s not even very useful, although if you’re dealing with more idio-
syncratic naming schemes, renaming becomes more important.) So let’s look at one of
the more interesting mapping features: the way in which the EF handles relationships
between entities.

Relationships
Databases usually have relationships between tables. In the Adventure Works example,
the Customer table has a foreign key relationship with the SalesOrderHeader table. Both
tables have a CustomerID column. This is the primary key of the Customer table, and the
database schema includes a constraint enforcing that the CustomerID column in the
SalesOrderHeader can contain only a value for which a corresponding Customer row
exists. Or to put it more simply, each SalesOrderHeader row must be related to a specific
Customer row.

The Entity Data Model | 555

This has nothing to do with the relations in a relational database, inci-
dentally. The relational name comes from the set theory underpinning
databases, and a relation is not the same thing as a relationship here. A
relation effectively corresponds to a table.

Visual Studio’s EDM wizard looks for foreign key constraints in the database schema
to discover the relationships between tables. In the EDM, it turns these into associa-
tions. (The distinction between a relationship and an association is somewhat subtle.
An association is a named item in the Entity Data Model representing a particular
relationship. The main reason this distinction exists is that relationships are a slightly
more general concept—associations are capable of modeling only certain kinds of re-
lationships.) Just as tables added with the wizard end up appearing in all three parts of
the EDM—a table will appear in the store schema, a corresponding entity will be added
to the conceptual schema, and there will be a mapping between the two—a similar
process occurs for associations. If a foreign key constraint indicates that there’s a rela-
tionship between two database tables added through the wizard, Visual Studio will add
an association to the EDM’s store schema and also to the conceptual schema, and it
will set up a suitable mapping between these two associations. And on top of this, it
will add navigation properties to the related entities in the conceptual model.

In previous versions of the Entity Framework, foreign key columns rep-
resented with navigation properties would not get scalar properties pro-
viding direct access to the key values—there would have been no
CustomerID property on the SalesOrderHeader type, for example. This
proved awkward in practice, so starting with .NET 4 relationships are
represented both as the underlying foreign key value and also as a nav-
igation property.

Navigation properties

Associations represent relationships between entities, and the most natural way to
present them in the world of objects is through properties. For example, you’d expect
an object representing a sales order to provide a property that refers to the related
customer. That’s exactly what the EF does, and it also works in reverse: the customer
object provides a property that holds a collection of references to all the customer’s
orders. Example 14-4 shows a LINQ query that gets the number of SalesOrderHeader
rows associated with each customer. It fetches one property from the Customer entity
class that maps to a column in the database (CustomerID) and also uses a property called
SalesOrderHeader, which represents the customer’s orders.

Example 14-4. Using a navigation property

using (var dbContext = new AdventureWorksLT2008Entities())
{
 var customerOrderCounts = from cust in dbContext.Customers

556 | Chapter 14: Databases

 select new
 {
 cust.CustomerID,
 OrderCount = cust.SalesOrderHeaders.Count
 };
 foreach (var customerInfo in customerOrderCounts)
 {
 Console.WriteLine("Customer {0} has {1} orders",
 customerInfo.CustomerID, customerInfo.OrderCount);
 }
}

The database table that the Customer entity class represents does not have a column
called SalesOrderHeader. The Entity Framework wizard added this property to repre-
sent the relationship between the Customer and SalesOrderHeader tables. This is not an
ordinary property—in Figure 14-2 you can see that it appears separately, under Navi-
gation Properties.

From C# code, a navigation property looks like a collection. Example 14-4 just retrieves
the Count property, but we could do more advanced things. The query in Exam-
ple 14-5 has a nested query for each customer that looks for all shipped orders (those
with a Status of 5), and for each one it reads the total due for that order and a count of
all the SalesOrderDetails rows associated with that order. So this uses two navigation
properties—the one representing the relationship between customers and orders, and
the one representing the relationship between orders and order details.

Example 14-5. Traversing multiple relationships with navigation properties

var info = from cust in dbContext.Customers
 select new
 {
 cust.CustomerID,
 Orders = from order in cust.SalesOrderHeaders
 where order.Status == 5
 select new
 {
 order.TotalDue,
 ItemCount = order.SalesOrderDetails.Count
 }
 };

There’s a reason we’ve used LINQ in these last two examples—it happens to avoid an
issue with navigation properties. How does the EF decide how many entities to load
for us, and when? In Example 14-4, the LINQ query just retrieves two pieces of infor-
mation for each customer—the CustomerID and the order count—and while Exam-
ple 14-5 is more complex, it’s still circumscribed, so the EF can inspect the query to
work out exactly what it needs to retrieve. But when we’re not using LINQ, how does
the EF know what to do? For instance, consider the code in Example 14-6.

The Entity Data Model | 557

Example 14-6. Following an association after the initial query

Customer myCustomer = dbContext.Customers.Single(
 cust => cust.CustomerID == 29531);
Console.WriteLine(myCustomer.SalesOrderHeaders.Count);

This fetches the entity for a specific customer, and then tries to get the number of
SalesOrderHeader entities to which this item is related. Prior to .NET 4, this did not
work—it would print out 0, even though the example database has one related order
for this customer. In .NET 3.5 SP1, the Entity Framework would initialize navigation
properties such as the Customer object’s SalesOrderHeaders property with an empty
collection, and would load the related objects only if we ask it to, using the Load method
shown in Example 14-7.

Example 14-7. Explicitly loading entities for an association

Customer myCustomer = dbContext.Customers.Single(
 cust => cust.CustomerID == 29531);
myCustomer.SalesOrderHeaders.Load();
Console.WriteLine(myCustomer.SalesOrderHeaders.Count);

.NET 4 adds an alternative way to do this, called lazy loading. Rather than having to
call Load explicitly, the EF can automatically load related objects at the point at which
you access them. The context has a property to control this:

dbContext.ContextOptions.LazyLoadingEnabled = false;

This is true by default; setting it to false reverts to the pre-.NET 4 behavior. With this
option switched on, Example 14-6 is equivalent to Example 14-7, because the EF will
call Load for us when we first try to use the navigation property. (The collection ignores
calls to Load if the entities are already loaded, so requesting multiple loads is not a
problem.)

In either case, the EF has to make an extra trip to the database. The call to Single will
fetch the customer from the database before returning, which means that a second
request is required when we later ask it (either explicitly or implicitly) to fetch the
related rows, because the EF didn’t know we were going to use these items until we
asked for them. This might not be a problem, but in general, the more trips you make
to the database, the slower things go.

558 | Chapter 14: Databases

Be wary of enabling lazy loading, because it can sometimes result in a
lot of unnecessary database requests. For example, one author was in-
volved with a project that had some diagnostic code that “helpfully”
wrote a snapshot of certain objects into a log, including the value of all
their properties. Unfortunately, this code was recursive—if a property
referred to another object, it would display that too, and if a property
referred to a collection of objects, it would show all of them. This logging
code had cycle detection, so it wouldn’t get stuck in an infinite loop,
but otherwise it wouldn’t stop until it had showed every object reach-
able from the starting point. Unfortunately, lazy loading was enabled,
so when this code was given an entity, it ended up fetching all entities
that were related, no matter how distantly, to the first object at hand,
so it hammered the database with thousands of requests each time a log
entry was generated.

Modern databases are surprisingly fast—it’s possible for this sort of
problem to go unnoticed on development machines with their own local
database instance. But you probably don’t want it happening on a busy
live server.

To get consistent results you’d want to make sure the initial query and subsequent lazy
loads happen as part of a transaction (as shown later), but to ensure scalability in a
busy system you want to minimize the number of requests made in any single trans-
action. So you can tell the EF that you want certain related entities to be fetched at the
same time as the main result. You do this with the Include method shown in Exam-
ple 14-8, which is available on any of the entity sets provided by the context.

Example 14-8. Specifying relationships to preload

var customersWithOrderDetails = dbContext.Customers.
 Include("SalesOrderHeaders.SalesOrderDetails");
Customer myCustomer = customersWithOrderDetails.Single(
 cust => cust.CustomerID == 29531);
Console.WriteLine(myCustomer.SalesOrderHeaders.Count);

This call to Include asks to load related entities available through the Customer entity’s
SalesOrderHeaders property. (These will be loaded regardless of the lazy loading set-
ting.) It also says that for each of those related entities, the EF should load any related
entities visible through the SalesOrderDetails property. In other words, this tells the
EF that we would like it to fetch all of the orders for this customer and all of the details
for those orders. It will generate a single query that fetches all of the necessary infor-
mation in one request.

The Entity Data Model | 559

If you’re wondering why it doesn’t just prefetch all related items all of
the time, consider the performance implications. In some circumstan-
ces, aggressively prefetching all related items might amount to attempt-
ing to copy a significant fraction of your database into memory! But even
in more circumscribed cases, fetching more data than you need can slow
your system down or reduce scalability.

So far we have seen only so-called one-to-many relationships—one customer can be
related to many orders, one order can be related to many order details. But there are
other kinds of relationships.

Multiplicity

The multiplicity of a relationship refers to the number of participants at either end of
the association. In the Entity Framework, an association’s multiplicity determines the
nature of the navigation properties that represent the relationship.

In the Entity Framework, there are always two ends to an association,
regardless of the multiplicity. For example, we have customers at one
end of a relationship and orders at the other end. The multiplicity de-
scribes how many items may be at a particular end, not how many ends
there are.

You will sometimes want to represent more complex relationships—for
example, a so-called ternary relationship involves three kinds of parties.
This is a different concept from multiplicity and is called degree. For
example, consider a teaching arrangement in a college, where a student
is taught a subject by a teacher; this relationship involves three entities
(student, subject, and teacher). These higher-degree relationships are
typically modeled in the database by having a table just for the relation-
ship itself. Likewise, the EDM does not directly support relationships
with a degree of more than two, so you would represent such a rela-
tionship with a distinct entity type in the conceptual model, adding
associations between that entity and all the participants in the
relationship.

For each end of a relationship, you can specify a multiplicity of either 1, 0..1, or *. The
first, 1, means what it says—there is always one item at that end of the association. The
last, *, means any number—there can be zero, one, or several items at that end. A
multiplicity of 0..1 means zero or one—this indicates that the association is optional,
but where present, there is just one entity at this end.

In a one-to-many relationship, the two ends have a multiplicity of 1 and *, respectively.
You can see this in Figure 14-2—the lines between entities represent associations, and
the multiplicity appears at each end of the line. So an item at the first end can be related
to any number of items at the second end; an item at the second end is always related

560 | Chapter 14: Databases

to exactly one item at the first. In C#, the entity at the 1 end would have a navigation
property that offers a collection, in order to provide access to the many end. The entity
at the * end would provide a simpler noncollection property to get back to the one
entity it is related to.

A variation on this theme has 0..1 instead of 1 at the first end, and * at the second end
as before. This is similar to a one-to-many relationship, except items at the many end
don’t necessarily have to be related to an item at the other end. For example, you might
want to represent the relationship between managers and their reports. But if you go
far enough up the corporate hierarchy, you will find someone who has no manager—
the navigation property would return null. So a simple one-to-many relationship
doesn’t work here—you would need 0..1 instead of 1 at the manager end of the
association.

Sometimes one-to-one relationships crop up—each item at one end is always related to
exactly one item at the other end. This is an unusual kind of relationship because it
implies that entities are inextricably and exclusively linked. Relationships that sound
like they might be one-to-one are often not. Here’s an illustration from popular culture,
describing a relationship between a master and an apprentice expressed as: “Always
two, there are. No more, no less. A master, and an apprentice.”† A master always has
an apprentice, an apprentice always has a master, so isn’t that a one-to-one relationship?
In fact, this might need to be a one-to-many relationship because on the death of an
apprentice, the master takes a new apprentice. (The apprentice has just one master, as
the only career paths are promotion to master or untimely death. So we can at least be
sure that this is not a many-to-many relationship.) The constraint expressed here is
merely that the master has a one-at-a-time approach to relationships, much like serial
monogamy. (For example, both Darth Maul and Darth Vader were apprentices of Darth
Sidious.) So if the database needs to reflect the full history rather than just the current
state, a one-to-one relationship won’t be sufficient. (Although if you only need the
database to store the current state, one-to-one might be fine here.) In databases, one-
to-one relationships often exist because information about a single entity has been split
across multiple tables, perhaps for performance reasons. (The EF lets you map this
back to a single entity in the conceptual model, so such relationships are likely to be
more common in the store schema than the conceptual schema.)

Variations on one-to-one where one or the other end is optional can be useful.‡ For
example, you might have an entity representing a customer and an entity representing
an account. An organization (such as a butcher shop) might choose to have a policy
where customers are not required to have accounts, but where accounts are held any
single customer can have only one account, and accounts must be held by exactly one
customer. (That’s not the only imaginable policy, of course.) The relationship between

† Yoda discussing Sith terms of employment, from Star Wars Episode I: The Phantom Menace.

‡ Opinion is divided on whether this variant can still be called one-to-one. Strictly speaking it’s incorrect, but
in practice you’ll see one-to-zero-or-one relationships widely described informally as one-to-one.

The Entity Data Model | 561

a customer entity and an account entity would have a multiplicity of 1 at the customer
end and 0..1 at the account end.

Finally, there are many-to-many relationships. For example, you might have an entity
type to represent a standard part such as an M3 bolt, and an entity to represent a part
manufacturer. Many manufacturers are capable of producing M3 bolts, and most man-
ufacturers produce more than one kind of product. To model the relationship of who
produces what in the EDM, you could use an association with a multiplicity of * for
both ends of the association. And in code, both entities would have navigation prop-
erties offering collections of objects.

However, there’s an issue with many-to-many relationships in the EF. In the database,
such a relationship is represented as a separate table, where each row contains two
foreign keys, one for each end of the relationship. If that’s all the table contains, the EF
will happily let you map this table to an association in the conceptual model, and the
navigation properties will work as described. However, if the table contains other in-
formation, you will end up needing to represent it as an entity in its own right. For
example, given the product/manufacturer example earlier, it might turn out to be useful
to know what product code a particular supplier uses for a particular standard product.
There’s no place for this information to go if you just have navigation properties on the
product and manufacturer that point to one another—you would need an extra
entity type to hold this property that is specific to a particular product/manufacturer
combination.

This can get slightly awkward when there are columns in the relationship table that
your application doesn’t particularly care about, but which the EF insists are mapped
because they are nonnullable and don’t have default values. Your conceptual model
would not be able to represent this table as a simple many-to-many association, because
that would leave nowhere to map the relationship property. (The underlying issue here
is the same one that prevents you from omitting certain database columns from your
entities.)

Finally, we’ll look at one more feature of the Entity Framework’s mapping capabilities:
support for inheritance.

Inheritance
Inheritance presents a challenge for an ORM, because the typical object-oriented no-
tions of inheritance don’t have any direct parallel in the relational model. Various sol-
utions exist because there isn’t one really good way to do this. The Entity Framework
supports mappings for a couple of the popular approaches for attempting to bridge this
chasm.

While there are several approaches to mapping (which we’ll get to shortly), the con-
ceptual model’s handling of inheritance works the same way in all cases, and is very
similar to inheritance in C#. Any entity type can optionally specify one other entity

562 | Chapter 14: Databases

type as its base type. Entities with a base type inherit all the properties from that base.
An entity cannot specify more than one base type, but you are allowed to derive from
an entity that derives from another entity (i.e., you can have an inheritance chain). And
the corresponding generated entity classes that you use from C# will represent these
inheritance relationships with normal class inheritance.

You will need to define mappings for your base entity type in the usual way. All the
derived types will inherit these mappings. The question is: how do we map features
unique to individual derived types?

The first mapping approach involves mapping all entity types sharing a particular base
entity type to a single table in the database. The entity type the EF chooses to represent
a particular row is chosen based on a discriminator column—in the mapping you simply
provide a list that says, for example, if the discriminator column contains 1, the entity
type is Employee, and if it’s 2, the type is Manager, while if it’s 3, the type is Director,
and so on. These derived types will presumably have additional properties distinguish-
ing them from one another, and these would map to nullable columns in the table.
They will need to be nullable, because these columns will have values only when you’re
using the derived types that support them—non-nullable database columns need to be
mapped to properties in the base entity type if you’re using this mapping style.

The second mapping approach uses a separate table for each derived type. Derived
types still inherit the base mappings, so in this scenario, derived entity types will be
involved with two or more tables: the table unique to the derived type, along with any
tables used by the base type. This approach requires all the tables involved to use the
same primary key.

None of these mapping features would be much use without some way to retrieve data
from the database, so we’ll now look at how to execute queries in the Entity Framework.

Queries
We’ve seen some simple LINQ-based examples for retrieving data from the database
with the Entity Framework. Under the covers, the EF turns a LINQ query into a SQL
query that the database understands. In fact, there are two ways of getting the EF to
query the database for data: LINQ and something called Entity SQL. We’ve seen some
simple LINQ to Entities examples already, but we’ll now look at it in more detail.

LINQ to Entities
The LINQ provider for the Entity Framework, LINQ to Entities, supports all of the
standard LINQ operators we saw in Chapter 8, but it works a little differently. The idea
of deferred execution is still present, and it’s even more important. The point at which
you cause the LINQ query to execute—the instant at which your code first starts trying
to use the results—is the point at which the EF will need to send a request to the

Queries | 563

database. So looking at the code from Example 14-3, the statement shown in Exam-
ple 14-9 does not get anything from the database.

Example 14-9. Simple LINQ to Entities query expression

var orders = from order in dbContext.SalesOrderHeaders
 where order.OrderDate == orderDate
 select order;

As always with LINQ, a query expression only defines a query—orders is an object that
knows what it’s supposed to return if anything happens to enumerate it. So it’s the
foreach loop in Example 14-3 that kicks off the actual request.

The way the EF processes the request is different from how LINQ to Objects works.
LINQ to Objects works by forming a chain of operators that work sequentially—the
source collection might pass through the Where operator, followed by, say, an OrderBy
or a Group operator. The Where operator in LINQ to Objects works by walking through
every single item in the source, discarding the ones that don’t meet the filter criteria,
and the ones that do meet the criteria get passed on to the next item in the chain.

We really don’t want data access code to work that way, and as mentioned earlier, the
EF lets the database do the filtering, which is far more efficient than fetching an entire
table and then filtering the items in code. We’ll now verify that it really works this way
by using the SQL Profiler tool to examine what the EF does for us.

SQL Profiler is not part of SQL Server 2008 Express, not even if you
install the version with advanced services and Management Studio. You
will need a full edition of SQL Server. (The Developer edition will do.)
SQL Profiler works just fine with the Express version of the database,
but it’s distributed and licensed only as part of the fuller editions. As
long as you have a suitable license, you can install just the tools from a
full edition SQL Server onto a machine that has only the Express version
of the database, and it will work just fine. (Unfortunately, if you already
installed the Express version of Management Studio, you can’t install
the full management tools on the same machine.)

A full description of the SQL Profiler is beyond the scope of this book—
we’re using it to show you exactly what the Entity Framework asked the
database to do. However, it’s a profoundly useful tool; even if you use
it only for the simple task of discovering what SQL queries are being
executed. If you plan to do much work with databases, it’s well worth
learning how to use it.

By single-stepping through the code in Visual Studio while running the SQL Profiler,
we can see that nothing appears in the profiler until we start to execute the foreach
loop, at which point the profiler shows an Audit Login message, indicating that our
program has opened a connection to the database. This is followed by a

564 | Chapter 14: Databases

RPC:Completed message, indicating that SQL Server processed a request. When we select
this message, the profiler shows the SQL that the EF just ran for us:

exec sp_executesql N'SELECT
[Extent1].[SalesOrderID] AS [SalesOrderID],
[Extent1].[RevisionNumber] AS [RevisionNumber],
[Extent1].[OrderDate] AS [OrderDate],
[Extent1].[DueDate] AS [DueDate],
[Extent1].[ShipDate] AS [ShipDate],
[Extent1].[Status] AS [Status],
[Extent1].[OnlineOrderFlag] AS [OnlineOrderFlag],
[Extent1].[SalesOrderNumber] AS [SalesOrderNumber],
[Extent1].[PurchaseOrderNumber] AS [PurchaseOrderNumber],
[Extent1].[AccountNumber] AS [AccountNumber],
[Extent1].[CustomerID] AS [CustomerID],
[Extent1].[ShipToAddressID] AS [ShipToAddressID],
[Extent1].[BillToAddressID] AS [BillToAddressID],
[Extent1].[ShipMethod] AS [ShipMethod],
[Extent1].[CreditCardApprovalCode] AS [CreditCardApprovalCode],
[Extent1].[SubTotal] AS [SubTotal],
[Extent1].[TaxAmt] AS [TaxAmt],
[Extent1].[Freight] AS [Freight],
[Extent1].[TotalDue] AS [TotalDue],
[Extent1].[Comment] AS [Comment],
[Extent1].[rowguid] AS [rowguid],
[Extent1].[ModifiedDate] AS [ModifiedDate]
FROM [SalesLT].[SalesOrderHeader] AS [Extent1]
WHERE [Extent1].[OrderDate] = @p__linq__0',
N'@p__linq__0 datetime',@p__linq__0='2004-06-01 00:00:00'

It might be quite long, but structurally that’s a pretty simple SELECT statement. The only
reason it’s so large is that it explicitly requests every column required by the entity (and
it has specified each column in a fairly verbose manner). The interesting part is in the
last two lines. The penultimate line is a parameterized WHERE clause comparing the
OrderDate to a named argument. This is what became of our LINQ query’s where clause.
And the final line provides a value for that named argument.

Note that you’re free to chain operators together in LINQ to Entities just as you can in
LINQ to Objects. For example, we could build on the orders query from Example 14-3:

var orderedOrders = orders.OrderBy(order => order.OrderDate);

Or, if you’d prefer to carry on using LINQ syntax, Example 14-10 is equivalent.

Example 14-10. Chained query

var orderedOrders = from order in orders
 orderby order.OrderDate
 select order;

This doesn’t execute the orders query. It just means we have two queries now—the
orders query that just filters, and then the orderedOrders query that filters and then
sorts. You could think of this chained query as shorthand for Example 14-11, which
explicitly combines the clauses from Example 14-9 and Example 14-10 into one query.

Queries | 565

Example 14-11. That same query, written out in full

var orderedOrders = from order in dbContext.SalesOrderHeaders
 where order.OrderDate == orderDate
 orderby order.OrderDate
 select order;

Regardless of the various equivalent ways we would build the second query, the result
of executing it (e.g., by iterating over it in a foreach loop) is, as you’d expect, a SQL
query that includes an ORDER BY clause as well as a WHERE clause. (And as it happens,
that’s not hugely useful because in this example database, all the orders have the exact
same date. With slightly more realistic data, this would have the expected effect,
though.)

So LINQ to Entities queries work in a fundamentally different way from the LINQ to
Objects queries we saw previously. In LINQ to Objects, the expression in a where clause
is simply a delegate in disguise—it’s a method that the Where operator calls for each
item in turn to work out whether to include that in the results. But with LINQ to Entities
(and LINQ to SQL for that matter) the LINQ query’s where clause has been translated
into T-SQL and sent to the database—the expression we wrote in C# ends up running
in a different language, probably on a different machine. If you want to understand
how these kinds of queries are able to work so differently for different providers, see
the sidebar on the next page.

This translation is obviously very useful for shifting the work to the database, but it
brings some limitations. If you try to add arbitrary method calls into the middle of a
LINQ query, it’ll fail in LINQ to Entities. For example, suppose we have the following
helper:

static DateTime NextDay(DateTime dt)
{
 return dt + TimeSpan.FromDays(1);
}

We could try to use this in a LINQ query:

var orders = from order in dbContext.SalesOrderHeaders
 where order.OrderDate == NextDay(orderDate)
 select order;

With LINQ to Objects this would work just fine—it’s all just C# code, and you can
use any valid Boolean expression in a where clause, including expressions that invoke
methods. But with LINQ to Entities, although this will compile, the EF will throw a
NotSupportedException at the point at which you try to execute the query. Its error
message will read:

LINQ to Entities does not recognize the method 'System.DateTime
 NextDay(System.DateTime)' method, and this method cannot be translated into
 a store expression.

LINQ to Entities queries are limited to the things that the EF knows how to turn into
database queries, and since it doesn’t know anything about this NextDay method you’ve

566 | Chapter 14: Databases

written, it can’t work out how to do that. Of course, when you bear in mind that a
LINQ to Entities query executes on the database, it’s hardly surprising that you can’t
invoke arbitrary methods in your application from the middle of a query. But the EF
integrates some database features into your code so seamlessly that it’s sometimes easy
to forget where the boundary between your application and the database lies.

Functions Delegates Versus Expressions
Database LINQ providers are able to translate LINQ queries into SQL because their
versions of the LINQ operators exploit a feature added to C# 3.0 specifically to support
this sort of thing. If you compare the LINQ to Entities declaration of the Where operator
with its LINQ to Objects counterpart, you’ll see a difference. As we saw in Chapter 8,
LINQ to Objects is implemented as a set of extension methods for the IEnumera
ble<T> interface defined by the Enumerable type in the System.Linq namespace. Its
Where operator is declared like this:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, bool> predicate)

LINQ to Entities works in a similar fashion, but the extension methods are all for
IQueryable<T>. Since the various properties the object context provides for accessing
tables all implement IQueryable<T>, you’ll end up using those extension methods in-
stead of the LINQ to Objects ones. They are defined by the Queryable type, again in
the System.Linq namespace. Here’s its definition of the Where operator:

public static IQueryable<TSource> Where<TSource>(
 this IQueryable<TSource> source,
 Expression<Func<TSource, bool>> predicate)

Obviously, the first parameter is now an IQueryable<T>, but the second parameter’s
type is also different—rather than accepting a delegate for a predicate function, it now
takes an expression. The Expression<T> type is a special type recognized by the C#
compiler (and also the VB.NET compiler). When you call methods that expect an
Expression<Func<T, TResult>>, you just provide a normal lambda like you can with an
ordinary Func<T,TResult>, but the compiler builds a data structure that is essentially
an abstract syntax tree for the expression—in effect, an object model describing that
structure of the code.

So while this version of the Where operator looks completely normal when we use it
from a LINQ query, it will be passed a description of the expression, rather than a
delegate to a method. (An Expression<T> isn’t compiled into a real method, whereas
an ordinary Func delegate would be. However, expressions offer a Compile method, so
you can turn them into code at runtime if necessary.) The database LINQ providers,
like the EF and LINQ to SQL, use this description to work out what the database query’s
WHERE clause should look like.

While LINQ to Entities is a very convenient way to build queries, it’s just a layer on
top of the Entity Framework’s underlying query system, which has its own query
language.

Queries | 567

Entity SQL
The Entity Framework defines a query language for making queries against the con-
ceptual model—rather than running queries against a database, as you do in normal
SQL dialects, you can run queries that work directly against the entities in your model,
as the name Entity SQL (or ESQL) suggests.

ESQL can be used for queries against the EDM storage model too. So it
can also function as a kind of vendor-neutral SQL. But here we’re fo-
cusing on queries that target the conceptual model.

Why do we need a second way of making queries when we already have LINQ to
Entities? Well, from a historical perspective that question has things back to front:
during the Entity Framework’s development, ESQL was around long before LINQ to
Entities. But since LINQ to Entities made it into the first version of the EF, it’s still
reasonable to ask why we have both, what ESQL is for, and when it might look like a
better choice than LINQ.

ESQL’s main benefit is that it’s sometimes useful to be able to represent a query as text.
In fact, the Entity Data Model itself exploits this—there are some advanced scenarios
in which ESQL queries can be embedded in the .edmx file. LINQ wouldn’t be an option
here because .edmx is just XML; to use LINQ requires a language that supports
LINQ.§ If you wanted to store custom queries in a configuration file, you really
wouldn’t want to have to run the C# compiler at runtime to interpret the queries. And
with ESQL you don’t need to—you can represent a query as a string and the EF can
execute that for you at runtime.

Another feature of a string-based query language is that it’s relatively easy to compose
queries at runtime. With a LINQ query expression, the structure is fixed at compile
time and you only really get to tweak individual arguments, much like a fixed SQL
query with a few named arguments. (Technically, it is actually possible to build LINQ
queries dynamically. After all, LINQ operators are chained together with simple func-
tion calls. However, dynamic composition of Expression<T> trees turns out to be sur-
prisingly difficult. It’s not a scenario C# attempts to help you with—you end up having
to construct the expression trees without the compiler’s assistance. This is not for the
fainthearted.)

The practice of stitching together strings to form dynamic queries is
messy and can be fraught with security issues such as injection attacks.
It’s occasionally useful if you understand the risks and can mitigate
them, but you need to exercise extreme caution.

§ And in case you’re wondering about LINQ to XML, that doesn’t help here. It lets you use LINQ-capable
languages like C# or VB.NET to write LINQ queries to look in an XML document. It doesn’t let you put
LINQ queries in an XML document.

568 | Chapter 14: Databases

Of course, string-based queries have a massive downside compared to LINQ: the C#
compiler cannot offer any help as it doesn’t understand ESQL. If your ESQL strings
are badly formed, you only get to find that out at runtime. And even if your ESQL is
syntactically correct, C# does not understand the relationship between it and your
code—whereas with a LINQ to Entities query C# can detect things such as type mis-
matches, it won’t spot when your ESQL gets out of sync with the code that uses the
results.

Besides the inherent benefits and disadvantages of a string-based query, there’s also the
fact that ESQL is, in effect, the native query language for the EF. This means there are
a few EF features that can be accessed only through ESQL, although they’re all some-
what arcane. For example, an ESQL query can navigate associations between entities
even if you’ve neglected to define navigation properties to represent those associations.

Example 14-12 shows a simple example that illustrates the basic use of ESQL.

Example 14-12. Querying with ESQL

using (var dbContext = new AdventureWorksLT2008Entities())
{
 DateTime orderDate = new DateTime(2004, 6, 1);
 var query = dbContext.CreateQuery<SalesOrderHeader>("SELECT VALUE o " +
 "FROM AdventureWorksLT2008Entities.SalesOrderHeaders AS o " +
 "WHERE o.OrderDate = @orderDate",
 new ObjectParameter("orderDate", orderDate));

 foreach (var order in query)
 {
 Console.WriteLine(order.TotalDue);
 }
}

This has the same effect as Example 14-3, but using ESQL in place of a LINQ query.
While this looks similar to a typical SQL query, the VALUE keyword is specific to ESQL.
We use this to indicate that we don’t want the usual column-like behavior of SQL. You
can write a more traditional-looking query in ESQL, such as:

SELECT o.TotalDue, o.OrderDate
 FROM AdventureWorksLT2008Entities.SalesOrderHeaders AS o
 WHERE o.OrderDate = @orderDate

This asks for specific columns from the entity rather than the whole entity. This is legal
ESQL, but it would fail at runtime in the context of Example 14-12. That example
creates the query with a call to CreateQuery<SalesOrderHeader> on the object context.
The generic type argument to CreateQuery—SalesOrderHeader here—indicates the type
of result we’re expecting from the query, but this modified query clearly returns some-
thing other than a SalesOrderHeader. It returns a couple of columns from each matching
entity. When you build a query like this, you get back objects that implement
IDataRecord—a general-purpose interface used across all of ADO.NET to represent a
record (such as a table row) whose columns might not be known until runtime. (This

Queries | 569

is one of the interfaces listed in Table 14-1.) So you’d need to use CreateQuery<IDataR
ecord> to create such a query, and a suitably modified loop to extract the results:

var query = dbContext.CreateQuery<IDataRecord>(
 "SELECT o.TotalDue, o.OrderDate " +
 "FROM AdventureWorksLT2008Entities.SalesOrderHeaders AS o " +
 "WHERE o.OrderDate = @orderDate",
 new ObjectParameter("orderDate", orderDate));

foreach (var order in query)
{
 Console.WriteLine(order["TotalDue"]);
}

Even if you ask for the whole entity as a single column in the SELECT clause, for example:

SELECT o
 FROM AdventureWorksLT2008Entities.SalesOrderHeaders AS o
 WHERE o.OrderDate = @orderDate

the query will still return IDataRecord objects, not entities. Each data record returned
by this query would have a single column called o that contains a SalesOrderHeader
entity. To get to the entity you’d need to unwrap it inside your loop:

foreach (var row in query)
{
 SalesOrderHeader o = (SalesOrderHeader) row["o"];
 Console.WriteLine(o.TotalDue);
}

The VALUE keyword is just a shortcut that tells ESQL to omit the IDataRecord wrapper,
and to return a sequence of unwrapped entities. This enables Example 14-12 to assume
that it will get SalesOrderHeader entities back from the query.

Mixing ESQL and LINQ
LINQ to Entities and ESQL are not mutually exclusive. You are free to use an ESQL
query as the source for a LINQ query. Here’s a contrived example:

var orders = dbContext.CreateQuery<SalesOrderHeader>("SELECT VALUE o " +
 "FROM AdventureWorksLT2008Entities.SalesOrderHeaders AS o " +
 "WHERE o.OrderDate = @orderDate",
 new ObjectParameter("orderDate", orderDate));

var orderedOrders = from order in orders
 orderby order.DueDate
 select order;

This might be useful if you wanted to store ESQL queries in some sort of configuration
mechanism to allow the exact query to be changed, but to do further processing of the
results of that query with LINQ.

570 | Chapter 14: Databases

The EntityClient ADO.NET Provider
Yet another feature enabled by ESQL is that it lets code built around the v1 ADO.NET
mechanisms shown in Example 14-1 work with the EF. The System.Data.Entity
Client namespace defines concrete types that derive from the abstract base classes listed
in Table 14-1: EntityConnection derives from DbConnection, EntityCommand derives from
DbCommand, and so on. As far as code written to use these abstract base classes is con-
cerned, the Entity Framework ends up looking like just another database with another
funky variety of SQL. As long as your ESQL selects only column values and not whole
entities, queries will only ever return the same basic data types other providers would,
so the behavior will look much like any other ADO.NET v1 provider.

Object Context
As you’ve seen, the object context provides access to entities. For each entity we define
in our EDM, the generated object context class provides a property that we can use as
the source for a LINQ query. We’ve also used its CreateQuery<T> method to build ESQL-
based queries. The object context provides some other services.

Connection Handling
To execute database queries, it’s necessary to connect to a database, so the object con-
text needs connection information. This information typically lives in the App.config
file—when you first run the EDM wizard, it will add a configuration file if your appli-
cation does not already have one, and then it adds a connection string. Exam-
ple 14-13 shows a configuration file containing a typical Entity Framework connection
string. (This has been split over multiple lines to fit—normally the connectionString
attribute is all on one line.)

Example 14-13. Connection string in App.config

<configuration>
 <connectionStrings>
 <add name="AdventureWorksLT2008Entities"
 connectionString="metadata=res://*/AdventureWorksModel.csdl|
 res://*/AdventureWorksModel.ssdl|res://*/AdventureWorksModel.msl;
 provider=System.Data.SqlClient;provider connection string=
 "Data Source=.\sqlexpress;Initial Catalog=AdventureWorksLT2008;
 Integrated Security=True;MultipleActiveResultSets=True""
 providerName="System.Data.EntityClient" />
 </connectionStrings>
</configuration>

This is a rather more complex connection string than the one we saw back in Exam-
ple 14-1, because the Entity Framework needs three things in its connection string:
information on where to find the EDM definition, the type of underlying database
provider to use, and the connection string to pass to that underlying provider. This last

Object Context | 571

part—an ordinary SQL Server connection string, enclosed in " character
entities—is highlighted in Example 14-13 in bold.

The three URIs in the metadata section of the connectionString—the ones beginning
with res://—point to the three parts of the EDM: the conceptual schema, the storage
schema, and the mappings. Visual Studio extracts these from the .edmx file and embeds
them as three XML resource streams in the compiled program. Without these, the EF
wouldn’t know what the conceptual and storage schemas are supposed to look like, or
how to map between them.

It may seem a bit weird for the locations of these EDM resources to be
in a connection string. It might seem more natural for the XML to use
a separate attribute for each one. However, as you’ve seen, the
System.Data.EntityClient namespace conforms to the ADO.NET v1
model so that it’s possible for old-style data access code to perform
queries against the EDM. Since the ADO.NET v1 model includes an
assumption that it’s possible to put all the information defining a par-
ticular data source into a single connection string, the Entity Framework
has to follow suit. And since the EF cannot function without the XML
EDM definitions, the connection string has to say where those live.

After the EDM metadata resources, you can see a provider property, which in Exam-
ple 14-13 indicates that the underlying database connection is to be provided by the
SQL Server client. The EF passes the provider connection string on to that provider.

You don’t have to use the App.config to configure the connection. The object context
offers a constructor overload that accepts a connection string. The configuration file is
useful—it’s where the object context’s no-parameters constructor we’ve been using in
the examples gets its connection information from—but what if you want to let just
the underlying database connection string be configurable, while keeping the parts of
the connection string identifying the EDM resources fixed? Example 14-14 shows how
you could achieve this. It retrieves the configured values for these two pieces and uses
the EntityConnectionStringBuilder helper to combine this with the EDM resource lo-
cations, forming a complete EF connection string.

Example 14-14. Passing an explicit connection string

using System.Configuration;
using System.Data.EntityClient;

...

// Retrieve the connection string for the underlying database provider.
ConnectionStringSettings dbConnectionInfo =
 ConfigurationManager.ConnectionStrings["AdventureWorksSql"];

var csb = new EntityConnectionStringBuilder();

572 | Chapter 14: Databases

csb.Provider = dbConnectionInfo.ProviderName;
csb.ProviderConnectionString = dbConnectionInfo.ConnectionString;
csb.Metadata = "res://*/AdventureWorksModel.csdl|" +
 "res://*/AdventureWorksModel.ssdl|res://*/AdventureWorksModel.msl";

using (var dbContext = new AdventureWorksLT2008Entities(csb.ConnectionString))
{
 ...
}

This code uses the ConfigurationManager in the System.Configuration namespace,
which provides a ConnectionStrings property. (This is in a part of the .NET Framework
class library that’s not referenced by default in a .NET console application, so we need
to add a reference to the System.Configuration component for this to work.) This pro-
vides access to any connection strings in your App.config file; it’s the same mechanism
the EF uses to find its default connection string. Now that Example 14-14 is providing
the EDM resources in code, our configuration file only needs the SQL Server part of
the connection string, as shown in Example 14-15 (with a long line split across multiple
lines to fit). So when the application is deployed, we have the flexibility to configure
which database gets used, but we have removed any risk that such a configuration
change might accidentally break the references to the EDM resources.

Example 14-15. SQL Server connection string

<configuration>
 <connectionStrings>
 <add name="AdventureWorksSql" providerName="System.Data.SqlClient"
 connectionString="Data Source=.\sqlexpress;
 Initial Catalog=AdventureWorksLT2008;
 Integrated Security=True;MultipleActiveResultSets=True"
 />

 </connectionStrings>
</configuration>

Besides being able to change the connection information, what else can we do with the
connection? We could choose to open the connection manually—we might want to
verify that our code can successfully connect to the database. But in practice, we don’t
usually do that—the EF will connect automatically when we need to. The main reason
for connecting manually would be if you wanted to keep the connection open across
multiple requests—if the EF opens a connection for you it will close it again. In any
case, we need to be prepared for exceptions anytime we access the database—being
able to connect successfully is no guarantee that someone won’t trip over a network
cable at some point between us manually opening the connection and attempting to
execute a query. So in practice, the connection string is often the only aspect of the
connection we need to take control of.

Object Context | 573

Creating, Updating, and Deleting
So far, all of our examples have just fetched existing data from the database. Most real
applications will also need to be able to add, change, and remove data. So as you’d
expect, the Entity Framework supports the full range of so-called CRUD (Create, Read,
Update, and Delete) operations. This involves the object context, because it is respon-
sible for tracking changes and coordinating updates.

Updates—modifications to existing records—are pretty straightforward. Entities’
properties are modifiable, so you can simply assign new values. However, the EF does
not attempt to update the database immediately. You might want to change multiple
properties, in which case it would be inefficient to make a request to the database for
each property in turn, and that might not even work—integrity constraints in the da-
tabase may mean that certain changes need to be made in concert. So the EF just re-
members what changes you have made, and attempts to apply those changes back to
the database only when you call the object context’s SaveChanges method. Exam-
ple 14-16 does this. In fact, most of the code here just fetches a specific entity—the
most recent order of a particular customer—and only the last couple of statements
modify that order.

Example 14-16. Modifying an existing entity

using (var dbContext = new AdventureWorksLT2008Entities())
{
 var orderQuery = from customer in dbContext.Customers
 where customer.CustomerID == 29531
 from order in customer.SalesOrderHeaders
 orderby order.OrderDate descending
 select order;

 SalesOrderHeader latestOrder = orderQuery.First();

 latestOrder.Comment = "Call customer when goods ready to ship";

 dbContext.SaveChanges();
}

To add a brand-new entity, you need to create a new entity object of the corresponding
class, and then tell the object context you’ve done so—for each entity type, the context
provides a corresponding method for adding entities. In our example, the context has
AddToCustomers, AddToSalesOrderHeaders, and AddToSalesOrderDetails methods. You
will need to make sure you satisfy the database’s constraints, which means that the
code in Example 14-17 will not be enough.

574 | Chapter 14: Databases

Example 14-17. Failing to meet constraints on a new entity

SalesOrderDetail detail = new SalesOrderDetail();
dbContext.AddToSalesOrderDetails(detail);

// Will throw an exception!
dbContext.SaveChanges();

The Entity Framework will throw an UpdateException when Example 14-17 calls
SaveChanges because the entity is missing all sorts of information. The example data-
base’s schema includes a number of integrity constraints, and will refuse to allow a new
row to be added to the SalesOrderDetail table unless it meets all the requirements.
Example 14-18 sets the bare minimum number of properties to keep the database
happy. (This is probably not good enough for real code, though—we’ve not specified
any price information, and the numeric price fields will have default values of 0; while
this doesn’t upset the database, it might not please the accountants.)

Example 14-18. Adding a new entity

// ...where latestOrder is a SalesOrderHeader fetched with code like
// that in Example 14-16.

SalesOrderDetail detail = new SalesOrderDetail();
detail.SalesOrderHeader = latestOrder;
detail.ModifiedDate = DateTime.Now;
detail.OrderQty = 1;
detail.ProductID = 680; // HL Road Frame - Black, 58

dbContext.AddToSalesOrderDetails(detail);

dbContext.SaveChanges();

Several of the constraints involve relationships. A SalesOrderDetail row must be related
to a particular row in the Product table, because that’s how we know what products
the customer has ordered. We’ve not defined an entity type corresponding to the
Product table, so Example 14-18 just plugs in the relevant foreign key value directly.

The database also requires that each SalesOrderDetail row be related to exactly one
SalesOrderHeader row—remember that this was one of the one-to-many relationships
we saw earlier. (The header has a multiplicity of one, and the detail has a multiplicity
of many.) The constraint in the database requires the SalesOrderID foreign key column
in each SalesOrderDetail row to correspond to the key for an existing SalesOrder
Header row. But unlike the ProductID column, we don’t set the corresponding property
directly on the entity. Instead, the second line of Example 14-18 sets the new entity’s
SalesOrderHeader property, which as you may recall is a navigation property.

Object Context | 575

When adding new entities that must be related to other entities, you normally indicate
the relationships with the corresponding navigation properties. In this example, you
could add the new SalesOrderDetail object to a SalesOrderHeader object’s SalesOrder
Details navigation property—since a header may have many related details, the prop-
erty is a collection and offers an Add method. Or you can work with the other end of
the relationship as Example 14-18 does. This is the usual way to deal with the rela-
tionships of a newly created entity—setting foreign key properties directly as we did
for the other relationships here is somewhat unusual. We did that only because our
EDM does not include all of the relevant entities—we represent only three of the tables
because a complete model for this particular example would have been too big to fit
legibly onto a single page. There may also be situations where you know that in your
particular application, the key values required will never change, and you might choose
to cache those key values to avoid the overhead of involving additional entities.

We’ve seen how to update existing data and add new data. This leaves deletion. It’s
pretty straightforward: if you have an entity object, you can pass it to the context’s
DeleteObject method, and the next time you call SaveChanges, the EF will attempt to
delete the relevant row, as shown in Example 14-19.

Example 14-19. Deleting an entity

dbContext.DeleteObject(detail);

dbContext.SaveChanges();

As with any kind of change to the database, this will succeed only if it does not violate
any of the database’s integrity constraints. For example, deleting an entity at the one
end of a one-to-many relationship may fail if the database contains one or more rows
at the many end that are related to the item you’re trying to delete. (Alternatively, the
database might automatically delete all related items—SQL Server allows a constraint
to require cascading deletes. This takes a different approach to enforcing the
constraint—rather than rejecting the attempt to delete the parent item, it deletes all
the children automatically.)

Example 14-18 adds new information that relates to information already in the
database—it adds a new detail to an existing order. This is a very common thing to do,
but it raises a challenge: what if code elsewhere in the system was working on the same
data? Perhaps some other computer has deleted the order you were trying to add detail
for. The EF supports a couple of common ways of managing this sort of hazard: trans-
actions and optimistic concurrency.

Transactions
Transactions are an extremely useful mechanism for dealing with concurrency hazards
efficiently, while keeping data access code reasonably simple. Transactions provide the
illusion that each individual database client has exclusive access to the entire database

576 | Chapter 14: Databases

for as long as it needs to do a particular job—it has to be an illusion because if clients
really took it in turns, scalability would be severely limited. So transactions perform
the neat trick of letting work proceed in parallel except for when that would cause a
problem—as long as all the transactions currently in progress are working on inde-
pendent data they can all proceed simultaneously, and clients have to wait their turn
only if they’re trying to use data already involved (directly, or indirectly) in some other
transaction in progress.‖

The classic example of the kind of problem transactions are designed to avoid is that
of updating the balance of a bank account. Consider what needs to happen to your
account when you withdraw money from an ATM—the bank will want to make sure
that your account is debited with the amount of money withdrawn. This will involve
subtracting that amount from the current balance, so there will be at least two opera-
tions: discovering the current balance, and then updating it to the new value. (Actually
it’ll be a whole lot more complex than that—there will be withdrawal limit checks,
fraud detection, audit trails, and more. But the simplified example is enough to illustrate
how transactions can be useful.) But what happens if some other transaction occurs at
the same time? Maybe you happen to be making a withdrawal at the same time as the
bank processes an electronic transfer of funds.

If that happens, a problem can arise. Suppose the ATM transaction and the electronic
transfer both read the current balance—perhaps they both discover a balance of $1,234.
Next, if the transfer is moving $1,000 from your account to somewhere else, it will write
back a new balance of $234—the original balance minus the amount just deducted.
But there’s the ATM transfer—suppose you withdraw $200. It will write back a new
balance of $1,034. You just withdrew $200 and paid $1,000 to another account, but
your account only has $200 less in it than before rather than $1,200—that’s great for
you, but your bank will be less happy. (In fact, your bank probably has all sorts of
checks and balances to try to minimize opportunities such as this for money to magi-
cally come into existence. So they’d probably notice such an error even if they weren’t
using transactions.) In fact, neither you nor your bank really wants this to happen, not
least because it’s easy enough to imagine similar examples where you lose money.

This problem of concurrent changes to shared data crops up in all sorts of forms. You
don’t even need to be modifying data to observe a problem: code that only ever reads
can still see weird results. For example, you might want to count your money, in which
case looking at the balances of all your accounts would be necessary—that’s a read-
only operation. But what if some other code was in the middle of transferring money
between two of your accounts? Your read-only code could be messed up by other code
modifying the data.

‖ In fact, it gets a good deal cleverer than that. Databases go to some lengths to avoid making clients wait for
one another unless it’s absolutely necessary, and can sometimes manage this even when clients are accessing
the same data, particularly if they’re only reading the common data. Not all databases do this in the same
way, so consult your database documentation for further details.

Object Context | 577

A simple way to avoid this is to do one thing at a time—as long as each task completes
before the next begins, you’ll never see this sort of problem. But that turns out to be
impractical if you’re dealing with a large volume of work. And that’s why we have
transactions—they are designed to make it look like things are happening one task at
a time, but under the covers they allow tasks to proceed concurrently as long as they’re
working on unrelated information. So with transactions, the fact that some other bank
customer is in the process of performing a funds transfer will not stop you from using
an ATM. But if a transfer is taking place on one of your accounts at the same time that
you are trying to withdraw money, transactions would ensure that these two operations
take it in turns.

So code that uses transactions effectively gets exclusive access to whatever data it is
working with right now, without slowing down anything it’s not using. This means
you get the best of both worlds: you can write code as though it’s the only code running
right now, but you get good throughput.

How do we exploit transactions in C#? Example 14-20 shows the simplest approach:
if you create a TransactionScope object, the EF will automatically enlist any database
operations in the same transaction. The TransactionScope class is defined in the
System.Transactions namespace in the System.Transactions DLL (another class library
DLL for which we need to add a reference, as it’s not in the default set).

Example 14-20. TransactionScope

using (var dbContext = new AdventureWorksLT2008Entities())
{
 using (var txScope = new TransactionScope())
 {
 var customersWithOrders = from cust in dbContext.Customers
 where cust.SalesOrderHeaders.Count > 0
 select cust;

 foreach (var customer in customersWithOrders)
 {
 Console.WriteLine("Customer {0} has {1} orders",
 customer.CustomerID, customer.SalesOrderHeaders.Count);
 }

 txScope.Complete();
 }
}

For as long as the TransactionScope is active (i.e., until it is disposed at the end of the
using block), all the requests to the database this code makes will be part of the same
transaction, and so the results should be consistent—any other database client that
tries to modify the state we’re looking at will be made to wait (or we’ll be made to wait
for them) in order to guarantee consistency. The call to Complete at the end indicates
that we have finished all the work in the transaction, and are happy for it to commit—
without this, the transaction would be aborted at the end of the scope’s using block.

578 | Chapter 14: Databases

For a transaction that modifies data, failure to call Complete will lose any changes. Since
the transaction in Example 14-20 only reads data, this might not cause any visible
problems, but it’s difficult to be certain. If a TransactionScope was already active on
this thread (e.g., a function farther up the call stack started one) our Transaction
Scope could join in with the same transaction, at which point failure to call Complete
on our scope would end up aborting the whole thing, possibly losing data. The docu-
mentation recommends calling Complete for all transactions except those you want to
abort, so it’s a good practice always to call it.

Transaction Length
When transactions conflict because multiple clients want to use the same data, the
database may have no choice but to make one or more of the clients wait. This means
you should keep your transaction lifetimes as short as you possibly can—slow trans-
actions can bog down the system. And once that starts happening, it becomes a bit of
a pile-up—the more transactions that are stuck waiting for something else to finish,
the more likely it is that new transactions will want to use data that’s already under
contention. The rosy “best of both worlds” picture painted earlier evaporates.

Worse, conflicts are sometimes irreconcilable—a database doesn’t know at the start of
a transaction what information will be used, and sometimes it can find itself in a place
where it cannot proceed without returning results that will look inconsistent, in which
case it’ll just fail with an error. (In other words, the clever tricks databases use to min-
imize how often transactions block sometimes backfire.) It’s easy enough to contrive
pathological code that does this on purpose, but you hope not to see it in a live system.
The shorter you make your transactions the less likely you are to see troublesome
conflicts.

You should never start a transaction and then wait for user input before finishing the
transaction—users have a habit of going to lunch mid-transaction. Transaction dura-
tion should be measured in milliseconds, not minutes.

TransactionScope represents an implicit transaction—any data access performed inside
its using block will automatically be enlisted on the transaction. That’s why Exam-
ple 14-20 never appears to use the TransactionScope it creates—it’s enough for it to
exist. (The transaction system keeps track of which threads have active implicit trans-
actions.) You can also work with transactions explicitly—the object context provides
a Connection property, which in turn offers explicit BeginTransaction and EnlistTran
saction methods. You can use these in advanced scenarios where you might need to
control database-specific aspects of the transaction that an implicit transaction cannot
reach.

Object Context | 579

These transaction models are not specific to the EF. You can use the
same techniques with ADO.NET v1-style data access code.

Besides enabling isolation of multiple concurrent operations, transactions provide an-
other very useful property: atomicity. This means that the operations within a single
transaction succeed or fail as one: all succeed, or none of them succeed—a transaction
is indivisible in that it cannot complete partially. The database stores updates per-
formed within a transaction provisionally until the transaction completes—if it suc-
ceeds, the updates are permanently committed, but if it fails, they are rolled back and
it’s as though the updates never occurred. The EF uses transactions automatically when
you call SaveChanges—if you have not supplied a transaction, it will create one just to
write the updates. (If you have supplied one, it’ll just use yours.) This means that
SaveChanges will always either succeed completely, or have no effect at all, whether or
not you provide a transaction.

Transactions are not the only way to solve problems of concurrent access to shared
data. They are bad at handling long-running operations. For example, consider a system
for booking seats on a plane or in a theater. End users want to see what seats are
available, and will then take some time—minutes probably—to decide what to do. It
would be a terrible idea to use a transaction to handle this sort of scenario, because
you’d effectively have to lock out all other users looking to book into the same flight
or show until the current user makes a decision. (It would have this effect because in
order to show available seats, the transaction would have had to inspect the state of
every seat, and could potentially change the state of any one of those seats. So all those
seats are, in effect, owned by that transaction until it’s done.)

Let’s just think that through. What if every person who flies on a particular flight takes
two minutes to make all the necessary decisions to complete his booking? (Hours of
queuing in airports and observing fellow passengers lead us to suspect that this is a
hopelessly optimistic estimate. If you know of an airline whose passengers are that
competent, please let us know—we’d like to spend less time queuing.) The Airbus A380
aircraft has FAA and EASA approval to carry 853 passengers, which suggests that even
with our uncommonly decisive passengers, that’s still a total of more than 28 hours of
decision making for each flight. That sounds like it could be a problem for a daily
flight.# So there’s no practical way of avoiding having to tell the odd passenger that,
sorry, in between showing him the seat map and choosing the seat, someone else got
in there first. In other words, we are going to have to accept that sometimes data will

#And yes, bookings for daily scheduled flights are filled up gradually over the course of a few months, so 28
hours per day is not necessarily a showstopper. Even so, forcing passengers to wait until nobody else is
choosing a seat would be problematic—you’d almost certainly find that your customers didn’t neatly space
out their usage of the system, and so you’d get times where people wanting to book would be unable to.
Airlines would almost certainly lose business the moment they told customers to come back later.

580 | Chapter 14: Databases

change under our feet, and that we just have to deal with it when it happens. This
requires a slightly different approach than transactions.

Optimistic Concurrency
Optimistic concurrency describes an approach to concurrency where instead of enforc-
ing isolation, which is how transactions usually work, we just make the cheerful
assumption that nothing’s going to go wrong. And then, crucially, we verify that as-
sumption just before making any changes.

In practice, it’s common to use a mixture of optimistic concurrency and
transactions. You might use optimistic approaches to handle long-
running logic, while using short-lived transactions to manage each in-
dividual step of the process.

For example, an airline booking system that shows a map of available seats in an aircraft
on a web page would make the optimistic assumption that the seat the user selects will
probably not be selected by any other user in between the moment at which the appli-
cation showed the available seats and the point at which the user picks a seat. The
advantage of making this assumption is that there’s no need for the system to lock
anyone else out—any number of users can all be looking at the seat map at once, and
they can all take as long as they like.

Occasionally, multiple users will pick the same seat at around the same time. Most of
the time this won’t happen, but the occasional clash is inevitable. We just have to make
sure we notice. So when the user gets back to us and says that he wants seat 7K, the
application then has to go back to the database to see if that seat is in fact still free. If
it is, the application’s optimism has been vindicated, and the booking can proceed. If
not, we just have to apologize to the user (or chastise him for his slowness, depending
on the prevailing attitude to customer service in your organization), show him an up-
dated seat map so that he can see which seats have been claimed while he was dithering,
and ask him to make a new choice. This will happen only a small fraction of the time,
and so it turns out to be a reasonable solution to the problem—certainly better than a
system that is incapable of taking enough bookings to fill the plane in the time available.

Sometimes optimistic concurrency is implemented in an application-specific way. The
example just described relies on an understanding of what the various entities involved
mean, and would require us to write code that explicitly performs the check described.
But slightly more general solutions are available—they are typically less efficient, but
they can require less code. The EF offers some of these ignorant-but-effective ap-
proaches to optimistic concurrency.

The default EF behavior seems, at a first glance, to be ignorant and broken—not only
does it optimistically assume that nothing will go wrong, but it doesn’t even do anything
to check that assumption. We might call this blind optimism—we don’t even get to

Object Context | 581

discover when our optimism turned out to be unfounded. While that sounds bad, it’s
actually the right thing to do if you’re using transactions—transactions enforce isola-
tion and so additional checks would be a waste of time. But if you’re not using trans-
actions, this default behavior is not good enough for code that wants to change or add
data—you’ll risk compromising the integrity of your application’s state.

To get the EF to check that updates are likely to be sound, you can tell it to check that
certain entity properties have not changed since the entity was populated from the
database. For example, in the SalesOrderDetail entity, if you select the ModifiedDate
property in the EDM designer, you could go to the Properties panel and set its Con-
currency Mode to Fixed (its default being None). This will cause the EF to check that
this particular column’s value is the same as it was when the entity was fetched when-
ever you update it. And as long as all the code that modifies this particular table re-
members to update the ModifiedDate, you’ll be able to detect when things have changed.

While this example illustrates the concept, it’s not entirely robust. Using
a date and time to track when a row changes has a couple of problems.
First, different computers in the system are likely to have slight differ-
ences between their clocks, which can lead to anomalies. And even if
only one computer ever accesses the database, its clock may be adjusted
from time to time. You’d end up wanting to customize the SQL code
used for updates so that everything uses the database server’s clock for
consistency. Such customizations are possible, but they are beyond the
scope of this book. And even that might not be enough—if the row is
updated often, it’s possible that two updates might have the same time-
stamp due to insufficient precision. A stricter approach based on GUIDs
or sequential row version numbers is more robust. But this is the realm
of database design, rather than Entity Framework usage—ultimately
you’re going to be stuck with whatever your DBA gives you.

If any of the columns with a Concurrency Mode of Fixed change between reading an
entity’s value and attempting to update it, the EF will detect this when you call
SaveChanges and will throw an OptimisticConcurrencyException, instead of completing
the update.

The EF detects changes by making the SQL UPDATE conditional—its
WHERE clause will include checks for all of the Fixed columns. It inspects
the updated row count that comes back from the database to see
whether the update succeeded.

How you deal with an optimistic concurrency failure is up to your application—you
might simply be able to retry the work, or you may have to get the user involved. It will
depend on the nature of the data you’re trying to update.

582 | Chapter 14: Databases

The object context provides a Refresh method that you can call to bring entities back
into sync with the current state of the rows they represent in the database. You could
call this after catching an OptimisticConcurrencyException as the first step in your code
that recovers from a problem. (You’re not actually required to wait until you get a
concurrency exception—you’re free to call Refresh at any time.) The first argument to
Refresh tells it what you’d like to happen if the database and entity are out of sync.
Passing RefreshMode.StoreWins tells the EF that you want the entity to reflect what’s
currently in the database, even if that means discarding updates previously made in
memory to the entity. Or you can pass RefreshMode.ClientWins, in which case any
changes in the entity remain present in memory. The changes will not be written back
to the database until you next call SaveChanges. So the significance of calling Refresh
in ClientWins mode is that you have, in effect, acknowledged changes to the underlying
database—if changes in the database were previously causing SaveChanges to throw an
OptimisticConcurrencyException, calling SaveChanges again after the Refresh will not
throw again (unless the database changes again in between the call to Refresh and the
second SaveChanges).

Context and Entity Lifetime
If you ask the context object for the same entity twice, it will return you the same object
both times—it remembers the identity of the entities it has returned. Even if you use
different queries, it will not attempt to load fresh data for any entities already loaded
unless you explicitly pass them to the Refresh method.

Executing the same LINQ query multiple times against the same context
will still result in multiple queries being sent to the database. Those
queries will typically return all the current data for the relevant entity.
But the EF will look at primary keys in the query results, and if they
correspond to entities it has already loaded, it just returns those existing
entities and won’t notice if their values in the database have changed.
It looks for changes only when you call either SaveChanges or Refresh.

This raises the question of how long you should keep an object context around. The
more entities you ask it for, the more objects it’ll hang on to. Even when your code has
finished using a particular entity object, the .NET Framework’s garbage collector won’t
be able to reclaim the memory it uses for as long as the object context remains alive,
because the object context keeps hold of the entity in case it needs to return it again in
a later query.

The way to get the object context to let go of everything is to call
Dispose. This is why all of the examples that show the creation of an
object context do so in a using statement.

Object Context | 583

There are other lifetime issues to bear in mind. In some situations, an object context
may hold database connections open. And also, if you have a long-lived object context,
you may need to add calls to Refresh to ensure that you have fresh data, which you
wouldn’t have to do with a newly created object context. So all the signs suggest that
you don’t want to keep the object context around for too long.

How long is too long? In a web application, if you create an object context while han-
dling a request (e.g., for a particular page) you would normally want to Dispose it before
the end of that request—keeping an object context alive across multiple requests is
typically a bad idea. In a Windows application (WPF or Windows Forms), it might
make sense to keep an object context alive a little longer, because you might want to
keep entities around while a form for editing the data in them is open. (If you want to
apply updates, you normally use the same object context you used when fetching the
entities in the first place, although it’s possible to detach an entity from one context
and attach it later to a different one.) In general, though, a good rule of thumb is to
keep the object context alive for no longer than is necessary.

WCF Data Services
The last data access feature we’ll look at is slightly different from the rest. So far, we’ve
seen how to write code that uses data in a program that can connect directly to a
database. But WCF Data Services lets you present data over HTTP, making data access
possible from code in some scenarios where direct connections are not possible. It
defines a URI structure for identifying the data you’d like to access, and the data itself
can be represented in either JSON or the XML-based Atom Publishing Protocol
(AtomPub).

As the use of URIs, JSON, and XML suggests, WCF Data Services can be useful in web
applications. Silverlight cannot access databases directly, but it can consume data via
WCF Data Services. And the JSON support means that it’s also relatively straightfor-
ward for script-based web user interfaces to use.

WCF Data Services is designed to work in conjunction with the Entity Framework.
You don’t just present an entire database over HTTP—that would be a security liability.
Instead, you define an Entity Data Model, and you can then configure which entity
types should be accessible over HTTP, and whether they are read-only or support other
operations such as updates, inserts, or deletes. And you can add code to implement
further restrictions based on authentication and whatever security policy you require.
(Of course, this still gives you plenty of scope for creating a security liability. You need
to think carefully about exactly what information you want to expose.)

To show WCF Data Services in action, we’ll need a web application, because it’s an
HTTP-based technology. If you create a new project in Visual Studio, you’ll see a Visual
C#→Web category on the left, and the Empty ASP.NET Web Application template will
suit our needs here. We need an Entity Data Model to define what information we’d

584 | Chapter 14: Databases

like to expose—for this example, we’ll use the same EDM we’ve been using all along,
so the steps will be the same as they were earlier in the chapter.

To expose this data over HTTP, we add another item to the project—under the Visual
C#→Web template category we choose the WCF Data Service template. We’ll call the
service MyData. Visual Studio will add a MyData.svc.cs file to the project, which needs
some tweaking before it’ll expose any data—it assumes that it shouldn’t publish any
information that we didn’t explicitly tell it to.

The first thing we need to do is modify the base class of the generated MyData class—it
derives from a generic class called DataService, but the type argument needs to be filled
in—Visual Studio just puts a comment in there telling you what to do. We will plug in
the name of the object context class:

public class MyData : DataService<AdventureWorksLT2008Entities>

This class contains an InitializeService method to which we need to add code for
each entity type we’d like to make available via HTTP. Example 14-21 makes all three
entity types in the model available for read access.

Example 14-21. Making entities available

public static void InitializeService(IDataServiceConfiguration config)
{
 config.SetEntitySetAccessRule("Customers",
 EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("SalesOrderHeaders",
 EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("SalesOrderDetails",
 EntitySetRights.AllRead);
}

We can now look at how the data appears. If we press F5, Visual Studio opens a web
browser showing the MyData.svc URL for our web application. It shows an XML file
describing the available entity types, as Example 14-22 shows. (The exact value you
see in the xml:base may be different—it depends on the port number Visual Studio
chooses for debugging.)

Example 14-22. Available entities described by the web service

<service xml:base="http://localhost:1181/MyData.svc/"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns="http://www.w3.org/2007/app">
 <workspace>
 <atom:title>Default</atom:title>
 <collection href="Customers">
 <atom:title>Customers</atom:title>
 </collection>
 <collection href="SalesOrderDetails">
 <atom:title>SalesOrderDetails</atom:title>
 </collection>
 <collection href="SalesOrderHeaders">

WCF Data Services | 585

 <atom:title>SalesOrderHeaders</atom:title>
 </collection>
 </workspace>
</service>

Notice that each <collection> element has an href attribute. Typically, href attributes
denote a link to another resource, the attribute value being a relative URL. So you can
just stick an entity name on the end of the URL. The exact URL will depend on the
port number Visual Studio picks for the test web server, but something like http://
localhost:1181/MyData.svc/Customers will return all the customers in the system.

There are two things to be aware of when looking at entities in the
browser with this sort of URL. First, the simplest URLs will return all
the entities of the specified type, which might take a long time. We’ll
see how to be more selective in a moment. Second, by default the web
browser will notice that the data format being used is a variant of Atom,
and will attempt to use the same friendly feed rendering you would get
on other Atom- and RSS-based feeds. (Lots of blogs offer an Atom-based
feed format.) Unfortunately, the browser’s friendly rendering is aimed
at the kind of Atom features usually found in blogs, and it doesn’t always
understand AtomPub feeds, so you might just get an error.

To deal with the second problem, you could just View Source to see the
underlying XML, or you can turn off friendly feed rendering. In IE8, you
open the Internet Options window and go to the Content tab. Open the
Feed and Web Slice Settings window from there, and uncheck the “Turn
on feed reading view” checkbox. (If you’ve already looked at a feed and
hit this problem, you might need to close all instances of IE after making
this change and try again.)

WCF Data Services lets you request a specific entity by putting its primary key inside
parentheses at the end of the URL. For example, http://localhost:1181/MyData.svc/
Customers(29531) fetches the customer entity whose ID is 29531. If you try this, you’ll
see a simple XML representation of all the property values for the entity. In that same
XML document, you’ll also find this element:

<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/
SalesOrderHeaders"
 type="application/atom+xml;type=feed"
 title="SalesOrderHeaders"
 href="Customers(29531)/SalesOrderHeaders"
/>

This is how associations in the EDM show up—if an entity has related entities available
through an association, it will offer a link to the URL on which those associations can
be found. So as the href in this example shows, you can just stick SalesOrderHeaders
on the end of the customer instance URL to get all the related orders for customer
29531, as in the following:

586 | Chapter 14: Databases

http://localhost:1181/MyData.svc/Customers(29531)/SalesOrderHeaders

So you can see how joins across relationships turn into URLs, and also how simple key-
based queries work. In fact, the URL syntax also supports more complex queries based
on properties. For example, this returns all customers whose FirstName has the value
Cory:

http://localhost:1181/MyData.svc/Customers?$filter=FirstName%20eq%20'Cory'

(The %20 is how URLs represent spaces, so we’ve really just appended $filter=First
Name eq 'Cory' to the URL.) The URL syntax also supports ordering and paging. Many
standard LINQ operators are not supported, including grouping and joining.

You don’t have to work directly with these URLs and XML documents—WCF Data
Services includes a client-side component that supports LINQ. So you can run LINQ
queries that will be converted into HTTP requests that use the URL structure you see
here. We can demonstrate this by adding a new console application to the same solution
as our web application. If we right-click on the console application’s References item
in the Solution Explorer and select Add Service Reference, clicking Discover in the
dialog that opens will show the WCF Data Service from the other project. Selecting this
and clicking OK generates code to represent each entity type defined by the service.
That enables us to write code such as Example 14-23.

Example 14-23. Client-side WCF Data Services code

var ctx = new AdventureWorksLT2008Entities(
 new Uri("http://localhost:1181/MyData.svc"));
var customers = from customer in ctx.Customers
 where customer.FirstName == "Cory"
 select customer;

foreach (Customer customer in customers)
{
 Console.WriteLine(customer.CompanyName);
}

This looks superficially similar to the Entity Framework code we saw earlier—we still
have an object context, for example. Visual Studio generated the Adventure
WorksLT2008Entities class when we imported the service reference, and it derives from
DataServiceContext. It’s slightly different from the EF context—it’s not disposable, for
one thing. (That’s why there’s no using statement here—this object context doesn’t
implement IDisposable.) And it’s a lot simpler—it doesn’t do any change tracking.
(That’s why it doesn’t need to implement IDisposable.) It’s really just a convenient way
to extract the information that an WCF Data Service exposes as objects in C#.

The LINQ query here will generate a suitable URL that encodes the query—filtering
by FirstName in this case. And as with a database query, it won’t actually make the
request until we start to enumerate the results—this LINQ provider follows the usual
deferred execution pattern.

WCF Data Services | 587

The range of query types supported by the WCF Data Services LINQ
provider is much more limited than that offered by LINQ to Entities,
LINQ to SQL, or most LINQ providers. It can only implement queries
that are possible to turn into WCF Data Services URLs, and the URL
syntax doesn’t cover every possible kind of LINQ query.

WCF Data Services also offers more advanced features than those shown here. For
example, you can arrange for entities to be updatable and creatable, and you can pro-
vide custom filtering code, to control exactly which entities are returned.

Summary
In this chapter, we saw that the .NET Framework offers a range of data access mech-
anisms. The original interface-based API supports direct database access. The Entity
Framework makes it easier for C# code to work with data from the database, as well
as providing some support for controlling the mapping between the database and the
object model representing the data. And WCF Data Services is able to take some or all
of an Entity Data Model and present it over HTTP, with either AtomPub or JSON, thus
making your data available to AJAX and Silverlight clients.

588 | Chapter 14: Databases

CHAPTER 15

Assemblies

One of C#’s strengths is the ease with which your code can use all sorts of external
components. All C# programs use the components that make up the .NET Framework
class library, but many cast their net wider—GUI application developers often buy
control libraries, for example. And it’s also common for software developers to want
their own code to be reusable—perhaps you’ve built up a handy library of utilities that
you want to use in all the projects in your organization.

Whether you’re producing or consuming components, C# makes it simple to achieve
binary reuse—the ability to reuse software in its compiled binary form without needing
the source code. In this chapter, we’ll look at the mechanisms that make this possible.

.NET Components: Assemblies
In .NET, an assembly is a single software component. It is usually either an executable
program with a file extension of .exe, or a library with a .dll extension. An assembly
can contain compiled code, resources (such as bitmaps or string tables), and meta-
data, which is information about the code such as the names of types and methods,
inheritance relationships between types, whether items are public or private, and so
on.

In other words, the compiler takes pretty much all the information in the source files
that you added to your project in Visual Studio, and “assembles” it into a single result:
an assembly.

We use this same name of “assembly” for both executables and libraries, because there’s
not much difference between them—whether you’re building a program or a shared
library, you’re going to end up with a file containing your code, resources, and meta-
data, and so there wouldn’t be any sense in having two separate concepts for such
similar requirements. The only significant difference is that an executable needs an
entry point—the piece of code that runs when the program starts, usually the Main
method in C#. Libraries don’t have an equivalent, but otherwise, there’s no technical
difference between a .dll and an .exe in .NET.

589

Of course, libraries normally export functionality. It’s less common for
executables to do that, but they can if they want to—in .NET it’s pos-
sible for an .exe to define public classes that can be consumed from other
components. That might sound odd, but it can be desirable: it enables
you to write a separate program to perform automated testing of the
code in your main executable.

So, every time you create a new C# project in Visual Studio, you are in effect defining
a new assembly.

No assembly can exist in isolation—the whole point is to enable reuse of code, so
assemblies need some way to use other assemblies.

References
You can choose to use an external assembly by adding a reference to it in your project.
Figure 15-1 shows how the Solution Explorer presents these—you can see the set of
references you get in any new console application. All project types provide you with
a few references to get you started, and while the exact set depends on the sort of
project—a WPF application would include several UI-related libraries that you don’t
need in a console application, for example—the ones shown here are available by de-
fault in most projects.

Figure 15-1. Default project references in Visual Studio

C# projects have an implicit reference to mscorlib. This defines critical
types such as String and Object, and you will not be able to compile
code without these. Since it’s mandatory, Visual Studio doesn’t show it
in the References list.

Once you’ve got a reference to an assembly, your program is free to use any of the public
types it offers. For example, the System.Core library visible in Figure 15-1 defines the
types that make up the LINQ to Objects services that Chapter 8 described.

590 | Chapter 15: Assemblies

There’s a point that we mentioned in Chapter 2, which is vitally impor-
tant and often catches people out, so it bears repeating: assemblies and
namespaces are not the same thing. There is no System.Core namespace.
It’s easy to get confused because in a lot of cases, there is some apparent
similarity—for example, five of the seven assemblies shown in Fig-
ure 15-1 have names that correspond to namespaces. But that’s just a
convention, and a very loose one at that, as we discussed in detail in the
sidebar “Namespaces and Libraries” on page 22.

You can add references to additional DLLs by right-clicking the References item in the
Solution Explorer and choosing the Add Reference menu item. We’ve mentioned this
in passing a couple of times in earlier chapters, but let’s take a closer look. Fig-
ure 15-2 shows the dialog that appears. You may find that when you open it, it initially
shows the Projects tab, which we’ll use later. Here, we’ve switched to the .NET tab,
which shows the various .NET components Visual Studio has found.

Figure 15-2. The .NET tab of the Add Reference dialog

Visual Studio looks in a few different places on your system when populating this list.
All the assemblies in the .NET Framework class library will be here, of course, but you’ll
often find others. For example, companies that sell controls often provide an SDK

.NET Components: Assemblies | 591

which, when installed, advertises its presence to Visual Studio, enabling its assemblies
to show up in this list too.

If you’re wondering how you’re meant to know that you need a partic-
ular assembly, the documentation tells you. If you look in the Visual
Studio help, or online in the MSDN documentation, each class defini-
tion tells you which namespace and assembly the class is defined in.

You’ll notice that Figure 15-2 shows some other tabs. The COM tab contains all the
COM components Visual Studio has found on your system. These are not .NET com-
ponents, but it’s possible to use them from C# as we’ll see in Chapter 19.

Sometimes you’ll need to use a component which, for whatever reason, isn’t listed in
the .NET tab. That’s not a problem—you can just use the Browse tab, which contains
a normal file-browsing UI. When you add an assembly with the Browse tab, it gets
added to the Recent tab, so if you need to use it again in a different project, this saves
you from navigating through your folders again to find it in the Browse tab.

Once you’ve selected one or more assemblies in whichever tab suits your needs, you
can click OK and the assembly will appear in that project’s References in the Solution
Explorer. But what if you change your mind later, and want to get rid of the reference?

Deleting references is about as straightforward as it could be: select the item in the
Solution Explorer and then press the Delete key, or right-click on it and select Remove.
However, be aware that the C# compiler can do some of the work for you here. If your
code has a reference to a DLL that it never uses, the C# compiler effectively ignores
the reference. Your assembly’s metadata includes a list of all the external assemblies
you’re using, but the compiler omits any unused assemblies in your project references.
(Consequently, the fact that most programs are unlikely to use all of the references
Visual Studio provides by default doesn’t waste space in your compiled output.)

Things are slightly more complex in Silverlight. Unlike other .NET pro-
grams, Silverlight projects put the compiled assembly into a ZIP file
(with a .xap extension). If your project has references to any assemblies
that are not one of the core Silverlight libraries, those will also be added
to that ZIP. Although the C# compiler still optimizes references when
it produces your main assembly, this doesn’t stop Visual Studio from
copying unused assemblies into the ZIP. (And it has good, if obscure,
reasons for doing that.) So, in Silverlight, it is actually worth ensuring
that you do not have references to any DLLs you’re not using.

Making use of existing libraries is only half the story, of course. What if you want to
produce your own library?

592 | Chapter 15: Assemblies

Writing Libraries
Visual Studio offers special project types for writing libraries. Some of these are specific
to particular kinds of projects—you can write a WPF control library or an activity
library for use in a Workflow application, for example. The more specialized library
projects provide an appropriate set of references, and offer some templates suitable for
the kinds of applications they target, but the basic principles are the same for all libra-
ries. To illustrate the techniques, we’ll be using the simplest project: a Class Library
project.

But before we do that, we need to think about our Visual Studio solution. Solutions
allow us to work with multiple related projects, but most of the examples in this book
have needed only a single project, so we’ve pretty much ignored solutions up to now.
But if we want to show a library in action, we’ll also need some code that uses that
library: we’re going to need at least two projects. And since they’re connected, we’ll
want to put them in the same solution. There are various ways you can do that, and
depending on exactly how you’ve configured Visual Studio, it may or may not hide
some of the details from you. But if you want to be in complete control, it’s often easiest
to start by creating an empty solution and then to add projects one at a time—that way,
even if you’ve configured Visual Studio to hide solutions with simple projects, you’ll
still be able to see what’s happening.

To create a new solution, open the New Project dialog in the usual way, and then in
the Installed Templates section on the left, expand Other Project Types and select
Visual Studio Solutions. This offers a Blank Solution template in the middle of the
dialog. In this example, we’re going to call our solution AssemblyExample. When you
click OK, Visual Studio will create a folder called AssemblyExample, which will contain
an AssemblyExample.sln file, but you won’t have any projects yet. Right-click on the
solution and choose Add→New Project from the context menu. This open the Add New
Project dialog, which is almost identical to the New Project dialog, except it adds
projects to the solution you have open, rather than creating a new one.

For the examples in this chapter, we’re going to add two projects to the solution, both
from templates in the Visual C#→Windows section: a Console Application called
MyProgram, and a Class Library called MyLibrary. (Create them in that order—Visual
Studio picks the first one you create as the one to debug when you hit F5. You want
that to be the program, because you can’t run a library. Although if you were to do it
in the other order, you could always right-click on MyProgram and choose Set as
Startup Project.)

A newly created Class Library project contains a source file, Class1.cs, which defines a
rather boring class shown in Example 15-1. Notice that Visual Studio has chosen to
follow the convention that the namespace matches the assembly name.

.NET Components: Assemblies | 593

Example 15-1. The default class in a new Class Library project

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MyLibrary
{
 public class Class1
 {
 }
}

We can try to use this class from the Program.cs file in the console application. Exam-
ple 15-2 shows that file, with the necessary additions in bold.

Example 15-2. Using an external class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyLibrary;

namespace MyProgram
{
 class Program
 {
 static void Main(string[] args)
 {
 var o = new Class1();
 }
 }
}

This won’t compile. We get this error:

error CS0246: The type or namespace name 'MyLibrary' could not be found (are
 you missing a using directive or an assembly reference?)

The compiler appears not to recognize the MyLibrary namespace. Of course it doesn’t—
that’s defined in a completely separate project than the MyProgram project that contains
Program.cs. As the error helpfully points out, we need to add a reference in MyProgram
to MyLibrary. And this time, the Add Reference dialog’s default choice of the Projects
tab, shown in Figure 15-3, is exactly what we want. MyLibrary is the only project listed
because it’s the only other project in the solution—we can just select that and click OK.

The code will now build correctly because MyProgram has access to Class1 in
MyLibrary. But that’s not to say it has access to everything in the library. Right-click on
MyLibrary in the Solution Explorer, select Add→Class, and create a new class called
MyType. Now in Program.cs, we can modify the line that creates the object so that it
creates an instance of our newly added MyType instead of Class1, as Example 15-3 shows.

594 | Chapter 15: Assemblies

Example 15-3. Instantiating MyType

var o = new MyType();

This fails to compile, but we get a different error:

error CS0122: 'MyLibrary.MyType' is inaccessible due to its protection level

(Well, actually, we get two errors, but the second one is just a distracting additional
symptom, so we won’t show it here. It’s this first one that describes the problem.) The
C# compiler has found the MyType class, and is telling us we can’t use it because of
protection.

Figure 15-3. The Projects tab of the Add Reference dialog

Protection
In Chapter 3, we saw how you can decide which members of a class are accessible to
code outside the class, marking members as public, private, or protected. And if you
didn’t specify a protection level, members were private by default. Well, it’s a similar
story with members of an assembly—by default, a type is not accessible outside its
defining assembly. The only reason MyProgram was able to use Class1 is that the class
definition has public in front of it, as you can see in Example 15-1. But as Exam-
ple 15-4 shows, Visual Studio didn’t do that for the second class we added.

.NET Components: Assemblies | 595

Example 15-4. Type with the default protection

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MyLibrary
{
 class MyType
 {
 }
}

It may seem a little weird that Visual Studio chose different protection levels for our
two types, but there’s logic to it. In most assemblies, the majority of the code is imple-
mentation detail—with most components, the visible public surface area is only a frac-
tion of the code. (Not only are most types not public, but even public types usually
have many non-public members.) So, it makes sense for a newly added class not to be
public. On the other hand, if we’re writing a library, presumably we’re planning to
make at least one class public, so it’s reasonable for Visual Studio to provide us with a
single public class as our starting point.

Some people like to avoid implicit protection—if you’re reading code such as Exam-
ple 15-4 that doesn’t say what protection level it wants, it’s difficult to tell whether the
developer chose the default deliberately, or simply hasn’t bothered to think about it.
Specifying the protection level explicitly avoids this problem. However, if you try put-
ting private in front of the class in Example 15-4, it won’t compile—private protection
means “private to the containing class” and since MyType isn’t a nested class, there is
no containing class, so private would have no meaning here. We’re trying to say some-
thing different here—we want to say “private to the containing assembly” and there’s
a different protection level for that: internal.

Internal protection

If you mark a class as internal, you’re explicitly stating that you want the class to be
accessible only from within the assembly that defines it. You are, in effect, saying the
class is an implementation detail, and not part of the API presented by your assembly.
This is the default protection level for a normal class. (For a nested class, the default
protection level is private.)

You can also apply internal to members of a class. For example, we could make the
class public, but its constructor internal, as Example 15-5 shows.

Example 15-5. Public type, internal constructor

public class MyType
{
 internal MyType() { }
}

596 | Chapter 15: Assemblies

This would enable MyProgram to declare variables of type MyType, which it was not able
to do before we made the class public. But it’s still unable to construct a new MyType.
So, in Example 15-6, the first line will compile, but we will get an error on the second
line because there are no accessible constructors.

Example 15-6. Using the type and using its members

MyType o; // Compiles OK
o = new MyType(); // Error

This is more useful than it might seem. This has enabled MyLibrary to define a type as
part of its public API, but to retain control over how instances of that type are created.
This lets it force users of the library to go through a factory method, which can be useful
for several reasons:

• Some objects require additional work after construction—perhaps you need to
register the existence of an object with some other part of your system.

• If your objects represent specific real entities, you might want to ensure that only
code you trust gets to create new objects of a particular type.

• You might sometimes want to create a derived type, choosing the exact class at
runtime.

Example 15-7 shows a very simple factory method which does none of the above, but
crucially our library has reserved the right to do any or all of these things in the future.
We’ve chosen to expose this factory method from the other type in the library project,
Class1. This class gets to use the internal constructor for MyType because it lives in the
same assembly.

Example 15-7. Factory method for a public type with an internal constructor

public class Class1
{
 public static MyType MakeMeAnInstance()
 {
 return new MyType();
 }
}

Our MyProgram project can then use this method to get Class1 to construct an instance
of MyType on its behalf, as Example 15-8 shows.

Example 15-8. Using a type with an internal constructor from outside

MyType o = Class1.MakeMeAnInstance();

.NET Components: Assemblies | 597

Example 15-7 shows another reason it can be useful to have a public
class with no public constructors. Class1 offers a public static method,
meaning the class is useful even if we never construct it. In fact, as it
stands, there’s never any reason to construct a Class1, because it con-
tains no instance members. Classes that offer public static members
but which are never constructed are rather common, and we can make
it clear that they’re not meant to be constructed by putting the keyword
static before class. This would prevent even code in the MyLibrary
project from constructing an instance of Class1.

Occasionally, it can be useful to make the internal features of an assembly accessible
to one or more other specific assemblies. If you write a particularly large class library,
it might be useful to split it into multiple assemblies much like the .NET Framework
class library. But you might want to let these all use one another’s internal features,
without exposing those features to code that uses your library. Another particularly
important reason is unit testing: if you want to write unit tests for an implementation
detail of your class, then if you don’t want to put the test code in the same project as
the class under test, you’ll need to grant your test project access to the internals of the
code being tested. This can be done by applying an assembly-level attribute, which
normally goes in the AssemblyInfo.cs file, which you can find by expanding the Prop-
erties section of your project in the Solution Explorer. Attributes are discussed in
Chapter 17, but for now, just know that you can put the code in Example 15-9 in that
file.

Example 15-9. Selectively making internals accessible

[assembly: InternalsVisibleTo("MyProgram")]

If we put this in the AssemblyInfo.cs of MyLibrary, MyProgram will now be able to use
internal features such as the MyType constructor directly. But this raises an interesting
problem: clearly anyone is free to write an assembly called MyProgram and by doing so,
will be able to get access to the internals, so if we thought we were only opening up our
code to a select few we need to think again. It’s possible to get a bit more selective than
this, and for that we need to look in more detail at how assemblies are named.

Naming
By default, when you create a new assembly—either a program or a library—its name
is based on the filename, but with the file extension stripped. This means that our two
example projects in this chapter build assemblies whose filenames are MyPro-
gram.exe and MyLibrary.dll. But as far as the .NET Framework is concerned, their
names are MyProgram and MyLibrary, respectively, which is why Example 15-9 just
specified MyProgram, and not MyProgram.exe.

598 | Chapter 15: Assemblies

Actually, that’s not the whole truth. These are the simple names, but there’s more to
assembly names. We can ask the .NET Framework to show us the full name of a type’s
containing assembly, using the code in Example 15-10.

Example 15-10. Getting a type’s containing assembly’s name

Console.WriteLine(typeof(MyType).Assembly.FullName);

Running this produces the following output:

MyLibrary, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null

As you can see, there are four parts to an assembly name. First there is the simple name,
but this is followed by a version number. Assemblies always have a version number. If
you don’t specify one, the compiler sets it to 0.0.0.0. But Visual Studio puts an assem-
bly-level attribute in the AssemblyInfo.cs file setting it to 1.0.0.0, which is why we see
that in the output. You would typically change the version each time you formally
release your code. Example 15-11 shows the (unsurprising) syntax for the version
attribute.

Example 15-11. Setting an assembly’s version

[assembly: AssemblyVersion("1.2.0.7")]

The next part of the name is the culture. This is normally used only on components
that contain localized resources for applications that need to support multiple lan-
guages. Those kinds of assemblies usually contain no code—they hold nothing but
resources. Assemblies that contain code don’t normally specify a culture, which is why
we see Culture=neutral in the name for our MyLibrary assembly.

Finally, there’s the PublicKeyToken. This is null in our example, because we’re not using
it. But this is the part of the name that lets us say we don’t just want any old assembly
with a simple name of MyProgram. We can demand a specific bit of code by requiring
the component to be signed.

Signing and Strong Names
Assemblies can be digitally signed. There are two ways to do this—you can use Au-
thenticode signing just as you can for any Windows DLL or EXE, but such signatures
don’t have any relevance to an assembly’s name. However, the other signing mecha-
nism is specific to .NET, and is directly connected to the assembly name.

If you look at any of the assemblies in the .NET Framework class library, you’ll see they
all have a nonnull PublicKeyToken. Running Example 15-10 against string instead of
MyType produces this output:

mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Naming | 599

The version number changes from time to time, of course—it didn’t look quite like that
in .NET 1.0. However, the important part here is the PublicKeyToken. Assemblies with
this feature in their name are called strongly named assemblies. But what does that
mean?

If you add a reference to a strongly named assembly, the C# compiler includes the full
name in your program’s metadata. This means that when the .NET Framework loads
our program, it will see that we have a reference to mscorlib, and that we’re expecting
its strong name to include that public key token. The framework requires strongly
named components to be digitally signed (using a signing mechanism specific to .NET
assemblies). And it will also require that the public key of the key pair used to generate
the signature has a value which, when run through a particular cryptographic hash
algorithm, matches the PublicKeyToken.

This provides some protection against ending up using the wrong assembly. It also
provides some protection against using a copy of what was originally the right assembly,
but which has been tampered with, possibly by someone up to no good.

If the .NET Framework attempts to load the wrong assembly, things won’t match.
Perhaps the assembly it found isn’t signed at all, in which case it’ll throw an exception,
because it knows we’re looking for a strongly named assembly. Or perhaps it attempts
to load an assembly that is strongly named, but which was signed with a different key
pair. Even if it is correctly signed, the different key will mean that the hash of the public
key will not match the PublicKeyToken we’re expecting, and again the component will
fail to load.

Alternatively, we might end up with an assembly with the right name, but which has
either been tampered with or has become corrupted. In this case, the public key of the
key pair used to sign the assembly will match the PublicKeyToken, but the signature will
not be valid—digital signatures are designed to detect when the thing they’ve been
applied to has changed.

You may be thinking: can’t we just generate a new signature, choosing the same key
pair that the original assembly used? Well, if you have access to the key pair, then yes,
you can—that’s how Microsoft is able to build new versions of mscorlib with the same
PublicKeyToken as earlier versions. But if you’re not in possession of the key pair—if all
you know is the public key—you’re not going to be able to generate a new valid sig-
nature unless you have some way of cracking the cryptography that underpins the
digital signature. (Alternatively, you could also try to create a new key pair which hap-
pens to produce the same PublicKeyToken as the assembly you’re trying to mimic. But
again this would require you to defeat the cryptography—hashing algorithms are de-
signed specifically to prevent this sort of thing.) So, as long as the private key has been
kept private, only someone with access to the key can generate a new assembly with
the same PublicKeyToken.

600 | Chapter 15: Assemblies

Not all key pairs are kept private. An open source project may want to
give a component a strong name just so that it can have a globally unique
name, while enabling anyone to build his own version. In these cases
the full key pair is made available along with the source code, in which
case the strong name brings no assurances as to the integrity of the code.
But it still offers identity—it enables you to refer to the library by a
distinct name, which can be useful in itself.

We can therefore be reasonably confident that if we add a reference to a strongly named
assembly, we’re going to get the assembly we are expecting. (The exact level of confi-
dence depends not just on the privacy of the key, but also on the integrity of the machine
on which we’re running the code. If someone has hacked our copy of the .NET Frame-
work, clearly we can’t depend on it to verify strong names. But then we probably have
bigger problems at that point.)

You can apply a strong name to your own components. We’re not going to show how
to do that here, mainly because it opens up key management problems—these are
security issues that are beyond the scope of this book. But if you’d like to know more,
see http://msdn.microsoft.com/library/wd40t7ad.

We’ve seen how components can refer to one another, and how assemblies are named.
But one important question remains: how does the .NET Framework know where to
load them from?

Loading
The .NET Framework automatically loads assemblies for us. It does this on demand—
it does not load every assembly we reference when the program starts, as that could
add delays of several seconds. Typically, loading happens at the point at which we first
invoke a method that uses a type from the relevant assembly. Be careful, though: this
means we can end up loading an assembly that we never use. Consider Example 15-12.

Example 15-12. A rare occurrence

public void Foo()
{
 if (DateTime.Now.Year == 1973)
 {
 SomeExternalType.Disco();
 }
}

Unless you run this on a computer whose clock is incredibly inaccurate the body of
that if statement is never going to run. Despite this, when you first call Foo, the .NET
Framework will ensure that the assembly that contains SomeExternalType is loaded, if
it hasn’t already been. Life is significantly simpler for the JIT compiler (and it can
therefore do its job faster) if it loads all the types and assemblies a method might use

Loading | 601

http://msdn.microsoft.com/library/wd40t7ad

up front, rather than loading each one on demand. The downside is that assemblies
sometimes load slightly earlier than you might expect, but this isn’t usually a problem
in practice.

Visual Studio can show you exactly when assemblies load. If you run an
application in the debugger, it will display a message to the Output panel
for each assembly your program loads. If you don’t have the Output
panel open, you can show it from the View menu. This can sometimes
be useful if you have an application that is taking longer than expected
to start up—take a look through the assemblies listed in the Output
window, and if you see any you weren’t expecting, perhaps you have
some code like Example 15-12 that is unnecessarily loading something
you’re not really using.

We know when assemblies are loaded. But from where are they loaded? There are many
different places they could theoretically come from, but in the vast majority of cases,
it’ll be one of two locations: either the same folder the application lives in or something
called the GAC.

Loading from the Application Folder
When you add a reference from one project to another, Visual Studio copies the DLL
being referenced into the consuming application’s folder. So, if we look in the
bin\Debug folder for the MyProgram example shown earlier in this chapter, we’ll see both
MyProgram.exe and a copy of MyLibrary.dll.

An obvious upshot of this approach is that each application that uses a particular library
will have its own copy. This may seem a little wasteful, and may even seem contrary to
the spirit of DLLs—traditionally DLLs have offered a performance benefit by allowing
disk space and memory to be shared by applications that use common DLLs. And while
that’s true, sharing can cause a lot of problems—installing a new application could end
up breaking old applications, because the new application might bring a new version
of a shared DLL that turns out not to work with programs expecting the older version.

To prevent this, .NET encourages isolation between applications—if each application
brings its own copy of the libraries it requires, the chances of things breaking when new
applications are installed are much lower. And now that disk and memory are much
cheaper than they were back in the 1980s when DLLs were introduced, “not breaking
everything” seems like a worthwhile return for using a bit more space.

However, .NET does support a shared model, through the GAC.

602 | Chapter 15: Assemblies

Loading from the GAC
The global assembly cache (GAC) is a machine-wide repository of shared .NET assem-
blies. All the assemblies that make up the .NET Framework class library live in the
GAC, and other components can be added to it.

To live in the GAC, an assembly must be strongly named. This is to avoid naming
collisions—if multiple applications all decide to provide their own shared component
called Utils.dll, we need some way of distinguishing between them if they’re going to
live in a shared repository. Strong names give us this—signing key pairs are unique.

The GAC tries to avoid the problem of one application’s new DLLs breaking an existing
application that was relying on older DLLs. The GAC is therefore able to hold multiple
versions of the same DLL. For example, if you install one of the “Team” editions of
Visual Studio 2008 and Visual Studio 2010 on a single machine, you’ll find various
assemblies in the GAC whose names begin with Microsoft.TeamFoundation, and there
will be two versions of each, one with version 9.0.0.0 and one with 10.0.0.0. So, even
when using this shared model, you’ll get the version of the DLL you were expecting
even if other versions have been installed since.

Loading from a Silverlight .xap File
Silverlight adds a complication: applications are downloaded from the Web, so it
doesn’t really make sense to talk about an “application folder.” However, in practice,
the rules are pretty similar as for the full .NET Framework. When you build a Silverlight
application, Visual Studio creates a ZIP file (with a .xap extension) that contains your
program’s main assembly. If you add a reference to any assemblies that are not part of
the core set of assemblies offered by Silverlight, Visual Studio will add those assemblies
to the ZIP too. This is conceptually equivalent to putting those DLLs in the application
folder with a full .NET application.

Silverlight doesn’t have a GAC. It does have a core set of assemblies stored centrally,
which are available to all applications, but you can’t add additional assemblies to this,
unlike with the GAC. The shared assemblies are the ones that are built into the Silver-
light plug-in itself, and they are the main libraries in its version of the .NET Framework
class library.

A lot of the libraries in the Silverlight SDK are not part of the core set
built into the plug-in. This is because Microsoft wanted to ensure that
Silverlight was a small download—if it was too hefty, that might put
people off installing it. The downside is that some library features re-
quire you to include a copy of the library in your .xap file.

Loading | 603

Explicit Loading
You can ask the .NET Framework to load an assembly explicitly. This makes it possible
to decide to load additional components at runtime, making it possible to create ap-
plications whose behavior can be extended at runtime.

The Assembly class in the System.Reflection namespace offers a static LoadFile method,
and you can pass the path to the assembly’s location on disk. If you don’t know where
the assembly is but you know its fully qualified name (i.e., a four-part name, like the
one printed out by Example 15-10) you can call Assembly.Load. And if you have only
part of the name—just the simple name, for example—you can call Assembly.LoadWith
PartialName.

Things are slightly different in Silverlight. You have to download the assembly yourself,
which you can do with the WebClient class, described in Chapter 13. You’ll need to get
the assembly itself (and not a .xap containing the assembly), and then you can simply
construct an AssemblyPart, passing the Stream containing the downloaded DLL to its
Load method, and it will load the assembly. (If the assembly you want to use is in
a .xap, it’s still possible to load dynamically, it’s just rather more complicated—you
need to use the Application.GetResourceStream method to extract the assembly from
the .xap before passing it to an AssemblyPart.)

All of these various techniques for loading assemblies will leave you with an Assembly
object, which you can use to discover what types the assembly offers, and instantiate
them at runtime. Chapter 17 shows how to use the Assembly class.

If you’re considering using any of these techniques, you should look at the Managed
Extensibility Framework (MEF), a part of the .NET Framework class library designed
specifically to support dynamic extensibility. It can handle a lot of the detailed issues
of loading assemblies and locating types for you. This lets you focus on the types you
want to use, rather than the mechanisms necessary to load them. You can find infor-
mation about MEF at http://msdn.microsoft.com/library/dd460648 and you can even
get hold of the source code for it from http://code.msdn.microsoft.com/mef.

The advantage of loading assemblies explicitly is that you don’t need to put a reference
into your project at compile time. You can decide at runtime which assemblies to load.
This can be useful for plug-in systems, where you want to load assemblies dynamically
to extend your application’s functionality. You might allow third-party assemblies, so
other people or companies can extend your application. However, if you decide to
support plug-ins, there’s one thing you need to be aware of: unloading can be
problematic.

Unloading

Once you’ve loaded an assembly, unloading it is tricky. The .NET Framework commits
various resources to the assembly for the lifetime of the application, and there’s no
method you can call to unload an assembly. This makes it easy to find yourself in a

604 | Chapter 15: Assemblies

http://msdn.microsoft.com/library/dd460648
http://code.msdn.microsoft.com/mef

situation where you want to delete a DLL, but you can’t because your .NET application
is holding onto it. (The .NET Framework locks the file to prevent deletion or modifi-
cation for as long as the assembly is loaded.)

There is a way around this. Strictly speaking, the assembly is loaded for the lifetime of
the appdomain. An appdomain is a similar sort of idea to an operating system process—
it’s an environment that can load and run code, and which is isolated from other app-
domains. The difference is that you can have multiple appdomains in a single process.
If you really need to be able to unload DLLs after loading them, the way to do it is to
create a separate appdomain. Once you’re done, you can destroy the appdomain, at
which point it will unload any DLLs it had loaded.

Appdomain programming is an advanced topic that is beyond the scope of this book—
we mention it mainly because it’s important to be aware that there’s a potential problem
if you start loading assemblies dynamically, and it’s useful to know that a solution
exists. More information about appdomains can be found at http://msdn.microsoft.com/
library/2bh4z9hs and http://blogs.msdn.com/cbrumme/archive/2003/06/01/51466.aspx
(which despite being an obviously rather old URL, continues to be one of the most
comprehensive descriptions around).

Summary
An assembly is a .NET component, and can be either an executable program or a library.
C# code is always packaged into an assembly, along with the metadata necessary to
describe that code, and assemblies can optionally include resources such as bitmaps or
other binary streams. Assemblies offer an additional protection boundary beyond those
we saw with classes in Chapter 3—you can make types and members available only
within the defining assembly. And we saw how components can be installed in the
same directory as the application that uses them, stored centrally in the GAC, or loaded
dynamically at runtime.

Summary | 605

http://msdn.microsoft.com/library/2bh4z9hs
http://msdn.microsoft.com/library/2bh4z9hs
http://blogs.msdn.com/cbrumme/archive/2003/06/01/51466.aspx

CHAPTER 16

Threads and Asynchronous Code

A quotation variously ascribed to A.J.P. Taylor, Arnold Toybnee, and Winston Church-
ill describes history as “just one thing after another.” C# code is much the same—we
write sequences of statements that will be executed one after another. Loops and con-
ditional statements spice things up a little by changing the order, but there is always
an order. While individual bits of C# code behave this way, programs as a whole do
not have to.

For example, web servers are able to handle multiple requests simultaneously. The user
interface for a program working on a slow operation should be able to respond if the
user clicks a Cancel button before that slow work is complete. And more or less any
computer bought recently will have a multicore processor capable of executing multiple
pieces of code simultaneously.

C# can handle this kind of concurrent work thanks to the .NET Framework’s support
for multithreading and asynchronous programming. We have a wide array of concur-
rency tools and there are many ways to use them—each example in the previous para-
graph would use a different combination of threading mechanisms. Since there are
many ways to approach concurrency problems, it’s worth drawing a clear distinction
between the most common reasons for using the techniques and features this chapter
describes.

Perhaps the most easily understood goal is parallel execution. A computer with a mul-
ticore processor (or maybe even multiple separate processor chips) has the capacity to
run multiple bits of code simultaneously. If your program performs processor-intensive
tasks, it might be able to work faster by using several cores at once. For example, video
encoding is a slow, computationally complex process, and if you have, say, a quad-core
computer, you might hope that by using all four cores simultaneously you’d be able to
encode a video four times faster than you could with a conventional one-thing-after-
another approach. As we’ll see, things never work out quite that well in practice—video
encoding on four cores might turn out to run only three times as fast as it does on one
core, for example. But even though results often fall short of naive expectations, the
ability to perform multiple calculations at the same time—in parallel, as it were—can

607

often provide a worthwhile speed boost. You’ll need to use some of the programming
techniques in this chapter to achieve this in C#.

A less obvious (but, it turns out, more widespread) use of multithreading is
multiplexing—sharing a single resource across multiple simultaneous operations. This
is more or less the inverse of the previous idea—rather than taking one task and
spreading it across multiple processor cores, we are trying to run more tasks than there
are processor cores. Web servers do this. Interesting websites usually rely on databases,
so the typical processing sequence for a web page looks like this: inspect the request,
look up the necessary information in the database, sit around and wait for the database
to respond, and then generate the response. If a web server were to handle requests one
at a time, that “sit around and wait” part would mean servers spent large amounts of
time sitting idle. So even on a computer with just one processor core, handling one
request at a time would be inefficient—the CPU could be getting on with processing
other requests instead of idly waiting for a response from a database. Multithreading
and asynchronous programming make it possible for servers to keep multiple requests
on the go simultaneously in order to make full use of the available CPU resources.

A third reason for using multithreading techniques is to ensure the responsiveness of a
user interface. A typical desktop application usually has different motives for multi-
threading than a server application—since the program is being used by just one person,
it’s probably not helpful to build an application that can work on large numbers of
requests simultaneously to maximize the use of the CPU. However, even though an
individual user will mostly want to do one thing at a time, it’s important that the ap-
plication is still able to respond to input if the one thing being done happens to be going
slowly—otherwise, the user may suspect that the application has crashed. So rather
than being able to do numerous things at once we have less ambitious aims: work in
progress shouldn’t stop us from being able to do something else as soon as the user
asks. This involves some similar techniques to those required in multiplexing, although
the need for cancellation and coordination can make user interface code more complex
than server code, despite having fewer things in progress at any one time.

A related reason for employing concurrency is speculation. It may be possible to improve
the responsiveness to user input by anticipating future actions, starting on the work
before the user asks for it. For example, a map application might start to fetch parts of
the map that haven’t scrolled into view yet so that they are ready by the time the user
wants to look at them. Obviously, speculative work is sometimes wasted, but if the
user has CPU resources that would otherwise be sitting idle, the benefits can outweigh
the effective cost.

Although parallel execution, multiplexing, and responsiveness are distinct goals,
there’s considerable overlap in the tools and techniques used to achieve them. So the
ideas and features shown in this chapter are applicable to all of these goals. We’ll begin
by looking at threads.

608 | Chapter 16: Threads and Asynchronous Code

Threads
Threads execute code. They keep track of which statement to execute next, they store
the values of local variables, and they remember how we got to the current method so
that execution can continue back in the calling method when the current one returns.
All programs require these basic services in order to get anything done, so operating
systems clearly need to be able to provide at least one thread per program.
Multithreading just takes that a step further, allowing several different flows of
execution—several threads—to be in progress at once even within a single program.

Example 16-1 executes code on three threads. All programs have at least one thread—
the .NET Framework creates a thread on which to call your Main method*—but this
example creates two more by using the Thread class in the System.Threading namespace.
The Thread constructor takes a delegate to a method that it will invoke on the newly
created thread when you call Start.

Example 16-1. Creating threads explicitly

using System;
using System.Threading;

class Program
{
 static void Main(string[] args)
 {
 Thread t1 = new Thread(One);
 Thread t2 = new Thread(Two);

 t1.Start();
 t2.Start();

 for (int i = 0; i < 100; ++i)
 {
 Console.WriteLine("Main: " + i);
 }

 }

 static void One()
 {
 for (int i = 0; i < 100; ++i)
 {
 Console.WriteLine("One: " + i);
 }
 }

 static void Two()
 {

* In fact, the CLR creates some utility threads for various purposes, so if you inspect the process’s thread count,
you’ll see more than one.

Threads | 609

 for (int i = 0; i < 100; ++i)
 {
 Console.WriteLine("Two: " + i);
 }
 }
}

All three threads do the same thing here—they loop around 100 times, printing out a
message to show how far they’ve gotten. Here are the first few lines of output I get on
my system:

Main: 0
Main: 1
Main: 2
Main: 3
Main: 4
Main: 5
Main: 6
Main: 7
Two: 0
One: 0
One: 1
One: 2
One: 3
One: 4
One: 5
One: 6
One: 7
Main: 8
Main: 9
Main: 10
Main: 11
...

You can see that the main thread managed to count up to 7 before the others got going—
this is normal, because it takes a little while for a new thread to get up to speed, and
it’s often possible for the thread that called Start to make considerable progress before
the threads it created do any visible work. And once they’re underway, you can see that
all three loops are making progress, although the interleaving is a little surprising.

This illustrates an important feature of multithreaded code—it tends to be somewhat
unpredictable. This particular program can print something different each time. We
don’t want to fill the book with page after page of this kind of output, so here’s a quick
summary of how a different run on the same machine started out: Main got up to 7 as
before, then One printed the number 0, and after that, Two printed numbers from 0 all
the way up to 27 before either of the other threads managed to get any more numbers
out. And just for fun, here’s what we saw when running on a virtual machine hosted
on the same hardware, but with just two virtual cores available in the VM: One manages
to get all the way to 25 before Main gets a look in, and Two doesn’t print out its first line
until One has gotten to 41 and Main has gotten to 31. The specifics here are not all that
interesting; the main point is the variability.

610 | Chapter 16: Threads and Asynchronous Code

The behavior depends on things such as how many CPU cores the computer has and
what else the machine was doing at the time. The fact that this particular example ends
up with each individual thread managing to print out relatively long sequences before
other threads interrupt is a surprising quirk—we got this output by running on a quad-
core machine, so you’d think that all three threads would be able to run more or less
independently. But this example is complicated by the fact that all the threads are trying
to print out messages to a single console window. This is an example of contention—
multiple threads fighting over a single resource. In general, it would be our responsi-
bility to coordinate access, but the .NET Framework happens to resolve it for us in the
specific case of Console output by making threads wait if they try to use the console
while another thread is using it. So these threads are spending most of their time waiting
for their turn to print a message. Once threads start waiting for things to happen, strange
behaviors can emerge because of how they interact with the OS scheduler.

Threads and the OS Scheduler
Threads don’t correspond directly to any physical feature of your computer—a pro-
gram with four threads running on a quad-core computer might end up running one
thread on each core, but it doesn’t usually happen that way. For one thing, your pro-
gram shares the computer with other processes, so it can’t have all the cores to itself.
Moreover, one of the main ideas behind threads is to provide an abstraction that’s
mostly independent of the real number of processor cores. You are free to have far more
threads than cores. It’s the job of the operating system scheduler to decide which thread
gets to run on any particular processor core at any one time. (Or, more accurately,
which thread gets to run on any particular logical processor—see the sidebar on the
next page.)

A machine will usually have lots of threads—a quick glance at the Windows Task
Manager’s Performance pane indicates that this machine currently has 1,340 threads.
Who’d have thought that writing a book would be such a complex activity? The extent
to which this outnumbers the machine’s four CPU cores highlights the fact that threads
are an abstraction. They offer the illusion that the computer has an almost endless
capacity for executing concurrent tasks.

Threads are able to outnumber logical processors by this margin because most threads
spend the majority of their time waiting for something to happen. Most of those 1,340
threads have called operating system APIs that have blocked—they won’t return until
they have some information to provide. For example, desktop applications spend most
of their time inside a Windows API call that returns messages describing mouse and
keyboard input and the occasional system message (such as color scheme change no-
tifications). If the user doesn’t click on or type into an application, and if there are no
system messages, these applications sit idle—their main thread remains blocked inside
the API call until there’s a message to return. This explains how a quad-core machine
can support 1,340 threads while the CPU usage registers as just 1 percent.

Threads | 611

Logical Processor, Cores, and Simultaneous Multithreading
Unlike the software threads created in Example 16-1, a logical processor is a real, phys-
ical thing. It’s a part of a CPU capable of running one piece of code at a time. In the
pictures that CPU vendors sometimes produce showing the innards of a processor, it’s
possible to identify the discrete areas of the chip that correspond to each logical pro-
cessor. For this reason, a logical processor is also sometimes called a hardware
thread. You can see how many logical processors a machine has in the Windows Task
Manager—its Performance tab shows a CPU usage graph for each logical processor.

There are several different approaches to providing multiple hardware threads. A few
years ago it was simple—a single CPU could do only one thing at a time, so you had
exactly as many logical processors as you had CPU chips in your computer. But there
are now a couple of ways to have multiple logical processors on a single chip.

A multicore CPU is conceptually fairly straightforward: roughly speaking, it’s a single
chip that happens to have multiple processors on it. But there’s another technology
known as simultaneous multithreading or SMT (or hyperthreading, in Intel’s marketing
terminology) in which a single core is able to execute multiple pieces of code
simultaneously.

SMT requires less hardware than full multicore—in SMT some of the processing re-
sources are shared. For example, a core might have only one piece of hardware capable
of performing floating-point division operations, and there might also be just one piece
of hardware dedicated to floating-point multiplication. If one hardware thread wants
to multiply at the same time another hardware thread running on the same core wants
to divide, those operations would be able to proceed in parallel, but if both want to
perform division at the same time, one will have to wait until the other finishes. SMT
processors have multiple sets of some resources—each hardware thread has its own set
of registers, for example, and may have its own local hardware for certain frequently
used arithmetic operations. So by duplicating only some of the hardware, SMT aims
to cram multiple hardware threads into less silicon than a full multicore approach can,
at the cost of less parallelism when threads end up competing for shared resources
within the CPU.

Some CPUs use both techniques. For example, in some quad-core CPUs each core uses
SMT to support two logical processors, so the CPU offers a total of eight logical pro-
cessors. And of course, a computer might contain more than one processor chip—
high-end motherboards offer multiple CPU slots. A machine with two quad-core
processors with two SMT hardware threads per core would offer 16 logical processors,
for example.

When a blocking API is finally ready to return, the thread becomes runnable. The op-
erating system’s scheduler is responsible for deciding which runnable threads get to use
which logical processors. In an ideal world, you’ll have exactly enough runnable threads
to make full and perfect use of the CPU cycles you’ve paid for. In practice, there’s usually
a mismatch, so either one or more logical processors will be idle, or there will be con-
tention for processing resources.

612 | Chapter 16: Threads and Asynchronous Code

In the latter case—where there are more runnable threads than logical processors—the
scheduler has to decide which threads currently most deserve to run. If a thread runs
without blocking for a while (typically a few milliseconds) and there are other runnable
threads, the OS scheduler may preempt that thread—it interrupts its execution, stores
information about what it was doing at the point at which it was preempted, and gives
a different thread some CPU time. If a logical processor becomes available later (either
because enough threads block or because some other thread was preempted) the OS
will put things back to how they were before preemption, and allow it to carry on. The
time for which a thread will be allowed to run before preemption is known as a quantum.

The upshot of this is that even if you have more threads than logical processors, and
all of the threads are trying to execute code simultaneously, the OS scheduler arranges
for all of them to make progress, despite outnumbering the logical processors. This
illusion has a price: preempting a thread and scheduling a different thread to use the
CPU slows things down, and you’ll often want to use the techniques we’ll see later that
try to avoid forcing the scheduler to do this.

.NET’s threading system is designed so that threads do not have to cor-
respond directly to OS threads, but in practice they always do. At one
point, Microsoft thought that .NET threads would need to be able to
correspond to OS fibers, an alternative to threads where the application
takes a more active part in scheduling decisions. This requirement came
from a SQL Server 2005 feature that was cut shortly before the final
release, so the distinction between OS threads and .NET threads is now
essentially academic (although the feature could conceivably reemerge
in a future version). It’s useful to be aware of this because a handful of
API features are designed to accommodate this feature, and also because
there are plenty of articles you may run into on the Internet written either
before the feature was cut or by people who haven’t realized it was cut.

The Stack
Each thread has its own call stack, which means that items that live on the stack—
function arguments and local variables—are local to the thread. We can exploit this to
simplify Example 16-1, which contains three almost identical loops. Example 16-2 has
just one copy of the loop which is shared by all three threads.

Example 16-2. Per-thread state on the stack

using System;
using System.Threading;

class Program
{
 static void Main(string[] args)
 {
 Thread t1 = new Thread(Go);
 Thread t2 = new Thread(Go);

Threads | 613

 t1.Start("One");
 t2.Start("Two");

 Go("Main");
 }

 static void Go(object name)
 {
 for (int i = 0; i < 100; ++i)
 {
 Console.WriteLine("{0}: {1}", name, i);
 }
 }
}

The Go method here contains the common loop—it has been modified slightly to take
an argument so that each thread can print out either One, Two, or Main as before. Running
this produces similar output to the previous example. (It’s not identical, of course,
because these examples produce slightly different output every time they run.)

We used a different overload of the Start method—we’re now passing
an argument. And less obviously, we’re using a different constructor
overload for Thread too—Example 16-1 used a constructor that accepts
a delegate to a method taking zero arguments, but Example 16-2 uses
an overload that accepts a delegate to a method that takes a single object
argument. This overload provides one way of passing information into
a thread when you start it—the argument we pass to Start is passed on
to the Go method here.

This example illustrates an important point: multiple threads can be inside the same
function at any time. All three threads in Example 16-2 spend most of their time inside
the Go method. But since each thread gets its own stack, the values of the name argument
and the loop variable (i) can be different for each thread.

Information that lives elsewhere is not intrinsically private to one thread. Exam-
ple 16-3 shows another variation on our example. As with Example 16-2, it uses a
common Go method to run a loop on all three threads, but the loop variable (i) is now
a static field of the Program class—all three threads share the same variable.

Example 16-3. Erroneous sharing of state between threads

using System;
using System.Threading;

class Program
{
 // Visible to all threads. (Bad, in this example.)
 static int i;

614 | Chapter 16: Threads and Asynchronous Code

 static void Main(string[] args)
 {
 i = 0;
 Thread t1 = new Thread(Go);
 Thread t2 = new Thread(Go);

 t1.Start("One");
 t2.Start("Two");

 Go("Main");
 }

 static void Go(object name)
 {
 // Modifying shared state without suitable protection - bad!
 for (; i < 100; ++i)
 {
 Console.WriteLine("{0}: {1}", name, i);
 }
 }
}

This example has a problem: all three threads will try to read and write the shared field,
and things often go wrong when you do this. You might think that with three threads
all sharing a single common counter, with each thread incrementing that counter every
time they loop and each thread running until the counter hits 100, we’d just see all the
numbers from 0 to 99 once. But it’s not quite that simple. For one thing, you might see
all three threads print out 0, because they may all get to the point where they’re trying
to print out the first value before any of them has gotten as far as trying to increment
the counter. (Remember, a for loop executes its iterator clause—the ++i in this
example—at the end of each iteration.) Then again you might not see that—it all really
depends on when the OS scheduler lets the threads run. But there’s a subtler problem:
if two threads both attempt to execute the ++i at the same time, we may see anomalous
results—the value of i may end up being lower than the number of times it has been
incremented, for example. If you want to share state between threads, you’ll need to
use some of the synchronization mechanisms discussed later in this chapter.

Be aware that using local variables is not necessarily a guarantee that the state you’re
working with lives on the stack. For example, when using reference types (and most
types are reference types) you need to keep in mind the distinction between the variable
that contains the reference and the object to which that reference refers. Exam-
ple 16-4 uses nothing but local variables, but ends up using the same StringBuilder
object from all three threads—each thread might have its own local variable to refer to
that object, but all three variables refer to the same object.

Threads | 615

Example 16-4 does something slightly unusual with the Thread con-
structor. Our Go method now requires two arguments—the
StringBuilder and the name—but Thread doesn’t provide a way to pass
in more than one argument; we get to choose an argument count of
either zero or one. So we’re using a lambda here to provide a zero-ar-
gument method for Thread, and that lambda passes the two arguments
into Go, including the new StringBuilder argument. It has also enabled
us to declare that the Go method is expecting the name to be a string,
rather than the less specific object type used in the previous example.
This technique doesn’t have anything to do with threading; it’s just a
useful trick when you find yourself confronted with an API that takes a
delegate that doesn’t have enough arguments. (And it’s not the cause of
the problem here. Less concise ways of passing the object in would have
had the same problem, and so would the use of multiple methods, which
Example 16-1 illustrated.)

Example 16-4. Local variables, but shared state

using System;
using System.Threading;
using System.Text;

class Program
{
 static void Main(string[] args)
 {
 StringBuilder result = new StringBuilder();

 // Sharing the StringBuilder between threads. BAD!
 Thread t1 = new Thread(() => Go(result, "One"));
 Thread t2 = new Thread(() => Go(result, "Two"));

 t1.Start();
 t2.Start();

 Go(result, "Main");

 t1.Join();
 t2.Join();

 Console.WriteLine(result);
 }

 static void Go(StringBuilder sb, string name)
 {

616 | Chapter 16: Threads and Asynchronous Code

 for (int i = 0; i < 100; ++i)
 {
 // All threads using the same StringBuilder - BAD!
 sb.AppendFormat("{0}: {1}", name, i);
 sb.AppendLine();
 }
 }
}

By the way, you’ll have noticed that this code calls Join on both Thread objects. The
Join method blocks until the thread has finished—this code needs to do that because
it prints the output only once the threads are done. This is a simple example of coor-
dinating operations across multiple threads. However, it’s not sufficient to avoid prob-
lems here. Looking at the output, it’s clear that all is not well. Here are the first few
lines, running on a quad-core system:

Main: One: Two: 00
Main:
1

2
MainTwo: 3
Main: 1
2
2
Two: 3One: Two: 4
Two: One: 6Two: One: 7
One: 8
: One: 9

That’s a whole lot more chaotic than the previous examples, which merely scrambled
the order of the lines, and lost the odd increment. The reason this has gone more ob-
viously wrong is that with the earlier examples, our attempt to observe the system
profoundly changed its behavior. (That happens a lot with multithreaded code.) The
calls to Console.WriteLine were imposing some order on the system, because the .NET
Framework was forcing the threads to take it in turns when printing their output—
that’s why we don’t get lines mixed up with one another. But Example 16-4 does all of
its work in memory using a StringBuilder, and since it calls Console.WriteLine just
once when it’s done, to print the results, nothing is forcing things to happen in any
particular order, and so we can see the chaos in full effect.

Threads | 617

There’s another reason Console.WriteLine is likely to have a significant
effect on behavior: it’s relatively slow. The actual work being done by
the examples so far is trivial—incrementing counters takes very little
time, and concatenating strings is more complex but still pretty fast.
Writing messages out to the screen is orders of magnitude slower. (The
same would apply if you were writing messages to a logfile or the de-
bugger.) So our previous examples were spending almost all of their time
inside the code added to observe the code’s behavior, and almost no
time executing the behavior we were hoping to observe.

This sort of problem makes multithreaded code remarkably resistant to
debugging—it is far more sensitive to the observer’s paradox than other
kinds of code. Generally speaking, as soon as you try to examine a
threading bug, the bug goes away. (It comes back as soon as you stop
looking, of course. Plenty of systems have gone live with debugging code
compiled in because the debugging code made certain problems “go
away.” Don’t rely on that—threading problems that appear to go away
when you haven’t really fixed them are really just hiding.)

Just to be clear, the reason for the chaos is that even though each thread has its own
local sb variable held privately on that thread’s stack, they all refer to the same String
Builder object—we have three references to the same object. All three threads are trying
to add output to the same StringBuilder at the same time, and the result is a mess.

You need to be absolutely clear in your head on where the information you’re working
with lives, where it came from, and whether other threads might be able to see it.
Objects created by a particular thread are OK as long as you never make them visible
to other threads—Example 16-4 hit problems because the main thread created a
StringBuilder and then arranged for it to be accessible from the other two threads.

This means you need to be especially careful when using nested methods—either
anonymous delegates or lambdas—because these provide a way to share local variables
between threads. Example 16-5 shows how the problem in Example 16-3 can happen
even with value type local variables. It has just one loop count variable (i) shared be-
tween all the threads, but it does this without making it a field—it’s a local variable.

Example 16-5. Local value type variables as shared state

using System;
using System.Threading;

class Program
{
 static void Main(string[] args)
 {
 // Visible to all threads, thanks to use of
 // anonymous method. (Bad, in this example.)
 int i = 0;

 ParameterizedThreadStart go = delegate(object name)

618 | Chapter 16: Threads and Asynchronous Code

 {
 // Modifying shared state without suitable protection - bad!
 for (; i < 100; ++i)
 {
 Console.WriteLine("{0}: {1}", name, i);
 }
 };

 Thread t1 = new Thread(go);
 Thread t2 = new Thread(go);

 t1.Start("One");
 t2.Start("Two");

 go("Main");
 }
}

This example demonstrates that while it may be convenient to think of value type local
variables as living on the stack, it’s not always true. Example 16-5 contains an anony-
mous method that makes use of the local i variable declared by the containing method
(Main), so the C# compiler has been obliged to convert that variable into a field inside
a generated class, in order to make it possible for that one variable to be used from
multiple methods.

To summarize: information that really does live on the stack is private to a particular
thread. Unfortunately, using local variables doesn’t necessarily guarantee that the state
you’re working with is on the stack. Be wary of reference types—no matter where the
reference lives, the thing it refers to will not be on the stack, so you need to understand
what other code might have a reference to the object you’re using. Be wary of value
types whose implementation you do not control—value types are allowed to contain
fields of reference types, so you’re not guaranteed to be safe just because you’re using
a value type. And be wary of lambdas and anonymous methods—they can move in-
formation off the stack and into a place where it’s accessible to multiple threads at once.
We’ll see later what to do if you really have to share information across threads.

The examples we’ve seen so far create threads explicitly in order to illustrate the oper-
ation of multiple threads. But .NET often creates threads automatically without you
having created Thread objects. The most obvious example is the thread that the .NET
Framework calls your Main method on, but there are others—some of the asynchronous
communication mechanisms we saw in Chapter 13 call back into your code on different
threads than the one you started work on. We’ll be seeing more examples of this later
in the chapter when we examine .NET’s Asynchronous Programming Model.

In fact, it’s relatively unusual to create new threads explicitly. If you need concurrent
execution and you’re not using some part of the .NET Framework that supplies you
with threads when you need them, it’s often better to use the thread pool or the Task
Parallel Library, both of which we’ll see later.

Threads | 619

One problem with explicit thread creation is in knowing how many to create. Threads
are relatively expensive—each one consumes system resources, and there are also fac-
tors that can limit the number of threads in a single process. There’s also a cost in
switching between threads—the context switch that occurs when the OS scheduler
moves a thread from one logical processor to another. If you have many more runnable
threads than logical processors, you’ll pay this cost on a very regular basis, and it can
start to have a significant effect on throughput. In an ideal world you would have no
more threads than logical processors, avoiding any context switch overhead. However,
most threads block from time to time, so in reality you tend to need more threads than
logical processors if you want to fully use your CPU cycles. In general, you should try
to keep the thread count as low as is practical—a single program that creates more than
a handful per logical processor is likely to have problems.

Never build a service that creates a new thread for each incoming re-
quest. This is a classic rookie mistake, as it seems like an obvious thing
to do. It appears to work for light workloads, but it runs straight into
two of the biggest performance problems you can hit with threads. First,
creating threads is expensive, so if each thread exists only for as long as
it takes to handle a single request, you risk spending more CPU time on
setting up and destroying threads than on useful work. Second, this
approach doesn’t limit the number of threads, so as the system gets busy,
its performance will get disproportionately worse thanks to context
switching overhead and the memory footprint of the resources associ-
ated with each thread. You can avoid these problems by using either the
asynchronous patterns or the thread pool techniques described later in
this chapter.

Creating just enough threads is often hard, because getting the balance right depends
on things such as your application’s current workload, other work in progress on the
machine, and characteristics of the machine itself. Fortunately, .NET provides the
thread pool to make this sort of thing easier.

The Thread Pool
The .NET Framework provides a thread pool, which is a collection of worker threads
available to perform short pieces of work. The thread pool continuously adjusts the
number of threads that are allowed to process work items simultaneously in an attempt
to optimize throughput.

The exact algorithm used to adjust the thread count is not documented, but as a general
rule, if the system is not busy, work will typically be serviced very quickly after you
queue it up. But as the computer becomes busier, items will sit in the queue for longer—
the thread pool tries to avoid the overheads of preemption, thread switching, and re-
source contention by not running too much concurrent work. When a system is already
busy, trying to process more work items would probably slow it down further, and so

620 | Chapter 16: Threads and Asynchronous Code

keeping items queued up and processing fewer at a time is likely to result in better
overall performance.

The simplest way to use the thread pool is through its QueueUserWorkItem method.
Example 16-6 shows a modification to the previous examples—rather than creating
threads, it uses the thread pool. QueueUserWorkItem takes a delegate to any method that
accepts a single object as its argument, so it’s happy with the same Go method as
Example 16-2. (Unlike the Thread constructor, there’s no overload that accepts a
method without an argument—the thread pool insists on there being an argument
whether you have a use for one or not.)

Example 16-6. Queuing work items for the thread pool

static void Main(string[] args)
{
 ThreadPool.QueueUserWorkItem(Go, "One");
 ThreadPool.QueueUserWorkItem(Go, "Two");

 Go("Main");
 // Problem: not waiting for work items to complete!
}

This example has a problem: if the main thread finishes first, the program may exit
before the thread pool work items complete. So this only illustrates how to start work
on the thread pool. This might not be a problem in practice—it depends on your ap-
plication’s typical life cycle, but you may need to add additional code to coordinate
completion. Running on a quad-core machine, this particular example behaves in much
the same way as the previous ones, because the thread pool ends up creating a thread
for both work items. On a single-core machine, you might see a difference—it could
decide to let the first item run to completion and then run the second afterward.

The thread pool is designed for fairly short pieces of work. One of the most important
jobs it was originally introduced for was to handle web requests in ASP.NET web ap-
plications, so if you’re wondering how much work constitutes “fairly short,” a reason-
able answer is “about as much work as it takes to generate a web page.”

.NET 4 introduces a new way to use the thread pool, the Task Parallel Library, which
offers a couple of advantages. First, it handles certain common scenarios more effi-
ciently than QueueUserWorkItem. Second, it offers more functionality. For example, tasks
have much more comprehensive support for handling errors and completion, issues
Example 16-6 utterly fails to address. If the main thread finishes before either of the
work items is complete, that example will simply exit without waiting for them! And
if you want the main thread to discover exceptions that occurred on the thread pool
threads, there’s no easy way to do that. If any of these things is important to you, the
Task Parallel Library is a better way to use the thread pool. There’s a whole section on
that later in this chapter. For now, we’ll continue looking at some aspects of threading
that you need to know, no matter what multithreading mechanisms you may be using.

Threads | 621

Thread Affinity and Context
Not all threads are equal. Some work can be done on only certain threads. For example,
WPF and Windows Forms both impose a similar requirement: an object representing
something in the user interface must be used only on the thread that created that object
in the first place. These objects have thread affinity, meaning that they belong to one
particular thread.

Not all things with thread affinity are quite as obstinate as user interface
elements. For example, while some COM objects have thread affinity
issues, they are usually more flexible. (COM, the Component Object
Model, is the basis of various Windows technologies including ActiveX
controls. It predates .NET, and we’ll see how to use it from .NET in
Chapter 19.) .NET handles some of the COM thread affinity work for
you, making it possible to use a COM object from any thread. The main
ways in which COM’s thread affinity will affect you are that certain
objects will have different performance characteristics depending on
which thread you call them on, and there may be additional complica-
tions if your COM objects use callbacks.

So thread affinity just means that the thread you’re calling on makes a
difference. It doesn’t always mean that using the wrong thread is guar-
anteed to fail—it depends on what you’re using.

If you never write multithreaded code, you never have to worry about thread affinity—
if you do everything on one thread, it will always be the right one. But as soon as multiple
threads get involved—either explicitly or implicitly†—you may need to add code to get
things back on the right thread.

ASP.NET has a similar problem. It makes contextual information about the current
request available to the thread handling the request, so if you use multiple threads to
handle a single request, those other threads will not have access to that contextual
information. Strictly speaking, this isn’t a thread affinity issue—ASP.NET can use dif-
ferent threads at different stages of handling a single request—but it presents the same
challenge to the developer: if you start trying to use ASP.NET objects from some ran-
dom thread, you will have problems.

The .NET Framework defines a solution that’s common to WPF, Windows Forms, and
ASP.NET. The SynchronizationContext class can help you out if you find yourself on
the wrong thread when using any of these frameworks. Example 16-7 shows how you
can use this in an event handler for a GUI application—the click handler for a button,
perhaps.

† Always remember that even if you have not created any threads explicitly, that doesn’t mean you’re necessarily
writing single-threaded code. Some .NET Framework classes will bring extra threads into play implicitly. For
example, the CLR’s garbage collector runs finalizers on a distinct thread.

622 | Chapter 16: Threads and Asynchronous Code

Example 16-7. Handling thread affinity with SynchronizationContext

SynchronizationContext originalContext = SynchronizationContext.Current;

ThreadPool.QueueUserWorkItem(delegate
 {
 string text = File.ReadAllText(@"c:\temp\log.txt");

 originalContext.Post(delegate
 {
 myTextBox.Text = text;
 }, null);
 });

The code reads all the text in from a file, and that’s something that might take awhile.
Event handlers in WPF and Windows Forms are called on the thread that the event
source belongs to—a UI thread. (Or the UI thread if, like most desktop applications,
you have only one UI thread.) You should never do slow work on a UI thread—thread
affinity means that if your code is busy using that thread, none of the UI elements
belonging to that thread will be able to do anything until you’re finished. The user
interface will be unresponsive for as long as you keep the thread busy. So Exam-
ple 16-7 uses the thread pool to do the work, keeping the UI thread free.

But the code wants to update the UI when it has finished—it’s going to put the text it
has retrieved from the file into a text box. Since a text box is a UI element, it has thread
affinity—we can update it only if we’re on the UI thread. This is where Synchroniza
tionContext comes to the rescue.

Before starting the slow work, Example 16-7 reads the SynchronizationContext class’s
Current property. This static property returns an object that represents the context
you’re in when you read it—precisely what that means will depend on what UI frame-
work you’re using. (The object you get back works differently depending on whether
your application uses WPF, Windows Forms, or ASP.NET.) But the exact implemen-
tation doesn’t matter—you just need to hold on to it until you need to get back to that
context. Having grabbed the context while we were in the click handler, we then kick
off the work in the thread pool. And once that work is complete, it calls the stored
SynchronizationContext object’s Post method. Post takes a delegate, and it’ll invoke
that delegate back in whatever context you were in when you grabbed the context. So
in this case, it’ll invoke our delegate on the UI thread that the button belongs to. Since
we’re back on our application’s UI thread, we’re now able to update the text box.

Common Thread Misconceptions
There are some persistent myths surrounding threads, which sometimes lead to their
overuse. As the current trend seems to be for the number of logical processors in typical
machines to edge ever upward, developers sometimes feel practically obliged to write
multithreaded code. Since using threads correctly is difficult and error-prone, it’s worth

Threads | 623

tackling some of these myths, in case you’re in a situation where a single-threaded
solution might actually be better.

Myth: Threads are necessary to get work done

You need a thread to run code, but that’s not the only kind of work computers do. In
fact, it’s a fairly unusual program that spends most of the time executing code; CPU
usage of 100 percent is often a sign that a program has hung. Computers contain various
kinds of specialized hardware capable of getting on with work while the CPU is either
idle or off doing something else—messages can be sent and received over the network,
data can be read from and written to disk, graphics can be rendered, sound can be
played. Code needs to run to coordinate these activities, but that typically needs to
happen at the start, when kicking off some work, and then again at the end once the
work completes. In between, all the interesting work is being done by specialized hard-
ware. The CPU has no role to play, and may well enter a low-power idle state where
it’s not doing any work at all.

That’s why the fans on some computers spin up into high speed when
the machine gets busy—most of the time the CPU is asleep and con-
suming relatively little power. The cooling system’s full capacity is
needed only when the CPU is executing code for sustained periods.

Nontrivial code in real programs tends to involve multifaceted work, so the CPU might
have work to do at various stages besides the start and finish, but even then, you tend
to see long periods of waiting for things to happen punctuated by short bursts of CPU
activity, particularly when multiple machines are involved (such as a web server and a
database server). Even fast computer networks can take hundreds of microseconds to
send a message, and while that may appear instantaneous to human eyes, modern CPUs
are able to execute hundreds of thousands of instructions in that time. Measured against
how fast CPUs run, network communications always appear glacially slow. And it’s a
similar story with most I/O.

The nature of I/O is often not obvious from the way APIs are structured. For example,
look at the call to File.ReadAllText in Example 16-7—the obvious way to think of that
is as a method that reads all the contents of a file off disk and returns the contents as
text once it’s finished. It seems like the thread we use to call that method is busy doing
work for as long as it takes. But in fact, most of the time the thread is inside that method,
it will almost certainly be blocked—it won’t be in a runnable state, because it’s waiting
for the disk controller in the computer to fetch the file’s content off disk. And unless
the disk in question is a solid state drive, it could take milliseconds to get the informa-
tion into memory—that part of the process will take orders of magnitude longer than
the code inside ReadAllText that converts those bytes back into a .NET string object.

624 | Chapter 16: Threads and Asynchronous Code

Solid state drives change things only a little. You don’t need to wait for
bits of metal to lumber into position, but the fact that they are physically
separate components slows things down—it will take time for the disk
controller hardware to send suitable messages to the drive, and for the
drive to send a response. The difference between the time spent retriev-
ing data and processing that data will not be as dramatic, but the code
will still account for a small proportion.

The one situation in which this particular example might be dominated
by CPU usage rather than time spent waiting for I/O is if the file in
question is already in the operating system’s filesystem cache—when
the OS reads data off disk it tends to keep a copy in memory for a while
just in case you need it again. In that case, the disk doesn’t need to be
involved at all, and it really is all CPU time. You need to be wary of this
when testing performance—the first time a particular file is read will be
much slower than all the rest. If you run a test hundreds of times to get
a good average measurement, you’ll be ignoring the “first” and testing
the “all the rest” case, but in a desktop application the one most users
will notice is often the first case. For interactive code, the worst case can
matter far more than the average.

An upshot of this is that using asynchronous APIs is sometimes much more effective
than creating lots of threads. On the server, this can yield better throughput because
you avoid the overheads associated with having more threads than you need. And on
the client, it can sometimes simplify code considerably, as some asynchronous APIs let
you work with a single-threaded model with no loss of responsiveness.

Myth: Multiple logical processors will necessarily make things faster

For years, processors managed to double CPU performance on a regular basis—a new
processor would do everything that the one you bought a couple of years ago could do,
but twice as fast. We were in the luxurious position where our code just got faster and
faster without having to do anything, and because the growth was exponential—
doubling up again and again—the cumulative effects were astounding. Computers are
tens of millions of times faster than they were a few decades ago.

Sadly, that all stopped a few years ago because we started running into some harsh
realities of physics. In response to this, CPU vendors have switched to providing more
and more logical processors as a means of continuing to deliver processors that are, in
some sense, twice as fast as the ones from a couple of years ago. They can do this because
even though clock speeds have stopped doubling up, Moore’s law—that the number
of transistors per chip doubles roughly every two years—is still in action for the time
being.

Threads | 625

Unfortunately, the doubling in speed between a single-core and dual-core system is
hypothetical. Technically, the dual-core system might be able to perform twice as many
calculations as the single-core one in any given length of time, but this is an improve-
ment only if it’s possible to divide the work the user needs to do in a way that keeps
both cores busy, and even if that’s possible, it’s effective only if other resources in the
system such as memory and disk are able to provide input to the calculations fast
enough for this double-speed processing.

Work often cannot progress in parallel. The second step of a calculation might depend
on the results of the first step, in which case you can’t usefully run the two steps on
different cores—the core running the second step would just have to sit around and
wait for the result from the first step. It would probably be faster to run both steps on
a single core, because that avoids the overheads of getting the results of the first step
out of the first core and into the second core. Where the calculations are sequential,
multiple cores don’t help.

So the nature of the work matters. Certain jobs are relatively easy to parallelize. For
example, some kinds of image processing can be spread over multiple logical
processors—if the processing is localized (e.g., applying a blur effect by smearing
nearby pixels into one another), it’s possible for different logical processors to be work-
ing on different parts of the image. Even here you won’t get a 4x speedup on a four-
core system, because some coordination might be necessary at the boundaries, and
other parts of the system such as memory bandwidth may become a bottleneck, but
these sorts of tasks typically see a useful improvement. However, these so-called em-
barrassingly parallel tasks are the exception rather than the rule—a lot of computation
is sequential in practice. And of course, many problems live in a middle ground, where
they can exploit parallelism up to a certain point, and no further. So there’s usually a
limit to how far multithreading can help programs execute faster.

That doesn’t stop some people from trying to use as many multiple logical processors
as possible, or from realizing when doing so has failed to make things better. It’s easy
to be distracted by achieving high CPU usage, when the thing you really want to meas-
ure is how quickly you can get useful work done.

Myth: Maxing the CPU must mean we’re going really fast

It’s possible to construct parallel solutions to problems that manage to use all the
available CPU time on all logical processors, and yet which proceed more slowly than
single-threaded code that does the same job on one logical processor. Figure 16-1 shows
the CPU load reported by the Windows Task Manager for two different solutions to
the same task.

The image on the left might make you feel that you’re making better use of your mul-
ticore system than the one on right. The righthand side is using far less than half the
available CPU capacity. But measuring the elapsed time to complete the task, the code

626 | Chapter 16: Threads and Asynchronous Code

that produced the lefthand image took about 15 times longer to complete than the code
that produced the righthand one!

The job in hand was trivial—both examples just increment a field 400 million times.
Example 16-8 shows both main loops. The Go function is the one that gets invoked
concurrently on four threads. GoSingle just runs multiple times in succession to perform
the iterations sequentially.

Figure 16-1. Using all logical processors (left) versus just one (right)

Example 16-8. Multithreaded versus single-threaded

class Program
{
 static int Count;
 const int Iterations = 100000000;

 static void Go()
 {
 for (int i = 0; i < Iterations; ++i)
 {
 Interlocked.Increment(ref Count);
 }
 }

 static void GoSingle(int repeat)
 {
 for (int outer = 0; outer < repeat; ++outer)
 {
 for (int i = 0; i < Iterations; ++i)
 {
 Count += 1;
 }
 }
 }

 ...

Threads | 627

Here’s the code that launches Go concurrently:

Count = 0;
List<Thread> threads = (from i in Enumerable.Range(0, 4)
 select new Thread(Go)).ToList();

threads.ForEach(t => t.Start());
threads.ForEach(t => t.Join());

This creates four threads, all of which call Go. Next, it calls Start on each of the threads.
Having started them all, it calls Join on each thread to wait for them all to complete.
(We could have written three loops here, but our use of LINQ and lambdas makes the
code much more compact. In particular, if you have a loop that invokes just one op-
eration on every item in a list the List<T> class’s ForEach method is a less cluttered way
of expressing this than a foreach loop.) The code to launch the single-threaded version
is a lot simpler:

Count = 0;
GoSingle(4);

Both produce the same result: the Count field contains 400,000,000 at the end. But the
multithreaded version was much slower. One reason is the difference in how the two
versions increment the Count. Here’s the line in question from the single-threaded code:

Count += 1;

But if we try that in the multithreaded version, it doesn’t work. It certainly makes it run
nice and quickly—about three times faster than the single-threaded version—but trying
it a few times, Count comes to 110,460,151, then 133,533,503, then 133,888,803... The
majority of increments are getting lost—that’s the sort of thing that happens when you
don’t use suitable protection for accessing shared state. That’s why the multithreaded
version needs to do this:

Interlocked.Increment(ref Count);

The Interlocked class in the System.Threading namespace provides methods that per-
form certain simple operations in ways that work even if multiple threads try to use
them on the same data at the same time. As the name suggests, Increment increments
the count, and it does this in a way that locks out any other logical processors attempting
to do the same thing at the same time. It forces the logical processors to take it in turns.

It works—the Count total is correct with this code in place—but at some cost. On a
quad-core system, with all four cores burning away at 100 percent, this takes 15 times
longer than the simple single-threaded solution.

In fact, the cost of Interlocked.Increment does not fully explain the difference. Modi-
fying the single-threaded version to work the same way makes it run about five times
slower, but that’s still three times faster than the multithreaded code. So a considerable
amount of the slowdown is down to the communication costs between the processors.

628 | Chapter 16: Threads and Asynchronous Code

Don’t take these numbers too seriously. This is clearly a contrived example. (If we
wanted it to run really fast we could just have initialized Count to 400,000,000 to start
with, and removed the loop.) But while the details are spurious the basic principle
applies broadly: the cost of contention between logical processors that are supposed
to be cooperating can work against you. Sometimes they merely erode the benefit—
you might see a 2.5x speedup on a quad-core system, for example. But sometimes they
really do negate the benefit—contrived though this example may be, much worse ex-
amples have cropped up in real systems.

Some implementations may come out worse on some systems and better
on others. For example, some parallel algorithms take a considerable
hit relative to their sequential counterparts in order to be able to scale
well on more processors. Such an algorithm might make sense only on
systems where you have a large number of processors—it might be
slower than the single-threaded version on a dual-core system, but very
worthwhile on a system with 16 logical processors, for example.

The bottom line is that if you want to understand whether a parallel solution is effective,
you need to compare it against a single-threaded solution on the same hardware. Just
because your CPU loads indicate that you’re being extremely parallel, that’s not nec-
essarily the same as being really fast. And unless your code will only ever run on a single
hardware configuration, you need to perform the same comparison on lots of different
machines to get a good idea of how often a parallel solution might be the best choice.

Multithreaded Coding Is Hard
Even when multithreaded code provides a demonstrable performance benefit, it’s very
hard to get right. We’ve already seen a few bizarre behaviors in some extremely simple
examples. Achieving correct behavior in a real concurrent system can be very chal-
lenging. So we’ll look at two of the most common classes of pitfalls before examining
some strategies for avoiding them.

Race conditions

The anomalies we’ve seen so far have all been examples of a kind of concurrency hazard
known as a race, so called because the outcome is determined by which participant
gets to a particular place first. Example 16-1 displays different output each time it runs,
because there are three threads all trying to print to the same console window, and the
only thing that determines which one gets to print the next line is whichever happens
to be the next to call Console.WriteLine.‡ There is no coordination between the threads,
and so they all pile in at once. It’s a relatively complicated example in some ways,

‡ More accurately, it’s whichever thread acquires the lock Console.WriteLine uses internally to serialize access
to the console.

Threads | 629

because most of the race happens where we can’t see it—that example spends almost
all of its time inside Console.WriteLine. It’s easier to understand races when you can
see all of the code.

So consider the broken variation of Example 16-8 where the concurrently executing
Go method used a simple Count += 1 instead of Interlocked.Increment. We saw that
using the += operator resulted in lost increments, but why? The += operator has to do
three things: first it must read the current value of Count, then it has to add 1 to that
value, and finally it has to store the result back into the variable. The RAM chips in
your computer don’t have the ability to perform calculations, so there’s no getting away
from the fact that the value has to go into the CPU so that it can calculate the new value,
and then it has to be written back out again so that the new value is not forgotten. There
will always be a read and then a write.

Consider what happens when two threads try to increment the same Count field. Let’s
call them Thread A and Thread B. Table 16-1 shows one possible sequence of events.
In this case it works out fine: Count starts at 0, is incremented twice, and ends up at 2.

Table 16-1. Two increments, one after the other

Count Thread A Thread B

0 Read Count (0)

0 Add 1 (0 + 1 = 1)

1 Write Count (1)

1 Read Count (1)

1 Add 1 (1 + 1 = 2)

2 Write Count (2)

But it might not work so well. Table 16-2 shows what happens if the work overlaps, as
could easily happen with multiple logical processors. Thread B reads the current
Count while Thread A was already part of the way through the job of incrementing it.
When Thread B comes to write back its update, it has no way of knowing that Thread
A has updated the value since B did its read, so it effectively loses A’s increment.

Table 16-2. Lost increment due to overlap

Count Thread A Thread B

0 Read Count (0)

0 Add 1 (0 + 1 = 1) Read Count (0)

1 Write Count (1) Add 1 (0 + 1 = 1)

1 Write Count

630 | Chapter 16: Threads and Asynchronous Code

There are lots of variations on the order, some of which work fine and some of which
fail. If your code makes possible an ordering that produces wrong results, sooner or
later you’ll run into it.

Don’t fall into the trap of believing that a highly improbable outcome
is effectively impossible. You’ll be fooling yourself—sooner or later the
problem will bite. The only difference with the highly improbable prob-
lems is that they’re extremely hard to diagnose and debug.

The example shown here is about as simple as a race gets. With real code things tend
to be a lot more complex, as you will probably be dealing with data structures more
intricate than a single integer. But in general, if you have information which is visible
to multiple threads and at least one of those threads is changing that information in
any way, race conditions are likely to emerge if you don’t take steps to prevent them.

The solution to races is, on the face of it, obvious: the threads need to take it in turns.
If threads A and B simply coordinated their operations so that either would wait until
the other was done when an update is in progress, we could avoid the problem. Inter
locked.Increment does exactly that, although it’s rather specialized. For the occasions
when you’re doing something more complex than incrementing a field, .NET provides
a set of synchronization mechanisms that let you force threads to take it in turns. We’ll
get to these shortly. However, this solution introduces another class of problem.

Deadlocks and livelocks

When code waits in order to avoid stepping on other threads’ toes, it’s possible for the
application to lock up, because all the threads can end up waiting for each other to
finish. This tends not to happen with simple, short operations involving just a single
piece of data. Lockups typically occur when a thread that already has exclusive access
to some data starts waiting for something else.

The standard example involves transferring money between two bank accounts; let’s
call them X and Y. Suppose two threads, A and B, are both attempting to transfer money
between these two accounts; A transfers money from X to Y while B transfers from Y
to X. Both threads will need to use some sort of synchronization mechanism to get
exclusive access to the accounts in order to avoid race conditions of the kind previously
discussed. But imagine that the following happens:

1. Initially, no threads are attempting to do anything to either account.

2. Thread A gets exclusive access to Account X.

3. Thread B gets exclusive access to Account Y.

4. Thread A attempts to get exclusive access to Account Y—it can’t because B has
access, so A waits for B to relinquish Account Y.

5. Thread B attempts to get exclusive access to Account X—it can’t because A has
access, so B waits for A to relinquish Account X.

Threads | 631

The exact mechanism used to manage exclusive access is irrelevant because the out-
come is the same: A has come to a halt waiting for B to let go of Y. But B isn’t going to
let go of Y until it has managed to acquire X, and unfortunately it won’t be able to—
A is in possession of X and has just come to a halt. Neither side can proceed because
each is waiting for the other to let go. This is sometimes known as a deadly embrace.

This condition can cause both deadlocks and livelocks, and the distinction has to do
with the mechanism used to manage exclusive access. If threads go into a blocked state
while waiting for access, neither thread is runnable once we hit the deadly embrace,
and that’s typically described as a deadlock—the symptom is a system that has gone
idle, despite having work to be getting on with. A livelock is similar, but tends to involve
synchronization mechanisms that use CPU cycles while waiting—some synchroniza-
tion primitives actively poll for availability rather than blocking. Active polling is just
as subject to a deadly embrace as a blocking approach, it just has different symptoms—
livelocks hang with high CPU usage.

The two concurrency hazards just described—races and deadly
embraces—are not the only kinds of multithreading problems. There
are endless ways in which you can get into trouble in concurrent sys-
tems, so we can really only scratch the surface. For example, besides
issues that can compromise the correct behavior of your code, a whole
host of concurrency issues can cause performance problems. For a deep
discussion of the issues and what to do about them, we recommend
Concurrent Programming on Windows by Joe Duffy (Addison-Wesley).

What can we do to avoid the numerous pitfalls of multithreaded code?

Multithreading Survival Strategies
There are several approaches for mitigating the difficulties of multithreading, each with
a different trade-off between difficulty and flexibility.

Abstinence

Obviously, the simplest way to avoid the risks inherent in multithreading is not to do
it at all. This doesn’t necessarily mean abandoning everything in this chapter, however.
One of the asynchronous patterns can enable certain kinds of applications to get some
of the benefits of asynchrony while sticking with a single-threaded programming
model.

Isolation

If you’re going to have multiple threads, a good way to keep things simple is to avoid
sharing information between them. ASP.NET encourages this model—it uses the
thread pool to handle multiple requests simultaneously, but by default each individual
request runs your code on just one thread. (You can opt into an explicitly asynchronous

632 | Chapter 16: Threads and Asynchronous Code

model if you want to use multiple threads per request, but for straightforward scenarios
the single-threaded style is best.) So although the web application as a whole is able to
run multiple concurrent threads, those threads don’t interact.

This approach requires some discipline. There’s nothing in .NET that enforces
isolation§—you simply have to choose not to share data between threads. In a web
application, that’s relatively easy because HTTP naturally discourages stateful com-
munications, although if you start using caching techniques to improve performance,
you lose some isolation because all your requests will end up using shared objects in
your cache. And any information in a static field (or any object reachable directly or
indirectly from a static field) is potentially shared.

Chances are good that most multithreaded applications will have at least some infor-
mation that needs to be accessed by several threads, so complete isolation may not be
realistic. But maximizing isolation is a good idea—keeping as much information as
possible local to individual threads means not having to worry about concurrency haz-
ards for any of that information.

Immutability

When you really have to share data, you can often avoid many concurrency hazards by
sharing only immutable data, that is, data that cannot be altered. Fields marked with
readonly cannot be modified after construction—the C# compiler enforces this—so
you don’t have to worry about whether those fields are being changed by other threads
as you try to use them. You need to be careful, though—readonly applies only to the
field itself, and not the object the field refers to if it’s a reference type. (And even if the
field is a value type, if that value itself contains fields of reference types, the objects
being referred to are not affected by readonly.) So as with isolation, this is an option
that requires some discipline.

Synchronization

If you’re writing multithreaded code, sooner or later you will probably need to have at
least some information that is accessible to multiple threads, and which occasionally
needs to be changed—isolation and immutability are sometimes simply not options.
In this case, you’ll need to synchronize access to the data—for example, anytime shared
information is being modified, you’ll need to make sure no other threads are trying to
read or write that information. This requires the most discipline of any of the solutions
described here, and is likely to be the most complex, but it offers the most flexibility.

The .NET Framework provides a wide range of features to help you synchronize the
way your threads access shared information, and these are the topic of the next section.

§ .NET does have an isolation mechanism: you can divide code into so-called appdomains. But this adds its
own complications and is designed for slightly more coarse-grained divisions, and it’s really not well suited
to this problem. ASP.NET can use this to isolate multiple web applications sharing a process, but does not
use it to isolate individual requests.

Threads | 633

Synchronization Primitives
There are two important ways in which the operations of multiple threads may need
to be coordinated. When you have shared modifiable data, it needs to be possible to
make threads take it in turns to access that data. But it’s also often important for threads
to be able to discover when something has happened—a thread might want to enter a
blocking state until such time as it has useful work to do, for example. So some syn-
chronization primitives provide notification rather than exclusive access. Some offer a
combination of the two.

Monitor
The most widely used synchronization primitive in .NET is the monitor. It is supported
directly by the .NET Framework—any object can be used with this facility—and also
by C#, which provides a special keyword for working with monitors. Monitors offer
both mutual exclusion and notification.

The simplest use of a monitor is to ensure that threads take it in turns to access shared
state. Example 16-9 shows some code that would need the kind of protection a monitor
can provide before we could use it from multiple threads. It is designed for handling
lists of recently used strings—you might use this sort of code to provide a recently used
file list on an application’s File menu. This code makes no attempt to protect itself in
the face of multithreading.

Example 16-9. Code unsuitable for multithreading

class MostRecentlyUsed
{
 private List<string> items = new List<string>();
 private int maxItems;

 public MostRecentlyUsed(int maximumItemCount)
 {
 maxItems = maximumItemCount;
 }

 public void UseItem(string item)
 {
 // If the item was already in the list, and isn't the first
 // item, remove it from its current position, since we're
 // about to make it this first item.
 int itemIndex = items.IndexOf(item);
 if (itemIndex > 0)
 {
 items.RemoveAt(itemIndex);
 }

 // If the item's already the first, we don't need to do anything.
 if (itemIndex != 0)
 {

634 | Chapter 16: Threads and Asynchronous Code

 items.Insert(0, item);

 // Ensure we have no more than the maximum specified
 // number of items.
 if (items.Count > maxItems)
 {
 items.RemoveAt(items.Count - 1);
 }
 }
 }

 public IEnumerable<string> GetItems()
 {
 return items.ToArray();
 }
}

Example 16-10 is some test code to exercise the class.

Example 16-10. Testing the MostRecentlyUsed class

const int Iterations = 10000;

static void TestMru(MostRecentlyUsed mru)
{
 // Initializing random number generator with thread ID ensures
 // each thread provides different data. (Although it also makes
 // each test run different, which may not be ideal.)
 Random r = new Random(Thread.CurrentThread.ManagedThreadId);
 string[] items = { "One", "Two", "Three", "Four", "Five",
 "Six", "Seven", "Eight" };
 for (int i = 0; i < Iterations; ++i)
 {
 mru.UseItem(items[r.Next(items.Length)]);
 }
}

Example 16-10 just feeds in strings from a fixed set of items at random. Calling this
test function from just one thread produces the expected results: at the end, the Mos
tRecentlyUsed object just returns the most recent items put into it by this test. However,
the multithreaded test in Example 16-11 causes something quite different to happen.

Example 16-11. Executing a multithreaded test

MostRecentlyUsed mru = new MostRecentlyUsed(4);

const int TestThreadCount = 2;
List<Thread> threads = (from i in Enumerable.Range(0, TestThreadCount)
 select new Thread(() => TestMru(mru))).ToList();

threads.ForEach(t => t.Start());
threads.ForEach(t => t.Join());

foreach (string item in mru.GetItems())
{

Synchronization Primitives | 635

 Console.WriteLine(item);
}

This example crashes on a multicore machine—after awhile, it throws an ArgumentOu
tOfRangeException. It doesn’t crash at the same place on every run; it crashes inside
either of the two calls to the List<T> class’s RemoveAt method.

The exceptions occur due to races. For instance, consider this line of code from Ex-
ample 16-9:

items.RemoveAt(items.Count - 1);

This reads the value of the Count property, then subtracts 1 to get the index of the last
item in the list, and then removes that last item. The race here is that some other thread
may manage to remove an item from the list in between this thread reading the Count
property and calling RemoveAt. This causes the method to throw an ArgumentOutOfRan
geException, because we end up asking it to remove an item at an index that’s after the
final item.

In fact, we’re lucky we got an exception at all. The List<T> class makes no guarantees
when we use it from multiple threads. Here’s what the documentation for the class says
in the Thread Safety section:

Public static members of this type are thread safe. Any instance members are not guar-
anteed to be thread safe.

This means that it’s our problem to make sure we never try to use a List<T> instance
from more than one thread at a time. It could fail in subtler ways than crashing—it
could corrupt data, for example.

List<T> is not unusual. Most types in the .NET Framework class library
make no guarantees of thread safety for instance members.

We could add similar documentation to our MostRecentlyUsed class, declaring that it
does not make any guarantees either. In fact, that might well be the best option—it’s
very difficult for an individual class to guarantee to work correctly in all possible mul-
tithreading scenarios. Only the application that uses the class really knows what con-
stitutes correct behavior. For example, it might be necessary for a MostRecentlyUsed
object to be kept in sync with some other object, in which case the application is going
to have to manage all synchronization itself, and there’s nothing useful that our class
could do on its own. This is one reason why the lack of thread safety guarantees is so
widespread in the class libraries—there isn’t a good general-purpose definition of
thread-safe for individual types.

If we decide to make it the application’s problem, how would that look? We don’t have
a real application here, only a test, so our test code would need to synchronize its calls
into our object. Example 16-12 shows a suitably modified version of the test method

636 | Chapter 16: Threads and Asynchronous Code

from Example 16-10. (Note that Example 16-11 adds code that also uses the same
object, so you might think we need to make a similar modification there. However, it
waits until all the test threads have finished before touching the object, so its reads
won’t overlap with their writes, making locking superfluous. Therefore, Exam-
ple 16-12 is sufficient in this case.)

Example 16-12. Synchronization in the calling code

static void TestMru(MostRecentlyUsed mru)
{
 Random r = new Random(Thread.CurrentThread.ManagedThreadId);
 string[] items = { "One", "Two", "Three", "Four", "Five",
 "Six", "Seven", "Eight" };
 for (int i = 0; i < Iterations; ++i)
 {
 lock (mru)
 {
 mru.UseItem(items[r.Next(items.Length)]);
 }
 }
}

The only modification here is to wrap the call to the MostRecentlyUsed type’s UseItem
method with a lock block. The C# lock syntax generates some code that uses the
Monitor class, along with some exception handling. Here’s what the lock block in
Example 16-12 is equivalent to:

MostRecentlyUsed referenceToLock = mru);
bool lockAcquired = false;
try
{
 Monitor.Enter(referenceToLock, ref lockAcquired);
 mru.UseItem(items[r.Next(items.Length)]);
}
finally
{
 if (lockAcquired)
 {
 Monitor.Exit(referenceToLock);
 }
}

(This is what C# 4.0 generates. Older versions do something slightly simpler that mis-
handles an obscure and unusual failure mode. But the basic idea is the same in either
case. The generated code copies the mru reference into a separate variable to ensure
correct operation even if the code inside the lock block were to change mru.)

The documentation says that Monitor.Enter acquires an exclusive lock on the object
passed as the first argument, but what exactly does that mean? Well, the first thread to
do this will find that Monitor.Enter returns immediately. Any other threads that try to
make the same call on the same object will be made to wait—Monitor.Enter on those
other threads will not return until the thread that currently owns the lock releases it by

Synchronization Primitives | 637

calling Monitor.Exit. Only one thread can hold the lock at any time, so if multiple other
threads are waiting for the same object’s lock in Monitor.Enter, the .NET Framework
will pick just one as the next owner of the lock, and the other threads will continue to
be blocked.

Holding a lock on an object has only one effect: it prevents any other
thread from acquiring a lock on that object. It does nothing else. In
particular, it does not prevent other threads from using that object. So
it would be a mistake to think that acquiring the lock on an object means
you have locked the object. That may sound like splitting hairs, but it’s
the difference between working and broken code.

Use of monitors is entirely a matter of convention—it is up to you to decide which
objects’ locks you use to protect which information. Example 16-12 happens to acquire
a lock on the very object whose state is being protected, but in fact, it’s quite common—
preferable, even—to create separate objects whose only job is to be the thing on which
you acquire a lock. There are a couple of reasons for this. First, you’ll often want mul-
tiple pieces of data to fall under the protection of a single lock—perhaps updates to
our MostRecentlyUsed object need to be done in conjunction with changes to other state
within the application, such as a history-tracking service. When multiple objects are
involved, arbitrarily choosing one of those objects to act as the lock target is likely to
make your code harder to follow, because it may not be clear to someone reading your
code that you’re using that object’s lock to protect multiple objects rather than just the
one whose lock you’re acquiring. If you create a special object whose only purpose is
locking, this makes it clear to anyone reading your code that she needs to think about
what state that lock protects.

The other reason to avoid acquiring a lock on the object you want to synchronize access
to is that you can’t always be sure that the object doesn’t acquire a lock on itself—some
developers write lock(this) inside instance methods when trying to make thread-safe
objects (for whatever definition of thread-safe they have chosen). It is a bad practice to
acquire a lock on your this reference, of course, because you can’t necessarily know
whether someone using your object will decide to try to acquire a lock on it for his own
purposes—internal locking is an implementation detail, but your this reference is
public, and you don’t usually want implementation details to be public.

So in short, you shouldn’t try to acquire a lock on any object you are trying to syn-
chronize access to.

Bearing all that in mind, what should we do if we want to try to make our
MostRecentlyUsed class more robust in multithreaded environments? First, we need to
decide what multithreading scenarios we want to support. Simply declaring that we
want the type to be thread-safe is meaningless.

638 | Chapter 16: Threads and Asynchronous Code

So let’s say that we want to allow multiple threads to call UseItem and GetItems simul-
taneously without causing exceptions. That’s a pretty weak guarantee—notice we’ve
said nothing about what state the object will be in afterward, merely that it won’t
actually blow up. Surely it would be better to guarantee to handle the calls in the order
in which they were made. Unfortunately, we can’t do this if the locking logic lives
entirely inside the class. The OS scheduler might decide to preempt a thread moments
after it called UseItem, and before it has had a chance to get to any of our synchronization
code.

For example, consider what could happen if Thread A calls UseItem, and then before
that call returns, Thread B also calls UseItem, and before either returns, Thread C calls
GetItems. It’s fairly easy to think of at least five reasonable outcomes. GetItems might
return neither of the items passed in by A and B. It might return both, and there are
two ways it could do this—GetItems returns an ordered list and either A or B might
come first. Or it could return just one—either the one passed by A or just the one passed
by B. If you need coordination across multiple calls like this it’s not going to be possible
to do that inside MostRecentlyUsed, because you only have the opportunity to start
synchronization work once calls are already underway. This is another reason why
synchronization code usually belongs at the application level and not in the individual
objects. So about the best we can hope to achieve within this class is to prevent the
exceptions from occurring when it’s used from multiple threads. Example 16-13 does
this.

Example 16-13. Adding locking to a class

class MostRecentlyUsed
{
 private List<string> items = new List<string>();
 private int maxItems;
 private object lockObject = new object();

 public MostRecentlyUsed(int maximumItemCount)
 {
 maxItems = maximumItemCount;
 }

 public void UseItem(string item)
 {
 lock (lockObject)
 {
 // If the item was already in the list, and isn't the first item,
 // remove it from its current position, since we're about to make
 // it this first item.
 int itemIndex = items.IndexOf(item);
 if (itemIndex > 0)
 {
 items.RemoveAt(itemIndex);
 }

 // If the item's already the first, we don't need to do anything.

Synchronization Primitives | 639

 if (itemIndex != 0)
 {
 items.Insert(0, item);

 // Ensure we have no more than the maximum specified
 // number of items.
 if (items.Count > maxItems)
 {
 items.RemoveAt(items.Count - 1);
 }
 }
 }
 }

 public IEnumerable<string> GetItems()
 {
 lock (lockObject)
 {
 return items.ToArray();
 }
 }
}

Notice that we added a new field, lockObject, which holds a reference to an object
whose only job is to be the thing on which we acquire a lock. And we simply acquire
this lock inside the methods that work with the list of items. We have to hold the lock
for the whole of the UseItem method, because the code looks at the state of the items
list right at the start, and then the rest of its operation is guided by what it found. The
code simply won’t work if the items list changes halfway through, and so we hold on
to the lock for the duration.

In this particular case, holding the lock for the whole method is unlikely to cause prob-
lems because this method won’t take long to run. But as a general rule, you want to
avoid holding locks for any longer than necessary. The longer you hold a lock, the
greater the chances of some other thread wanting to acquire the same lock, and being
forced to wait. It’s a particularly bad idea to call code that might make a request over
a network and wait for a response while you’re holding a lock (e.g., holding a lock while
making a request to a database).

Be particularly wary of acquiring multiple locks—holding on to a lock
while attempting to acquire another is a good recipe for deadlock.
Sometimes it’s inevitable, though, in which case you need to devise a
strategy to avoid deadlocks. That’s beyond the scope of this book, but
if you find yourself in this situation lock leveling is a suitable solution to
this problem—searching the Web for “lock leveling for multithreading”
would be a good place to start.

As we mentioned several pages ago, the Monitor class isn’t just about locking. It also
provides a form of notification.

640 | Chapter 16: Threads and Asynchronous Code

Notification

Suppose we want to write some code that tests our MostRecentlyUsed class in multi-
threaded scenarios. Even relatively simple tests pose a challenge: for example, what if
we want to verify that after a call to UseItem has returned on one thread, the item it
passed in becomes visible as the first item returned if some different thread calls
GetItems? We’re not testing concurrent use—we’re just testing sequential operations,
where one thing happens on one thread and then something else happens on another.
How would we write a test that coordinated these steps across threads? We need one
thread to wait until the other has done something. We could just use the Thread class’s
Join method again, waiting for the first thread to exit. But what if we don’t want to let
it exit? We might want to perform a sequence of operations, with each thread taking it
in turns.

Monitors can help with this—as well as protecting shared state, they also provide a
way to discover when that state may have changed. The Monitor class provides a Wait
method that operates in conjunction with either a method called Pulse or the related
PulseAll. A thread that is waiting for something to change can call Wait, which will
block until some other thread calls Pulse or PulseAll. You must already hold the lock
on the object you pass as an argument to Wait, Pulse, or PulseAll. Calling them without
possessing the lock will result in an exception.

Example 16-14 uses this mechanism to provide the ability for one thread to wait for a
second thread to do something. The class’s only interesting state is a single bool field,
canGo, which is initially false but will be set to true when the second thread does
whatever we’re waiting for—that thread will call GoNow to indicate this. Since this field
is going to be used from multiple threads, we need synchronization, so WaitForIt also
has a lockObject field which refers to an object whose only job is to be the object for
which we acquire a lock in order to protect access to canGo.

You should never attempt to acquire a lock directly on a bool, or on any
other value type. You can acquire a lock only on a reference type, so if
you attempt to pass a bool to Monitor.Enter, the C# compiler will do
what it always does when you pass a value to a method that expects an
object: it will create code that generates a box for the bool, as we saw in
Chapter 4. You would be acquiring a lock on that box, not on the
bool itself. That’s a problem, because you get a new box every time, and
so your locking would do nothing useful.

The lock keyword in C# prevents you from trying to acquire a lock on
a value—you’ll get a compiler error if you try. But if you call the
Monitor class’s methods directly, C# will not prevent you from making
this mistake. So this is another good reason to get into the habit of cre-
ating an object that is separate from the state it protects, and acquiring
locks on that object.

Synchronization Primitives | 641

Example 16-14. Coordinating threads with Monitor

class WaitForIt
{
 private bool canGo;
 private object lockObject = new object();

 public void WaitUntilReady()
 {
 lock (lockObject)
 {
 while (!canGo)
 {
 Monitor.Wait(lockObject);
 }
 }
 }

 public void GoNow()
 {
 lock (lockObject)
 {
 canGo = true;
 // Wake me up, before you go go.
 Monitor.PulseAll(lockObject);
 }
 }
}

Both methods in this example acquire the lock before doing anything, because both
inspect the canGo field, and we expect these to be called on different threads.
WaitUntilReady then sits in a loop until that field is true. Each time it goes around the
loop, it calls Monitor.Wait. This has three effects: first, it relinquishes the lock—that’s
important, because otherwise, the thread that called GoNow would never get as far as
setting the canGo field; second, it makes the thread calling WaitUntilReady block until
some other thread calls either Pulse or PulseAll for lockObject; third, when Wait re-
turns, it reacquires the lock.

642 | Chapter 16: Threads and Asynchronous Code

Why use a loop here? Wouldn’t an if statement followed by a single
call to Wait work? In this case it would, but in general it’s surprisingly
easy to end up generating spurious notifications. Suppose we modified
this example so that as well as offering a GoNow, we had a third method
called OhHangOnAMinute which put the canGo field back to false—the
class becomes a gate which can open and close. It would be possible
that by the time WaitUntilReady is woken up after a call to GoNow, the
field had already transitioned back to false because of a call to
OhHangOnAMinute.

And while that can’t happen with this simpler example, in general it’s
good to get in the habit of checking to see if the condition you were
waiting for really holds when you come out of a wait, and be prepared
to wait again if it doesn’t.

The GoNow method acquires the lock to make sure it’s safe to modify the canGo field,
which it sets to true. Then it calls PulseAll—this tells the .NET Framework to wake
up all threads currently waiting on lockObject as soon as we release the lock. (Pulse
would just release a single thread, but since our WaitForIt class just has two states—
not ready and ready—it needs to release all waiting threads when it becomes ready.)
GoNow then returns, releasing the lock as the flow of execution leaves the lock block,
which means that any threads waiting inside WaitUntilReady are now no longer blocked
waiting for the pulse.

However, if multiple threads are waiting, they won’t all start running at once, because
Monitor.Wait reacquires the lock before returning. It relinquishes the lock only tem-
porarily while it waits—it insists that we hold the lock before calling it, and we will be
holding the lock again when it returns. Consequently, if PulseAll happened to release
multiple threads, they still have to take it in turns as they come out of Wait.

When WaitUntilReady gets to proceed, the loop will check canGo again, and this time it
will be true and the loop will finish. The code will then leave the lock block, releasing
the lock on lockObject, enabling the next waiting thread (if there are any) to do the
same thing—and so all waiting threads will become unblocked one after another.

Synchronization Primitives | 643

The monitor’s close integration between locking and notification may
seem a little odd—it’s even getting in our way here. This example would
work perfectly well if all waiting threads were released simultaneously,
instead of having to wait while they acquire the lock in turn. But in fact,
the combined locking and notification is critical to most uses of Pulse
and Wait. Notifications concern a change to shared state, so it’s vital
that code that raises notifications be in possession of the lock, and also
that when code discovers a notification, it is in possession of the lock
so that it can look at the modified state immediately. Without this, all
sorts of subtle races can occur in the gap between notification and lock
acquisition or the gap between releasing a lock and waiting for
notification.

Example 16-15 shows a simple program that uses the WaitForIt class from Exam-
ple 16-14. It creates a thread that waits for a while and then calls the GoNow method.
The main thread waits for that to happen by calling the WaitUntilReady method after
starting the thread.

Example 16-15. Using WaitForIt

class Program
{
 static void Main(string[] args)
 {
 WaitForIt waiter = new WaitForIt();

 ThreadStart twork = delegate
 {
 Console.WriteLine("Thread running...");
 Thread.Sleep(1000);
 Console.WriteLine("Notifying");
 waiter.GoNow();
 Console.WriteLine("Notified");
 Thread.Sleep(1000);
 Console.WriteLine("Thread exiting...");
 };

 Thread t = new Thread(twork);
 Console.WriteLine("Starting new thread");
 t.Start();
 Console.WriteLine("Waiting for thread to get going");
 waiter.WaitUntilReady();
 Console.WriteLine("Wait over");

 }
}

The output shows why this sort of coordination is often necessary:

Starting new thread
Waiting for thread to get going
Thread running...

644 | Chapter 16: Threads and Asynchronous Code

Notifying
Notified
Wait over
Thread exiting...

Notice that the new thread didn’t start up immediately—the main thread prints its
“Waiting for thread to get going” message after calling Start to run the thread, but this
message appears before the new thread prints “Thread running...” which is the very
first thing that thread does. In other words, just because the Thread class’s Start method
has returned, you have no guarantee that the newly created thread has actually done
anything yet. Only through the use of coordination mechanisms such as Wait and
Pulse can we impose some kind of order across multiple threads.

Never use Thread.Sleep to try to solve ordering problems in production
code—it’s not a dependable or efficient technique. Example 16-15 uses
it to make the coordination problems more visible, but while it can be
used to amplify or explore problems in examples, you cannot rely on it,
because it makes no guarantees—making one thread sleep for a while
to give another thread a chance to catch up does not guarantee that the
other thread will catch up, particularly on systems that experience heavy
load.

The main thread happens not to get to run immediately after the other thread calls
GoNow. (Or at least, if it did run, it didn’t run for long enough to print out its “Wait over”
message—the other thread got in there first with its “Notified” message.) You might
see slightly different results each time you run. Even though we can impose a little bit
of order there’s still going to be quite a lot of unpredictability in the exact order of
events. As you design multithreaded code, it’s important to be very clear about how
much order you are imposing with locking and notifications—in this case, we are
guaranteeing that our main thread cannot possibly get to the line that prints out “Wait
over” before the second thread has reached the line that calls GoNow, but that’s the only
constraint—the progress of the two threads could still be interleaved in numerous dif-
ferent ways. You should never assume that the detailed order of events you observe in
practice will necessarily always happen.

While the Monitor class and the C# lock keyword are the most widely used synchro-
nization mechanisms, there are some alternatives.

Other Lock Types
Monitors are very useful and are typically a good first choice for locking, but there are
some scenarios in which more specialized alternatives might offer slightly better per-
formance or greater flexibility. Since it’s relatively unusual to use these alternatives, we
won’t illustrate them in detail—this section will just describe what’s there and when it
might be useful to you.

Synchronization Primitives | 645

To understand why the alternatives exist, it’s useful to know something more about
the capabilities and limitations of monitors. Monitors are designed for use within a
single appdomain—you cannot use them to synchronize operations between processes,
nor between appdomains sharing a process. Cross-process coordination is possible in
Windows, but you need to use other mechanisms to do that. One reason for this is that
monitors try to avoid getting the OS scheduler involved in locking where possible.

If your code hits a lock statement (or calls Monitor.Enter directly) for an object on which
no other thread currently has a lock, the .NET Framework is able to handle this situa-
tion efficiently. It does not need to make calls into the operating system. Monitors can
do this because they’re appdomain-local; to ensure cross-appdomain synchronization
typically means getting help from the OS, and once you need to call into the OS, lock
acquisition becomes many times more expensive. So when there’s no contention, mon-
itors work really well. But once blocking occurs—either due to contention or because
of an explicit call to Wait—the OS scheduler has to get involved because it’s the only
thing that can move a thread between runnable and blocked states. This is usually a
good thing, because it means the thread can wait efficiently; once a thread becomes
blocked it doesn’t consume CPU cycles, and the CPU is free to get on with other useful
work, or it may be able to go into its power-efficient idle state when no threads need
to run, which is particularly important for laptops running on battery power. However,
there are some situations where the cost of getting the OS involved outweighs the ben-
efits. This brings us to the first of the specialized lock types.

SpinLock

SpinLock, which is new in .NET 4, provides similar locking functionality to monitors,
but when contention occurs it will just sit in a loop checking and checking and checking
again to see if the lock has become free yet—the thread will consume CPU cycles while
it does this. The “spin” in SpinLock refers to the code spinning around in this loop
waiting for the lock.

That might sound like an awful idea compared to the nice power-efficient wait state
that a thread can enter into when blocking on a monitor. And often, it’s exactly as bad
an idea as it sounds. The majority of the time you won’t want to use SpinLock. But it
offers one possible advantage: because it never falls back onto the OS scheduler, it’s a
more lightweight construct than a monitor, and so if you very rarely encounter con-
tention for a particular lock, it might be cheaper. (And if the contention does occur but
is extremely short-lived, it’s possible that on a multicore system the cost of spinning
very briefly might actually be lower than the cost of getting the scheduler involved. In
general, spinlock contention on a single-processor system is bad, although the

646 | Chapter 16: Threads and Asynchronous Code

SpinLock implementation mitigates this a little by yielding‖ when it fails to acquire the
lock on a single-processor machine.)

SpinLock is a value type—a struct. This contributes to its lightweight
nature, as it can live inside other objects, rather than needing its own
space on the heap. Of course, this also means you need to be careful not
to assign a SpinLock into a local variable, because you’d end up making
a copy, and locking that copy would not be useful.

Never use SpinLock without comparative performance tests: test all the performance
metrics you care about using ordinary monitors and compare that against how the same
test suite works when you replace a particular lock with a SpinLock, and consider
switching only if the tests demonstrate a clear benefit. If you don’t have a test infra-
structure capable of verifying that you meet all of your performance requirements, or
if you don’t have quantitative, clearly specified performance requirements, your project
is not ready for SpinLock.

For some reason, a lot of developers just love to be armchair perform-
ance tuners. An astounding amount of time and effort is wasted on
mailing lists, on web forums, and in internal company meetings on
heated debates over which constructs are theoretically faster than oth-
ers. Sadly, empirical testing of any kind rarely enters into the equation
in such discussions.

If someone tries to claim by logical argument alone that a particular
technique is faster, be highly suspicious of her claims. Exotic and spe-
cialized synchronization primitives such as SpinLock seem to bring out
the worst in these people. (And that’s the main reason we’re even men-
tioning it—sooner or later you’ll have to deal with someone who has
become obsessed with finding a way to use SpinLock.) Testing and
measurement is the only reliable path to performance.

Reader/writer locks

Earlier in this chapter, we suggested immutability as a way to avoid having to syn-
chronize access to your data—in the .NET Framework, it’s safe for any number of
threads to read the same data simultaneously as long as no threads are trying to modify
that data at the same time. Sometimes you may find yourself in the frustrating situation
of having data that is almost read-only—perhaps a website contains a message of the
day which, presumably, changes only once a day, but which you may need to incor-
porate into each of the hundreds of web pages your busy website serves up every second
of the day.

‖ Yielding is when a thread tells the OS scheduler that it wants to give other threads a turn using the CPU now,
rather than waiting to be preempted. If there are no other runnable threads, yielding does nothing, and the
thread will continue to run.

Synchronization Primitives | 647

The monitor’s mutually exclusive locking—where only one thread at a time gets to
acquire a lock—seems ill-suited to this scenario. You could find that this shared data
becomes a bottleneck—all threads are taking it in turns to access it, even though that
really needs to happen only once a day. This is where reader/writer locks come in.

The idea behind a reader/writer lock is that when you acquire the lock, you declare
whether you need to modify the data or just read it. The lock will allow any number of
threads to get a read lock simultaneously, but if a thread tries to get a write lock, it’ll
have to wait until all the current readers are done, and then, once a thread has a write
lock, other threads attempting to get a lock of any kind will be made to wait until the
write lock has been released. In other words, this kind of lock supports any number of
simultaneous readers, but writers get exclusive access. (The precise details are, as ever,
a little more complex, as a lock of this kind has to avoid the scenario where a never-
ending stream of readers causes a writer to wait forever. New readers may be made to
wait even when other readers are currently active simply to clear the decks for a waiting
writer.)

While this sounds good in theory, the practical benefits can sometimes fall short of
what theory might suggest. You shouldn’t even contemplate using a reader/writer lock
unless you are seeing performance problems with a simpler monitor-based solution.
This kind of lock is more complex, and so it’s quite possible you’ll end up making
things slower, particularly in cases where you weren’t seeing much contention. (The
example we gave of a website with a message of the day is quite likely to fall into that
category. If the message is just a string, how long does it take to get hold of a reference
to a string, really? Even with hundreds of requests per second, the chances of contention
are probably pretty small.)

It doesn’t help that the first implementation offered by the .NET Framework—the
ReaderWriterLock—was, frankly, not very good. Your monitor-based solution had to
be in a world of pain before ReaderWriterLock looked preferable. Unfortunately, some
of the problems of this lock couldn’t be fixed without risking breaking existing code,
so .NET 3.5 introduced a much better replacement, ReaderWriterLockSlim. If you need
reader/writer locking, you should use this newer variant unless you absolutely have to
support older versions of .NET. Be aware that unlike ReaderWriterLock, ReaderWriter
LockSlim implements IDisposable, so you need to arrange for it to be disposed at the
right time. This means that if you use it as an implementation detail of a class, your
class will probably need to implement IDisposable too.

Mutexes

The Mutex class provides a similar style of locking to monitor. The name is short for
mutually exclusive indicating that only one thread can acquire the lock at any time. A
mutex is significantly more expensive than a monitor because it always gets the OS
scheduler involved. And it does that because mutexes work across process
boundaries—you can create a Mutex object with a name, and if another process in the
same Windows login session creates another Mutex object with the same name, that

648 | Chapter 16: Threads and Asynchronous Code

object refers to the same underlying Windows synchronization object. So to acquire a
Mutex, you don’t merely have to be the only thread in your application in possession of
the lock; you will be the only thread on the whole login session in possession of the
lock. (You can even make a global mutex that spans all login sessions, meaning that
yours will be the only thread on the entire machine in possession of the lock.)

If you create a mutex without a name, it will be local to the process, but it still relies
on the OS because a Mutex is essentially a wrapper around a mutex object provided by
the Windows kernel.

Other Coordination Mechanisms
Monitors are not just for locking, of course—they offer coordination facilities through
pulsing and waiting. And the .NET Framework offers some slightly more specialized
types for coordination too.

Events
Events provide a very similar service to the WaitForIt class we built in Example 16-14—
an event is effectively a Boolean variable you can wait on. And rather than being a simple
one-shot mechanism as in Example 16-14, an event can go back and forth between its
two states.

.NET offers ManualResetEvent and AutoResetEvent classes. The latter automatically
reverts to its default state when letting waiting threads go, whereas the manual one
remains in its so-called signaled state until you explicitly reset it.

AutoResetEvent can be problematic. There isn’t necessarily any corre-
spondence between the number of times you signal it and the number
of times it releases threads. If you signal it twice in a row when no threads
are waiting, it doesn’t keep count—it’s just as signaled after the second
signal as it was after the first one. This can lead to bugs where you oc-
casionally miss signals, and your code can grind to a halt. Approach
with caution.

These types are wrappers around the underlying Windows event synchronization
primitive, so as with Mutex, you can use events for cross-process coordination. And of
course, this also means that you incur the cost of getting the OS scheduler involved.

.NET 4 introduces an alternative called ManualResetEventSlim. This will use busy-
waiting techniques similar to a spinlock for short waits. So just like the Monitor, it gets
the scheduler involved only when a wait is necessary. Therefore, unless you really need
the extra features available from the nonslim version (e.g., you need cross-process syn-
chronization) the ManualResetEventSlim class is a better choice than ManualResetE
vent if you’re using .NET 4 or later.

Synchronization Primitives | 649

Countdown
.NET 4 introduces the CountdownEvent class, which provides a handy solution to a fairly
common problem: knowing when you’re done. Remember back in Example 16-6, we
ran into an issue with the thread pool. We queued up a couple of pieces of work, but
we had no way of knowing when they were done. One solution to that would be to use
the Task Parallel Library, which we’ll get to shortly, but an alternative would have been
to use the CountdownEvent class.

CountdownEvent is very simple. For each piece of work you start, you call AddCount (or
if you know how many pieces of work there will be up front, you can pass that number
into the constructor). For each piece of work that completes you call Signal. And if you
need to wait for all outstanding work to complete (e.g., before your program exits),
just call Wait.

BlockingCollection
The System.Collections.Concurrent namespace provides various collection classes that
are designed to be used in multithreaded environments. They look a little different from
the normal collection classes because they are designed to be used without needing any
locking, which means they can’t offer features that rely on things staying consistent
from one moment to the next. Numerical indexing is out, for example, because the
number of items in the collection may change, as we saw when trying to use List<T>
in a multithreaded fashion in Example 16-11. So these are not thread-safe versions of
normal collection classes—they are collections whose APIs are designed to support
multithreaded use without the caller needing to use locks.

BlockingCollection is not just a multithreaded collection; it also offers associated co-
ordination. It provides a way for threads to sit and wait for items to become available
in the collection. Its Take method will block if the collection is empty. Once data be-
comes available, Take will return one item. Any number of threads may be waiting inside
Take at any time, and other threads are free to call Add. If you Add enough items that all
the threads waiting to Take are satisfied, and then you keep calling Add, that’s when
items start to get added to the collection. And if the collection is nonempty, calls to
Take will return immediately.

This allows you to have one or more threads dedicated to processing work items
generated by other threads. The BlockingCollection acts as a kind of buffer—if you
generate items faster than you process them, they will queue up in the BlockingCollec
tion, and if the processing threads catch up, they will block efficiently until more items
come along.

You could use this in a WPF application that needs to do slow work in the
background—the UI thread could add work into a blocking collection, and then one
or more worker threads could take items from the collection and process them. This is
not hugely different from using the thread pool, but it gives you the opportunity to limit

650 | Chapter 16: Threads and Asynchronous Code

the number of worker threads—if you had just a single thread that performs back-
ground work, you might be able to get away with much simpler synchronization code,
because all your background work is always done by the same thread.

We’ve looked at how to create threads explicitly and at the tools available for ensuring
that our programs function correctly in a multithreaded world. Next we’re going to
look at asynchronous programming models, where we don’t explicitly create new
threads. We will need the locking and synchronization techniques we just explored
because we are still working in a concurrent world; it’s just a slightly different pro-
gramming style.

Asynchronous Programming
Some things are intrinsically slow. Reading all of the audio data off a CD, downloading
a large file from a server at the end of a low-bandwidth connection on the opposite side
of the world, or playing a sound—all of these processes have constraints that mean
they’ll take a long time to complete, maybe seconds, minutes, or even hours. How
should these sorts of operations look to the programmer?

One simple answer is that they don’t have to look different than faster operations. Our
code consists of a sequence of statements—one thing after another—and some state-
ments take longer than others. This has the useful property of being easy to understand.
For example, if our code calls the WebClient class’s DownloadString method, our pro-
gram doesn’t move on to the next step until the download is complete, and so we can
know not just what our code does, but also the order in which it does it.

This style of API is sometimes described as synchronous—the time at which the API
returns is determined by the time at which the operation finishes; execution progresses
through the code in sync with the work being done. These are also sometimes known
as blocking APIs, because they block the calling thread from further progress until work
is complete.

Blocking APIs are problematic for user interfaces because the blocked thread can’t do
anything else while slow work is in progress. Thread affinity means that code which
responds to user input has to run on the UI thread, so if you’re keeping that thread
busy, the UI will become unresponsive. It’s really annoying to use programs that stop
responding to user input when they’re working—these applications seem to freeze
anytime something takes too long, making them very frustrating to use. Failing to re-
spond to user input within 100 ms is enough to disrupt the user’s concentration. (And
it gets worse if your program’s user interface uses animation—the occasional glitch of
just 15 ms is enough to make a smooth animation turn into something disappointingly
choppy.)

Threads offer one solution to this: if you do all your potentially slow work on threads
that aren’t responsible for handling user input, your application can remain responsive.
However, this can sometimes seem like an overcomplicated solution—in a lot of cases,

Asynchronous Programming | 651

slow operations don’t work synchronously under the covers. Take fundamental oper-
ations such as reading and writing data from and to devices such as network cards or
disks, for example. The kernel-mode device drivers that manage disk and network I/O
are instructed by the operating system to start doing some work, and the OS expects
the driver to configure the hardware to perform the necessary work and then return
control to the operating system almost immediately—on the inside, Windows is built
around the assumption that most slow work proceeds asynchronously, that there’s no
need for code to progress strictly in sync with the work.

This asynchronous model is not limited to the internals of Windows—there are asyn-
chronous public APIs. These typically return very quickly, long before the work in
question is complete, and you then use either a notification mechanism or polling to
discover when the work is finished. The exact details vary from one API to another, but
these basic principles are universal. Many synchronous APIs really are just some code
that starts an asynchronous operation and then makes the thread sleep until the oper-
ation completes.

An asynchronous API sounds like a pretty good fit for what we need to build responsive
interactive applications.# So it seems somewhat ludicrous to create multiple threads in
order to use synchronous APIs without losing responsiveness, when those synchronous
APIs are just wrappers on top of intrinsically asynchronous underpinnings. Rather than
creating new threads, we may as well just use asynchronous APIs directly where they
are available, cutting out the middle man.

.NET defines two common patterns for asynchronous operations. There’s a low-level
pattern which is powerful and corresponds efficiently to how Windows does things
under the covers. And then there’s a slightly higher-level pattern which is less flexible
but considerably simpler to use in GUI code.

The Asynchronous Programming Model
The Asynchronous Programming Model (APM) is a pattern that many asynchronous
APIs in the .NET Framework conform to. It defines common mechanisms for discov-
ering when work is complete, for collecting the results of completed work, and for
reporting errors that occurred during the asynchronous operation.

APIs that use the APM offer pairs of methods, starting with Begin and End. For example,
the Socket class in the System.Net.Sockets namespace offers numerous instances of this
pattern: BeginAccept and EndAccept, BeginSend and EndSend, BeginConnect and
EndConnect, and so on.

#Asynchronous APIs tend to be used slightly differently in server-side code in web applications. There, they
are most useful for when an application needs to communicate with multiple different external services to
handle a single request.

652 | Chapter 16: Threads and Asynchronous Code

The exact signature of the Begin method depends on what it does. For example, a
socket’s BeginConnect needs the address to which you’d like to connect, whereas
BeginReceive needs to know where you’d like to put the data and how much you’re
ready to receive. But the APM requires all Begin methods to have the same final two
parameters: the method must take an AsyncCallback delegate and an object. And it also
requires the method to return an implementation of the IAsyncResult interface. Here’s
an example from the Dns class in System.Net:

public static IAsyncResult BeginGetHostEntry(
 string hostNameOrAddress,
 AsyncCallback requestCallback,
 object stateObject
)

Callers may pass a null AsyncCallback. But if they pass a non-null reference, the type
implementing the APM is required to invoke the callback once the operation is com-
plete. The AsyncCallback delegate signature requires the callback method to accept an
IAsyncResult argument—the APM implementation will pass in the same IAsyncRe
sult to this completion callback as it returns from the Begin method. This object rep-
resents an asynchronous operation in progress—many classes can have multiple op-
erations in progress simultaneously, and the IAsyncResult distinguishes between them.

Example 16-16 shows one way to use this pattern. It calls the asynchronous
BeginGetHostEntry method provided by the Dns class. This looks up the IP address for
a computer, so it takes a string—the name of the computer to find. And then it takes
the two standard final APM arguments—a delegate and an object. We can pass any-
thing we like as the object—the function we call doesn’t actually use it, it just hands it
back to us later. We could pass null because our example doesn’t need the argument,
but we’re passing a number just to demonstrate where it comes out. The reason the
APM offers this argument is so that if you have multiple simultaneous asynchronous
operations in progress at once, you have a convenient way to associate information
with each operation. (This mattered much more in older versions of C#, which didn’t
offer anonymous methods or lambdas—back then this argument was the easiest way
to pass data into the callback.)

Example 16-16. Using the Asynchronous Programming Model

class Program
{
 static void Main(string[] args)
 {
 Dns.BeginGetHostEntry("oreilly.com", OnGetHostEntryComplete, 42);

 Console.ReadKey();
 }

 static void OnGetHostEntryComplete(IAsyncResult iar)
 {
 IPHostEntry result = Dns.EndGetHostEntry(iar);
 Console.WriteLine(result.AddressList[0]);

Asynchronous Programming | 653

 Console.WriteLine(iar.AsyncState);
 }
}

The Main method waits until a key is pressed—much like with work items in the thread
pool, having active asynchronous requests will not keep the process alive, so the pro-
gram would exit before finishing its work without that ReadKey. (A more robust ap-
proach for a real program that needed to wait for work to complete would be to use
the CountdownEvent described earlier.)

The Dns class will call the OnGetHostEntryComplete method once it has finished its
lookup. Notice that the first thing we do is call the EndGetHostEntry method—the other
half of the APM. The End method always takes the IAsyncResult object corresponding
to the call—recall that this identifies the call in progress, so this is how EndGetHostEn
try knows which particular lookup operation we want to get the results for.

The APM says nothing about which thread your callback will be called
on. In practice, it’s often a thread pool thread, but not always. Some
individual implementations might make guarantees about what sort of
thread you’ll be called on, but most don’t. And since you don’t usually
know what thread the callback occurred on, you will need to take the
same precautions you would when writing multithreaded code where
you explicitly create new threads. For example, in a WPF or Windows
Forms application, you’d need to use the SynchronizationContext class
or an equivalent mechanism to get back to a UI thread if you wanted to
make updates to the UI when an asynchronous operation completes.

The End method in the APM returns any data that comes out of the operation. In this
case, there’s a single return value of IPHostEntry, but some implementations may return
more by having out or ref arguments. Example 16-16 then prints the results, and finally
prints the AsyncState property of the IAsyncResult, which will be 42—this is where the
value we passed as the final argument to BeginGetHostEntry pops out.

This is not the only way to use the Asynchronous Programming Model—you are al-
lowed to pass null as the delegate argument. You have three other options, all revolving
around the IAsyncResult object returned by the Begin call. You can poll the
IsCompleted property to test for completion. You can call the End method at any time—
if the work is not finished this will block until it completes.* Or you can use the Asyn
cWaitHandle property—this returns an object that is a wrapper around a Win32 syn-
chronization handle that will become signaled when the work is complete. (That last
one is rarely used, and has some complications regarding ownership and lifetime of the
handle, which are described in the MSDN documentation. We mention this technique
only out of a pedantic sense of duty to completeness.)

* This isn’t always supported. For example, if you attempt such an early call on an End method for a networking
operation on the UI thread in a Silverlight application, you’ll get an exception.

654 | Chapter 16: Threads and Asynchronous Code

You are required to call the End method at some point, no matter how
you choose to wait for completion. Even if you don’t care about the
outcome of the operation you must still call the End method. If you don’t,
the operation might leak resources.

Asynchronous operations can throw exceptions. If the exception is the result of bad
input, such as a null reference where an object is required, the Begin method will throw
an exception. But it’s possible that something failed while the operation was in
progress—perhaps we lost network connectivity partway through some work. In this
case, the End method will throw an exception.

The Asynchronous Programming Model is widely used in the .NET Framework class
library, and while it is an efficient and flexible way to support asynchronous operations,
it’s slightly awkward to use in user interfaces. The completion callback typically hap-
pens on some random thread, so you can’t update the UI in that callback. And the
support for multiple simultaneous operations, possible because each operation is rep-
resented by a distinct IAsyncResult object, may be useful in server environments, but
it’s often just an unnecessary complication for client-side code. So there’s an alternative
pattern better suited to the UI.

The Event-Based Asynchronous Pattern
Some classes offer an alternative pattern for asynchronous programming. You start an
operation by calling a method whose name typically ends in Async; for example, the
WebClient class’s DownloadDataAsync method. And unlike the APM, you do not pass a
delegate to the method. Completion is indicated through an event, such as the
DownloadDataCompleted event. Classes that implement this pattern are required to use
the SynchronizationContext class (or the related AsyncOperationManager) to ensure that
the event is raised in the same context in which the operation was started. So in a user
interface, this means that completion events are raised on the UI thread.

This is, in effect, a single-threaded asynchronous model. You have the responsiveness
benefits of asynchronous handling of slow operations, with fewer complications than
multithreaded code. So in scenarios where this pattern is an option, it’s usually the best
choice, as it is far simpler than the alternatives. It’s not always available, because some
classes offer only the APM. (And some don’t offer any kind of asynchronous API, in
which case you’d need to use one of the other multithreading mechanisms in this
chapter to maintain a responsive UI.)

Asynchronous Programming | 655

Single-threaded asynchronous code is more complex than sequential
code, of course, so there’s still scope for trouble. For example, you need
to be careful that you don’t attempt to set multiple asynchronous op-
erations in flight simultaneously that might conflict. Also, components
that implement this pattern call you back on the right thread only if you
use them from the right thread in the first place—if you use a mixture
of this pattern and other multithreading mechanisms, be aware that
operations you kick off from worker threads will not complete on the
UI thread.

There are two optional features of the event-based asynchronous model. Some classes
also offer progress change notification events, such as the WebClient class’s Download
ProgressChanged event. (Such events are also raised on the original thread.) And there
may be cancellation support. For example, WebClient offers a CancelAsync method.

Ad Hoc Asynchrony
There’s no fundamental need for code to use either the APM or the event-based asyn-
chronous pattern. These are just conventions. You will occasionally come across code
that uses its own unusual solution for asynchronous operation. This can happen when
the design of the code in question is constrained by external influences—for example,
the System.Threading namespace defines an Overlapped class that provides a managed
representation of a Win32 asynchronous mechanism. Win32 does not have any direct
equivalent to either of the .NET asynchronous patterns, and just tends to use function
pointers for callbacks. .NET’s Overlapped class mimics this by accepting a delegate as
an argument to a method. Conceptually, this isn’t very different from the APM, it just
happens not to conform exactly to the pattern.

The standard asynchronous patterns are useful, but they are somewhat low-level. If
you need to coordinate multiple operations, they leave you with a lot of work to do,
particularly when it comes to robust error handling or cancellation. The Task Parallel
Library provides a more comprehensive scheme for working with multiple concurrent
operations.

The Task Parallel Library
.NET 4 introduces the Task Parallel Library (TPL), a set of classes in the System.Thread
ing.Tasks namespace that help coordinate concurrent work. In some respects, the TPL
superficially resembles the thread pool, in that you submit small work items (or
tasks) and the TPL will take care of working out how many threads to use at once in
order to run your work. But the TPL provides various services not available through
direct use of the thread pool, especially in the areas of error handling, cancellation, and
managing relationships between tasks.

656 | Chapter 16: Threads and Asynchronous Code

You can associate tasks with one another—for example, tasks can have a parent-child
relationship, which provides a way to wait until all of the tasks related to some higher-
level operation are complete. You can also arrange for the completion of one task to
kick off another related task.

Error handling gets tricky with asynchronous and concurrent code—what do you do
if you’ve built an operation out of 20 related concurrent tasks, and just one of them
fails while the rest are either in progress, already complete, or not yet started? The TPL
provides a system for bringing work to an orderly halt, and collecting in a single place
all of the errors that occurred.

The mechanisms required to halt work in the event of an error are also useful if you
want to be able to stop work in progress for some other reason, such as when the user
clicks a Cancel button.

We’ll start by looking at the most important concept in the TPL, which is, unsurpris-
ingly, the task.

Tasks
A task is some work your program needs to do. It is represented by an instance of the
Task class, defined in the System.Threading.Tasks namespace. This does not define
exactly how the work will be done. The work for a task might be a method to be
executed, but a task could also involve asynchronous work that executes without
needing to tie up a thread—the TPL has support for creating task objects that work
with APM implementations, for instance. Example 16-17 shows how to create new
tasks that execute code.

Example 16-17. Executing code with tasks

using System;
using System.Threading.Tasks;

namespace TplExamples
{
 class Program
 {
 static void Main(string[] args)
 {
 Task.Factory.StartNew(Go, "One");
 Task.Factory.StartNew(Go, "Two");

 Console.ReadKey();
 }

 static void Go(object name)
 {
 for (int i = 0; i < 100; ++i)
 {
 Console.WriteLine("{0}: {1}", name, i);
 }

The Task Parallel Library | 657

 }
 }
}

The Task class provides a static Factory property that returns a TaskFactory object,
which can be used to create new tasks. The TPL defines the TaskFactory abstraction so
that it’s possible to plug in different task creation strategies. The default factory re-
turned by Task.Factory creates new tasks that execute code on the thread pool, but it’s
possible to create factories that do something else. For example, you could make a task
factory that creates tasks that will run on a UI thread.

A factory’s StartNew method creates a code-based task. You pass it a delegate—it’ll
accept either a method with no arguments or a method that takes a single object as an
argument. If you want to pass more arguments, you can use the same lambda-based
trick we saw in Example 16-4. Example 16-18 uses this to pass two arguments to Go,
while using the overload of StartNew that takes a zero-argument method. (The empty
() tells C# to build a zero-argument lambda, which becomes the method StartNew
invokes.)

Example 16-18. Passing more arguments with lambdas

static void Main(string[] args)
{
 Task.Factory.StartNew(() => Go("One", 100));
 Task.Factory.StartNew(() => Go("Two", 500));

 Console.ReadKey();
}

static void Go(string name, int iterations)
{
 for (int i = 0; i < iterations; ++i)
 {
 Console.WriteLine("{0}: {1}", name, i);
 }
}

These last two examples look pretty similar to the thread pool examples from earlier,
and they suffer from the same problem: they don’t know when the work is complete,
so we’ve used the dubious solution of waiting for the user to press a key so that the
program doesn’t exit until the work is done. Fortunately, tasks provide a much better
solution to this: we can wait until they are finished. Task provides a Wait method that
blocks until the task is complete. This is an instance method, so we’d call it once for
each task. There’s also a static WaitAll method that takes an array of Task objects and
blocks until they are all complete, illustrated in Example 16-19. (This method uses the
params modifier on its one argument, so we can just pass each task as though it were a
separate argument. The C# compiler will take the two tasks Example 16-19 passes to
WaitAll and wrap them in an array for us.)

658 | Chapter 16: Threads and Asynchronous Code

Example 16-19. Task.WaitAll

static void Main(string[] args)
{
 Task t1 = Task.Factory.StartNew(() => Go("One", 100));
 Task t2 = Task.Factory.StartNew(() => Go("Two", 500));

 Task.WaitAll(t1, t2);
}

Alternatively, we could create a parent task that contains both of these tasks as children.

Parent-child relationships

If you write a code-based task that creates new tasks from within an existing task, you
can make those new tasks children of the task in progress. Example 16-20 creates the
same two tasks as the previous examples, but does so inside another task, passing in
the AttachedToParent member of the TaskCreateOptions enumeration to establish the
parent-child relationship.

Example 16-20. Task with children

static void Main(string[] args)
{
 Task t = Task.Factory.StartNew(() =>
 {
 Task.Factory.StartNew(() => Go("One", 100),
 TaskCreationOptions.AttachedToParent);
 Task.Factory.StartNew(() => Go("Two", 500),
 TaskCreationOptions.AttachedToParent);
 });

 t.Wait();
}

Notice that this example calls Wait only on the parent task. For a task to be considered
complete, not only must it have finished running, but so must all of its children. (And
that means that if the children have children of their own, those all have to complete
too.) So there’s no need to list all the tasks and pass them to WaitAll if there’s a single
top-level task that all the rest descend from.

Fine-grained concurrency

Although code-based tasks are superficially similar to thread pool work items, the TPL
is designed to let you use much smaller tasks than would work efficiently when using
the thread pool directly. The TPL encourages fine-grained concurrency—the idea is that
you provide it with a large number of small work items, which gives it plenty of freedom
to work out how to allocate that work across logical processors. This is sometimes
described as overexpression of concurrency. The theory is that as newer computers
come out with more and more logical processors, code that overexpresses its concur-
rency will be able to take advantage of the higher logical processor count.

The Task Parallel Library | 659

The TPL uses the CLR thread pool internally, so it might seem surprising that the TPL
is able to handle small work items more efficiently, but the TPL provides access to some
features added to the thread pool in .NET 4, which you can’t use with the ThreadPool
class. The ThreadPool class typically starts work in the order you queued it up, so it’s a
FIFO (first in, first out) queue. (This is absolutely not guaranteed by the documenta-
tion, but the fact that the ThreadPool has behaved this way for years means that changing
this behavior would doubtless break lots of code.) But when you set up work as Task
objects the thread pool works differently. Each logical processor gets its own separate
queue, and typically processes tasks in its queue in LIFO (last in, first out) order. This
turns out to be far more efficient in a lot of scenarios, particularly when the work items
are small. This ordering is not strict, by the way; if one logical processor manages to
empty its work queue while others still have plenty to do, the idle processor may
steal work from another processors, and will do so from the back end of its queue. (If
you’re wondering about the rationale behind how the thread pool orders tasks, see the
sidebar below.)

LIFO Queues and Work Stealing
Three of the thread pool’s features—per-logical-processor queues, LIFO ordering, and
stealing from the end of the queue—share a single goal: working efficiently with CPU
caches.

When possible, you want a task to be executed on the same logical processor that
generated the work because that logical processor’s cache probably already contains a
lot of the information relating to the task. Handling the task on a different logical
processor would mean shuffling data out of the originating logical processor and into
the one running the task. That’s why each logical processor has its own queue, and
new tasks are allocated to the queue of the logical processor that creates them.

The rationale behind LIFO ordering is that the most recently created tasks are the ones
most likely to have associated data still in the cache, so the average throughput will be
better if we handle those first.

One reason work stealing between CPUs happens from the back end of the queue is
that when stealing work from another logical processor you want to pick the item that
is least likely to still have data sitting in the other logical processor’s cache, to minimize
the amount of data that may need to be moved. So in that case, the oldest item is the
best bet. Another benefit of this is that it can reduce contention—queues can be con-
structed in such a way that different CPUs can access opposite ends of the queue
simultaneously.

The examples we’ve seen so far simply perform work and return no results. But a task
can produce a result.

660 | Chapter 16: Threads and Asynchronous Code

Tasks with results

The Task<TResult> class derives from Task and adds a Result property which, once the
task is complete, contains the result produced by the task. Task<TResult> represents a
concept known in some concurrent programming literature as a future—it represents
some work that will produce a result at some point.

The TaskFactory.StartNew method we’ve already used can create either kind of task—
it has overloads that accept methods that return a result. (So you can pass a
Func<TResult> or Func<object, TResult>, instead of the Action or Action<object>
passed in the previous examples.) These overloads return a Task<TResult>. (Alterna-
tively, you can call StartNew on the Task<TResult>.Factory static property.)

You can start a Task<TResult> and then call Wait to wait for the result, or you can read
the Result property, which will call Wait for you if the result is not yet available. But
blocking until the task is complete may not be especially useful—it’s just a very round-
about way of invoking the code synchronously. In fact, you might sometimes want to
do this—you might create multiple child tasks and then wait for all of them to complete,
and you’d be able to take advantage of the TPL’s common exception-handling frame-
work to manage any errors. However, it’s often useful to be able to provide some sort
of callback method to be invoked once the task completes, rather than blocking. You
can do this with a continuation.

Continuations

A continuation is a task that gets invoked when another tasks completes.† The Task
class provides a ContinueWith method that lets you provide the code for that continu-
ation task. It requires a delegate that takes as its single argument the task that just
completed. ContinueWith offers overloads that allow the delegate to return a value (in
which case the continuation task will be another Task<TResult>), or not to return a
value (in which case the continuation task will just be a Task). ContinueWith returns the
Task object that represents the continuation. So you can string these things together:

static void Main(string[] args)
{
 Task t = Task.Factory.StartNew(() => Go("One", 100))
 .ContinueWith(t1 => Go("Two", 500))
 .ContinueWith(t2 => Go("Three", 200));
 t.Wait();
}

This will execute the three tasks one after another. Notice that the t variable here refers
to the third task—the final continuation. So t.Wait() will wait until all the tasks are
complete—it doesn’t need to wait for the first two because the final task can’t even

† In case you’ve come across continuations in the sense meant by languages such as Scheme that offer call with
current continuation, be aware that this is not the same idea. There’s a tenuous connection in the sense that
both represent the ability to continue some work sometime later, but they’re really quite different.

The Task Parallel Library | 661

start until the others are finished; waiting for the last task implicitly means waiting for
all three here.

Continuations are slightly more interesting when the initial task produces a result—
the continuation can then do something with the output. For example, you might have
a task that fetches some data from a server and then have a continuation that puts the
result into the user interface. Of course, we need to be on the correct thread to update
the UI, but the TPL can help us with this.

Schedulers

The TaskScheduler class is responsible for working out when and how to execute tasks.
If you don’t specify a scheduler, you’ll end up with the default one, which uses the
thread pool. But you can provide other schedulers when creating tasks—both
StartNew and ContinueWith offer overloads that accept a scheduler. The TPL offers a
scheduler that uses the SynchronizationContext, which can run tasks on the UI thread.
Example 16-21 shows how to use this in an event handler in a WPF application.

Example 16-21. Continuation on a UI thread

void OnButtonClick(object sender, RoutedEventArgs e)
{
 TaskScheduler uiScheduler =
 TaskScheduler.FromCurrentSynchronizationContext();
 Task<string>.Factory.StartNew(GetData)
 .ContinueWith((task) => UpdateUi(task.Result),
 uiScheduler);
}

string GetData()
{
 WebClient w = new WebClient();
 return w.DownloadString("http://oreilly.com/");
}

void UpdateUi(string info)
{
 myTextBox.Text = info;
}

This example creates a task that returns a string, using the default scheduler. This task
will invoke the GetData function on a thread pool thread. But it also sets up a contin-
uation using a TaskScheduler that was obtained by calling FromCurrentSynchronization
Context. This grabs the SynchronizationContext class’s Current property and returns a
scheduler that uses that context to run all tasks. Since the continuation specifies that
it wants to use this scheduler, it will run the UpdateUi method on the UI thread.

The upshot is that GetData runs on a thread pool thread, and then its return value is
passed into UpdateUi on the UI thread.

662 | Chapter 16: Threads and Asynchronous Code

We could use a similar trick to work with APM implementations, because task factories
provide methods for creating APM-based tasks.

Tasks and the Asynchronous Programming Model

TaskFactory and TaskFactory<TResult> provide various overloads of a FromAsync
method. You can pass this the Begin and End methods from an APM implementation,
along with the arguments you’d like to pass, and it will return a Task or Task<TRe
sult> that executes the asynchronous operation, instead of one that invokes a delegate.
Example 16-22 uses this to wrap the asynchronous methods we used from the Dns class
in earlier examples in a task.

Example 16-22. Creating a task from an APM implementation

TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
Task<IPHostEntry>.Factory.FromAsync(
 Dns.BeginGetHostEntry, Dns.EndGetHostEntry,
 "oreilly.com", null)
 .ContinueWith((task) => UpdateUi(task.Result.AddressList[0].ToString()),
 uiScheduler);

FromAsync offers overloads for versions of the APM that take zero, one, two, or three
arguments, which covers the vast majority of APM implementations. As well as passing
the Begin and End methods, we also pass the arguments, and the additional object
argument that all APM Begin methods accept. (For the minority of APM implementa-
tions that either require more arguments or have out or ref parameters, there’s an
overload of FromAsync that accepts an IAsyncResult instead. This requires slightly more
code, but enables you to wrap any APM implementation as a task.)

We’ve seen the main ways to create tasks, and to set up associations between them
either with parent-child relationships or through continuations. But what happens if
you want to stop some work after you’ve started it? Neither the thread pool nor the
APM supports cancellation, but the TPL does.

Cancellation
Cancellation of asynchronous operations is surprisingly tricky. There are lots of awk-
ward race conditions to contend with. The operation you’re trying to cancel might
already have finished by the time you try to cancel it. Or if it hasn’t it might have gotten
beyond the point where it is able to stop, in which case cancellation is doomed to fail.
Or work might have failed, or be about to fail when you cancel it. And even when
cancellation is possible, it might take awhile to do. Handling and testing every possible
combination is difficult enough when you have just one operation, but if you have
multiple related tasks, it gets a whole lot harder.

The Task Parallel Library | 663

Fortunately, .NET 4 introduces a new cancellation model that provides a well thought
out and thoroughly tested solution to the common cancellation problems. This can-
cellation model is not limited to the TPL—you are free to use it on its own, and it also
crops up in other parts of the .NET Framework. (The data parallelism classes we’ll be
looking at later can use it, for example.)

If you want to be able to cancel an operation, you must pass it a CancellationToken. A
cancellation token allows the operation to discover whether the operation has been
canceled—it provides an IsCancellationRequested property—and it’s also possible to
pass a delegate to its Register method in order to be called back if cancellation happens.

CancellationToken only provides facilities for discovering that cancellation has been
requested. It does not provide the ability to initiate cancellation. That is provided by a
separate class called CancellationTokenSource. The reason for splitting the discovery
and control of cancellation across two types is that it would otherwise be impossible
to provide a task with cancellation notifications without also granting that task the
capability of initiating cancellation. CancellationTokenSource is a factory of cancella-
tion tokens—you ask it for a token and then pass that into the operation you want to
be able to cancel. Example 16-23 is similar to Example 16-21, but it passes a cancellation
token to StartNew, and then uses the source to cancel the operation if the user clicks a
Cancel button.

Example 16-23. Ineffectual cancellation

private CancellationTokenSource cancelSource;

void OnButtonClick(object sender, RoutedEventArgs e)
{
 cancelSource = new CancellationTokenSource();

 TaskScheduler uiScheduler =
 TaskScheduler.FromCurrentSynchronizationContext();
 Task<string>.Factory.StartNew(GetData, cancelSource.Token)
 .ContinueWith((task) => UpdateUi(task.Result),
 uiScheduler);
}

void OnCancelClick(object sender, RoutedEventArgs e)
{
 if (cancelSource != null)
 {
 cancelSource.Cancel();
 }
}

string GetData()
{
 WebClient w = new WebClient();
 return w.DownloadString("http://oreilly.com/");
}

664 | Chapter 16: Threads and Asynchronous Code

void UpdateUi(string info)
{
 cancelSource = null;
 myTextBox.Text = info;
}

In fact, cancellation isn’t very effective in this example because this particular task
consists of code that makes a single blocking method call. Cancellation will usually do
nothing here in practice—the only situation in which it would have an effect is if the
user managed to click Cancel before the task had even begun to execute. This illustrates
an important issue: cancellation is never forced—it uses a cooperative approach, be-
cause the only alternative is killing the thread executing the work. And while that would
be possible, forcibly terminating threads tends to leave the process in an uncertain
state—it’s usually impossible to know whether the thread you just zapped happened
to be in the middle of modifying some shared state. Since this leaves your program’s
integrity in doubt, the only thing you can safely do next is kill the whole program, which
is a bit drastic. So the cancellation model requires cooperation on the part of the task
in question. The only situation in which cancellation would have any effect in this
particular example is if the user managed to click the Cancel button before the task had
even begun.

If you have divided your work into numerous relatively short tasks, cancellation is more
useful—if you cancel tasks that have been queued up but not yet started, they will never
run at all. Tasks already in progress will continue to run, but if all your tasks are short,
you won’t have to wait long. If you have long-running tasks, however, you will need
to be able to detect cancellation and act on it if you want to handle cancellation swiftly.
This means you will have to arrange for the code you run as part of the tasks to have
access to the cancellation token, and they must test the IsCancellationRequested prop-
erty from time to time.

Cancellation isn’t the only reason a task or set of tasks might stop before finishing—
things might be brought to a halt by exceptions.

Error Handling
A task can complete in one of three ways: it can run to completion, it can be canceled,
or it can fault. The Task object’s TaskStatus property reflects this through RanToComple
tion, Canceled, and Faulted values, respectively, and if the task enters the Faulted state,
its IsFaulted property also becomes true. A code-based task will enter the Faulted state
if its method throws an exception. You can retrieve the exception information from the
task’s Exception property. This returns an AggregateException, which contains a list of
exceptions in its InnerExceptions property. It’s a list because certain task usage patterns
can end up hitting multiple exceptions; for example, you might have multiple failing
child tasks.

The Task Parallel Library | 665

If you don’t check the IsFaulted property and instead just attempt to proceed, either
by calling Wait or by attempting to fetch the Result of a Task<TResult>, the Aggrega
teException will be thrown back into your code.

It’s possible to write code that never looks for the exception. Example 16-17 starts two
tasks, and since it ignores the Task objects returned by StartNew, it clearly never does
anything more with the tasks. If they were children of another task that wouldn’t
matter—if you ignore exceptions in child tasks they end up causing the parent task to
fault. But these are not child tasks, so if exceptions occur during their execution, the
program won’t notice. However, the TPL tries hard to make sure you don’t ignore such
exceptions—it uses a feature of the garbage collector called finalization to discover
when a Task that faulted is about to be collected without your program ever having
noticed the exception. When it detects this, it throws the AggregateException, which
will cause your program to crash unless you’ve configured your process to deal with
unhandled exceptions. (The .NET Framework runs all finalizers on a dedicated thread,
and it’s this thread that the TPL throws the exception on.) The TaskScheduler class
offers an UnobservedTaskException event that lets you customize the way these unhan-
dled exceptions are dealt with.

The upshot is that you should write error handling for any nonchild tasks that could
throw. One way to do this is to provide a continuation specifically for error handling.
The ContinueWith method takes an optional argument whose type is the TaskContinua
tionOptions enumeration, which has an OnlyOnFaulted value—you could use this to
build a continuation that will run only when an unanticipated exception occurs. (Of
course, unanticipated exceptions are always bad news because, by definition, you
weren’t expecting them and therefore have no idea what state your program is in. So
you probably need to terminate the program, which is what would have happened
anyway if you hadn’t written any error handling. However, you do get to write errors
to your logs, and perhaps make an emergency attempt to write out unsaved data some-
where in the hope of recovering it when the program restarts.) But in general, it’s pref-
erable to handle errors by putting normal try...catch blocks inside your code so that
the exceptions never make it out into the TPL in the first place.

Data Parallelism
The final concurrency feature we’re going to look at is data parallelism. This is where
concurrency is driven by having lots of data items, rather than by explicitly creating
numerous tasks or threads. It can be a simple approach to parallelism because you don’t
have to tell the .NET Framework anything about how you want it to split up the work.

With tasks, the .NET Framework has no idea how many tasks you plan to create when
you create the first one, but with data parallelism, it has the opportunity to see more
of the problem before deciding how to spread the load across the available logical
processors. So in some scenarios, it may be able to make more efficient use of the
available resources.

666 | Chapter 16: Threads and Asynchronous Code

Parallel For and ForEach
The Parallel class provides a couple of methods for performing data-driven parallel
execution. Its For and ForEach methods are similar in concept to C# for and foreach
loops, but rather than iterating through collections one item at a time, on a system with
multiple logical processors available it will process multiple items simultaneously.

Example 16-24 uses Parallel.For. This code calculates pixel values for a fractal known
as the Mandelbrot set, a popular parallelism demonstration because each pixel value
can be calculated entirely independently of all the others, so the scope for parallel ex-
ecution is effectively endless (unless machines with more logical processors than pixels
become available). And since it’s a relatively expensive computation, the benefits of
parallel execution are easy to see. Normally, this sort of code would contain two nested
for loops, one to iterate over the rows of pixels and one to iterate over the columns in
each row. In this example, the outer loop has been replaced with a Parallel.For. (So
this particular code cannot exploit more processors than it calculates lines of pixels—
therefore, we don’t quite have scope for per-pixel parallelism, but since you would
typically generate an image a few hundred pixels tall, there is still a reasonable amount
of scope for concurrency here.)

Example 16-24. Parallel.For

static int[,] CalculateMandelbrotValues(int pixelWidth, int pixelHeight,
 double left, double top, double width, double height, int maxIterations)
{
 int[,] results = new int[pixelWidth, pixelHeight];

 // Non-parallel version of following line would have looked like this:
 // for(int pixelY = 0; pixelY < pixelHeight; ++pixelY)
 Parallel.For(0, pixelHeight, pixelY =>
 {
 double y = top + (pixelY * height) / (double) pixelHeight;
 for (int pixelX = 0; pixelX < pixelWidth; ++pixelX)
 {
 double x = left + (pixelX * width) / (double) pixelWidth;

 // Note: this lives in the System.Numerics namespace in the
 // System.Numerics assembly.
 Complex c = new Complex(x, y);
 Complex z = new Complex();

 int iter;
 for (iter = 1; z.Magnitude < 2 && iter < maxIterations; ++iter)
 {
 z = z * z + c;
 }
 if (iter == maxIterations) { iter = 0; }
 results[pixelX, pixelY] = iter;
 }
 });

Data Parallelism | 667

 return results;
}

This structure, seen in the preceding code:

Parallel.For(0, pixelHeight, pixelY =>
{
 ...
});

iterates over the same range as this:

for(int pixelY = 0, pixelY < pixelHeight; ++pixelY)
{
 ...
}

The syntax isn’t identical because Parallel.For is just a method, not a language feature.
The first two arguments indicate the range—the start value is inclusive (i.e., it will start
from the specified value), but the end value is exclusive (it stops one short of the end
value). The final argument to Parallel.For is a delegate that takes the iteration variable
as its argument. Example 16-24 uses a lambda, whose minimal syntax introduces the
least possible extra clutter over a normal for loop.

Parallel.For will attempt to execute the delegate on multiple logical processors si-
multaneously, using the thread pool to attempt to make full, efficient use of the avail-
able processors. The way it distributes the iterations across logical processors may come
as a surprise, though. It doesn’t simply give the first row to the first logical processor,
the second row to the second logical processor, and so on. It carves the available rows
into chunks, and so the second logical processor will find itself starting several rows
ahead of the first. And it may decide to subdivide further depending on the progress
your code makes. So you must not rely on the iteration being done in any particular
order. It does this chunking to avoid subdividing the work into pieces that are too small
to handle efficiently. Ideally, each CPU should be given work in lumps that are large
enough to minimize context switching and synchronization overheads, but small
enough that each CPU can be kept busy while there’s work to be done. This chunking
is one reason why data parallelism can sometimes be more efficient than using tasks
directly—the parallelism gets to be exactly as fine-grained as necessary and no more
so, minimizing overheads.

Arguably, calling Example 16-24 data parallelism is stretching a point—the “data” here
is just the numbers being fed into the calculations. Parallel.For is no more or less data-
oriented than a typical for loop with an int loop counter—it just iterates a numeric
variable over a particular range in a list. However, you could use exactly the same
construct to iterate over a range of data instead of a range of numbers. Alternatively,
there’s Parallel.ForEach, which is very similar in use to Parallel.For, except, as you’d
expect, it iterates over any IEnumerable<T> like a C# foreach loop, instead of using a
range of integers. It reads ahead into the enumeration to perform chunking. (And if

668 | Chapter 16: Threads and Asynchronous Code

you provide it with an IList<T> it will use the list’s indexer to implement a more efficient
partitioning strategy.)

There’s another way to perform parallel iteration over enumerable data: PLINQ.

PLINQ: Parallel LINQ
Parallel LINQ (PLINQ) is a LINQ provider that enables any IEnumerable<T> to be pro-
cessed using normal LINQ query syntax, but in a way that works in parallel. On the
face of it, it’s deceptively simple. This:

var pq = from x in someList
 where x.SomeProperty > 42
 select x.Frob(x.Bar);

will use LINQ to Objects, assuming that someList implements IEnumerable<T>. Here’s
the PLINQ version:

var pq = from x in someList.AsParallel()
 where x.SomeProperty > 42
 select x.Frob(x.Bar);

The only difference here is the addition of a call to AsParallel, an extension method
that the ParallelEnumerable class makes available on all IEnumerable<T> implementa-
tions. It’s available to any code that has brought the System.Linq namespace into scope
with a suitable using declaration. AsParallel returns a ParallelQuery<T>, which means
that the normal LINQ to Objects implementation of the standard LINQ operators no
longer applies. All the same operators are available, but now they’re supplied by
ParallelEnumerable, which is able to execute certain operators in parallel.

Not all queries will execute in parallel. Some LINQ operators essentially
force things to be done in a certain order, so PLINQ will inspect the
structure of your query to decide which parts, if any, it can usefully run
in parallel.

Iterating over the results with foreach can restrict the extent to which the query can
execute in parallel, because foreach asks for items one at a time—upstream parts of
the query may still be able to execute concurrently, but the final results will be sequen-
tial. If you’d like to execute code for each item and to allow work to proceed in parallel
even for this final processing step, PLINQ offers a ForAll operator:

pq.ForAll(x => x.DoSomething());

This will execute the delegate once for each item the query returns, and can do so in
parallel—it will use as many logical processors concurrently as possible to evaluate the
query and to call the delegate you provide.

Data Parallelism | 669

This means that all the usual multithreading caveats apply for the code you run from
ForAll. In fact, PLINQ can be a little dangerous as it’s not that obvious that your code
is going to run on multiple threads—it manages to make parallel code look just a bit
too normal. This is not always a problem—LINQ tends to encourage a functional style
of programming in its queries, meaning that most of the data involved will be used in
a read-only fashion, which makes dealing with threading much simpler. But code exe-
cuted by ForAll is useful only if it has no side effects, so you need to be careful with
whatever you put in there.

Summary
To exploit the potential of multicore CPUs, you’ll need to run code on multiple threads.
Threads can also be useful for keeping user interfaces responsive in the face of slow
operations, although asynchronous programming techniques can be a better choice
than creating threads explicitly. While you can create threads explicitly, the thread
pool—used either directly or through the Task Parallel Library—is often preferable
because it makes it easier for your code to adapt to the available CPU resources on the
target machine. For code that needs to process large collections of data or perform
uniform calculations across large ranges of numbers, data parallelism can help paral-
lelize your execution without adding too much complication to your code.

No matter what multithreading mechanisms you use, you are likely to need the syn-
chronization and locking primitives to ensure that your code avoids concurrency
hazards such as races. The monitor facility built into every .NET object, and exposed
through the Monitor class and C# lock keyword, is usually the best mechanism to use,
but some more specialized primitives are available that can work better if you happen
to find yourself in one of the scenarios for which they are designed.

670 | Chapter 16: Threads and Asynchronous Code

CHAPTER 17

Attributes and Reflection

As well as containing code and data, a .NET program can also contain metadata.
Metadata is information about the data—that is, information about the types, code,
fields, and so on—stored along with your program. This chapter explores how some
of that metadata is created and used.

A lot of the metadata is information that .NET needs in order to understand how your
code should be used—for example, metadata defines whether a particular method is
public or private. But you can also add custom metadata, using attributes.

Reflection is the process by which a program can read its own metadata, or metadata
from another program. A program is said to reflect on itself or on another program,
extracting metadata from the reflected assembly and using that metadata either to in-
form the user or to modify the program’s behavior.

Attributes
An attribute is an object that represents data you want to associate with an element in
your program. The element to which you attach an attribute is referred to as the tar-
get of that attribute. For example, in Chapter 12 we saw the XmlIgnore attribute applied
to a property:

[XmlIgnore]
public string LastName { get; set; }

This tells the XML serialization system that we want it to ignore this particular property
when converting between XML and objects of this kind. This illustrates an important
feature of attributes: they don’t do anything on their own. The XmlIgnore attribute
contains no code, nor does it cause anything to happen when the relevant property is
read or modified. It only has any effect when we use XML serialization, and the only
reason it does anything then is because the XML serialization system goes looking for it.

Attributes are passive. They are essentially just annotations. For them to be useful,
something somewhere needs to look for them.

671

Types of Attributes
Some attributes are supplied as part of the CLR, some by the . NET Framework class
libraries, and some by other libraries. In addition, you are free to define custom attrib-
utes for your own purposes.

Most programmers will use only the attributes provided by existing libraries, though
creating your own custom attributes can be a powerful tool when combined with re-
flection, as described later in this chapter.

Attribute targets

If you search through the .NET Framework class libraries, you’ll find a great many
attributes. Some attributes can be applied to an assembly, others to a class or interface,
and some, such as [XmlIgnore], are applied to properties and fields. Most attributes
make sense only when applied to certain things—the XmlIgnore attribute cannot use-
fully be applied to a method, for example, because methods cannot be serialized to
XML. So each attribute type declares its attribute targets using the AttributeTargets
enumeration. Most of the entries in this enumeration are self-explanatory, but since a
few are not entirely obvious, Table 17-1 shows a complete list.

Table 17-1. Possible attribute targets

Member name Attribute may be applied to

All Any of the following elements: assembly, class, constructor, delegate, enum, event, field, interface,
method, module, parameter, property, return value, or struct

Assembly An assembly

Class A class

Constructor A constructor

Delegate A delegate

Enum An enumeration

Event An event

Field A field

GenericParameter A type parameter for a generic class or method

Interface An interface

Method A method

Module A module

Parameter A parameter of a method

Property A property (both get and set, if implemented)

ReturnValue A return value

Struct A struct

672 | Chapter 17: Attributes and Reflection

Applying attributes

You apply most attributes to their targets by placing them in square brackets immedi-
ately before the target item. A couple of the target types don’t correspond directly to
any single source code feature, and so these are handled differently. For example, an
assembly is a single compiled .NET executable or library—it’s everything in a single
project—so there’s no one feature in the source code to which to apply the attribute.
Therefore, you can apply assembly attributes at the top of any file. The module attribute
target type works the same way.*

You must place assembly or module attributes after all using directives
and before any code.

You can apply multiple attributes, one after another:

[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(".\\keyFile.snk")]

Alternatively, you can put them all inside a single pair of square brackets, separating
the attributes with commas:

[assembly: AssemblyDelaySign(false),
 assembly: AssemblyKeyFile(".\\keyFile.snk")]

The System.Reflection namespace offers a number of attributes, including attributes
for assemblies (such as the AssemblyKeyFileAttribute), for configuration, and for ver-
sion attributes. Some of these are recognized by the compiler—the key file attribute
gets used if the compiler generates a digital signature for your component, for example.

Custom Attributes
You are free to create your own custom attributes and use them at runtime as you see
fit. Suppose, for example, that your development organization wants to keep track of
bug fixes. You already keep a database of all your bugs, but you’d like to tie your bug
reports to specific fixes in the code.

You might add comments to your code along the lines of:

// Bug 323 fixed by Jesse Liberty 1/1/2010.

This would make it easy to see in your source code, but since comments get stripped
out at compile time this information won’t make it into the compiled code. If we wanted

* Modules are the individual files that constitute an assembly. The vast majority of assemblies consist of just
one file, so it’s very rare to encounter situations in which you need to deal with an individual module as
opposed to the whole assembly. They are mentioned here for completeness.

Attributes | 673

to change that, we could use a custom attribute. We would replace the comment with
something like this:

[BugFixAttribute(323, "Jesse Liberty", "1/1/2010",
 Comment="Off by one error")]

You could then write a program to read through the metadata to find these bug-fix
annotations, and perhaps it might go on to update a bug database. The attribute would
serve the purposes of a comment, but would also allow you to retrieve the information
programmatically through tools you’d create.

This may be a somewhat artificial example, however, because you might
not really want this information to be compiled into the shipping code.

Defining a custom attribute

Attributes, like most things in C#, are embodied in classes. To create a custom attrib-
ute, derive a class from System.Attribute:

public class BugFixAttribute : System.Attribute

You need to tell the compiler which kinds of elements this attribute can be used with
(the attribute target). We specify this with (what else?) an attribute:

[AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Constructor |
 AttributeTargets.Field |
 AttributeTargets.Method |
 AttributeTargets.Property,
 AllowMultiple = true)]

AttributeUsage is an attribute applied to an attribute class. It provides data about the
metadata: a meta-attribute, if you will.

We have provided the AttributeUsage attribute constructor with two arguments. The
first is a set of flags that indicate the target—in this case, the class and its constructor,
fields, methods, and properties. The second argument is a flag that indicates whether
a given element might receive more than one such attribute. In this example,
AllowMultiple is set to true, indicating that class members can have more than one
BugFixAttribute assigned.

Naming an attribute

The new custom attribute in this example is named BugFixAttribute. The convention
is to append the word Attribute to your attribute name. The compiler recognizes this
convention, by allowing you to use a shorter version of the name when you apply the
attribute. Thus, you can write:

[BugFix(123, "Jesse Liberty", "01/01/08", Comment="Off by one")]

674 | Chapter 17: Attributes and Reflection

The compiler will first look for an attribute class named BugFix and, if it doesn’t find
that, will then look for BugFixAttribute.

Constructing an attribute

Although attributes have constructors, the syntax we use when applying an attribute
is not quite the same as that for a normal constructor. We can provide two types of
argument: positional and named. In the BugFix example, the programmer’s name, the
bug ID, and the date are positional parameters, and comment is a named parameter.
Positional parameters are passed in through the constructor, and must be passed in the
order declared in the constructor:

public BugFixAttribute(int bugID, string programmer,
string date)
{
 this.BugID = bugID;
 this.Programmer = programmer;
 this.Date = date;
}

Named parameters are implemented as fields or as properties:

public string Comment { get; set; }

You may be wondering why attributes use a different syntax for named
arguments than we use in normal method and constructor invocation,
where named arguments take the form Comment: "Off by one", using a
colon instead of an equals sign. The inconsistency is for historical rea-
sons. Attributes have always supported positional and named argu-
ments, but methods and normal constructor calls only got them in C#
4.0. The mechanisms work quite differently—the C# 4.0 named argu-
ment syntax is mainly there to support optional arguments, and it only
deals with real method arguments, whereas with attributes, named ar-
guments are not arguments at all—they are really properties in disguise.

It is common to create read-only properties for the positional parameters:

public int BugID { get; private set; }

Using an attribute

Once you have defined an attribute, you can put it to work by placing it immediately
before its target. To test the BugFixAttribute of the preceding example, the following
program creates a simple class named MyMath and gives it two functions. Assign
BugFixAttributes to the class to record its code-maintenance history:

[BugFixAttribute(121,"Jesse Liberty","01/03/08")]
[BugFixAttribute(107,"Jesse Liberty","01/04/08",
 Comment="Fixed off by one errors")]
public class MyMath

Attributes | 675

These attributes are stored with the metadata. Example 17-1 shows the complete
program.

Example 17-1. Working with custom attributes

using System;

namespace CustomAttributes
{
 // create custom attribute to be assigned to class members
 [AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Constructor |
 AttributeTargets.Field |
 AttributeTargets.Method |
 AttributeTargets.Property,
 AllowMultiple = true)]
 public class BugFixAttribute : System.Attribute
 {
 // attribute constructor for positional parameters
 public BugFixAttribute
 (
 int bugID,
 string programmer,
 string date
)
 {
 this.BugID = bugID;
 this.Programmer = programmer;
 this.Date = date;
 }

 // accessors
 public int BugID { get; private set; }
 public string Date { get; private set; }
 public string Programmer { get; private set; }

 // property for named parameter
 public string Comment { get; set; }
 }

 // ********* assign the attributes to the class ********

 [BugFixAttribute(121, "Jesse Liberty", "01/03/08")]
 [BugFixAttribute(107, "Jesse Liberty", "01/04/08",
 Comment = "Fixed off by one errors")]
 public class MyMath
 {
 public double DoFunc1(double param1)
 {
 return param1 + DoFunc2(param1);
 }

 public double DoFunc2(double param1)
 {
 return param1 / 3;

676 | Chapter 17: Attributes and Reflection

 }
 }

 public class Tester
 {
 static void Main(string[] args)
 {
 MyMath mm = new MyMath();
 Console.WriteLine("Calling DoFunc(7). Result: {0}",
 mm.DoFunc1(7));
 }
 }
}

Output:
Calling DoFunc(7). Result: 9.3333333333333333

As you can see, the attributes had absolutely no impact on the output. This is not
surprising because, as we said earlier, attributes are passive—they only affect things
that go looking for them, and we’ve not yet written anything that does that. In fact, for
the moment, you have only our word that the attributes exist at all. We’ll see how to
get at this metadata and use it in a program in the next section.

Reflection
For the attributes in the metadata to be useful, you need a way to access them at runtime.
The classes in the Reflection namespace, along with the System.Type class, provide
support for examining and interacting with the metadata.

Reflection is generally used for any of four tasks:

Inspecting metadata
This might be used by tools and utilities that wish to display metadata, or by class
library features that modify their behavior based on metadata.

Performing type discovery
Your code can examine the types in an assembly and interact with or instantiate
those types. An application that supports plug-ins might use this to discover what
features a plug-in DLL offers.

Late binding to methods and properties
This allows the programmer to invoke properties and methods on objects dynam-
ically instantiated, based on type discovery. This is also known as dynamic invo-
cation. (As we’ll see in Chapter 18, C# 4.0 has introduced an easier way to do this
than using reflection.)

Creating types at runtime
You can generate new types at runtime. You might do this when a custom class
containing code generated at runtime, specialized for a particular task, will run

Reflection | 677

significantly faster than a more general-purpose solution. This is an advanced
technique that is beyond the scope of this book.

Inspecting Metadata
In this section, we will use the C# reflection support to read the metadata in the
MyMath class.

The reflection system defines numerous classes, each designed to provide information
about a particular kind of metadata. For example, the ConstructorInfo provides access
to all the metadata for a constructor, while PropertyInfo gives us the metadata for a
property. Our custom attribute in Example 17-1 can be applied to a wide range of
targets, so we’re going to encounter several different metadata types. However, all of
our supported targets have something in common—they are all things that can be
members of classes. (That’s plainly true for properties, methods, fields, and construc-
tors. Our attribute can also be applied to classes, which seems like an exception because
they’re often not members of other types, but the point is that they can be.) And so,
the metadata types for all our supported target types derive from a common base class,
MemberInfo.

MemberInfo is defined in the System.Reflection namespace. We can use it to discover
the attributes of a member and to provide access to the metadata. We’ll start by getting
hold of the metadata for a particular type:

System.Reflection.MemberInfo inf = typeof(MyMath);

We’re using the typeof operator on the MyMath type, which returns an object of type
Type, which derives from MemberInfo.

The Type class is the heart of the reflection classes. Type encapsulates a
representation of the type of an object. The Type class is the primary way
to access metadata—we can use it to get hold of information about the
other members of a class (e.g., methods, properties, fields, events, etc.).

The next step is to call GetCustomAttributes on this MemberInfo object, passing in the
type of the attribute we want to find. It returns an array of objects, each of type
BugFixAttribute:

object[] attributes;
attributes =
 inf.GetCustomAttributes(typeof(BugFixAttribute),false);

You can now iterate through this array, printing out the properties of the BugFixAttri
bute object. Example 17-2 replaces the Main method in the Tester class from
Example 17-1.

678 | Chapter 17: Attributes and Reflection

Example 17-2. Using reflection

public static void Main(string[] args)
{
 MyMath mm = new MyMath();
 Console.WriteLine("Calling DoFunc(7). Result: {0}",
 mm.DoFunc1(7));

 // get the member information and use it to
 // retrieve the custom attributes
 System.Reflection.MemberInfo inf = typeof(MyMath);
 object[] attributes;
 attributes = inf.GetCustomAttributes(
 typeof(BugFixAttribute), false);

 // iterate through the attributes, retrieving the
 // properties
 foreach (Object attribute in attributes)
 {
 BugFixAttribute bfa = (BugFixAttribute)attribute;
 Console.WriteLine("\nBugID: {0}", bfa.BugID);
 Console.WriteLine("Programmer: {0}", bfa.Programmer);
 Console.WriteLine("Date: {0}", bfa.Date);
 Console.WriteLine("Comment: {0}", bfa.Comment);
 }
}

Output:
Calling DoFunc(7). Result: 9.3333333333333333

BugID: 121
Programmer: Jesse Liberty
Date: 01/03/08
Comment:

BugID: 107
Programmer: Jesse Liberty
Date: 01/04/08
Comment: Fixed off by one errors

When you put this replacement code into Example 17-1 and run it, you can see the
metadata printed as you’d expect.

Type Discovery
You can use reflection to explore and examine the contents of an assembly. You can
find the types it contains. You can discover the methods, fields, properties, and events
associated with a type, as well as the signatures of each of the type’s methods. You can
also discover the interfaces supported by the type, and the type’s base class.

If we were using this to support a plug-in system for extending our application, we’d
need to load at runtime assemblies we didn’t know about when we wrote our applica-
tion. We can load an assembly dynamically with the Assembly.Load() static method.

Reflection | 679

The Assembly class encapsulates the actual assembly itself, for purposes of reflection.
One signature for the Load method is:

public static Assembly Load(string assemblyName)

For example, Mscorlib.dll has the core classes of the .NET Framework, so we can pass
that to the Load() method:

Assembly a = Assembly.Load("Mscorlib");

(In fact Mscorlib.dll will already be loaded, but this method doesn’t mind—it returns
the assembly we asked for, loading it first if necessary.) There’s also a LoadFrom method
that takes a file path. Once the assembly is loaded, we can call GetTypes() to return an
array of Type objects. A Type object represents a specific type declaration, such as a
class, interface, array, struct, delegate, or enumeration:

Type[] types = a.GetTypes();

The assembly returns an array of types that we can display in a foreach loop, as shown
in Example 17-3. Because this example uses the Type class, you will want to add a
using directive for the System.Reflection namespace.

Example 17-3. Reflecting on an assembly

using System;
using System.Reflection;

namespace ReflectingAnAssembly
{
 public class Tester
 {
 public static void Main()
 {
 // what is in the assembly
 Assembly a = Assembly.Load("Mscorlib");
 Type[] types = a.GetTypes();
 foreach (Type t in types)
 {
 Console.WriteLine("Type is {0}", t);
 }
 Console.WriteLine(
 "{0} types found", types.Length);
 }
 }
}

The output from this would fill many pages. Here is a short excerpt:

Type is System.Object
Type is ThisAssembly
Type is AssemblyRef
Type is System.ICloneable
Type is System.Collections.IEnumerable
Type is System.Collections.ICollection

680 | Chapter 17: Attributes and Reflection

Type is System.Collections.IList
Type is System.Array

This example obtained an array filled with the types from the core library and printed
them one by one. The array contained 2,779 entries when run against .NET version 4.0.

Reflecting on a Specific Type
Instead of iterating through all the types, you can ask the reflection system for a single
specific one. This may seem odd—if you already know what type you want, why would
you need to use reflection to find things out about it at runtime? In fact, this can be
useful for several reasons—some applications let users put the name of a type in a
configuration file, so the program only discovers the name of the type it requires at
runtime, and wants to look up just that one type. To do so, you extract a type from the
assembly with the GetType() method, as shown in Example 17-4.

Example 17-4. Reflecting on a type

using System;
using System.Reflection;

namespace ReflectingOnAType
{
 public class Tester
 {
 public static void Main()
 {
 // examine a single type
 Assembly a = Assembly.Load("Mscorlib");
 Type theType = a.GetType("System.Reflection.Assembly");
 Console.WriteLine("\nSingle Type is {0}\n", theType);
 }
 }
}

Output:
Single Type is System.Reflection.Assembly

It can sometimes be useful to get hold of the Type object for a specific type known to
you at compile time. This may seem odd, for the reasons described earlier, but the usual
reason for doing this is not so that you can learn more about the type. You may need
to do it to compare one type object with another. For example, if we wanted to find all
of the types in mscorlib that derive from the MemberInfo class, we would need to get
hold of the Type object for MemberInfo. Example 17-5 does this.

Example 17-5. Using a specific type object for comparison purposes

using System;
using System.Linq;
using System.Reflection;

namespace UsingASpecificType

Reflection | 681

{
 public class Tester
 {
 public static void Main()
 {
 // examine a single type
 Assembly a = Assembly.Load("Mscorlib");

 var matchingTypes = from t in a.GetTypes()
 where typeof(MemberInfo).IsAssignableFrom(t)
 select t;

 foreach (Type t in matchingTypes)
 {
 Console.WriteLine(t);
 }
 }
 }
}

This uses a LINQ query to find the matching types. It illustrates one of the things you
can do with a Type object—its IsAssignableFrom method tells you whether it’s possible
to assign an instance of one type into a field or variable of another type. So this code
looks at every type, and asks whether it can be assigned into a variable of type
MemberInfo. (This casts the net slightly wider than merely looking at the base class—
this query will find all types that derive either directly or indirectly from MemberInfo.)
Since we know exactly what target type we’re interested in, we use the C# typeof
operator to get the Type object for that exact type.

Finding all type members

You can ask a Type object for all its members using the GetMembers() method of the
Type class, which lists all the methods, properties, and fields, as shown in Example 17-6.

Example 17-6. Reflecting on the members of a type

using System;
using System.Reflection;

namespace ReflectingOnMembersOfAType
{
 public class Tester
 {
 public static void Main()
 {
 // examine a single type
 Assembly a = Assembly.Load("Mscorlib");
 Type theType = a.GetType("System.Reflection.Assembly");
 Console.WriteLine("\nSingle Type is {0}\n", theType);

 // get all the members
 MemberInfo[] mbrInfoArray = theType.GetMembers();
 foreach (MemberInfo mbrInfo in mbrInfoArray)

682 | Chapter 17: Attributes and Reflection

 {
 Console.WriteLine("{0} is a {1}",
 mbrInfo, mbrInfo.MemberType);
 }
 }
 }
}

Once again, the output is quite lengthy, but within the output you see fields, methods,
constructors, and properties, as shown in this excerpt:

System.Type GetType(System.String, Boolean, Boolean) is a Method
System.Type[] GetExportedTypes() is a Method
System.Reflection.Module GetModule(System.String) is a Method
System.String get_FullName() is a Method

Finding type methods

You might want to focus on methods only, excluding the fields, properties, and so forth.
To do so, find the call to GetMembers():

MemberInfo[] mbrInfoArray =
 theType.GetMembers();

and replace it with a call to GetMethods():

mbrInfoArray = theType.GetMethods();

The output now contains nothing but the methods:

Output (excerpt):
Boolean Equals(System.Object) is a Method
System.String ToString() is a Method
System.String CreateQualifiedName(
System.String, System.String) is a Method
Boolean get_GlobalAssemblyCache() is a Method

Late Binding
Once you find a method, you can invoke it using reflection. For example, you might
like to invoke the Cos() method of System.Math, which returns the cosine of an angle.

You can, of course, call Cos() in the normal course of your code, but
reflection allows you to bind to that method at runtime. This is called
late binding, and offers the flexibility of choosing at runtime which ob-
ject to bind to and invoking it programmatically. The dynamic keyword
added in C# 4.0, discussed in Chapter 18, can do this for you, but you
may sometimes want to control the underlying mechanisms for late
binding yourself. This can be useful when creating a custom script to be
run by the user or when working with objects that might not be available
at compile time.

Reflection | 683

To invoke Cos(), first get the Type information for the System.Math class:

Type theMathType = typeof(System.Math);

Once we have type information, we could dynamically create an instance of the type
using a static method of the Activator class. However, we don’t need to here because
Cos() is static. In fact, all members of System.Math are static, and even if you wanted to
create an instance, you can’t because System.Math has no public constructor. However,
since you will come across types that need to be instantiated so that you can call their
nonstatic members, it’s important to know how to create new objects with reflection.

The Activator class contains three methods, all static, which you can use to create
objects. The methods are as follows:

CreateComInstanceFrom
Creates instances of COM objects.

CreateInstanceFrom
Creates a reference to an object from a particular assembly and type name.

CreateInstance
Creates an instance of a particular type from a Type object. For example:

Object theObj = Activator.CreateInstance(someType);

Back to the Cos() example. Our theMathType variable now refers to a Type object which
we obtained by calling GetType.

Before we can invoke a method on the type, we must get the method we need from the
Type object. To do so, we call GetMethod(), passing the method name:

MethodInfo cosineInfo =
 theMathType.GetMethod("Cos");

There’s obviously a problem here if you need to deal with overloaded
methods. That’s not an issue for this particular example—there’s only
one Cos method. But if you need to deal with multiple methods of the
same name, you can use an alternative overload of GetMethod that takes
two arguments. After the method name you can pass an array of the
argument types, which allows you to uniquely identify the overload you
require. We could use that here if we wanted even though it’s not
necessary—we could create a Type[] array containing one entry: the
typeof(double). This would tell GetMethod that we are looking specifi-
cally for a method called Cos that takes a single argument of type double.

You now have an object of type MethodInfo which provides an Invoke method that calls
the method this MethodInfo represents. Normally, the first argument to Invoke would
be the object on which we want to invoke the method. However, because this is a static
method, there is no object, so we just pass null. And then we pass the arguments for
the function. Invoke is capable of calling any method, regardless of how many

684 | Chapter 17: Attributes and Reflection

arguments it has, so it expects the arguments to be wrapped in an array, even if there’s
only one:

Object[] parameters = new Object[1];
parameters[0] = 45 * (Math.PI/180); // 45 degrees in radians
Object returnVal = cosineInfo.Invoke(null, parameters);

Example 17-7 shows all the steps required to call the Cos() method dynamically.

Example 17-7. Dynamically invoking a method

using System;
using System.Reflection;

namespace DynamicallyInvokingAMethod
{
 public class Tester
 {
 public static void Main()
 {
 Type theMathType = Type.GetType("System.Math");
 // Since System.Math has no public constructor, this
 // would throw an exception.
 // Object theObj =
 // Activator.CreateInstance(theMathType);

 // array with one member
 Type[] paramTypes = new Type[1];
 paramTypes[0] = Type.GetType("System.Double");

 // Get method info for Cos()
 MethodInfo CosineInfo =
 theMathType.GetMethod("Cos", paramTypes);

 // fill an array with the actual parameters
 Object[] parameters = new Object[1];
 parameters[0] = 45 * (Math.PI / 180); // 45 degrees in radians
 Object returnVal =
 CosineInfo.Invoke(theMathType, parameters);
 Console.WriteLine(
 "The cosine of a 45 degree angle {0}",
 returnVal);
 }
 }
}

Output:
The cosine of a 45 degree angle 0.707106781186548

That was a lot of work just to invoke a single method. The power, however, is that you
can use reflection to discover an assembly on the user’s machine, to query what meth-
ods are available, and to invoke one of those members dynamically. Chapter 18 will
show how you can use the dynamic keyword to automate this for certain scenarios.

Reflection | 685

Summary
All .NET components contain metadata. Some of this is essential information about
the structure of our code—the metadata includes the list of types, their names, the
members they define, the arguments accepted by the methods, and so on. But the
metadata system is also extensible—attributes can be embedded alongside the core
metadata, and these can then be discovered at runtime. Finally, we saw that
some metadata features can make use of the items they represent—we can use method
information to invoke a method we discovered dynamically, for example.

686 | Chapter 17: Attributes and Reflection

CHAPTER 18

Dynamic

Older versions of C# had trouble interacting with certain kinds of programs, especially
those in the Microsoft Office family. You could get the job done, but before C# 4.0, it
needed a lot of effort, and the results were ugly. The problem came down to a clash of
philosophies: Office embraces a dynamic style, while C# used to lean heavily toward
the static style. C# 4.0 now provides better support for the dynamic style, making it
much easier to program Microsoft Office and similar systems from C#.

Static Versus Dynamic
What exactly is the difference between static and dynamic? The terminology is slightly
confusing because C# has a keyword called static which is unrelated, so you’ll need
to put your knowledge of that static to one side for now. When it comes to the
dynamic/static distinction, something is dynamic if it is decided at runtime, whereas a
static feature is determined at compile type. If that sounds rather abstract, it’s because
the distinction can apply to lots of different things, including the choice of which
method to call, the type of a variable or an expression, or the meaning of an operator.

Let’s look at some concrete examples. The compiler is able to work out quite a lot of
things about code during compilation, even code as simple as Example 18-1.

Example 18-1. Simple code with various static features

var myString = Console.ReadLine();
var modifiedString = myString.Replace("color", "colour");

We’ve used the var keyword here, so we’ve not told the compiler what type these
variables have, but it can work that out for us. The Console.ReadLine() method has a
return type of string, meaning that myString must be of type string—the variable’s
type can never be anything else, and so we say that it has a static type. (And obviously,
the same would be true for any variable declared with an explicit type—declaring
myString explicitly as a string would have changed nothing.) Likewise, the compiler is

687

able to work out that modifiedString is also a string. Any variable declared with var
will have a static type.

The compiler determines other aspects of code statically besides the types of variables.
For example, there are method calls. The Console.ReadLine() call is straightforward.
Console is a class name, so our code has been explicit about where to find the method.
Since there’s no scope for ambiguity over which method we mean, this is a static method
invocation—we know at compile time exactly which method will be called at runtime.

The myString.Replace method is slightly more interesting: myString refers to a variable,
not a class, so to understand which method will be invoked, we need to know what
type myString is. But as we already saw, in this example, its type is known statically to
be string. As it happens, there are two overloads of Replace, one that takes two
string arguments and one that takes two char arguments. In this code, we are passing
to string literals, so the argument types are also known statically. This means that the
compiler can work out which overload we require, and bakes that choice into the com-
piler output—once compilation completes, the exact method that Example 18-1 in-
vokes is fixed. All the decisions are made at compile time here, and nothing can change
the decision at runtime, and this is the nature of the static style.

Dynamic features defer decisions until runtime. For example, in a language that sup-
ports dynamic method invocation, the business of working out exactly which method
to run doesn’t happen until the program gets to the point where it tries to invoke the
method. This means that dynamic code doesn’t necessarily do the same thing every
time it runs—a particular piece of code might end up invoking different methods from
time to time.

You might be thinking that we’ve seen C# features in earlier chapters that enable this.
And you’d be right: virtual methods, interfaces, and delegates all provide us with ways
of writing code which picks the exact method to run at runtime. Static/dynamic is more
of a continuum than a binary distinction. Virtual methods are more dynamic than
nonvirtual methods, because they allow runtime selection of the method. Interfaces are
more dynamic than virtual methods, because an object does not have to derive from
any particular base class to implement a particular interface. Delegates are more dy-
namic than interfaces because they remove the requirement for the target to be com-
patible with any particular type, or even to be an object—whereas virtual methods and
interfaces require instance methods, delegates also support those marked with the
static keyword. (Again, try not to get distracted by the overlap in terminology here.)
As you move through each of these mechanisms, the calling code knows slightly less
about called code—there’s more and more freedom for things to change at runtime.

688 | Chapter 18: Dynamic

However, these mechanisms all offer relatively narrow forms of dynamism. The dis-
tinctions just listed seem rather petty next to a language that wholeheartedly embraces
a dynamic style. JavaScript, for example, doesn’t even require the caller to know exactly
how many arguments the method is expecting to receive.* And in Ruby, it’s possible
for an object to decide dynamically whether it feels like implementing a particular
method at all, meaning it can decide at runtime to implement methods its author hadn’t
thought to include when originally writing the code!

The Dynamic Style and COM Automation
Microsoft Office is programmable through a system called COM automation, which
has an adaptable approach to argument counts. Office uses this to good effect. It offers
methods which are remarkably flexible because they take an astonishing number of
arguments, enabling you to control every conceivable aspect of the operation. The
Office APIs are designed to be used from the Visual Basic for Applications (VBA) lan-
guage, which uses a dynamic idiom, so it doesn’t matter if you leave out arguments
you’re not interested in. Its dynamic method invocation can supply reasonable defaults
for any missing values. But this leaves more statically inclined languages with a problem.
C# 3.0 requires the number and type of arguments to be known at compile time (even
with delegate invocation, the most dynamic form of method invocation available in
that language). This means that you don’t get to leave out the parts you don’t care
about—you are forced to provide values for every single argument.

So although the designers of Microsoft Word intended for you to be able to write code
roughly like that shown in Example 18-2:

Example 18-2. Word automation as Microsoft intended

var doc = wordApp.Documents.Open("WordFile.docx", ReadOnly:true);

in C# 3.0 you would have been forced to write the considerably less attractive code
shown in Example 18-3.

Example 18-3. Word automation before C# 4.0

 object fileName = @"WordFile.docx";
 object missing = System.Reflection.Missing.Value;
 object readOnly = true;
 var doc = wordApp.Documents.Open(ref fileName, ref missing, ref readOnly,
 ref missing, ref missing, ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing);

* Yes, so C# supports variable-length argument lists, but it fakes it. Such methods really have a fixed number
of arguments, the last of which happens to be an array. There is only one variable-length
Console.WriteLine method, and the compiler is able to determine statically when you use it.

Static Versus Dynamic | 689

Not only has C# 3.0 insisted that we supply a value for every argument (using a special
“this argument intentionally left blank” value to signify our intent to provide no par-
ticular value), but it has also insisted that we stick precisely to the rules of the type
system. Word has chosen about the most general-purpose representation available to
ensure maximum flexibility, which is why we see ref in front of every argument—it’s
keeping open the possibility of passing data back out through any of these arguments.
It doesn’t care that this gives the methods an unusually complex signature, because it
just assumes that we’ll be using a language whose dynamic method invocation mech-
anism will automatically perform any necessary conversions at runtime. But if you’re
using a language with no such mechanism, such as C# 3.0, it’s all rather unpleasant.

In fact, the way COM automation works is that the target object is ultimately respon-
sible for dealing with defaults, coercion, and so on. The real problem is that C# 3.0
doesn’t have any syntax for exploiting this—if you want to defer to the COM object,
you have to use the dynamic method invocation services provided by reflection, which
were described in Chapter 17. Unfortunately, doing that from C# 3.0 looks even more
unpleasant than Example 18-3.

Fortunately, C# 4.0 adds new dynamic features to the language that let us write code
like Example 18-2, just as Word intended.

The dynamic Type
C# 4.0 introduces a new type called dynamic. In some ways it looks just like any other
type such as int, string, or FileStream: you can use it in variable declarations, or func-
tion arguments and return types, as Example 18-4 shows. (The method reads a little
oddly—it’s a static method in the sense that it does not relate to any particular object
instance. But it’s dynamic in the sense that it uses the dynamic type for its parameters
and return value.)

Example 18-4. Using dynamic

static dynamic AddAnything(dynamic a, dynamic b)
{
 dynamic result = a + b;
 Console.WriteLine(result);
 return result;
}

While you can use dynamic almost anywhere you could use any other type name, it has
some slightly unusual characteristics, because when you use dynamic, you are really
saying “I have no idea what sort of thing this is.” That means there are some situations
where you can’t use it—you can’t derive a class from dynamic, for example, and
typeof(dynamic) will not compile. But aside from the places where it would be mean-
ingless, you can use it as you’d use any other type.

690 | Chapter 18: Dynamic

To see the dynamic behavior in action, we can try passing in a few different things to
the AddAnything method from Example 18-4, as Example 18-5 shows.

Example 18-5. Passing different types

Console.WriteLine(AddAnything("Hello", "world").GetType().Name);
Console.WriteLine(AddAnything(31, 11).GetType().Name);
Console.WriteLine(AddAnything("31", 11).GetType().Name);
Console.WriteLine(AddAnything(31, 11.5).GetType().Name);

AddAnything prints the value it calculates, and Example 18-5 then goes on to print the
type of the returned value. This produces the following output:

Helloworld
String
42
Int32
3111
String
42.5
Double

The + operator in AddAnything has behaved differently (dynamically, as it were) de-
pending on the type of data we provided it with. Given two strings, it appended them,
producing a string result. Given two integers, it added them, returning an integer as
the result. Given some text and a number, it converted the number to a string, and then
appended that to the first string. And given an integer and a double, it converted the
integer to a double and then added it to the other double.

If we weren’t using dynamic, every one of these would have required C# to generate
quite different code. If you use the + operator in a situation where the compiler knows
both types are strings, it generates code that calls the String.Concat method. If it knows
both types are integers, it will instead generate code that performs arithmetic addition.
Given an integer and a double, it will generate code that converts the integer to a double,
followed by code to perform arithmetic addition. In all of these cases, it would uses the
static information it has about the types to work out what code to generate to represent
the expression a + b.

Clearly C# has done something quite different with Example 18-4. There’s only one
method, meaning it had to produce a single piece of code that is somehow able to
execute any of these different meanings for the + operator. The compiler does this by
generating code that builds a special kind of object that represents an addition opera-
tion, and this object then applies similar rules at runtime to those the compiler would
have used at compile time if it knew what the types were. (This makes dynamic very
different from var—see the sidebar on the next page.)

The dynamic Type | 691

dynamic Versus var
At first glance, the difference between dynamic and var may not be entirely obvious.
With either, you do not have to tell the compiler explicitly what type of data you’re
working with—the compiler ultimately ensures that the right thing happens. For ex-
ample, whether using dynamic or var, the + operator has the same effect that it would
have if you had used it with explicitly typed variables. So why do we need both?

The difference is timing: var does things much earlier. The C# compiler insists on being
able to work out what type of data is in a var variable at compile time. But with
dynamic, it works it out at runtime. This means there are some things you can do with
dynamic that you cannot do with var. As Example 18-4 showed, you can use dynamic
for the arguments of a function declaration, and also for its return type. But this would
be illegal with var:

static var WillNotCompile(var a, var b) // Error
{
 return a + b;
}

The compiler has insufficient information to work out at compile time what the argu-
ment and return types are here. But with dynamic, that doesn’t matter—the compiler
doesn’t need to know at compile type what type of data we’re using because it will
generate code that works out what to do at runtime.

Here’s another thing that dynamic can do that var cannot:

dynamic differentTypes = "Text";
differentTypes = 42;
differentTypes = new object();

The value in differentTypes changed from one line to the next. If we had used var, this
would have been illegal—a var variable’s type is determined by the expression used to
initialize it, so in this case, it would have been a string, meaning the second line would
have failed to compile.

So dynamic and var perfectly represent the distinction between dynamic and static: a
dynamic variable’s type (and consequently the behavior of any operations using that
variable) is determined at runtime; a var variable’s type is static—it is determined at
compile time and cannot change.

So the behavior is consistent with what we’re used to with C#. The + operator continues
to mean all the same things it can normally mean, it just picks the specific meaning at
runtime—it decides dynamically. The + operator is not the only language feature ca-
pable of dynamic operation. As you’d expect, when using numeric types, all the math-
ematical operators work. In fact, most of the language elements you can use in a normal
C# expression work as you’d expect. However, not all operations make sense in all
scenarios. For example, if you tried to add a COM object to a number, you’d get an
exception. (Specifically, a RuntimeBinderException, with a message complaining that
the + operator cannot be applied to your chosen combination of types.) A COM object

692 | Chapter 18: Dynamic

such as one representing an Excel spreadsheet is a rather different sort of thing from
a .NET object. This raises a question: what sorts of objects can we use with dynamic?

Object Types and dynamic
Not all objects behave in the same way when you use them through the dynamic key-
word. C# distinguishes between three kinds of objects for dynamic purposes: COM
objects, objects that choose to customize their dynamic behavior, and ordinary .NET
objects. We’ll see several examples of that second category, but we’ll start by looking
at the most important dynamic scenario: interop with COM objects.

COM objects

COM objects such as those offered by Microsoft Word or Excel get special handling
from dynamic. It looks for COM automation support (i.e., an implementation of the
IDispatch COM interface) and uses this to access methods and properties. Automation
is designed to support runtime discovery of members, and it provides mechanisms for
dealing with optional arguments, coercing argument types where necessary. The
dynamic keyword defers to these services for all member access. Example 18-6 relies on
this.

Example 18-6. COM automation and dynamic

static void Main(string[] args)
{
 Type appType = Type.GetTypeFromProgID("Word.Application");
 dynamic wordApp = Activator.CreateInstance(appType);

 dynamic doc = wordApp.Documents.Open("WordDoc.docx", ReadOnly:true);
 dynamic docProperties = doc.BuiltInDocumentProperties;
 string authorName = docProperties["Author"].Value;
 doc.Close(SaveChanges:false);
 Console.WriteLine(authorName);
}

The first two lines in this method just create an instance of Word’s application COM
class. The line that calls wordApp.Documents.Open will end up using COM automation
to retrieve the Document property from the application object, and then invoke the
Open method on the document object. That method has 16 arguments, but dynamic uses
the mechanisms provided by COM automation to offer only the two arguments the
code has provided, letting Word provide defaults for all the rest.

Although dynamic is doing some very COM-specific work here, the syntax looks like
normal C#. That’s because the compiler has no idea what’s going on here—it never
does with dynamic. So the syntax looks the same regardless of what happens at runtime.

The dynamic Type | 693

If you are familiar with COM you will be aware that not all COM objects support
automation. COM also supports custom interfaces, which do not support dynamic
semantics—they rely on compile-time knowledge to work at all. Since there is no gen-
eral runtime mechanism for discovering what members a custom interface offers,
dynamic is unsuitable for dealing with these kinds of COM interfaces. However, custom
interfaces are well suited to the COM interop services described in Chapter 19.
dynamic was added to C# mainly because of the problems specific to automation, so
trying to use it with custom COM interfaces would be a case of the wrong tool for the
job. dynamic is most likely to be useful for Windows applications that provide some
sort of scripting feature because these normally use COM automation, particularly
those that provide VBA as their default scripting language.

Silverlight script objects

Silverlight applications can run in the web browser, which adds an important interop
scenario: interoperability between C# code and browser objects. Those might be ob-
jects from the DOM, or from script. In either case, these objects have characteristics
that fit much better with dynamic than with normal C# syntax, because these objects
decide which properties are available at runtime.

Silverlight 3 used C# 3.0, so dynamic was not available. It was still possible to use objects
from the browser scripting world, but the syntax was not quite as natural. For example,
you might have defined a JavaScript function on a web page, such as the one shown in
Example 18-7.

Example 18-7. JavaScript code on a web page

<script type="text/javascript">
 function showMessage(msg)
 {
 var msgDiv = document.getElementById("messagePlaceholder");
 msgDiv.innerText = msg;
 }
</script>

Before C# 4.0, you could invoke this in a couple of ways, both of which are illustrated
in Example 18-8.

Example 18-8. Accessing JavaScript in C# 3.0

ScriptObject showMessage = (ScriptObject)
 HtmlPage.Window.GetProperty("showMessage");
showMessage.InvokeSelf("Hello, world");

// Or...

ScriptObject window = HtmlPage.Window;
window.Invoke("showMessage", "Hello, world");

694 | Chapter 18: Dynamic

While these techniques are significantly less horrid than the C# 3.0 code for COM
automation, they are both a little cumbersome. We have to use helper methods—
GetProperty, InvokeSelf, or Invoke to retrieve properties and invoke functions. But
Silverlight 4 supports C# 4.0, and all script objects can now be used through the
dynamic keyword, as Example 18-9 shows.

Example 18-9. Accessing JavaScript in C# 4.0

dynamic window = HtmlPage.Window;
window.showMessage("Hello, world");

This is a far more natural syntax, so much so that the second line of code happens to
be valid JavaScript as well as being valid C#. (It’s idiomatically unusual—in a web
page, the window object is the global object, and so you’d normally leave it out, but
you’re certainly allowed to refer to it explicitly, so if you were to paste that last line into
script in a web page, it would do the same thing as it does in C#.) So dynamic has given
us the ability to use JavaScript objects in C# with a very similar syntax to what we’d
use in JavaScript itself—it doesn’t get much more straightforward than that.

The Visual Studio tools for Silverlight do not automatically add a refer-
ence to the support library that enables dynamic to work. So when you
first add a dynamic variable to a Silverlight application, you’ll get a com-
piler error. You need to add a reference to the Microsoft.CSharp library
in your Silverlight project. This applies only to Silverlight projects—
other C# projects automatically have a reference to this library.

Ordinary .NET objects

Although the dynamic keyword was added mainly to support interop scenarios, it is
quite capable of working with normal .NET objects. For example, if you define a class
in your project in the normal way, and create an instance of that class, you can use it
via a dynamic variable. In this case, C# uses .NET’s reflection APIs to work out which
methods to invoke at runtime. We’ll explore this with a simple class, defined in Ex-
ample 18-10.

Example 18-10. A simple class

class MyType
{
 public string Text { get; set; }
 public int Number { get; set; }

 public override string ToString()
 {
 return Text + ", " + Number;
 }

 public void SetBoth(string t, int n)
 {

The dynamic Type | 695

 Text = t;
 Number = n;
 }

 public static MyType operator + (MyType left, MyType right)
 {
 return new MyType
 {
 Text = left.Text + right.Text,
 Number = left.Number + right.Number
 };
 }
}

We can use objects of this through a dynamic variable, as Example 18-11 shows.

Example 18-11. Using a simple object with dynamic

dynamic a = new MyType { Text = "One", Number = 123 };
Console.WriteLine(a.Text);
Console.WriteLine(a.Number);
Console.WriteLine(a.Problem);

The lines that call Console.WriteLine all use the dynamic variable a with normal C#
property syntax. The first two do exactly what you’d expect if the variable had been
declared as MyType or var instead of dynamic: they just print out the values of the Text
and Number properties. The third one is more interesting—it tries to use a property that
does not exist. If the variable had been declared as either MyType or var, this would not
have compiled—the compiler would have complained at our attempt to read a property
that it knows is not there. But because we’ve used dynamic, the compiler does not even
attempt to check this sort of thing at compile time. So it compiles, and instead it fails
at runtime—that third line throws a RuntimeBinderException, with a message com-
plaining that the target type does not define the Problem member we’re looking for.

This is one of the prices we pay for the flexibility of dynamic behavior: the compiler is
less vigilant. Certain programming errors that would be caught at compile time when
using the static style do not get detected until runtime. And there’s a related price:
IntelliSense relies on the same compile-time type information that would have noticed
this error. If we were to change the variable in Example 18-11’s type to either MyType
or var, we would see IntelliSense pop ups such as those shown in Figure 18-1 while
writing the code.

Visual Studio is able to show the list of available methods because the variable is stat-
ically typed—it will always refer to a MyType object. But with dynamic, we get much less
help. As Figure 18-2 shows, Visual Studio simply tells us that it has no idea what’s
available. In this simple example, you could argue that it should be able to work it
out—although we’ve declared the variable to be dynamic, it can only ever be a MyType
at this point in the program. But Visual Studio does not attempt to perform this sort of
analysis for a couple of reasons. First, it would work for only relatively trivial scenarios
such as these, and would fail to work anywhere you were truly exploiting the dynamic

696 | Chapter 18: Dynamic

nature of dynamic—and if you don’t really need the dynamism, why not just stick with
statically typed variables? Second, as we’ll see later, it’s possible for a type to customize
its dynamic behavior, so even if Visual Studio knows that a dynamic variable always
refers to a MyType object, that doesn’t necessarily mean that it knows what members
will be available at runtime. Another upshot is that with dynamic variables, IntelliSense
provides the rather less helpful pop up shown in Figure 18-2.

Figure 18-1. IntelliSense with a statically typed variable

Figure 18-2. IntelliSense with a dynamically typed variable

Example 18-11 just reads the properties, but as you’d expect, we can set them, too.
And we can also invoke methods with the usual syntax. Example 18-12 illustrates both
features, and contains no surprises.

Example 18-12. Setting properties and calling methods with dynamic

dynamic a = new MyType();
a.Number = 42;
a.Text = "Foo";
Console.WriteLine(a);
dynamic b = new MyType();
b.SetBoth("Bar", 99);
Console.WriteLine(b);

Our MyType example also overloads the + operator—it defines what should occur when
we attempt to add two of these objects together. This means we can take the two objects
from Example 18-12 and pass them to the AddAnything method from Example 18-4, as
Example 18-13 shows.

The dynamic Type | 697

Example 18-13. Using an overloaded + operator

MyType c = AddAnything(a, b);
Console.WriteLine(c);

Recall that Example 18-4 just uses the normal C# syntax for adding two things together.
We wrote that code before even writing the MyType class, but despite this, it works just
fine—it prints out:

FooBar, 141

The custom + operator in MyType concatenates the Text properties and adds the
Number properties, and we can see that’s what’s happened here. Again, this shouldn’t
really come as a surprise—this is another example of the basic principle that operations
should work the same way when used through dynamic as they would statically.

Example 18-13 illustrates another feature of dynamic—assignment. You can, of course,
assign any value into a variable of type dynamic, but what’s more surprising is that you
can also go the other way—you are free to assign an expression of dynamic type into a
variable of any type. The first line of Example 18-13 assigns the return value of
AddAnything into a variable of type MyType. Recall that AddAnything has a return type of
dynamic, so you might have thought we’d need to cast the result back to MyType here,
but we don’t. As with all dynamic operations, C# lets you try whatever you want at
compile time and then tries to do what you asked at runtime. In this case, the assign-
ment succeeds because AddAnything ended up adding two MyType objects together to
return a reference to a new MyType object. Since you can always assign a reference to a
MyType object into a MyType variable, the assignment succeeds. If there’s a type mis-
match, you get an exception at runtime. This is just another example of the same basic
principle; it’s just a bit subtler because assignment is usually a trivial operation in C#,
so it’s not immediately obvious that it might fail at runtime.

While most operations are available dynamically, there are a couple of exceptions. You
cannot invoke methods declared with the static keyword via dynamic. In some ways,
this is unfortunate—it could be useful to be able to select a particular static (i.e.,
noninstance) method dynamically, based on the type of object you have. But that would
be inconsistent with how C# works normally—you are not allowed to invoke static
methods through a statically typed variable. You always need to call them via their
defining type (e.g., Console.WriteLine). The dynamic keyword does not change anything
here.

Extension methods are also not available through dynamic variables. On the one hand,
this makes sense because extension methods are really just static methods disguised
behind a convenient syntax. On the other hand, that convenient syntax is designed to
make it look like these are really instance methods, as Example 18-14 shows.

698 | Chapter 18: Dynamic

Example 18-14. Extension methods with statically typed variables

using System.Collections.Generic;
using System.Linq;

class Program
{
 static void Main()
 {
 IEnumerable<int> numbers = Enumerable.Range(1, 10);
 int total = numbers.Sum();
 }
}

The call to numbers.Sum() makes it look like IEnumerable<int> defines a method called
Sum. In fact there is no such method, so the compiler goes looking for extension
methods—it searches all of the types in all of the namespaces for which we have pro-
vided using directives. (That’s why we’ve included the whole program here rather than
just a snippet—you need the whole context including the using System.Linq; directive
for that method call to make sense.) And it finds that the Enumerable type (in the
System.Linq namespace) offers a suitable Sum extension method.

If we change the first line in the Main method to the code shown in Example 18-15,
things go wrong.

Example 18-15. Replacing IEnumerable<int> with dynamic

dynamic numbers = Enumerable.Range(1, 10);

The code still compiles, but at runtime, when we reach the call to Sum, it throws a
RuntimeBinderException complaining that the target object does not define a method
called Sum.

So, in this case, C# has abandoned the usual rule of ensuring that the runtime behavior
with dynamic matches what statically typed variables would have delivered. The reason
is that the code C# generates for a dynamic call does not contain enough context. To
resolve an extension method, it’s necessary to know which using directives are present.
In theory, it would have been possible to make this context available, but it would
significantly increase the amount of information the C# compiler would need to
embed—anytime you did anything to a dynamic variable, the compiler would need to
ensure that a list of all the relevant namespaces was available. And even that wouldn’t
be sufficient—at compile time, C# only searches for extension methods in the assem-
blies your project references, so to deliver the same method resolution semantics at
runtime that you get statically would require that information to be made available too.

The dynamic Type | 699

Worse, this would prevent the C# compiler from being able to optimize your project
references. Normally, C# detects when your project has a reference to an assembly that
your code never uses, and it removes any such references at compile time.† But if your
program made any dynamic method calls, it would need to keep references to appa-
rently unused assemblies, just in case they turn out to be necessary to resolve an ex-
tension method call at runtime.

So while it would have been possible for Microsoft to make this work, there would be
a significant price to pay. And it would probably have provided only marginal value,
because it wouldn’t even be useful for the most widely used extension methods. The
biggest user of extension methods in the .NET Framework class library is LINQ—that
Sum method is a standard LINQ operator, for example. It’s one of the simpler ones.
Most of the operators take arguments, many of which expect lambdas. For those to
compile, the C# compiler depends on static type information to create a suitable del-
egate. For example, there’s an overload of the Sum operator that takes a lambda, enabling
you to compute the sum of a value calculated from the underlying data, rather than
merely summing the underlying data itself. Example 18-16 uses this overload to cal-
culate the sum of the squares of the numbers in the list.

Example 18-16. Lambdas and types

int total = numbers.Sum(x => x * x);

When the numbers variable has a static type (IEnumerable<int> in our case) this works
just fine. But if numbers is dynamic, the compiler simply doesn’t have enough information
to know what code it needs to generate for that lambda. Given sufficiently heroic efforts
from the compiler, it could embed enough information to be able to generate all the
necessary code at runtime, but for what benefit? LINQ is designed for a statically typed
world, and dynamic is designed mainly for interop. So Microsoft decided not to support
these kinds of scenarios with dynamic—stick with static typing when using LINQ.

Objects from other dynamic languages

The dynamic keyword uses an underlying mechanism that is not unique to C#. It de-
pends on a set of libraries and conventions known as the DLR—the Dynamic Language
Runtime. The libraries are built into the .NET Framework, so these services are avail-
able anywhere .NET 4 or later is available. This enables C# to work with dynamic
objects from other languages.

Earlier in this chapter, we mentioned that in the Ruby programming language, it’s
possible to write code that decides at runtime what methods a particular object is going
to offer. If you’re using an implementation of Ruby that uses the DLR (such as Iron-
Ruby), you can use these kinds of objects from C#. The DLR website provides open

† This optimization doesn’t occur for Silverlight projects, by the way. The way Silverlight uses control libraries
from Xaml means Visual Studio has to be conservative about project references.

700 | Chapter 18: Dynamic

source implementations of two languages that use the DLR: IronPython and IronRuby
(see http://dlr.codeplex.com/).

ExpandoObject

The .NET Framework class library includes a class called ExpandoObject, which is
designed to be used through dynamic variables. It chooses to customize its dynamic
behavior. (It does this by implementing a special interface called IDynamicMetaObject
Provider. This is defined by the DLR, and it’s also the way that objects from other
languages are able to make their language-specific dynamic behavior available to C#.)
If you’re familiar with JavaScript, the idea behind ExpandoObject will be familiar: you
can set properties without needing to declare them first, as Example 18-17 shows.

Example 18-17. Setting dynamic properties

dynamic dx = new ExpandoObject();

dx.MyProperty = true;
dx.AnotherProperty = 42;

If you set a property that the ExpandoObject didn’t previously have, it just grows that
as a new property, and you can retrieve the property later on. This behavior is concep-
tually equivalent to a Dictionary<string, object>, the only difference being that you
get and set values in the dictionary using C# property accessor syntax, rather than an
indexer. You can even iterate over the values in an ExpandoObject just as you would
with a dictionary, as Example 18-18 shows.

Example 18-18. Iterating through dynamic properties

foreach (KeyValuePair<string, object> prop in dx)
{
 Console.WriteLine(prop.Key + ": " + prop.Value);
}

If you are writing C# code that needs to interoperate with another language that uses
the DLR, this class can be convenient—languages that fully embrace the dynamic style
often use this sort of dynamically populated object in places where a more statically
inclined language would normally use a dictionary, so ExpandoObject can provide a
convenient way to bridge the gap. ExpandoObject implements IDictionary<string,
object>, so it speaks both languages. As Example 18-19 shows, you add properties to
an ExpandoObject through its dictionary API and then go on to access those as dynamic
properties.

Example 18-19. ExpandoObject as both dictionary and dynamic object

ExpandoObject xo = new ExpandoObject();

IDictionary<string, object> dictionary = xo;
dictionary["Foo"] = "Bar";

The dynamic Type | 701

http://dlr.codeplex.com/

dynamic dyn = xo;
Console.WriteLine(dyn.Foo);

This trick of implementing custom dynamic behavior is not unique to ExpandoObject—
we are free to write our own objects that do the same thing.

Custom dynamic objects

The DLR defines an interface called IDynamicMetaObjectProvider, and objects that im-
plement this get to define how they behave when used dynamically. It is designed to
enable high performance with maximum flexibility, which is great for anyone using
your type, but it’s a lot of work to implement. Describing how to implement this in-
terface would require a fairly deep discussion of the workings of the DLR, and is beyond
the scope of this book. Fortunately, a more straightforward option exists.

The System.Dynamic namespace defines a class called DynamicObject. This implements
IDynamicMetaObjectProvider for you, and all you need to do is override methods rep-
resenting whichever operations you want your dynamic object to support. If you want
to support dynamic properties, but you don’t care about any other dynamic features,
the only thing you need to do is override a single method, TryGetMember, as Exam-
ple 18-20 shows.

Example 18-20. Custom dynamic object

using System;
using System.Dynamic;

public class CustomDynamic : DynamicObject
{
 private static DateTime FirstSighting = new DateTime(1947, 3, 13);

 public override bool TryGetMember(GetMemberBinder binder,
 out object result)
 {
 var compare = binder.IgnoreCase ?
 StringComparer.InvariantCultureIgnoreCase :
 StringComparer.InvariantCulture;
 if (compare.Compare(binder.Name, "Brigadoon") == 0)
 {
 // Brigadoon famous for appearing only once every hundred years.
 DateTime today = DateTime.Now.Date;
 if (today.DayOfYear == FirstSighting.DayOfYear)
 {
 // Right day, what about the year?
 int yearsSinceFirstSighting = today.Year - FirstSighting.Year;
 if (yearsSinceFirstSighting % 100 == 0)
 {
 result = "Welcome to Brigadoon. Please drive carefully.";
 return true;
 }
 }
 }

702 | Chapter 18: Dynamic

 return base.TryGetMember(binder, out result);
 }
}

This object chooses to define just a single property, called Brigadoon.‡ Our
TryGetMember will be called anytime some code attempts to read a property from our
object. The GetMemberBinder argument provides the name of the property the caller is
looking for, so we compare it against our one and only supported property name. The
binder also tells us whether the caller prefers a case-sensitive comparison—in C#
IgnoreCase will be false, but some languages (such as VB.NET) prefer case-insensitive
comparisons. If the name matches, we then decide at runtime whether the property
should be present or not—this particular property is available for only a day at a time
once every 100 years. This may not be hugely useful, but it illustrates that objects may
choose whatever rules they like for deciding what properties to offer.

If you’re wondering what you would get in exchange for the additional
complexity of IDynamicMetaObjectProvider, it makes it possible to use
caching and runtime code generation techniques to provide high-
performance dynamic operation. This is a lot more complicated than
the simple model offered by DynamicObject, but has a significant impact
on the performance of languages in which the dynamic model is the
norm.

dynamic in Noninterop Scenarios?
The main motivation behind dynamic’s introduction was to make it possible to use
Office without writing horrible code. It also has uses in other interop scenarios such as
dealing with browser script in Silverlight, and working with dynamic languages. But
would you ever use it in a pure C# scenario? The dynamic style has become increasingly
fashionable in recent years—some popular JavaScript libraries designed for client-side
web code make cunning use of dynamic idioms, as do certain web frameworks. Some
developers even go as far as to claim that a dynamic style is inherently superior to a
static style. If that’s the way the wind is blowing, should C# developers follow this
trend?

Tantalizingly, for those keen on dynamic languages, dynamic has brought some dynamic
language features to C#. However, the key word here is some. C# 4.0 added dynamic
to improve certain interop scenarios, not to support whole new programming idioms.
It is therefore not helpful to think of dynamic in terms of “dynamic extensions for C#.”

If you attempt to use C# as though it were a fully fledged dynamic language, you’ll be
stepping outside the language’s core strength, so you will inevitably run into problems.
We’ve already seen a LINQ example that did not mix well with dynamic, and that failure

‡ According to popular legend, Brigadoon is a Scottish village which appears for only one day every 100 years.

dynamic in Noninterop Scenarios? | 703

was a symptom of a broader problem. The underlying issue is that delegates are not as
flexible as you might expect when it comes to dynamic behavior. Consider the method
shown in Example 18-21.

Example 18-21. A simple filter

static bool Test(int x)
{
 return x < 100;
}

We can use this in conjunction with the LINQ Where operator, as Example 18-22 shows.

Example 18-22. Filtering with LINQ

var nums = Enumerable.Range(1, 200);
var filteredNumbers = nums.Where(Test);

What if we wanted to make this more general-purpose? We could modify Test so that
instead of working only with int, it works with any built-in numeric type, or indeed
any type that offers a version of the < operator that can be used with int. We could do
that by changing the argument to dynamic, as Example 18-23 shows.

Example 18-23. A dynamic filter

static bool Test(dynamic x)
{
 return x < 100;
}

Unfortunately, this change would cause the code in Example 18-22 to fail with a com-
piler error. It complains that there are no overloads that match delegate
System.Func<int,bool>, which is the function type the Where method expects here. This
is frustrating because our Test method is certainly capable of accepting an int and
returning a bool, but despite this, we need to add our own wrapper. Example 18-24
does the job.

Example 18-24. Making a dynamic filter palatable for LINQ

var filteredNumbers = nums.Where(x => Test(x));

This is a little weird because it seems like it should mean exactly the same as the equiv-
alent line in Example 18-22. We’ve had to add some extra code just to keep the C#
type system happy, and normally that’s exactly the sort of thing the dynamic style is
supposed to let you avoid. Part of the problem here is that we’re trying to use LINQ, a
thoroughly static-oriented API. But it turns out that there’s a deeper problem here,
which we can illustrate by trying to write our own dynamic-friendly version of Where.
Example 18-25 will accept anything as its test argument. This DynamicWhere method
will be happy as long as test can be invoked as a method that returns a bool (or some-
thing implicitly convertible to bool).

704 | Chapter 18: Dynamic

Example 18-25. A dynamic-friendly Where implementation

static IEnumerable<T> DynamicWhere<T>(IEnumerable<T> input, dynamic test)
{
 foreach (T item in input)
 {
 if (test(item))
 {
 yield return item;
 }
 }
}

This compiles, and will behave as intended if you can manage to invoke it, but un-
fortunately it doesn’t help. Example 18-26 tries to use this, and it will not compile.

Example 18-26. Attempting (and failing) to call DynamicWhere

var filteredNumbers = DynamicWhere(nums, Test); // Compiler error

The C# compiler complains:

Argument 2: cannot convert from 'method group' to 'dynamic'

The problem is that we’ve given it too much latitude. Example 18-25 will work with a
wide range of delegate types. It would be happy with Predicate<object>,
Predicate<dynamic>, Predicate<int>, Func<object, bool>, Func<dynamic, bool>, or
Func<int, bool>. Or you could define a custom delegate type of your own that was
equivalent to any of these. The only thing the C# compiler can see is that Dynamic
Where expects a dynamic argument, so for all it knows, it could pass any type at all. All
it would have to do is pick one that fits the Test method’s signature—any delegate type
with a single argument and a return type of bool would do. But it doesn’t have any rule
to say which particular delegate type to use by default here.

In Example 18-22, the compiler knew what to do because the Where method expected
a specific delegate type: Func<int, bool>. Since there was only one possible option, the
C# compiler was able to create a delegate of the right kind. But now that it has too
much choice, we need to narrow things down again so that it knows what to do.
Example 18-27 shows one way to do this, although you could cast to any of the delegate
types mentioned earlier.

Example 18-27. Giving DynamicWhere a clue

var filteredNumbers = DynamicWhere(nums, (Predicate<dynamic>) Test);

Again, we’ve ended up doing extra work just to satisfy the C# type system, which is
the opposite of what you’d usually expect in the dynamic idiom—types are supposed
to matter less.

dynamic in Noninterop Scenarios? | 705

This is exactly the sort of problem you’ll run into if you attempt to treat C# as a dynamic
programming language—the underlying issue here is that dynamic was designed to solve
specific interop problems. It does that job very well, but C# as a whole is not really at
home in the dynamic style. So it’s not a good idea to attempt to make heavy use of that
style in your C# code.

Summary
C# 4.0’s new dynamic keyword makes it much easier to use objects that were designed
to be used from dynamic programming languages. In particular, COM automation APIs
such as those offered by the Microsoft Office suite are far more natural to use than they
have been in previous versions of the language. Interoperating with browser script ob-
jects in Silverlight is also easier than before.

706 | Chapter 18: Dynamic

CHAPTER 19

Interop with COM and Win32

Programmers love a clean slate. The thought of throwing away all the code we’ve ever
written and starting over can seem alluring, but this typically isn’t a viable option for
most companies. Many development organizations have made a substantial investment
in developing and purchasing COM components and ActiveX controls. Microsoft has
made a commitment to ensure that these legacy components are usable from
within .NET applications, and (perhaps less important) that .NET components are
easily callable from COM. The ability to mix managed .NET code with unmanaged
code from the older worlds of Win32 and COM is called interoperability, or as it’s
usually abbreviated, interop.

This chapter describes the support .NET provides for using ActiveX controls and COM
components into your application, exposing .NET classes to COM-based applications,
and making direct calls to Win32 APIs. You’ll also learn about C# pointers and key-
words for accessing memory directly, which can be necessary for using some unman-
aged APIs.

Importing ActiveX Controls
ActiveX controls are COM components designed to be dropped into a form. They
usually have a user interface, although you may come across nonvisual controls. When
Microsoft developed the OCX standard, which allowed developers to build ActiveX
controls in C++ and use them with VB (and vice versa), the ActiveX control revolution
began. That was way back in 1994, and since then thousands of such controls have
been developed, sold, and used. They are small, usually easy to work with, and are an
effective example of binary reuse. That ActiveX controls are still popular more than a
decade and a half after their invention demonstrates just how useful a lot of developers
find them.

COM objects are quite different from .NET objects under the covers. But Microsoft
was well aware of how popular ActiveX controls had become by the time .NET was
launched, and so it made sure that the .NET Framework and Visual Studio work hard

707

to bridge the gap between the COM and .NET worlds. Visual Studio is able to import
COM components into any .NET project, and makes it particularly easy to use ActiveX
controls from Windows Forms.

Importing a Control in .NET
For our first example, we’re going to use a fairly common ActiveX control that happens
to be installed on most of the authors’ systems: the Adobe PDF Reader control. If you’ve
installed either Adobe’s PDF reader or its Acrobat software, you’ll have this control
too. It allows any application to show a PDF file.

To get started, create a C# Windows Forms application in Visual Studio 2010. Ensure
that the Toolbox is visible—if it’s not, there’s an item on the View menu to show it.
Right-click on the Toolbox and select Add Tab, and then create a new tab called Ac-
tiveX, to make it easy to find the ActiveX controls among all the others available. Inside
this new tab, right-click again, and select the Choose Items option. This will bring up
the Choose Toolbox Items dialog box. Select the COM Components tab, as shown in
Figure 19-1. You can select any number of controls—here we’re just selecting the Adobe
PDF Reader.

Figure 19-1. Adding a COM component

708 | Chapter 19: Interop with COM and Win32

When you click OK, you should see the component in the new tab in the Toolbox, as
Figure 19-2 shows.

Figure 19-2. ActiveX control in the toolbox

Now you can drag this control onto your form. Figure 19-3 shows how the control
looks on a form in the designer. You can set its size and position just like you would
any normal control. Windows Forms layout concepts like anchoring work too—we
could anchor the control to all four sides of the window to make it resize as the window
resizes.

Figure 19-3. Form with PDF ActiveX control

Left to its own devices, this particular control won’t do anything—we have to give it a
PDF file to load before it will even show a UI, and that means using the control’s API.
Fortunately, one of the things Visual Studio did for us when we dragged the control
onto the form was to import the component’s type library. A COM type library contains
metadata—it lists the available classes, and describes their methods, properties, and
events. This is similar in concept to the .NET metadata we explored in Chapter 17, but
the details are all very different. Fortunately, the differences are not a problem, because
when Visual Studio imported the type library, it generated a DLL containing the same
information but as a .NET component. This makes it possible to use the PDF compo-
nent from C#. You can see this generated library by expanding the References section
of the Solution Explorer, as Figure 19-4 shows.

Importing ActiveX Controls | 709

AcroPDFLib is the imported type library. You’ll see a DLL like this when you import any
kind of COM component into a .NET project. But there’s a second item there,
AxAcroPDFLib, and it is specific to ActiveX controls. (Not all COM components are
designed for UI use.) This ActiveX-specific generated DLL contains a class that derives
from a special base class called AxHost, which is a Windows Forms control that can
host an ActiveX control. Visual Studio generates a class called AxAcroPDF that derives
from AxHost, and puts it in that AxAcroPDFLib. It’s this AxAcroPDF class that has ended
up on our form. This ActiveX wrapper provides .NET-callable versions of all the meth-
ods the control makes available to COM programs.

So the upshot is that we can write C# in our code behind that invokes methods, sets
properties, and handles events from this ActiveX control. In other words, it makes it
feel just like a normal control, and that’s the point—Visual Studio has neatly hidden
the fact that COM and .NET work very differently under the covers by generating these
interop libraries for us. Example 19-1 shows a how we can program the control—
it shows the form’s constructor in the code behind, and after the usual call to
InitializeComponent, we’re setting the control’s src property, to tell it from where we’d
like it to fetch a PDF file.

Example 19-1. Setting a property on the control

public Form1()
{
 InitializeComponent();

 string pdf = "http://www.interact-sw.co.uk/downloads/ExamplePdf.pdf";
 pdfAxCtl.src = pdf;
}

If we run the program, it loads the PDF document. As you can see from Figure 19-5,
the control includes its own UI elements for interacting with the document. If you use
Adobe’s reader, this will probably look familiar to you—the same ActiveX control typ-
ically gets used when you view PDF files in a web browser.

Figure 19-4. Imported type library and ActiveX wrapper

710 | Chapter 19: Interop with COM and Win32

Interop Assemblies
As we saw in the preceding section, Visual Studio can generate assemblies contain-
ing .NET representations of type information from COM type libraries. These
assemblies are called interop assemblies.

There’s a potential problem here: what happens if multiple developers all generate
interop assemblies for the same COM component? Most of the time this will be OK,
because these duplicates will be in separate applications. However, what if you have
two .NET libraries that both use the same COM component?

For example, suppose you are building a document processing system that uses Mi-
crosoft Word’s COM API. If your system includes two libraries, both of which need to
use Word, the developers of those libraries would add COM references, and you’d end
up with two interop assemblies for Word. But if a single application uses both of those
libraries, you would end up with two different interop assemblies for the same COM
types in the same process. This is a problem, because there would be two different
representations for what is supposed to be the same type.

Figure 19-5. ActiveX control in a Windows Forms application

Interop Assemblies | 711

Word’s COM API supports automation, which means we could use the
dynamic keyword shown in Chapter 18. This removes the need for in-
terop assemblies, sidestepping the problem. However, some parts of
Word’s API fit perfectly well with static typing, which means developers
may choose not to use dynamic, letting them take advantage of Intelli-
Sense and additional compile-time checks. Or the code may have been
written before dynamic was introduced in C# 4.0.

To avoid having multiple .NET types for one COM type, the author of a COM com-
ponent can provide a primary interop assembly (PIA). For example, Microsoft provides
PIAs for the Office suite—if you look in the .NET tab of the Add Reference dialog, you
will find assemblies whose names begin Microsoft.Office.Interop. The PIA for Word is
Microsoft.Office.Interop.Word. If you have multiple components in a single application
that all use Word, then as long as they use the PIA, they’ll all agree on how each Word
COM type is represented in .NET.

The one problem with PIAs is that installing them on the target machine can be prob-
lematic. They’re fairly big—the Office 2007 PIA installer is 6.3 MB. Integrating them
into your installation process also requires additional work. These are not showstop-
pers, but they certainly add significant complexity. This is why C# 4.0 provides a
simpler alternative, known informally as no PIA.

No PIA
.NET 4 adds a new feature to the type system, type equivalence, which makes it possible
for two different type definitions to be treated as though they are the same type. This
makes it possible to do without PIAs at runtime—if all interop assemblies are equal,
there’s no need for a primary one.

Although type equivalence makes this possible, it’s an opt-in feature.
For two types to be equivalent, they must have the same structure, and
they must be marked with the TypeIdentifier custom attribute. (At-
tributes are discussed in Chapter 17.) So this new feature does not
change the behavior of existing code.

C# 4.0’s no-PIA feature exploits type equivalence: you can embed interop type infor-
mation in your assembly, avoiding the need for a separate interop assembly of any kind.
When your project has a reference to a PIA such as Microsoft.Office.Interop.Word,
Visual Studio works out which types your code really uses, and copies them into the
compiled output, adding the necessary annotations to enable type equivalence. Even
though the project has a reference to the PIA, your compiled assembly does not—it
contains all the information it needs.

712 | Chapter 19: Interop with COM and Win32

This has two benefits. First, you don’t need to install the PIAs on the target machine.
Second, it typically makes things smaller. That may sound surprising—if every assem-
bly has its own copy of the interop type definitions, you’d think things would get larger.
However, in practice, most assemblies tend to use only a fraction of the types defined
by the COM components they use. If each assembly contains just a handful of type
definitions, that’s likely to take less space than the 6.3 MB required by the full Office
PIAs, for example.

You cannot use interop type embedding with ActiveX control wrappers,
because the generated wrapper does not just contain COM type infor-
mation. It also contains generated code.

You might not always want to embed interop information. It might be that in your
deployment scenario, you can always rely on the PIAs being present—perhaps your
application will only ever run on machines on which you have preinstalled the relevant
components. In this case, installation of PIAs is a nonissue for your application, and
the additional space required by embedding becomes pure overhead. So you can turn
the feature off. Interop type embedding is controlled per-reference, and is on by default
for a newly created reference. If you select an interop assembly in your project’s Ref-
erences in the Solution Explorer, the Properties panel will offer an Embed Interop Types
setting. Changing this to False reverts to the old behavior of relying on the PIA.

64-bit Versus 32-bit
Interop with unmanaged code raises a challenge on 64-bit systems. Whether you’re
using COM components such as ActiveX controls, or plain old unmanaged DLLs, you
need to be aware of whether the code you wish to use is 32-bit or 64-bit; you need to
know its bitness, as it’s sometimes called. If you ignore this issue, there’s a risk that
your code will not work on 64-bit versions of Windows.

In general, it’s not possible for a single piece of machine code to execute successfully
in both 32-bit and 64-bit environments—you need different binary code. The 64-bit
Intel Itanium has a CPU architecture that is a radical departure from the x86 system
used in 32-bit Windows—the machine understands an entirely different set of instruc-
tions in 64-bit mode. The more popular x64 architecture you’ll find in most 64-bit PCs
has a lot more in common with its x86 predecessor, but even so, you need different
binary in 32-bit and 64-bit modes. The only reason existing 32-bit applications can run
at all on 64-bit versions of Windows is that 64-bit Windows can host 32-bit processes.
(You can see which these are in the Windows Task Manager’s Processes tab—the 32-
bit processes all have *32 in the Image Name column. Obviously, you’ll see this only if
you’re running 64-bit Windows, as the information would be redundant on a 32-bit
system.) Windows puts the CPU into a different mode for these processes—its 64-bit
features are hidden, enabling legacy 32-bit code to run.

64-bit Versus 32-bit | 713

Despite this, .NET programs often don’t need to care about bitness. C# compiles into
a CPU-independent intermediate language which is compiled just in time (JIT) into
executable code when the program runs. If you run your code on a 32-bit version of
Windows (or in a 32-bit process on 64-bit Windows), the CLR will JIT-compile your
program into 32-bit code. If you’re running in a 64-bit process, it will JIT-compile into
64-bit code instead. This means you don’t have to commit to a particular bitness when
you write the code.

Unmanaged code doesn’t have this luxury, because the executable binary code gets
created at compile time—the developer has to tell the C++ compiler whether to pro-
duce 32-bit or 64-bit code. So if you’re using an unmanaged DLL or a COM component,
it will be capable of running in only one bitness. A process in Windows cannot contain
a mixture of 32-bit and 64-bit code—bitness is fixed per-process. If you attempt to load
an unmanaged 32-bit component into a 64-bit process, Windows will refuse. If it’s a
COM component (e.g., an ActiveX control) you’ll get a COMException, with this error
text:

Class not registered (Exception from HRESULT: 0x80040154 (REGDB_E_CLASSNOTREG))

This can be perplexing if the component you require appears to be installed. But what’s
happened here is that .NET went looking for a 64-bit version of the component, and
it didn’t find one, so it complains that the COM class you were looking for does not
seem to be installed.

It’s possible to install both 32-bit and 64-bit versions of COM compo-
nents, in which case you wouldn’t get this error. However, that’s rela-
tively uncommon. Most ActiveX controls are 32-bit.

It would be nice if either COM or .NET were to produce a more informative error, such
as “The component you require is available only in 32-bit form, but you’re running as
a 64-bit process.” This would involve performing extra work on an operation that’s
already doomed, just to tell you something you can work out for yourself. This would
be a waste of CPU cycles, which is presumably why .NET doesn’t do this.

With normal DLLs, the same issue exists, although you’ll get a slightly different ex-
ception: BadImageFormatException. (The word image is sometimes used to refer to a
compiled binary component designed to be loaded into a process and executed.) This
can be rather alarming, because if you read the error message in the exception, or you
take a glance at the exception’s documentation, it’s easy to get the impression that the
DLL you are trying to load is corrupt. But what’s really going on here is that it’s simply
in a format that cannot be loaded into your process—you’re in a 64-bit process and
you’re trying to load a 32-bit DLL.

714 | Chapter 19: Interop with COM and Win32

To avoid these problems, Visual Studio automatically configures WPF and Windows
Forms projects to run in 32-bit mode. If you open the project properties and go to the
Build tab, you’ll see a “Platform target:” setting, and for GUI projects, this defaults to
x86, as Figure 19-6 shows. This makes the application always run as a 32-bit process,
even on 64-bit Windows. This is unlikely to cause problems for most user interfaces—
it’s pretty unusual for a GUI to process such large volumes of data that 64-bit processing
becomes a necessity. GUI programs are more likely to use ActiveX controls than to have
massive memory requirements, so this conservative default makes sense. (And if you’re
writing an unusual application that really does need a multigigabyte address space, you
can always change this project setting.)

Figure 19-6. Project bitness

Things can get slightly trickier with class libraries. Visual Studio sets the platform target
to Any CPU for library projects. The platform target setting has a slightly different
significance for libraries, because a library doesn’t get to decide the bitness of its proc-
ess. The 32/64 decision is made when the process starts up, so it’s the platform target
of the .exe file that matters; by the time a library loads, it’s too late to change. So Any
CPU makes more sense—libraries tend to need to be more flexible. However, if you
write a library that uses interop, you may want to change this setting. If your library
depends on unmanaged code that is available only in 32-bit form, it will not be able to
run usefully in a 64-bit process, and you should advertise that fact by changing the
library’s platform target to x86. Your DLL will then refuse to load in a 64-bit process,
which may seem annoying, but it would be much more annoying if it loaded happily,
only to fail later on at runtime. Better for the component to make it perfectly clear up
front that it needs a 32-bit process.

There’s often nothing stopping unmanaged component authors producing both 32-bit
and 64-bit versions of their code, by the way. It makes building, deploying, testing, and
supporting the component more complicated, but it’s absolutely possible. Bitness is an
issue for .NET only because in practice, most unmanaged components that are out
there today are 32-bit only. (So while component authors could have provided 64-bit
versions, they mostly haven’t.) If the unmanaged code you depend on is available in all
forms, you’re free to set your platform target to Any CPU.

64-bit Versus 32-bit | 715

You may well find that some components are available in 64-bit mode
for x64 systems, but not Itanium systems. So your platform target
would, in effect, be “x86 or x64, but not Itanium.” Unfortunately,
there’s no such setting, so in practice, you’d probably choose Any CPU
so that it works on x86 and x64. Itanium systems will see a runtime
error, but system administrators can force a process to run as 32-bit to
work around this. In April 2010, Microsoft announced that future ver-
sions of Windows and Visual Studio will not support the Itanium, so
this particular interop issue looks likely to go away in the long run.

If the DLLs you’re using through interop are part of the Win32 API, you will usually
be free to run in either 32-bit or 64-bit mode, because Windows presents its API in both
flavors. So let’s see how to use DLLs such as those that make up the Win32 API.

P/Invoke
COM components aren’t the only kind of unmanaged code you might need to work
with. For example, you may sometimes want to call a Win32 API. With each new
version of .NET, there has been less need to do this, because the framework class li-
braries provide .NET-friendly wrappers for more and more of the underlying services,
but there are still a few places where it’s useful to use a Win32 API directly. We do this
in C# using a feature called P/Invoke.

The P is short for Platform, because this facility was originally intended
only to provide access to the underlying platform API. In fact, you can
use it to call functions in any DLL—it’s not limited to DLLs that are
part of the Win32 API.

To see how this works, let’s look at a method offered by the Windows kernel32.dll
library called MoveFile.* Unlike COM components, ordinary Win32 DLLs do not in-
clude enough metadata to describe fully the methods they offer—they’re designed to
be called from C or C++, and the full descriptions live in header files provided as part
of the Windows SDK. But the C# compiler doesn’t know how to read C header files,
so we need to provide a complete description of the signature of the method we plan
to use. We do this by declaring the method as a static extern and use the DllImport
attribute:

[DllImport("kernel32.dll", EntryPoint="MoveFile",
 ExactSpelling=false, CharSet=CharSet.Unicode,
 SetLastError=true)]

* This example is for illustrative purposes—in a real program, you’d just use the FileInfo class’s MoveTo method
because it’s more convenient. FileInfo uses P/Invoke internally—it calls the Win32 MoveFile for you when
you call MoveTo.

716 | Chapter 19: Interop with COM and Win32

static extern bool MoveFile(
 string sourceFile, string destinationFile);

The DllImport attribute class is used to indicate that an unmanaged method will be
invoked through P/Invoke. The parameters are as follows:

DLL name
This is the name of the DLL that contains the method you are invoking.

EntryPoint
This indicates the name of the DLL entry point (the method) to call.

ExactSpelling
The CLR understands certain DLL method naming conventions. For example,
there is in fact no MoveFile method—there are two methods, MoveFileA and
MoveFileW, designed for the ANSI and Unicode string representations, respectively.
Setting ExactSpelling to false lets the CLR select a method based on these rules.

CharSet
This indicates how the string arguments to the method should be marshaled.

SetLastError
Setting this to true allows you to call Marshal.GetLastWin32Error, and check
whether an error occurred when invoking this method.

In fact, all of these are optional except for the DLL name. If you leave out
EntryPoint, .NET uses the method name as the entry point name. ExactSpelling is
false by default—you set this to true only if you want to disable the use of normal
naming conventions. And if you leave out CharSet, the CLR will use Unicode if it’s
available. SetLastError is off by default, so although it’s optional, it’s usually a good
idea to set it. Therefore, in practice, we would probably just write this:

[DllImport("kernel32.dll", SetLastError=true)]
static extern bool MoveFile(
 string sourceFile, string destinationFile);

The main reason P/Invoke offers all these optional settings is that some DLLs don’t
follow the usual conventions. Most of the time the defaults do the right thing, but just
occasionally you need to override them.

With this declaration in place, we can now call MoveFile() like any other static method.
So if that declaration were inside a class called Tester, we could write:

Tester.MoveFile(file.FullName, file.FullName + ".bak");

We pass in the original filename and the new name, and Windows moves the file for
us. In this example, there is no advantage—and actually a considerable disadvantage—
to using P/Invoke. (Situations where you truly need P/Invoke are increasingly rare and
obscure. To illustrate the mechanisms, we’ve picked an example that’s simple enough
not to obscure the details of how P/Invoke works, but this means it’s not a scenario in
which you’d use P/Invoke in practice.) You have left the world of managed code, and
the result is that you’ve abandoned type safety and your code will no longer run in

P/Invoke | 717

“partial-trust” scenarios. Example 19-2 shows the complete source code for using P/
Invoke to move the files.

Example 19-2. Using P/Invoke to call a Win32 API method

using System;
using System.IO;
using System.Runtime.InteropServices;

namespace UsingPInvoke
{
 class Tester
 {

 // declare the WinAPI method you wish to P/Invoke
 [DllImport("kernel32.dll", EntryPoint = "MoveFile",
 ExactSpelling = false, CharSet = CharSet.Unicode,
 SetLastError = true)]
 static extern bool MoveFile(
 string sourceFile, string destinationFile);

 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 string theDirectory = @"c:\test\media";
 DirectoryInfo dir =
 new DirectoryInfo(theDirectory);
 t.ExploreDirectory(dir);
 }

 // Set it running with a directory name
 private void ExploreDirectory(DirectoryInfo dir)
 {

 // make a new subdirectory
 string newDirectory = "newTest";
 DirectoryInfo newSubDir =
 dir.CreateSubdirectory(newDirectory);

 // get all the files in the directory and
 // copy them to the new directory
 FileInfo[] filesInDir = dir.GetFiles();
 foreach (FileInfo file in filesInDir)
 {
 string fullName = newSubDir.FullName +
 "\\" + file.Name;
 file.CopyTo(fullName);
 Console.WriteLine("{0} copied to newTest",
 file.FullName);
 }

 // get a collection of the files copied in
 filesInDir = newSubDir.GetFiles();

718 | Chapter 19: Interop with COM and Win32

 // delete some and rename others
 int counter = 0;
 foreach (FileInfo file in filesInDir)
 {
 string fullName = file.FullName;

 if (counter++ % 2 == 0)
 {
 // P/Invoke the Win API
 Tester.MoveFile(fullName, fullName + ".bak");

 Console.WriteLine("{0} renamed to {1}",
 fullName, file.FullName);
 }
 else
 {
 file.Delete();
 Console.WriteLine("{0} deleted.",
 fullName);
 }
 }
 // delete the subdirectory
 newSubDir.Delete(true);
 }
 }
}

Output:

c:\test\media\chimes.wav copied to newTest
c:\test\media\chord.wav copied to newTest
c:\test\media\desktop.ini copied to newTest
c:\test\media\ding.wav copied to newTest
c:\test\media\dts.wav copied to newTest
c:\test\media\flourish.mid copied to newTest
c:\test\media\ir_begin.wav copied to newTest
c:\test\media\ir_end.wav copied to newTest
c:\test\media\ir_inter.wav copied to newTest
c:\test\media\notify.wav copied to newTest
c:\test\media\onestop.mid copied to newTest
c:\test\media\recycle.wav copied to newTest
c:\test\media\ringout.wav copied to newTest
c:\test\media\Speech Disambiguation.wav copied to newTest
c:\test\media\Speech Misrecognition.wav copied to newTest
c:\test\media\newTest\chimes.wav renamed to c:\test\media\newTest\chimes.wav
c:\test\media\newTest\chord.wav deleted.
c:\test\media\newTest\desktop.ini renamed to c:\test\media\newTest\desktop.ini
c:\test\media\newTest\ding.wav deleted.
c:\test\media\newTest\dts.wav renamed to c:\test\media\newTest\dts.wav
c:\test\media\newTest\flourish.mid deleted.
c:\test\media\newTest\ir_begin.wav renamed to c:\test\media\newTest\ir_begin.wav
c:\test\media\newTest\ir_end.wav deleted.
c:\test\media\newTest\ir_inter.wav renamed to c:\test\media\newTest\ir_inter.wav
c:\test\media\newTest\notify.wav deleted.
c:\test\media\newTest\onestop.mid renamed to c:\test\media\newTest\onestop.mid

P/Invoke | 719

c:\test\media\newTest\recycle.wav deleted.
c:\test\media\newTest\ringout.wav renamed to c:\test\media\newTest\ringout.wav
c:\test\media\newTest\Speech Disambiguation.wav deleted.

Pointers
Until now, you’ve seen no code using C/C++-style pointers. Pointers are central to the
C family of languages, but in C#, pointers are relegated to unusual and advanced pro-
gramming; typically, they are used only with P/Invoke, and occasionally with COM.
C# supports the usual C pointer operators, listed in Table 19-1.

Table 19-1. C# pointer operators

Operator Meaning

& The address-of operator returns a pointer to the address of a value.

* The dereference operator returns the value at the address of a pointer.

-> The member access operator is used to access the members of a type via a pointer.

In theory, you can use pointers anywhere in C#, but in practice, they are almost never
required outside of interop scenarios, and their use is nearly always discouraged. When
you do use pointers, you must mark your code with the C# unsafe modifier. The code
is marked as unsafe because pointers let you manipulate memory locations directly,
defeating the usual type safety rules. In unsafe code, you can directly access memory,
perform conversions between pointers and integral types, take the address of variables,
perform pointer arithmetic, and so forth. In exchange, you give up garbage collection
and protection against uninitialized variables, dangling pointers, and accessing mem-
ory beyond the bounds of an array. In essence, the unsafe keyword creates an island of
code within your otherwise safe C# application that is subject to all the pointer-related
bugs C++ programs tend to suffer from. Moreover, your code will not work in partial-
trust scenarios.

Silverlight does not support unsafe code at all, because it only supports
partial trust. Silverlight code running in a web browser is always con-
strained, because code downloaded from the Internet is not typically
considered trustworthy. Even Silverlight code that runs out of the
browser is constrained—the “elevated” permissions such code can re-
quest still don’t grant full trust. Silverlight depends on the type safety
rules to enforce security, which is why unsafe code is not allowed.

As an example of when this might be useful, read a file to the console by invoking two
Win32 API calls: CreateFile and ReadFile. ReadFile takes, as its second parameter, a
pointer to a buffer. The declaration of the two imported methods is straightforward:

[DllImport("kernel32", SetLastError=true)]
static extern unsafe int CreateFile(

720 | Chapter 19: Interop with COM and Win32

 string filename,
 uint desiredAccess,
 uint shareMode,
 uint attributes,
 uint creationDisposition,
 uint flagsAndAttributes,
 uint templateFile);

[DllImport("kernel32", SetLastError=true)]
static extern unsafe bool ReadFile(
 int hFile,
 void* lpBuffer,
 int nBytesToRead,
 int* nBytesRead,
 int overlapped);

You will create a new class, APIFileReader, whose constructor will invoke the
CreateFile() method. The constructor takes a filename as a parameter, and passes that
filename to the CreateFile() method:

public APIFileReader(string filename)
{
 fileHandle = CreateFile(
 filename, // filename
 GenericRead, // desiredAccess
 UseDefault, // shareMode
 UseDefault, // attributes
 OpenExisting, // creationDisposition
 UseDefault, // flagsAndAttributes
 UseDefault); // templateFile
}

The APIFileReader class implements only one other method, Read(), which invokes
ReadFile(). It passes in the file handle created in the class constructor, along with a
pointer into a buffer, a count of bytes to retrieve, and a reference to a variable that will
hold the number of bytes read. It is the pointer to the buffer that is of interest to us
here. To invoke this API call, you must use a pointer.

Because you will access it with a pointer, the buffer needs to be pinned in memory;
we’ve given ReadFile a pointer to our buffer, so we can’t allow the .NET Framework
to move that buffer during garbage collection until ReadFile is finished. (Normally, the
garbage collector is forever moving items around to make more efficient use of mem-
ory.) To accomplish this, we use the C# fixed keyword. fixed allows you to get a
pointer to the memory used by the buffer, and to mark that instance so that the garbage
collector won’t move it.

Pinning reduces the efficiency of the garbage collector. If an interop
scenario forces you to use pointers, you should try to minimize the du-
ration for which you need to keep anything pinned. This is another
reason to avoid using pointers for anything other than places where you
have no choice.

Pointers | 721

The block of statements following the fixed keyword creates a scope, within which the
memory will be pinned. At the end of the fixed block, the instance will be unpinned,
and the garbage collector will once again be free to move it. This is known as declarative
pinning:

public unsafe int Read(byte[] buffer, int index, int count)
{
 int bytesRead = 0;
 fixed (byte* bytePointer = buffer)
 {
 ReadFile(
 fileHandle,
 bytePointer + index,
 count,
 &bytesRead, 0);
 }
 return bytesRead;
}

You may be wondering why we didn’t also need to pin bytesRead—the ReadFile method
expects a pointer to that too. It was unnecessary because bytesRead lives on the stack
here, not the heap, and so the garbage collector would never attempt to move it. C#
knows this, so it lets us use the & operator to get the address without having to use
fixed. If we had applied that operator to an int that was stored as a field in an object,
it would have refused to compile, telling us that we need to use fixed.

You need to make absolutely sure that you don’t unpin the memory too
early. Some APIs will keep hold of pointers you give them, continuing
to use them even after returning. For example, the ReadFileEx Win32
API can be used asynchronously—you can ask it to return before it has
fetched the data. In that case you would need to keep the buffer pinned
until the operation completes, rather than merely keeping it pinned for
the duration of the method call.

Notice that the method must be marked with the unsafe keyword. This creates an
unsafe context which allows you to create pointers—the compiler will not let you use
pointers or fixed without this. In fact, it’s so keen to discourage the use of unsafe code
that you have to ask twice: the unsafe keyword produces compiler errors unless you
also set the /unsafe compiler option. In Visual Studio, you can find this by opening the
project properties and clicking the Build tab, which contains the “Allow unsafe code”
checkbox shown in Figure 19-7.

Figure 19-7. Enabling the use of unsafe code

722 | Chapter 19: Interop with COM and Win32

The test program in Example 19-3 instantiates the APIFileReader and an ASCIIEncod
ing object. It passes the filename (8Swnn10.txt) to the constructor of the APIFileR
eader and then creates a loop to repeatedly fill its buffer by calling the Read() method,
which invokes the ReadFile API call. An array of bytes is returned, which is converted
to a string using the ASCIIEncoding object’s GetString() method. That string is passed
to the Console.Write() method, to be displayed on the console. (As with the
MoveFile example, this is obviously a scenario where in practice, you’d just use the
relevant managed APIs provided by the .NET Framework in the System.IO namespace.
This example just illustrates the programming techniques for pointers.)

The text that it will read is a short excerpt of Swann’s Way (by Marcel
Proust), currently in the public domain and available for download as
text from Project Gutenberg.

Example 19-3. Using pointers in a C# program

using System;
using System.Runtime.InteropServices;
using System.Text;

namespace UsingPointers
{
 class APIFileReader
 {
 const uint GenericRead = 0x80000000;
 const uint OpenExisting = 3;
 const uint UseDefault = 0;
 int fileHandle;

 [DllImport("kernel32", SetLastError = true)]
 static extern unsafe int CreateFile(
 string filename,
 uint desiredAccess,
 uint shareMode,
 uint attributes,
 uint creationDisposition,
 uint flagsAndAttributes,
 uint templateFile);

 [DllImport("kernel32", SetLastError = true)]
 static extern unsafe bool ReadFile(
 int hFile,
 void* lpBuffer,
 int nBytesToRead,
 int* nBytesRead,
 int overlapped);

 // constructor opens an existing file
 // and sets the file handle member
 public APIFileReader(string filename)
 {

Pointers | 723

http://www.gutenberg.org/wiki/Main_Page

 fileHandle = CreateFile(
 filename, // filename
 GenericRead, // desiredAccess
 UseDefault, // shareMode
 UseDefault, // attributes
 OpenExisting, // creationDisposition
 UseDefault, // flagsAndAttributes
 UseDefault); // templateFile
 }

 public unsafe int Read(byte[] buffer, int index, int count)
 {
 int bytesRead = 0;
 fixed (byte* bytePointer = buffer)
 {
 ReadFile(
 fileHandle, // hfile
 bytePointer + index, // lpBuffer
 count, // nBytesToRead
 &bytesRead, // nBytesRead
 0); // overlapped
 }
 return bytesRead;
 }
 }

 class Test
 {
 public static void Main()
 {
 // create an instance of the APIFileReader,
 // pass in the name of an existing file
 APIFileReader fileReader = new APIFileReader("8Swnn10.txt");

 // create a buffer and an ASCII coder
 const int BuffSize = 128;
 byte[] buffer = new byte[BuffSize];
 ASCIIEncoding asciiEncoder = new ASCIIEncoding();

 // read the file into the buffer and display to console
 while (fileReader.Read(buffer, 0, BuffSize) != 0)
 {
 Console.Write("{0}", asciiEncoder.GetString(buffer));
 }
 }
 }
}

The key section of code where you create a pointer to the buffer and fix that buffer in
memory using the fixed keyword is shown in bold.

724 | Chapter 19: Interop with COM and Win32

This produces more than a page full of output, so we’ve truncated it here, but it begins:

Altogether, my aunt used to treat him with scant ceremony. Since she was of
the opinion that he ought to feel flattered by our invitations, she thought
it only right and proper that he should never come to see us in summer without
a basket of peaches or raspberries from his garden, and that from each of his
visits to Italy he should bring back some photographs of old masters for me.
...

C# 4.0 Interop Syntax Enhancements
Earlier in this chapter we saw C# 4.0’s support for embedding interop type information,
which can remove the need for primary interop assemblies. That feature has no visible
impact on syntax—it just makes life easier during installation. However, C# 4.0 has
added a couple of features that offer better syntax for certain interop tasks.

Indexed Properties
Suppose you were to write the following C#:

someObject.MyProperty["foo"] = 42;

Before C# 4.0, there was only one way to interpret this: this code gets MyProperty, and
then uses the returned object’s indexer to set a value of 42 using an indexer argument
of "foo". Remember that properties are just method calls in disguise, so the code is
equivalent to:

someObject.get_MyProperty().set_Item("foo", 42);

When you write an indexer in C#, its getter and setter turn into methods
called get_Item and set_Item.

Unfortunately, some COM components have properties that work in a slightly different
way, and these are called indexed properties. Whereas in C#, indexers are a type-level
feature, in COM, any individual property may define an indexer. COM properties are
really just method calls just like in C#, but with an indexed property, the explicit code
would look more like this:

someObject.set_MyProperty("foo", 42);

Indexed properties require fewer objects. The traditional C# interpretation requires
MyProperty to return a distinct object whose job is to provide the indexer, through which
we access the values of interest. But with indexed properties, no intermediate object is
required—someObject provides accessors that give us direct access.

C# 4.0 Interop Syntax Enhancements | 725

Before C# 4.0, the only way to use indexed properties was via the method call syntax.
But now you can use the indexer syntax, which will tend to make the code look more
natural, since that’s how the author of the COM component would have expected the
property to be used.

C# 4.0 adds the ability to consume indexed properties, but you cannot
write your own. The C# designers do not want to add confusion by
providing two different idioms—there’s only one way to write a prop-
erty that provides this syntax, which is one less decision developers have
to make. Support for indexed properties is only present to make interop
easier.

Optional ref
As we saw in Chapter 18, some COM components have methods where optional ar-
guments are declared as ref object, meaning that the argument is a reference to an
object reference. This led to some rather ugly code, such as that shown in Example 19-4.

Example 19-4. Ugliness by reference

object fileName = @"WordFile.docx";
object missing = System.Reflection.Missing.Value;
object readOnly = true;
var doc = wordApp.Documents.Open(ref fileName, ref missing, ref readOnly,
 ref missing, ref missing, ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing);

The ref missing means: pass the object reference that’s in the variable called missing,
and give the method the option to modify the missing variable so that it refers to some
other object, or null on return, if it wants.

This is a common pattern with some COM libraries, because it provides a lot of flexi-
bility. But it makes for unpleasant-looking calling code in C# 3.0. However, C# 4.0
makes ref optional when you’re using an interop type, which means we can modify
the last line of Example 19-4 as shown in Example 19-5.

Example 19-5. Omitting ref

var doc = wordApp.Documents.Open(fileName, missing, readOnly,
 missing, missing, missing, missing, missing,
 missing, missing, missing, missing, missing,
 missing, missing, missing);

726 | Chapter 19: Interop with COM and Win32

That’s a lot better, but we can go further. C# 4.0 adds support for optional arguments—
methods can specify the default value to be supplied when the caller omits an argument.
On its own, that wouldn’t help here, because in general, C# does not allow ref argu-
ments to be optional. However, if it has decided to make the ref optional, as it does in
interop scenarios, then it also allows the argument itself to be optional as long as a
default value is available. And since the Word PIA provides default values for all the
arguments in the method we’re using here, we can reduce the call to just the code in
Example 19-6.

Example 19-6. Optional arguments

var doc = wordApp.Documents.Open(FileName: fileName, ReadOnly: readOnly);

We’ve used named arguments here because the arguments are no longer consecutive—
we only want to supply the first and third, so we name them to make it clear. Named
arguments were discussed in Chapter 3.

As Example 19-6 shows, the support for optional ref arguments fixes
many of the problems that motivated the use of dynamic in Chap-
ter 18. C# now offers multiple ways to solve some interop problems,
but how should you choose? Well, dynamic becomes particularly im-
portant when type information lets you down—sometimes COM au-
tomation APIs don’t provide enough type information at compile time,
leaving you with properties whose type is nothing more informative than
object, at which point, dynamic is usually the best bet. But static typing
provides IntelliSense, and can offer better compile-time checks. So it’s
probably best to stick with static typing until you hit a point where that
stops working.

Summary
Sometimes you’ll need to use components or APIs that were not designed with .NET
in mind. You can use COM components and Win32 DLLs from C# thanks to the .NET
Framework’s interop services. Visual Studio provides additional support specific to
ActiveX controls, making it easy to incorporate these into Windows Forms applica-
tions. The world of unmanaged code sometimes requires us to work directly with raw
memory in an unsafe fashion, and to enable this, C# offers C-style pointers. We
strongly discourage you from using them for anything other than interop.

Summary | 727

CHAPTER 20

WPF and Silverlight

WPF and Silverlight are related technologies for building user interfaces in .NET. Al-
though they are aimed at two significantly different scenarios, they share so many con-
cepts and features that it makes sense to discuss both of them at the same time—almost
everything in this chapter applies to both WPF and Silverlight.

As its name suggests, the Windows Presentation Foundation (WPF) is for building
interactive applications that run on Windows. WPF applications typically run as stand-
alone applications, requiring an installation step to get them onto the target machine,
as they may need prerequisites to be installed first. (WPF is .NET-based, so it requires
the .NET Framework to be installed.) This means they are deployed like old-school
Windows desktop applications. However, WPF makes it easy for applications to ex-
ploit the graphical potential of modern computers in a way that is extremely hard to
achieve with more traditional Windows UI technologies. WPF applications don’t have
to look old-school.

Silverlight is for web applications, or more specifically, so-called Rich Internet Appli-
cations (RIAs). It does not depend on the full .NET Framework—it is a browser plug-
in that provides a self-contained, lightweight, cross-platform version of the framework.
The whole Silverlight runtime is around a 5 MB download, whereas the full .NET
Framework is far more than 200 MB*—and Silverlight installs in seconds rather than
minutes. Once the plug-in is installed, Silverlight content downloads as part of a web
page, just like AJAX and Flash content, with no installation step for new applications.
(Like with Flash-based Adobe AIR applications, it’s also possible for a Silverlight ap-
plication to run out-of-browser once it has been downloaded, if the user consents.) But
because Silverlight contains a form of the .NET Framework, you get to write client-side
code in C#, which can run in all of the popular web browsers, on both Windows and
Mac OS X.

* It’s not usually necessary to download the entire .NET Framework—an online installer can determine which
bits are required for the target machine. Even so, a full Silverlight download ends up being about one-fifth
the size of the smallest possible download required for the full framework.

729

At the time of this writing, Microsoft does not produce a Silverlight plug-
in for Linux. However, an open source project called Moonlight offers
a Linux-compatible version of Silverlight. This is based on the Mono
project, an open source version of C# and the .NET Framework that
can run on various non-Microsoft systems, including Linux.

Microsoft has provided some assistance to the Moonlight project to help
its developers achieve compatibility with the Microsoft Silverlight plug-
in. However, be aware that the Moonlight plug-in has historically lagged
behind Microsoft’s—as we write this, Moonlight’s current official re-
lease is two major version numbers behind Microsoft’s. If you need to
support Linux desktop machines with a Silverlight-based web applica-
tion, this lag will limit the features you can use.

Despite the very different environments in which WPF and Silverlight applications run,
they have a great deal in common. Both use a markup language called Xaml to define
the layout and structure of user interfaces. Their APIs are sufficiently similar that it is
possible to write a single codebase that can be compiled for either WPF or Silverlight.
There are critical concepts, such as data binding and templating, which you need to
understand to be productive in either system.

It’s not accurate to say that Silverlight is a subset of WPF. However, this doesn’t stop
people from saying it; even Microsoft sometimes makes this claim. It’s strictly untrue:
WPF has many features that Silverlight does not and Silverlight has a few features that
WPF does not, so neither is a subset of the other. But even if you allow a slightly woolly
interpretation of the word subset, it’s a misleading way to describe it. Even where both
Silverlight and WPF offer equivalent features they don’t always work in the same way.
A few minutes with a decompilation tool such as Reflector or ILDASM makes it abun-
dantly clear that WPF and Silverlight are quite different beasts on the inside. So if you
are contemplating building a single application that works both in the browser as a
Silverlight application and on the desktop as a WPF application, it’s important to un-
derstand the point in the following warning.

While it is possible to write a single codebase that can run as both WPF
and Silverlight code, this doesn’t happen automatically. Silverlight code
is likely to need some modification before it will run correctly in WPF.
If you have existing WPF code, significant chunks of it may need re-
writing before it will run in Silverlight.

Codebases that run on both WPF and Silverlight tend to use conditional compilation—
they use the C# preprocessor’s #if, #else, and #endif directives to incorporate two
different versions of the code in a single source file in the places where differences are
required. Consequently, development and testing must be performed on Silverlight and
WPF side by side throughout the development process.

730 | Chapter 20: WPF and Silverlight

In practice, it’s not common to need to write a single body of code that runs in both
environments. It might be useful if you’re writing a reusable user interface component
that you plan to use in multiple different applications, but any single application is
likely to pick just one platform—either WPF or Silverlight—depending on how and
where you need to deploy it.

In this chapter, the examples will use Silverlight, but WPF equivalents would be very
similar. We will call out areas in which a WPF version would look different. We will
start by looking at one of the most important features, which is common to both WPF
and Silverlight.

Xaml and Code Behind
Xaml is an XML-based markup language that can be used to construct a user interface.
Xaml is a former acronym—it used to be short for eXtensible Application Markup
Language, but as so often happens, for obscure marketing reasons it officially no longer
stands for anything. And to be fair, most acronyms are reverse-engineered—the usual
process is to look through the list of unused and pronounceable (it’s pronounced
“Zammel,” by the way) three- and four-letter combinations, trying to think of things
that the available letters might plausibly stand for.

Since etymology can’t tell us anything useful about what Xaml is, let’s look at an ex-
ample. As always, following the examples yourself in Visual Studio is highly encour-
aged. To do that, you’ll need to create a new Silverlight project. There’s a separate
section under Visual C# in the New Project dialog for Silverlight projects, and you
should choose the Silverlight Application template. (Or if you prefer, you can find the
WPF Application template in the Windows section underneath Visual C#, although if
you choose that, the details will look slightly different from the examples in this
chapter.)

When you create a new Silverlight project, Visual Studio will ask you if you’d like it to
create a new web project to host the Silverlight application. (If you add a Silverlight
project to a solution that already contains a web project, it will also offer to associate
the Silverlight application with that web project.) Silverlight applications run from the
web browser (initially, at least), so you’ll need a web page simply to run your code. It’s
not strictly necessary to create a whole web application, because if you choose not to,
Visual Studio will just generate a web page automatically when you debug or run the
project, but in general, Silverlight projects are an element of a web application, so you’d
normally want both kinds of projects in your solution. Let it create one for now.

If you were building a WPF application, you wouldn’t have an associ-
ated web project, because WPF is for standalone Windows desktop
applications.

Xaml and Code Behind | 731

Once Visual Studio has created the project, it shows a file called MainPage.xaml. This
is a Xaml file defining the appearance and layout of your user interface. Initially, it
contains just a couple of elements: a <UserControl> at the root (or a <Window> in a WPF
project), and a <Grid> inside this. We’ll add a couple of elements to the user interface
so that there’s something to interact with. Example 20-1 shows the Xaml you get by
default with a new Silverlight project, along with two new elements: a Button and a
TextBlock; the additional content is shown in bold.

Example 20-1. Creating a UI with Xaml

<UserControl
 x:Class="SimpleSilverlight.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480"
 d:DesignHeight="300" d:DesignWidth="400">

 >

 <Grid x:Name="LayoutRoot" Background="White">

 <Button
 x:Name="myButton"
 HorizontalAlignment="Center" VerticalAlignment="Top"
 FontSize="20"
 Content="Click me!"
 />

 <TextBlock
 x:Name="messageText"
 Text="Message will appear here"
 TextWrapping="Wrap"
 TextAlignment="Center"
 FontSize="30" FontWeight="Bold"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 />

 </Grid>
</UserControl>

Visual Studio presents Xaml in a split view. At the top it shows how it
looks, and at the bottom it shows the Xaml source. You can either edit
the source directly or drag items around on the design view at the top,
adding new items from the Toolbox. As you make changes in one view
the other view updates automatically.

If you run the application by pressing F5, Visual Studio will show the Silverlight ap-
plication in a web page, as you can see in Figure 20-1.

732 | Chapter 20: WPF and Silverlight

You will see the Silverlight application only if you run the correct page
from the web application. Visual Studio will usually launch the right
one if you create a brand-new web application at the same time as your
Silverlight application. But be aware that if you add other pages to your
web application, Visual Studio might pick one of those when you debug
and you might not see your Silverlight UI. You can tell Visual Studio to
always use the same file in the web project by right-clicking on it in the
Solution Explorer and selecting Set as Start Page. (Visual Studio creates
two test pages for your Silverlight code—an .aspx and an .html file, both
of which will be named by appending TestPage to your Silverlight
project’s name. Either works; it offers both so that you can choose be-
tween a dynamic ASP.NET page and static HTML to host your Silver-
light UI.)

This simple Silverlight example contains a button, but if you click it, nothing will hap-
pen because we have not defined any behavior. Xaml files in WPF and Silverlight are
usually paired with a so-called code behind file, a C# (or VB.NET, or whatever language
you’re using) file that contains code associated with the Xaml file, and we can use this
to make the button do something.

The easiest way to add a click handler for the button to your code behind is from the
Xaml file. You can just double-click the button on the design view and it will add a
click handler. In fact, most user interface elements offer a wide range of events, so you
might want a bit more control. You could select the item on the design surface and then
go to the Properties panel—it has an Events tab that lists all the available events, and
you can double-click on any of these to add a handler. Or if you prefer typing, you can
add a handler from the Xaml source editor view. If you go to the Button element and
start adding a new Click attribute, you’ll find that when you type the opening quote

Figure 20-1. Silverlight application in a web browser

Xaml and Code Behind | 733

for the attribute value an IntelliSense pop up appears showing the text “<New Event
Handler>”. If you press the Tab or Enter key, Visual Studio will fill in the attribute
value with myButton_Click.

No matter which way you add an event, Visual Studio populates the attribute by taking
the first part from the element’s name, as specified with the x:Name attribute, and adding
the event name on the end:

<Button
 x:Name="myButton"
 HorizontalAlignment="Center" VerticalAlignment="Top"
 FontSize="20"
 Content="Click me!"
 Click="myButton_Click"
 />

It doesn’t just edit the Xaml—it also adds a method with this name to the code behind
file. You can go to the code behind by pressing F7, or you can find it in the Solution
Explorer—if you expand a Xaml file node, you’ll see a .xaml.cs file inside it, and that’s
the code behind. Example 20-2 shows the click handler, along with some additional
code in bold. (You’re not obligated to use this naming convention for handlers, by the
way. You could rename it after Visual Studio creates the handler, as long as you change
both the Xaml and the code behind.)

Example 20-2. Click handler in the code behind

private void myButton_Click(object sender, RoutedEventArgs e)
{
 messageText.Text = "Hello, world!";
}

Because the Xaml refers to this handler method in the Button element’s Click attribute,
the method will run anytime the button is clicked. The one line of code we added here
refers to the TextBlock element. If you look at the Xaml, you’ll see that the element’s
x:Name attribute has a value of messageText, and this lets us use this name in the code
behind to refer to that element. Example 20-2 sets the Text property, which, as you’ve
no doubt guessed, causes the TextBlock to show the specified text when the button is
clicked.

Just to be clear, this is happening on the client side. The Silverlight plug-
in downloads your application and then renders the UI as defined by
your Xaml. It hosts your code behind (and any other code in your Sil-
verlight project) inside the web browser process, and calls the specified
event handlers without needing to communicate any further with the
web server. Silverlight applications can communicate back with the web
server after being loaded, but this click-handling interaction does not
involve the server at all, unlike clicking a button on a normal web form.

734 | Chapter 20: WPF and Silverlight

The Xaml in Example 20-1 and the C# in Example 20-2 both set the Text of the
TextBlock. The Xaml does this using standard XML’s attribute syntax, while the C#
code does it using normal C# property syntax. This highlights an important feature of
Xaml: elements typically correspond to objects, and attributes correspond either to
properties or to events.

Xaml and Objects
Although Xaml is the usual mechanism for defining the user interface of WPF and
Silverlight applications, it’s not strictly necessary. You could remove the bold code in
Example 20-1 that adds the Button and TextBlock to the Xaml, and instead modify the
class definition and constructor in the code behind, as Example 20-3 shows.

Example 20-3. Creating UI elements in code

public partial class MainPage : UserControl
{
 private Button myButton;
 private TextBlock messageText;

 public MainPage()
 {
 InitializeComponent();

 myButton = new Button
 {
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Top,
 FontSize = 20,
 Content = "Click me!"
 };
 myButton.Click += myButton_Click;

 messageText = new TextBlock
 {
 Text = "Message will appear here",
 TextWrapping = TextWrapping.Wrap,
 TextAlignment = TextAlignment.Center,
 FontSize = 30,
 FontWeight = FontWeights.Bold,
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Center
 };

 LayoutRoot.Children.Add(myButton);
 LayoutRoot.Children.Add(messageText);
 }
...

Xaml and Code Behind | 735

Each element that had an x:Name attribute has been replaced here with a field in the
class, and we initialize that field in the constructor. This example uses the C# object
initializer syntax to set the property values to emphasize the structural similarity be-
tween this code and the Xaml it replaces, but normal property setter syntax works too,
of course.

XML attribute values are just text, whereas in C# we have to provide values of the
correct type—enumeration entries, numbers, or strings as appropriate. The Xaml com-
piler works out how to turn text into something of the appropriate type. (It uses
the .NET Framework class library’s TypeConverter system to do this.) Also, as you will
recall C# uses a different syntax to attach event handlers than the one for setting prop-
erties—we’ve used the += syntax here—whereas Xaml uses attribute syntax for both
properties and event handlers.

This code has the same effect as Xaml. Xaml is really just a language for creating objects,
setting their properties, and attaching event handlers, so for the most part it doesn’t
really matter whether you use C# or Xaml to create your user interface. This raises the
question of why we have Xaml at all, when C# seems to work perfectly well. The main
reason Xaml exists is to make it possible to create user interfaces in tools other than a
text editor. For example, Microsoft offers a program called Expression Blend, part of
its Expression family of design-oriented programs. Blend is a tool for creating WPF and
Silverlight user interfaces, and it works mostly in Xaml.

This separation is more than just a convenience for people wanting to write design
tools. It’s useful to both developers and designers. It enforces some separation, making
it possible for designers to work on the visual design of an application, without needing
tools that can edit C# source files. In fact, successful collaboration between developers
and designers takes a bit more than this—the separation of Xaml and code behind is
not in itself sufficient, because it’s still fairly easy for designers and developers to trip
over one another. If a developer writes code behind that relies on certain elements with
particular x:Name attributes being present in the Xaml, but the designer decides to delete
those elements because they’re ugly and then creates new replacements but forgets to
give them the same names, we’re obviously going to see problems. In practice, a smooth
developer/designer workflow goes a bit deeper than this, and relies on other WPF and
Silverlight features, most notably templates, which we’ll be getting to later. But Xaml
is an important part of the solution.

The x:Name attribute is optional. In fact, most Xaml elements tend not
to be named—you only name the elements that you need to be able to
access from the code behind. This makes the Xaml less cluttered, and if
you are working with designers, it makes it easier for them to know
which elements are structurally important, and which ones they can
rework for design purposes.

736 | Chapter 20: WPF and Silverlight

The equivalence between elements and objects suggests that Xaml doesn’t necessarily
have to be used just for the user interface. The Xaml syntax can be used to create .NET
objects of almost any kind. As long as a type has a default constructor and can be
configured through its properties with suitable type converters, it’s possible to use it
from Xaml—it’s technically possible to create a Windows Forms UI in Xaml, for ex-
ample. However, Xaml tends to be cumbersome if you use it for types that weren’t
designed with Xaml in mind, so in practice, it’s a much better fit for WPF, Silverlight,
and also the Workflow Foundation, all of which are meant to be used from Xaml, than
it is for other parts of the .NET Framework.

Xaml and JavaScript
Version 1.0 of Silverlight didn’t support .NET at all. It offered Xaml support, but if you
wanted anything other than static, noninteractive content, you needed to define the
behavior using browser-hosted script. In this situation, Xaml elements clearly don’t
correspond to .NET objects. However, they still correspond to objects—the JavaScript
code can get hold of an object representing any element in the Xaml.

This is still supported in current versions of Silverlight—you can use objects created in
Xaml from C#, JavaScript, or both. (JavaScript support can be useful for making in-
teractive splash screens that display while waiting for your main C#-based UI to down-
load.) But JavaScript objects are not the same thing as .NET objects. This raises a
question: what sort of objects does Xaml really create? Are they .NET objects with
JavaScript wrappers? Or are they JavaScript objects with .NET wrappers? The answer
is: it depends. They’re not ordinary native JavaScript objects, but they’re not al-
ways .NET objects either. For primitive elements with no interactive behavior, such as
graphical shapes or text blocks, both the .NET and the JavaScript objects appear to be
wrappers around some internal object that lives inside the plug-in. For more complex
objects such as buttons or listboxes, the .NET objects seem to be the real thing, because
their behavior is implemented as .NET code.

Given that you have a choice between Xaml and C#, which should you use? Xaml is
often easier because you can use tools such as Visual Studio’s Xaml designer (or even
Expression Blend) to edit the appearance and layout—this can take much less effort
than tweaking code repeatedly until the outcome looks the way you want. Obviously,
if developers and designers are involved, Xaml is preferable by far, because it enables
designers to tweak and refine the appearance without needing to involve developers
for every change. But even for a UI being created entirely by developers, an interactive
design surface is a much more efficient way to create a layout than code. This doesn’t
mean you should go out of your way to avoid creating elements in code, however,
particularly if code looks like the most straightforward solution to a problem. Use
whichever approach is more convenient for the task at hand.

Now that we’ve seen that Xaml is really just a way of creating objects, what types of
objects do Silverlight and WPF offer?

Xaml and Code Behind | 737

Elements and Controls
Some of the types used to construct a user interface are interactive elements with a
distinctive behavior of their own, such as buttons, checkboxes, and listboxes. Although
you need code to connect these elements to your application, they have some built-in
interactive behavior: buttons light up when the mouse cursor moves over them and
look pushed in when clicked; listboxes allow items to be selected; and so on. Other
elements are more primitive. There are graphical shape elements and text elements,
which are visible to the user but which don’t have an intrinsic behavior—if you want
them to do more than simply be visible you need to write code to make that happen.
And some elements don’t even appear directly; for example, there are layout elements
that are often not visible themselves, as their job is to decide where other elements go.

You can tell what type of element you’re dealing with by looking at the correspond-
ing .NET type’s base class. Most UI elements ultimately derive from FrameworkEle
ment, but this class has some more specialized subtypes. Panel is the base class of layout
elements. Shape is the base class of elements involving 2D graphical shapes. Control is
the base class of elements that have some intrinsic interactive behavior of their own.

This means that not all UI elements are controls. In fact, the majority
of UI elements are not controls. Having said that, the term control is
often used loosely—many authors, and even some parts of Microsoft’s
documentation, use the term control to describe any UI element, in-
cluding ones that don’t in fact derive from Control. To further confuse
the issue there’s a System.Windows.Controls namespace, in which not all
of the types derive from Control.

We believe this is confusing, so in this book, we will use the term con-
trol only when talking about types that derive from Control. When we’re
discussing features that apply to all UI objects that derive from
FrameworkElement (which includes all controls) we will use the more
general term element. But be aware that you will come across other, more
confusing conventions on the Web and in other books.

Before we get to the controls, we’ll look at how elements are positioned and sized—
interactive elements are not much use if you can’t choose where they appear.

738 | Chapter 20: WPF and Silverlight

Layout Panels
Panel is the abstract base class of user interface elements that control the layout of other
elements. You choose a particular concrete derived type to determine which layout
mechanism to use. Silverlight version 3 offers three† panel types: Grid, StackPanel, and
Canvas. WPF provides these and a few more, as we’ll see shortly.

Grid is the most powerful panel, which is why Visual Studio provides you with one by
default in a new UI. As the name suggests, it carves up the available space into rows
and columns, and then positions child elements into the resultant grid cells. By default,
a Grid has a single row and a single column, making just one big cell, but you can add
more. Example 20-4 shows how to do this.

This example uses a Xaml feature called a property element—the
<Grid.ColumnDefinitions> element does not represent a child object to
be added to the grid, but instead indicates that we want to set the Grid
object’s ColumnDefinitions property. The <ColumnDefinition> elements
it contains are added to the collection in that property, whereas the
<Button> elements are added to the collection in the Children property
of the Grid.

Example 20-4. Grid with rows and columns

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition Height="2*" />
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Button Grid.Column="0" Grid.Row="0"
 Content="(0, 0)" />
 <Button Grid.Column="1" Grid.Row="0"
 Content="(1, 0)" />
 <Button Grid.Column="2" Grid.Row="0"
 Content="(2, 0)" />

 <Button Grid.Column="0" Grid.Row="1"
 Grid.ColumnSpan="3"

† If you look in the documentation you’ll see that more than three types derive from Panel. However, the others
are in the System.Windows.Controls.Primitives namespace, signifying that they are not meant for general
use. These are specialized panels designed only to be used inside specific controls.

Elements and Controls | 739

 Content="Row 1, 3 columns wide" />

 <Button Grid.Column="0" Grid.Row="2"
 Grid.ColumnSpan="3"
 Content="Row 2, 3 columns wide" />

 <Button Grid.Column="1" Grid.Row="3"
 FontSize="50"
 Content="(3, 1)" />

</Grid>

Figure 20-2 shows how this looks. The four rows are fairly clear—each button belongs
to just one row. The columns are less obvious—you can see all three clearly in the first
row, because there’s one button in each, but the next two rows contain just one button
each, spanning all three rows. And the final row contains a single button in the second
column.

Figure 20-2. Grid children

The Grid knows which columns and rows elements belong to, and how many they span,
because each button in Example 20-4 has properties that control this. The
Grid.Column and Grid.Row properties do what their names suggest, while the
Grid.ColumnSpan and Grid.RowSpan properties determine how many grid cells the ele-
ment occupies. The column and row default to 0, while the spans default to 1.

740 | Chapter 20: WPF and Silverlight

These properties use another special Xaml feature called attached prop-
erties. An attached property is one defined by a different type (e.g.,
Grid) than the object it is applied to (e.g., Button). The attached prop-
erties in Example 20-4 are attributes, but you can also set attached
properties with the property element syntax shown earlier—for
example, if a <Grid> element could contain a <ToolTipService.Tool
Tip> element, to set the attachable ToolTip property defined by the
ToolTipService class.

While Silverlight, WPF, and Xaml support the idea that properties don’t
necessarily have to be defined by the object on which they are set, C#
has no syntax for this. So classes that define attachable properties also
define get and set methods to enable those properties to be used from
code. For example, the Grid class offers SetColumn, SetRow, and so on.

The rows and columns in Figure 20-2 are different sizes. This is because of the settings
on the <RowDefinition> and <ColumnDefinition> elements. The first column’s Width has
been set to Auto, so it takes its size from the widest child in that column. In this case,
only one child belongs exclusively to that column, so the column is exactly wide enough
to hold it. The other two columns are at their default width, the value 1*, which causes
them to share the remaining space equally. The rows use similar features, except the
first row has a fixed height of 30, so it ignores the size of the content and makes every
element 30 pixels high. The final row is Auto sized, and since its content has a large font
size, it ends up being fairly tall. And the middle two rows use so-called star sizing, so
as with the second and third columns, they end up sharing the space left over. However,
since they have different star size values—1* and 2*—they get different amounts of
space. The 2* row gets to be twice the height of the 1* row. Note that the ratios are all
that matter with star sizing—changing 1* and 2* to 10* and 20* would not change the
outcome in this example, because 20* is still twice as large as 10*.

So as you can see, a grid can use fixed sizes, it can base sizes on the content at hand, or
it can divide the available space proportionally. This makes it a pretty flexible layout
mechanism. You can build dock-style layouts where elements are aligned to the top,
bottom, left, or right of the available space through the use of Auto sized rows and
columns, and by making elements span all the available rows when docking to the left
or right, or all the columns when docking to the top or the bottom. You can also stack
elements horizontally or vertically by using multiple rows or columns with Auto sizes.
And as we’ll see, it’s even possible to exercise precise control over the size and position
of elements within the grid. One slight problem is that your Xaml can get a little verbose
when using grids. So there are some simpler panel types.

StackPanel arranges children in a vertical or horizontal stack. Example 20-5 shows a
StackPanel with its Orientation set explicitly to Vertical. You can doubtless guess how
to make a horizontal stack. (In fact, vertical stacks are the default, so you could leave
the orientation out from Example 20-5 without changing its behavior.)

Elements and Controls | 741

Example 20-5. Vertical StackPanel

<StackPanel Orientation="Vertical">
 <Button Content="Buttons" FontSize="30" />
 <Button Content="in" />
 <Button Content="a" />
 <Button Content="stack" />
</StackPanel>

Figure 20-3 shows the result. Notice that in the direction of stacking—vertical in this
example—the behavior is similar to the Auto height grid rows, in that each row has
been made tall enough to accommodate the content. In the other direction, the elements
have been stretched to fill the available space, although as we’ll see shortly, you can
change that.

Figure 20-3. Vertical StackPanel

The Canvas panel takes an even simpler approach: it doesn’t have a layout strategy, and
it simply puts elements where you tell it to. As Example 20-6 shows, just as Grid offers
attachable properties to specify which grid cells elements occupy, Canvas defines at-
tachable Left and Top properties that specify where the elements should appear.

Example 20-6. Explicit positioning with Canvas

<Canvas>
 <Button Content="Buttons" FontSize="30" />
 <Button Canvas.Left="20" Canvas.Top="40"
 Content="on" />
 <Button Canvas.Left="80" Canvas.Top="40"
 Content="a" />
 <Button Canvas.Left="60" Canvas.Top="100"
 Content="Canvas" />
</Canvas>

As Figure 20-4 shows, the exact positioning possible with a Canvas has let us position
elements so that they overlap. (This figure includes some of the browser chrome to
illustrate that positions are relative to the top-left corner of the Canvas.) Notice that the
Canvas sizes children based on how much space they require—similar to the Auto rows
and columns, but in this case the buttons are sized to content in both dimensions.
Unless you specify explicit widths and heights, a Canvas will attempt to give each child
exactly as much space as it requires.

742 | Chapter 20: WPF and Silverlight

Silverlight and WPF have extensible layout systems, so you can derive your own types
from Panel or use libraries that offer other panels. For example, Microsoft offers the
Silverlight Toolkit, a free library you can download in source or binary form from http:
//silverlight.codeplex.com/, which defines various controls, panels, and other useful
components. This includes two panels, both based on panels that are built into WPF.
There’s WrapPanel, which lays out its children in much the same way that text is word-
wrapped in web browsers and word processors—items are arranged from left to right
until all the space is used up, at which point the panel starts on a new line. And there’s
also DockPanel, which lets you arrange elements by stacking them up against the left,
right, top, or bottom of the panel. (DockPanel doesn’t do anything Grid can’t do, but it
can be slightly simpler to use.)

Layout in WPF and Silverlight is not just about panels. Panels define the strategy by
which elements are allocated a layout slot—the area on-screen in which they must fit
themselves. But properties are available on all elements—regardless of the panel in
use—that can influence both how big the layout slot is and what the element does with
the space it is offered.

General-purpose layout properties

All elements have common properties that influence layout. There are Width and
Height properties that let you specify an explicit size, rather than basing the size on the
content or the available space. This is important for elements that don’t otherwise have
an intrinsic size. Textual content has a natural size, but some graphical elements such
as Ellipse and Rectangle don’t. If you were to create an Ellipse without setting the
height and put it in a vertical StackPanel it would vanish, because the StackPanel asks
it to calculate the minimum amount of space it requires, and if you have not specified
any constraints, that’ll be zero. So elements with no intrinsic size usually have an ex-
plicit Width and Height, or you might use MinWidth and MinHeight to ensure that they
never vanish entirely, but are able to expand to fill whatever space is available—some
layouts will end up with more space than needed if the user resizes a window, so it can
be useful to have a layout that adapts. MaxWidth and MaxHeight let you specify upper
limits on just how far elements will expand.

Figure 20-4. Buttons on a Canvas

Elements and Controls | 743

http://silverlight.codeplex.com/
http://silverlight.codeplex.com/

The various width and height properties are useful when an element is being asked to
determine its own size, such as in Auto sized grid cells. But sometimes an element’s
layout slot size is imposed on it—for example, if your Silverlight user interface is con-
figured to fill the entire browser window, the user is in charge of how big it is. This is
sometimes referred to as constrained layout—this describes situations where the layout
system has to make things fit a predetermined space, rather than trying to work out
how much space is required. Most user interfaces contain a mixture of constrained and
unconstrained layout—the top level of the UI is usually constrained by window size,
but you might have individual elements such as text blocks or buttons that have to be
large enough to display their content.

When elements that have no intrinsic size are put in a constrained lay-
out, they will fill the space available if you don’t set the width and height.
For example, if you put an Ellipse as the only element of the root
Grid layout element, and you don’t set any of the width or height prop-
erties, it will fill the whole Silverlight application UI.

You can even get a mixture of constrained and unconstrained layouts on one element.
In Figure 20-3, we saw a vertical stack of elements, and vertically, each one’s size was
based on its content—since the elements are free to size themselves it means we have
unconstrained layout vertically. But the elements are all the same width regardless of
content, indicating that constrained layout was in use horizontally. Stack panels always
work this way—children are unconstrained in the direction of stacking, but are con-
strained to have the same sized layout slots in the other direction.

When an element has more space than it needs due to constrained layout, additional
properties that determine what the element does with the excess space come into play.
The HorizontalAlignment attribute lets you position the element within its slot. Exam-
ple 20-7 shows a modified version of Example 20-5, specifying each of the four
HorizontalAlignment options.

Example 20-7. Horizontal alignment

<StackPanel Orientation="Vertical">
 <Button Content="Buttons" FontSize="30"
 HorizontalAlignment="Left" />
 <Button Content="in"
 HorizontalAlignment="Right" />
 <Button Content="a"
 HorizontalAlignment="Stretch" />
 <Button Content="stack"
 HorizontalAlignment="Center" />
</StackPanel>

744 | Chapter 20: WPF and Silverlight

Figure 20-5 shows the results. As before, each child has been given a layout slot that
fills the whole width of the StackPanel, but all except the third row have been sized
to content, and have then positioned themselves within their slot based on the
HorizontalAlignment property. The third button still fills the whole of its row because
its alignment is Stretch. That’s the default, which is why elements fill their whole layout
slot unless you specify an alignment. VerticalAlignment works in much the same way,
offering Top, Bottom, Center, and Stretch.

Figure 20-5. Horizontal alignment

The alignment properties do something only when the layout slot is
larger than the element requires. When an element has been given a slot
exactly as large as it asked for in either the horizontal or vertical dimen-
sion, the corresponding alignment property does nothing. So setting
VerticalAlignment on the child of a vertical StackPanel does nothing—
the layout slot is already exactly as tall as the element requires, so the
element is simultaneously at the top, the bottom, and the center of the
slot.

Another very important ubiquitous layout property is Margin—this lets you specify the
amount of space you’d like between the edge of an element and the boundary of its
layout slot. In unconstrained layout, a margin will cause an element to be given a larger
slot than it would otherwise have had, while in constrained layout, it causes an element
to fill less of the slot than it otherwise would have. Example 20-8 illustrates this within
a vertical StackPanel—since this uses constrained horizontal layout and unconstrained
vertical layout for its children, we’ll see both effects.

Example 20-8. Buttons with Margin properties

<StackPanel Orientation="Vertical">
 <Button Content="Buttons" FontSize="30" />
 <Button Content="in" Margin="10" />
 <Button Content="a" Margin="20" />
 <Button Content="stack" Margin="30" />
</StackPanel>

Elements and Controls | 745

In Figure 20-6, the first button fills the entire width because it has no margin. But each
successive button gets narrower, because each has a larger margin than the last. Since
the width is constrained, the layout system needs to make the buttons narrower to
provide the specified margin between the element’s edges and its layout slot. But since
the children here are unconstrained vertically, the margin has no effect on their vertical
size, and instead ends up adding increasing amounts of space between each element—
in the unconstrained case, Margin makes the slot larger.

Figure 20-6. Buttons with margins

Example 20-8 specifies the margins as single numbers, denoting a uniform margin on
all four sides, but you can be more precise. You can provide two numbers, setting the
horizontal and vertical margins. Or you can provide four numbers, indicating the left,
top, right, and bottom‡ margins independently. This enables precise positioning of
elements within a Grid—it turns out that you don’t have to use a Canvas to specify the
position of an element. If you align an element to the left and the top, the first two
numbers in a margin effectively determine its position within the containing grid cell,
just as the attachable Canvas.Left and Canvas.Top properties work for children of a
Canvas. The interactive design surfaces in Visual Studio and Blend use this to let you
drag elements around on a grid and place them exactly where you want. It appears to
be a completely free form of layout, but if you inspect what these programs do to the
Xaml as you move elements around, they simply set the alignment properties appro-
priately and adjust the margins.

All of the layout features we’ve looked at so far take a rigidly rectangular approach—
everything is either strictly horizontal or strictly vertical. In fact, WPF and Silverlight
are a bit more flexible than that, thanks to their support for transforms.

‡ Yes, that is a different order than CSS. Silverlight and WPF follow the coordinate geometry convention of
specifying pairs of coordinates as horizontal and then vertical measures—x before y. Hence left, then top,
followed likewise by right, then bottom.

746 | Chapter 20: WPF and Silverlight

Transforms

You can apply a transform to any element, modifying its size, position, and orientation,
or even skewing it. (If you’re familiar with the coordinate geometry features found in
most modern graphics system, you’ll recognize these as being the usual two-
dimensional affine transformations possible with a 2×3 matrix.§) Example 20-9 shows
another variation on our StackPanel example, with transforms applied to the children.

Example 20-9. Transforms

<StackPanel Orientation="Vertical">
 <Button Content="Buttons" FontSize="30">
 <Button.RenderTransform>
 <ScaleTransform ScaleX="1.5" ScaleY="0.5" />
 </Button.RenderTransform>
 </Button>
 <Button Content="in">
 <Button.RenderTransform>
 <RotateTransform Angle="30" />
 </Button.RenderTransform>
 </Button>
 <Button Content="a">
 <Button.RenderTransform>
 <SkewTransform AngleX="30" />
 </Button.RenderTransform>
 </Button>
 <Button Content="stack">
 <Button.RenderTransform>
 <TranslateTransform Y="-50" />
 </Button.RenderTransform>
 </Button>
</StackPanel>

As Figure 20-7 shows, the RenderTransform property Example 20-9 uses can mess up
the layout. The transform is applied after the layout calculations are complete, so the
ScaleTransform on the first button has had the effect of making it too large to fit—the
default HorizontalAlignment of Stretch is in effect here, so the button has been made
exactly as wide as the containing StackPanel, and then has been scaled to be 1.5 times
wider and 0.5 times higher, causing it to be cropped horizontally. Likewise, the ele-
ments that have been rotated and skewed have had corners cut off. WPF offers a
LayoutTransform property that takes the transform into account before performing lay-
out, which can avoid these problems, but Silverlight does not—you would need to
tweak the layout to get things to fit.

A transform applies not just to the target element, but also to all that
element’s children. For example, if you apply a RotateTransform to a
panel, the panel’s contents will rotate.

§ Strictly speaking, it’s a 3×3 matrix, but the final column is fixed to contain (0, 0, 1).

Elements and Controls | 747

This support for rotation, scaling, and shearing reveals that WPF and Silverlight are
designed to support more graphically interesting user interface styles than traditional,
rigidly rectilinear Windows user interfaces. So this seems like a good time to look at
some of the graphical elements.

Graphical Elements
WPF and Silverlight support several kinds of graphical elements. The shape elements
provide scalable vector-oriented two-dimensional shapes. There are also various ways
to incorporate bitmap images. Video is supported through the media element. And
WPF and Silverlight both provide some support for 3D graphics, although they take
rather different approaches.

Shapes

Shape is the base class of various two-dimensional shapes. It’s an abstract class, and it
defines common properties such as Fill and Stroke to control how the interior and
outline of shapes are painted. Some of the derived classes are self-explanatory—it
doesn’t take much imagination to work out what Ellipse, Rectangle, and Line do.
Polyline, Polygon, and Path require a little more explanation.

Polyline lets you define a shape as a series of straight lines—you simply provide a list
of coordinate pairs defining each point the shape’s outline passes through. Polygon does
the same thing, but closes off the shape—it automatically joins the final point with the
first one. However, you rarely use either of these, because Path lets you do all this and
more. (Expression Blend never creates Polyline or Polygon elements—even if you create
a shape whose outline is made up entirely of straight edges, it still makes a Path. And
most Xaml export tools from programs such as Adobe Illustrator do the same. So in
practice, Path is the one you’ll come across. The other two exist because they are slightly
simpler to work with from code.)

Figure 20-7. Transformed buttons

748 | Chapter 20: WPF and Silverlight

Path lets you define a shape with any mixture of straight and curved segments in its
outline. Example 20-10 shows a Path made up entirely of straight edges.

Example 20-10. Path with straight edges

<Path Fill="Red" Stroke="Black"
 StrokeThickness="5"
 Data="M50,0 L100,50 50,100 0,50 z"
 />

The Data property defines the shape. It consists of a series of commands and coordi-
nates. The letters indicate the command—the initial M means Move to the specified
position, (50, 0) in this case. The L means draw a Line to the next coordinate. And since
this example has three coordinate pairs after the L, even though L requires only one,
that means we repeat the command—so that’s three straight line segments passing
through the coordinates (100, 50), (50, 100), and (0, 50). Each segment starts where
the previous one left off. Finally, the z indicates that we’d like to make this a closed
shape, so it will join that final point back up with the first one to form the diamond
shape you see in Figure 20-8. This shape is filled in and given a thick outline, thanks
to the Fill, Stroke, and StrokeThickness properties, which are available on any shape
element.

The shape defined by the Data describes the center of the line drawn for
the outline. This means that making the StrokeThickness larger effec-
tively increases the size of the shape—a thicker outline will encroach
into the interior of the shape, but will also expand outward by the same
amount. That means that the Path in Example 20-10 has a bounding
box slightly larger than that implied by the coordinates in the Data. The
first line segment starts at (50, 0), which is at the very top of the shape,
but the stroke thickness means that the peak of the shape actually ap-
pears a bit higher. (The peak is at approximately (50, −3.54). The angle
of this particular stroke means that the top corner is above the specified
point by half the stroke thickness multiplied by √2.) So if you put this
path at the very top left of the UI its top and left corners will be slightly
cropped.

Figure 20-8. Path with straight edges

Elements and Controls | 749

Path offers more complex commands for drawing curved shapes. Example 20-11 shows
a shape with straight line segments and a single cubic Bezier curve segment, indicated
with the C command.

Example 20-11. Path with Bezier curve and straight edges

<Path Fill="Red" Stroke="Black"
 StrokeThickness="5"
 Data="M50,0 L100,50 C125,74 75,125 50,100 L0,50 z"
 />

Cubic Bezier curves require four points to define them. So the C command demands
three pairs of coordinates. (The first point is wherever the previous command finished,
so it requires three more to bring the total to four.) Therefore, in this case, the three
pairs of numbers that follow the C do not constitute three repeated commands as they
did with L. You can repeat the C command; you just need to add three pairs for each
segment. Figure 20-9 shows the shape defined by Example 20-11.

Figure 20-9. Path with a mixture of straight and curved edges

These examples have used simple named colors for the Fill and Stroke, but you can
get more advanced. You can specify hexadecimal RGB colors using a #, as you would
with HTML—for example, Fill="#FF8800" indicates a shade of orange, by mixing full-
strength red (FF) with slightly more than half-strength green (88) and no blue (00). You
can extend this to eight digits to define partially transparent colors—for example,
Fill="8000FFFF" specifies an alpha (transparency) of 80 (semitransparent), 0 red, and
full-strength green and blue, to define a semitransparent shade of turquoise.

You can also create more complex brushes. Linear and radial gradient brushes are
available. Example 20-12 sets the fill of a shape to a radial gradient brush, and sets its
stroke to be a linear gradient brush.

Example 20-12. Gradient brushes for fill and stroke

<Path StrokeThickness="10"
 Data="M50,0 L100,50 C125,74 75,125 50,100 L0,50 z"
 >
 <Path.Fill>
 <RadialGradientBrush>
 <GradientStop Offset="0" Color="Blue" />
 <GradientStop Offset="1" Color="White" />
 </RadialGradientBrush>

750 | Chapter 20: WPF and Silverlight

 </Path.Fill>

 <Path.Stroke>
 <LinearGradientBrush StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop Offset="0" Color="Black" />
 <GradientStop Offset="0.5" Color="White" />
 <GradientStop Offset="1" Color="Black" />
 </LinearGradientBrush>

 </Path.Stroke>
</Path>

As you can see in Figure 20-10, these brushes change color across the shape. The radial
brush starts from a point in the middle (or some other point—there are properties to
control the exact settings) and spreads out to an elliptical boundary. The linear gradient
brush simply changes colors between the specified start and end points. Notice that
you can run through as many different colors as you like with the GradientStop
elements.

Figure 20-10. Gradient brushes

You can even create a bitmap-based brush with which to paint shapes, so let’s look at
bitmap handling next.

Images

The shape elements are great for graphics that can be built out of geometric elements.
Skilled designers can produce remarkably realistic-looking imagery with these sorts of
primitives using tools such as Adobe Illustrator. However, some kinds of pictures do
not lend themselves to this sort of construction—photographs, for example. You might
be able to draw a stylized rendition of a photograph, but if you just want to incorporate
a photographic image directly into an application, bitmaps are the way to go.

Bitmaps are pixel-oriented rather than vector-based. (From a tool perspective, it’s like
the distinction between Adobe Photoshop and Adobe Illustrator.) Bitmaps do not scale
as well—if you enlarge a bitmap, eventually you just see the individual pixels, leading
to an appearance that is either jagged or fuzzy, depending on the way in which the
bitmap is enlarged. Shapes don’t have that problem; because shapes are geometrically
defined, WPF or Silverlight can render them perfectly crisply no matter how large you

Elements and Controls | 751

make them. So there’s a trade-off here—bitmaps can offer a much more photorealistic
impression than vector art, but they don’t adapt so well to changes in size. That’s why
graphics systems need to support both.

The simplest way to use a bitmap is with the <Image> element. You can point its
Source property at any URL that contains a bitmap. Example 20-13 uses a miscellaneous
image from one of the authors’ blogs. WPF or Silverlight will download and display
the image at runtime. (The image may not appear in the design view, though.)

Example 20-13. Image element with HTTP URL

<Image Source="http://www.interact-sw.co.uk/images/WpfMidpointGradient.png"
 Stretch="None" />

The Stretch property indicates how to size the image. The value None says that we want
the image to be rendered at its natural size. The Image element’s default behavior is to
resize the bitmap so that it fills the layout slot, but that’s not always appropriate. This
particular image happens to be a screenshot, and those tend to go a bit blurry if you
resize them, so disabling stretching is a good idea here. Resizing is less problematic for
photographs, though, so the default behavior of stretching to fit is useful there.

The Image class is a user interface element, deriving from FrameworkElement like any
other. But there’s also ImageBrush—this derives from a different class, Brush, in common
with the gradient brushes we saw earlier. You can use an ImageBrush to paint a shape.
Example 20-14 uses the same image to provide the Fill of a Path. (Again, you may find
that the image appears only at runtime, not at design time.)

Example 20-14. Painting a shape with an ImageBrush

<Path StrokeThickness="3" Stroke="Black"
 Data="M50,0 L100,50 C125,74 75,125 50,100 L0,50 z"
 >
 <Path.Fill>
 <ImageBrush
 ImageSource="http://www.interact-sw.co.uk/images/WpfMidpointGradient.png"
 />
 </Path.Fill>

</Path>

You don’t have to download images with HTTP. You can compile an image into a WPF
or Silverlight application as a resource—simply adding a JPEG or PNG to the project
in Visual Studio will do that. Or with WPF you can point an Image or ImageBrush at a
file on disk.

752 | Chapter 20: WPF and Silverlight

Silverlight supports only JPEG and PNG bitmaps—to keep the Silver-
light plug-in download small, Microsoft chose a minimal set of formats,
and these two cover most bases. JPEG provides efficient compression
for photographic and photorealistic images, but does a bad job with
screenshots and doesn’t support transparency. Conversely, PNG can
reproduce screenshots perfectly and supports transparency, but com-
presses photographic images inefficiently.

WPF supports a much wider range of image types, including TIFF, BMP,
and GIF. Moreover, it’s built on top of the extensible Windows Imaging
Components (WIC) mechanism, so the set of supported formats is not
closed. Some digital camera vendors provide WIC drivers for their na-
tive raw image formats, so if you have those installed, WPF can display
those images directly.

Still images may not be enough for your application. You might want to incorporate
movies.

Media

WPF and Silverlight offer the MediaElement, which can render videos. It can also be
used to play audio files. In use, it’s almost identical to the Image element; you just point
it at a video file rather than a bitmap.

Silverlight offers a VideoBrush that lets you create a brush from a video, in the same way
that ImageBrush lets you create a brush from a bitmap. Slightly surprisingly, WPF does
not offer this type—this is a good example of how Silverlight is not a subset of WPF.
It’s possible to paint things with video in WPF, though; you just do it using something
called a VisualBrush. VisualBrush is far more powerful than VideoBrush—it lets you
take any UI element (even one that has children, like a panel) and turn it into a brush.
So you can wrap a MediaElement in a VisualBrush to create the same effect; Silverlight
doesn’t have VisualBrush, which is why it provides the more specialized VideoBrush.

Speaking of moving images, you can also apply movement to other elements in a user
interface.

Animation

WPF and Silverlight allow any element to be animated—most properties that have an
impact on the appearance of the UI can be modified over time. Of course, you could
achieve that yourself by setting up a timer, and modifying properties of UI elements
each time the timer fires. But you can let the animation system do that work for you.
A complete description of animation would fill a chapter, but Example 20-15 shows a
typical example.

Elements and Controls | 753

Example 20-15. An animation

<UserControl.Resources>
 <Storyboard x:Key="ellipseAnimation">
 <DoubleAnimation
 From="50" To="100"
 AutoReverse="True" RepeatBehavior="Forever"
 Storyboard.TargetName="animatedEllipse"
 Storyboard.TargetProperty="Width" />
 </Storyboard>
</UserControl.Resources>

Animations are separate objects from the things they animate, and typically live in a
Resources section—all elements have a Resources property which is a handy place to
put useful objects. It’s just a dictionary—a name/value collection—a specialized dic-
tionary similar to those of the kind described in Chapter 9. This particular example
would appear as a child of the UserControl at the root of the user interface.

While this is a simple example, it illustrates all the important points. The whole thing
is contained in a Storyboard—this is a collection of animations. Animations are always
defined in storyboards, as this enables you to target multiple properties, or perhaps
orchestrate a sequence of different animations over time. This example is simple and
contains just a single animation, but we’re still required to put it in a Storyboard.

The animation itself has a From and a To value specifying the range of values the property
will span during the animation—these are numbers because this is a DoubleAnimation
(as in the System.Double floating-point type); if this were a ColorAnimation you’d see
color values in there instead. The AutoReverse and RepeatBehavior properties here in-
dicate that this animation runs back and forth indefinitely. And the final two properties
indicate the element and property to be animated. So somewhere in the Xaml we’d
expect to find an element with the name indicated, for example:

<Ellipse x:Name="animatedEllipse"
 Fill="Blue" />

Something needs to kick the animation off. In the code behind, you’d extract the ani-
mation from the resources and start it like this:

Storyboard anim = (Storyboard) Resources["ellipseAnimation"];
anim.Begin();

There are other ways to start animations. WPF supports triggers, which let you place
instructions in Xaml that certain animations should be run when specific things hap-
pen. So you could tie an animation to the raising of a MouseEnter event, for example,
or run an animation when the value of a property changes. You can do something
similar in Silverlight using behaviors, which make it easy to define a variety of UI re-
sponses (such as running animations) with Expression Blend. Both WPF and Silverlight
also support automatic running of animations in control templates, as we’ll see later.

754 | Chapter 20: WPF and Silverlight

3D graphics

WPF has basic support for 3D graphics, but that’s a topic that would take a whole
chapter to cover in itself, so we won’t be getting into that in this book. Silverlight doesn’t
have WPF’s 3D features, but it does have some very limited support for 3D in the form
of special transforms. Besides the RenderTransform we saw earlier, you can set an ele-
ment’s Projection property to make it look like it has been rotated in 3D, including
perspective effects you can’t get with a 2D affine transform. This falls short of the full
3D models you can create in WPF, but provides the bare bones required to build up
3D aspects to the user interface.

Layout and graphical services are necessary to render things on-screen, but most ap-
plications require something a little more high-level—standard elements the user can
interact with. So WPF and Silverlight provide controls.

Controls
Silverlight and WPF offer a range of controls, similar to many of the common controls
you find in typical Windows applications. For example, there are buttons—CheckBox
and RadioButton for selection, Button for a basic pushbutton, and HyperlinkButton for
when you want to make your button look like a hyperlink. There’s also RepeatButton,
which looks like a normal button but repeatedly raises click events for as long as you
hold the button down.

For the most part, these work in a very straightforward fashion—you already saw how
to handle the Click event, in Example 20-2 and Example 20-3. And as you’d expect,
the two selection buttons offer events called Checked and Unchecked to notify you when
they’re toggled, and an IsChecked property to represent the state. However, there is one
potentially surprising feature that buttons inherit from their ContentControl base class.

Content controls

Many controls have some sort of caption—buttons usually contain text; tab pages have
a header label. You might expect these controls to offer a property of type string to
hold that caption, but if you look at the Content property of a Button or the Header of
a TabItem, you’ll see that these properties are of type object. You can put text in there,
but you don’t have to. Example 20-16 shows an alternative.

Example 20-16. Button with Ellipse as content

<Button>
 <Button.Content>
 <Ellipse Fill="Green" Width="100" Height="50" />
 </Button.Content>
</Button>

Elements and Controls | 755

In fact, you don’t need to write that <Button.Content> property element—the base
ContentControl class is marked with a [ContentProperty("Content")] attribute, which
tells the Xaml compiler to treat elements that appear inside the element as the value of
the Content property. So Example 20-16 is equivalent to this:

<Button>
 <Ellipse Fill="Green" Width="100" Height="50" />
</Button>

This creates a button with a green ellipse as its content. Or you can get more ambitious
and put a panel in there:

<Button>
 <StackPanel Orientation="Horizontal">
 <Ellipse Fill="Green" Width="100" Height="50" />
 <TextBlock Text="Click me!" FontSize="45" />
 <Ellipse Fill="Green" Width="100" Height="50" />
 </StackPanel>
</Button>

Figure 20-11 shows the results. Content controls let you go completely crazy—there’s
nothing stopping you from putting buttons inside buttons inside tab controls inside
listbox items inside more buttons. Just because you can doesn’t mean you should, of
course—this would be a terrible design for a user interface. The point is that you’re
free to put any kind of content in a content control.

Figure 20-11. Button with mixed content

Some controls can contain multiple pieces of content. For example, a TabItem has a
Content property which holds the main body of the tab page, and also a Header property
for the tab caption. Both properties accept any kind of content. And then the items
controls take this a step further.

Items controls

ItemsControl is the base class of controls that display multiple items, such as ListBox,
ComboBox, and TreeView. If you add children to these controls, each child can be an
arbitrary piece of content, much like a button’s content but with as many children as
you like. Example 20-17 adds various elements to a ListBox.

Example 20-17. ListBox with mixed content

<ListBox>

 <StackPanel Orientation="Horizontal">

756 | Chapter 20: WPF and Silverlight

 <Ellipse Fill="Green" Width="100" Height="50" />
 <TextBlock Text="Text and graphics" FontSize="45" />
 <Ellipse Fill="Green" Width="100" Height="50" />
 </StackPanel>

 <Button Content="Button" />

 <TextBox Text="Editable" />

</ListBox>

Figure 20-12 shows the results. As well as showing the content we provided, the
ListBox provides the usual visual responses to mouse input—the item underneath the
mouse has a slightly darker background than the item below to indicate that it can be
selected. The item at the bottom is darker still because it is currently selected. These
highlights come from the item container—all items controls generate an item container
for each child. A ListBox will generate ListBoxItem containers; TreeView generates
TreeViewItem objects, and so on.

Figure 20-12. ListBox with mixed content

Sometimes it’s useful to bring your own container, because you may need to do more
than populate it with a single piece of content. For example, when building a tree view,
you don’t just need to set the node caption; you may also want to add child nodes.
Example 20-18 explicitly creates TreeViewItem containers to define a tree structure.

Example 20-18. Explicit TreeViewItem containers

<ctl:TreeView>
 <ctl:TreeViewItem>
 <ctl:TreeViewItem.Header>
 <StackPanel Orientation="Horizontal">
 <Ellipse Fill="Green" Width="100" Height="50" />
 <TextBlock Text="Content" FontSize="45" />
 <Ellipse Fill="Green" Width="100" Height="50" />
 </StackPanel>
 </ctl:TreeViewItem.Header>

 <ctl:TreeViewItem Header="Child A" />
 <ctl:TreeViewItem Header="Child B" />
 </ctl:TreeViewItem>

Elements and Controls | 757

 <ctl:TreeViewItem>
 <ctl:TreeViewItem.Header>
 <Button Content="Button" />
 </ctl:TreeViewItem.Header>

 <ctl:TreeViewItem Header="Child 1" />
 <ctl:TreeViewItem Header="Child 2" />
 <ctl:TreeViewItem>
 <ctl:TreeViewItem.Header>
 <Button Content="Child 3" />
 </ctl:TreeViewItem.Header>
 </ctl:TreeViewItem>
 </ctl:TreeViewItem>

 <ctl:TreeViewItem>
 <ctl:TreeViewItem.Header>
 <TextBox Text="Editable" />
 </ctl:TreeViewItem.Header>
 </ctl:TreeViewItem>

</ctl:TreeView>

Notice the unusual ctl: prefix—see the sidebar on the next page for an explanation.

As you can see from Figure 20-13, each Header property value has ended up as the label
for a single node in the tree. The parent-child relationship of the nodes is determined
by the nesting of the TreeViewItem elements in the Xaml.

Figure 20-13. TreeView with content

758 | Chapter 20: WPF and Silverlight

Control Libraries and Xaml
Example 20-18 uses the TreeView control and its associated TreeViewItem container.
These are not built into the main Silverlight plug-in. They are provided as part of the
Silverlight SDK in a separate DLL called System.Windows.Controls, which ends up get-
ting built into your Silverlight application. Unlike normal .NET applications, Silverlight
applications are packaged into a ZIP file (usually given a file extension of .xap, which
is pronounced “zap”) so that multiple components and resources can be bundled into
a single application. This file must include any control libraries—either those provided
by Microsoft or third parties, or ones you’ve written.

To build a DLL into your Silverlight application package, you just add a reference to
the DLL in Visual Studio in the usual way.

When using controls from libraries, you need to let the Xaml compiler know where it’s
supposed to find the control. So for Example 20-18 to work, something extra needs to
go in the Xaml. The root element would contain an extra XML namespace declaration:

xmlns:ctl="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls"

(That would normally be on one long line with no spaces—it has been split to fit on
the page.)

This means that anytime we use an element whose name starts with the ctl: prefix,
we’re using a type defined in the System.Windows.Controls namespace, in the
System.Windows.Controls DLL (or assembly, as .NET calls DLLs and EXEs).

While WPF uses the same XML namespace mechanism for control libraries, the
TreeView is built into the main .NET Framework. So you can use it like any other ele-
ment, and you don’t need to add extra DLLs or XML namespace prefixes.

Microsoft provides a suite of extra controls for Silverlight in the Silverlight Toolkit,
available from http://www.codeplex.com/Silverlight; at http://www.codeplex.com/wpf
you’ll find the WPF Toolkit, which offers some additional controls for WPF.

While you can add elements directly to items controls like this, it’s often easier and
more flexible to use data binding, so we’ll be coming back to items controls later.

Because this chapter is just an introduction to Silverlight and WPF, we won’t go through
all the available controls in detail. There are simple data entry controls such as TextBox,
AutoCompleteBox, Slider, and DatePicker. There are more comprehensive data-oriented
controls such as DataGrid and DataPager. There are also utility controls such as the
draggable Thumb and GridSplitter. But there’s one more kind of control we need to
look at: user controls.

Elements and Controls | 759

http://www.codeplex.com/Silverlight
http://www.codeplex.com/wpf

User Controls
A user control is, as the name suggests, a user-defined control. In Silverlight, you’ll have
at least one of these—your whole user interface is one big user control, as you can see
from the <UserControl> element at the root of your main page’s Xaml. But you can
create more. User controls are a useful way to manage complexity.

A problem that crops up a lot in big WPF and Silverlight projects—particularly the first
such project any team works on—is the 10,000-line Xaml file. Visual Studio creates
one Xaml file for your user interface, and the path of least resistance is to put everything
in there. As you add graphical resources, templates, data sources, animations, styles,
and all the other things you can put in Xaml, it can grow very large surprisingly quickly.
And there’s a related problem of having the entire application’s functionality in the one
code behind file. Such programs are not maintainable, so you need to split things up.

Instead of creating one big Xaml file, it’s usually best to try to have as little as possible
in your main page. It should typically do nothing more than define the overall layout,
saying where each piece of the UI belongs. And then each part can go into its own user
control. A user control is simply a Xaml file with some code behind. And since Xaml
files with code behind always compile into classes, you can use them from other Xaml
files—remember that Xaml is just a way to create objects. Example 20-19 shows the
Xaml for an application’s main UI that uses this approach.

Example 20-19. Main UI containing nothing but user controls

<UserControl
 x:Class="SlUcExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:app="clr-namespace:SlUcExample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <app:SearchBarView Grid.Column="0" Grid.ColumnSpan="2" />
 <app:ProductListView Grid.Column="0" Grid.Row="1" />
 <app:ProductDetailsView Grid.Column="1" Grid.Row="1" />

 </Grid>
</UserControl>

760 | Chapter 20: WPF and Silverlight

Notice that this example defines an XML namespace prefix, app, and tells the Xaml
compiler that this refers to types in the SlUcExample namespace—the default project
namespace for this particular example. This time we don’t need the assembly= part
because the user controls are defined as part of this project, not in a separate DLL. This
prefix then refers to three user controls which would be defined elsewhere in the project.

Defining the user controls themselves is simple. You can add them as new items to your
project in Visual Studio, and it will create a Xaml file with a corresponding code behind
file, which you edit in exactly the same way as the main UI.

As you can see in Example 20-19, we chose names that end in View for
all the user controls. This is not mandatory, but it helps distinguish user
control classes, which define appearance and superficial interactive be-
havior, from the other types that define the core behavior of your ap-
plication. This distinction isn’t useful if you plan to put everything into
the code behind, of course, but we presume you have more refined soft-
ware design sensibilities than that, and will want to ensure that each
class in your application has a single, well-defined, reasonably narrow
responsibility.

User controls can contain any other controls and elements, so you can use elements
built into Silverlight as well as any control libraries you may have acquired. So user
controls have a lot of flexibility. However, you don’t necessarily have to build a user
control anytime you want some custom UI—the scope for customization of built-in
controls is greater than you might think, thanks to control templates.

Control Templates
As you already saw, controls are elements that have interactive behavior of some kind—
buttons are clickable; you can type into text boxes; you can scroll through the items in
a listbox and select them. What may not be obvious is that most controls only provide
behavior. Controls do not define their own appearance.

This may appear to be a ludicrous claim. After all, if you add a Button to your user
interface, you can see it. In fact, the appearance comes from a separate entity called a
template. Controls have a default template, which is why something appears when you
create a control, but this separation of appearance from behavior is important because
you are free to replace the default template with your own. This lets you change the
appearance of a control completely, without losing any of the behavior.

The behavior of controls is often surprisingly subtle and complex. You might think that
a button is a pretty simple sort of thing, and that you could create your own equivalent
by handling the MouseLeftButtonDown event on a shape. And while that would give you
a clickable element, there’s a lot missing. For example, there’s the way buttons push
down and pop back up. They should respond to keyboard input as well as mouse input.

Control Templates | 761

They should be visible to accessibility tools so that users with visual or coordination
issues can use your application. And a button is about as simple as it gets. If you’ve
ever used a Flash application with, say, a scroll bar that just didn’t feel like it was
working properly you’re already familiar with the hazards of trying to recreate basic
controls from scratch. Fortunately, control templates mean you don’t have to.

Only controls have templates. So while types such as Button and
TextBox have them, more primitive types such as shapes and TextBlock
—UI elements that don’t have any intrinsic behavior—don’t. This
shouldn’t be too surprising; an Ellipse element’s only job is to look like
an Ellipse, so what would it mean for it to have a template? (And what
element would you use inside the template to define the appearance?
Another Ellipse? Where would it get its appearance from?)

The Control base class defines a Template property. To customize the appearance of a
control, you simply set this property. As Example 20-20 shows, the property expects a
ControlTemplate object, and then inside this, you can put any element you like to define
the appearance. (You could, of course, use a panel if you wanted to build up a complex
appearance with multiple elements.)

Example 20-20. Button with custom template

<Button Content="OK" FontSize="20">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Border
 Background="LightBlue"
 BorderThickness="3"
 BorderBrush="Black"
 CornerRadius="10">

 <ContentPresenter
 Margin="20"
 Content="{TemplateBinding Content}"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 />

 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

Figure 20-14 shows the results. It’s rather static—it doesn’t offer a visual response to
mouse activity yet, but we’ll fix that later. But it will still raise the Click event when
clicked, so it’s functional, if rather dull. Notice that we’ve set the Content property of
the button, and this content—the text “OK”—has appeared as you’d hope. That
doesn’t happen automatically; our template needs to say where the content should
appear, and that’s the purpose of the ContentPresenter in Example 20-20. Templates

762 | Chapter 20: WPF and Silverlight

for content controls need one of these placeholders for the Content property to do
anything. And if you’re defining a template for a control that can hold multiple pieces
of content—the Content and Header of a TabItem, for example—you need to provide a
ContentPresenter for each.

Figure 20-14. Button with custom template

How does Silverlight (or WPF) know which placeholder corresponds to which prop-
erty? Look at the Content property of the ContentPresenter in Example 20-20—its value
has an unusual syntax. The attribute value is enclosed in braces, which indicates that
we’re not setting a literal value—in this case the TemplateBinding text signifies that we
want to connect this particular property in this element in the template to a corre-
sponding property of this template’s control. So {TemplateBinding Content} connects
this ContentPresenter to our Button element’s Content property, while {TemplateBind
ing Header} would connect it to the Header property in a control that had such a
property.

In fact, it’s common to use many template bindings. Example 20-20 hardcodes a lot of
features of the appearance into the template, but it’s possible to reuse templates on
several different controls, at which point you might want to retain the flexibility to
change things such as the background color, border thickness, and so on, without
needing to define a new template every time. Example 20-21 looks the same as Fig-
ure 20-14, but instead of hardcoding everything into the template it picks up more of
the control’s properties using template bindings.

Example 20-21. Template with less hardcoding

<Button Content="OK" Background="LightBlue">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Border
 Background="{TemplateBinding Background}"
 BorderThickness="{TemplateBinding BorderThickness}"
 BorderBrush="{TemplateBinding BorderBrush}"
 CornerRadius="10">

 <ContentPresenter
 Margin="{TemplateBinding Padding}"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding HorizontalContentAlignment}"
 />

Control Templates | 763

 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

This template is now looking like a candidate for reuse—we might want to apply this
to lots of different buttons. The usual way to do this is to wrap it in a style.

Styles
A style is an object that defines a set of property values for a particular type of element.
Since elements’ appearances are defined entirely by their properties—Template is a
property, remember—this means a style can define as much of a control’s appearance
as you like. It could be as simple as just setting some basic properties such as
FontFamily and Background, or it could go as far as defining a template along with prop-
erty values for every property that affects appearance. Example 20-22 sits between these
two extremes—it puts the template from Example 20-21 into a style, along with settings
for a few other properties.

Example 20-22. Button style

<UserControl.Resources>
 <Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="Background" Value="LightBlue" />
 <Setter Property="BorderBrush" Value="DarkBlue" />
 <Setter Property="BorderThickness" Value="3" />
 <Setter Property="FontSize" Value="20" />

 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Border
 Background="{TemplateBinding Background}"
 BorderThickness="{TemplateBinding BorderThickness}"
 BorderBrush="{TemplateBinding BorderBrush}"
 CornerRadius="10">

 <ContentPresenter
 Margin="{TemplateBinding Padding}"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding HorizontalContentAlignment}"
 />

 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>

764 | Chapter 20: WPF and Silverlight

 </Style>
</UserControl.Resources>

Notice that the style is inside a Resources section—remember that all elements have a
Resources property, which is a dictionary that can hold useful objects such as styles.
We can then apply the style to an element like so:

<Button Content="OK" Style="{StaticResource buttonStyle}" />

This will pick up all the properties from the style. Again notice the use of braces in the
attribute value—this signifies that we’re using a markup extension, which is a type that
works out at runtime how to set the property’s real value. We already saw the
TemplateBinding markup extension, and now we’re using StaticResource, which looks
up an entry in a resource dictionary.

Unlike the Template property, which is available only on controls, the
Style property is defined by FrameworkElement, so it’s available on all
kinds of elements.

By the way, an element that uses a style is free to override any of the properties the style
sets, as shown in Example 20-23.

Example 20-23. Overriding a style property

<Button Content="OK" Style="{StaticResource buttonStyle}"
 Background="Yellow" />

Properties set directly on the element override properties from the style. This is why
it’s important to use TemplateBinding in templates. The style in Example 20-22 sets a
default Background color of LightBlue, and the template then picks that up with a
TemplateBinding, which means that when Example 20-23 sets the background to yel-
low, the control template picks up the new color—that wouldn’t have happened if the
light blue background had been baked directly into the template. So the combination
of styles, templates, and template bindings makes it possible to create a complete look
for a control while retaining the flexibility to change individual aspects of that look on
a control-by-control basis.

There’s one problem with our button style: it’s rather static. It doesn’t offer any visible
response to mouse input. Most controls light up when the mouse cursor moves over
them if they are able to respond to input, and the fact that our control doesn’t is likely
to make users think either that the application has crashed or that the button is merely
decorative. We need to fix this.

Control Templates | 765

The Visual State Manager
A control template can include a set of instructions describing how its appearance
should change as the control changes its state. These are added with an attachable
property called VisualStateGroups, defined by the VisualStateManager class.‖ Exam-
ple 20-24 shows a modified version of the template that adds this attachable property.

Example 20-24. Control template with visual state transitions

<ControlTemplate TargetType="Button">
 <Border x:Name="background"
 Background="{TemplateBinding Background}"
 BorderThickness="{TemplateBinding BorderThickness}"
 BorderBrush="{TemplateBinding BorderBrush}"
 CornerRadius="10">

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimation Storyboard.TargetName="background"
 Storyboard.TargetProperty="(Border.Background).
 (SolidColorBrush.Color)"
 To="Red" Duration="0:0:0.5" />
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Normal">
 <Storyboard>
 <ColorAnimation Storyboard.TargetName="background"
 Storyboard.TargetProperty="(Border.Background).
 (SolidColorBrush.Color)"
 Duration="0:0:0.5" />
 </Storyboard>
 </VisualState>
 </VisualStateGroup>

 </VisualStateManager.VisualStateGroups>

 <ContentPresenter
 Margin="{TemplateBinding Padding}"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding HorizontalContentAlignment}"
 />

 </Border>
</ControlTemplate>

‖ This class was originally unique to Silverlight. It was added later to WPF in .NET 4. WPF has an older
mechanism called triggers that can also be used to get the same results. Triggers are more complex, but are
also more powerful. Silverlight does not currently offer them.

766 | Chapter 20: WPF and Silverlight

The VisualStateGroups property contains one or more VisualStateGroup elements—
the groups you can add in here are determined by the control. Button defines two
groups: CommonStates and FocusStates. Each group defines some aspect of the control’s
state that can vary independently of the other groups. For example, FocusStates defines
a Focused and an Unfocused state based on whether the button has the keyboard focus.
The CommonStates group defines Normal, MouseOver, Pressed, and Disabled states—the
control can be in only one of those four states at any time, but whether it’s focused is
independent of whether the mouse cursor is over it, hence the use of different groups.
(The groups aren’t wholly independent—a disabled button cannot acquire the focus,
for example. But you see multiple state groups anytime there’s at least some degree of
independence.)

Example 20-24 defines behaviors for when the button enters the MouseOver state and
the Normal state, with a VisualState for each. These define the animations to run when
the state is entered. In this example, both animations target the Border element’s
Background. The first animation fades the background to red when the mouse enters,
and the second animates it back to its original color when the state returns to normal.
(The absence of a To property on the second animation causes the property to animate
back to its base value.)

Visual state transitions typically end up being very verbose—the only
way to modify properties is with animations, even if you want the
changes to happen instantaneously, so even a simple change requires a
lot of markup. And you will typically want to provide transitions for all
of the states. In practice, you would normally create them interactively
in Expression Blend, which will add all the necessary Xaml for you.

So far, everything we’ve looked at has been strictly about the visible bits, but any real
application needs to connect the frontend up to real data. To help with this, WPF and
Silverlight offer data binding.

Data Binding
Data binding lets you connect properties of any .NET object to properties of user in-
terface elements. The syntax looks pretty similar to template binding. Example 20-25
shows a simple form with a couple of text entry fields, both using data binding to hook
up to a source object.

Example 20-25. Data entry with data binding

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

Data Binding | 767

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock VerticalAlignment="Center" Text="Name:" />
 <TextBox Grid.Column="1"
 Text="{Binding Path=Name}" />

 <TextBlock VerticalAlignment="Center" Grid.Row="1" Text="Age:" />
 <TextBox Grid.Column="1" Grid.Row="1"
 Text="{Binding Path=Age}" />
</Grid>

Just as template bindings refer to properties on the target control, so these data binding
expressions refer to properties on some source object. Data sources don’t need to be
anything special—Example 20-26 shows an extremely simple class that will work just
fine as the data source for Example 20-25.

Example 20-26. A very simple data source

public class Person
{
 public string Name { get; set; }
 public double Age { get; set; }
}

The code behind can create an instance of this type, and then make it available to the
binding expressions in our user interface by putting it in the DataContext property as
Example 20-27 shows.

Example 20-27. Setting up a data source

public partial class MainPage : UserControl
{
 private Person source = new Person { Name = "Ian", Age = 36 };

 public MainPage()
 {
 InitializeComponent();

 this.DataContext = source;
 }
}

As you can see from Figure 20-15, the UI displays the two properties from the source
object thanks to data binding. This may not seem any more convenient than just writing
code to set the Text properties of the two TextBox elements directly, but data binding
can do a little more than that. When the user types new values into the text boxes, the
source Person object’s properties get updated with those new values. If we were to
modify the Person class to implement the INotifyPropertyChanged interface—a

768 | Chapter 20: WPF and Silverlight

common way to provide notification events anytime a property changes—data binding
would detect changes in the data source and update the UI automatically.

Arguably the most important benefit of this kind of data binding is that it provides an
opportunity to separate your application logic from your UI code. Notice that our
Person class doesn’t need to know anything about the user interface, and yet the data
it holds is connected to the UI. It’s much easier to write unit tests for classes that don’t
require a user interface simply to run.

Figure 20-15. Data-bound text boxes

A classic rookie mistake with WPF and Silverlight is to write code that relies too much
on UI elements—an example would be to use TextBox elements as the place you store
your data. That might seem like a simplifying step—why add a class to remember the
Name and Age when the UI can remember them for us? But that would mean any code
that needed to access that data would have to read it out of the UI elements. This causes
two problems: first, it makes it hard to change anything in the user interface without
breaking the whole program, and second, it makes it impossible to test any individual
part of the program in isolation. So while the separation illustrated with this example
may seem excessive, for any nontrivial application it turns out to be very useful to keep
the UI code completely separate from the rest of the code, hooking things together only
via data binding. This tends to lead to code that is much easier to maintain than pro-
grams where a lot of the code deals directly with user interface elements.

Example 20-25 uses just a couple of ad hoc binding expressions in a user interface, but
there’s a slightly more structured and very powerful data binding feature you can use
with item controls: data templates.

Data Templates
Just as a control’s appearance is defined by a control template, you can create a data
template to define the appearance of a particular data type. Look at the user interface
in Figure 20-16—it shows a pair of listboxes, in a typical master/details scenario.

The ListBox on the left looks fairly ordinary—it lists product categories, showing each
one as simple text. You might think this works by fetching the list of categories and
then iterating over them with a loop that creates a ListBoxItem for each one. In fact,
it’s much simpler than that. Example 20-28 shows the Xaml for the ListBox on the left.

Data Binding | 769

This application is using the Adventure Works sample database intro-
duced in Chapter 14, which the hosting web application is making
available to the Silverlight client with a combination of the WCF Data
Services mechanism described in the same chapter, and some of the
networking features described in Chapter 13. The precise details of the
server code are not directly relevant to this chapter, but you can get the
code by downloading the samples from this book’s web page: http://
oreilly.com/catalog/9780596159832/.

Example 20-28. ListBox displaying simple text

<ListBox x:Name="categoryList" DisplayMemberPath="DisplayName"
 SelectionChanged="categoryList_SelectionChanged">

Example 20-29 shows the code that puts the categories into it.

Example 20-29. Providing items for a listbox

categoryList.ItemsSource = categoryViewModels;

Obviously, we left out some code—that categoryViewModels variable, which contains
a list of objects each representing a category, had to come from somewhere. But right
now we’re focusing on how the data gets hooked up to the UI, not where it came from,
so to avoid distracting you with details irrelevant to this chapter’s topic, we’re just
showing the code that deals with the UI aspects. And as you can see, it’s really very
simple. ListBox derives from ItemsControl, from which it inherits an ItemsSource prop-
erty, and you can assign any collection into ItemsSource. The control will iterate
through the collection for you, generating an item container (a ListBoxItem in this case)
for every object.

Figure 20-16. Lists with data templates

770 | Chapter 20: WPF and Silverlight

http://oreilly.com/catalog/9780596159832/
http://oreilly.com/catalog/9780596159832/

The Xaml sets the DisplayMemberPath attribute to DisplayName—this determines which
property on the source object the ListBoxItem reads to work out what text to display
for the object. And that’s why the lefthand list displays the category names. But clearly
the list on the righthand side of Figure 20-16 is much more interesting. It shows all the
products for the currently selected category, but it’s not just displaying text—it’s show-
ing an image for each product. The product list is updated when we select a category,
and Example 20-30 shows the code that handles the SelectionChanged event of the
category ListBox, which was hooked up in Example 20-28.

Example 20-30. Loading the selected category’s products

private void categoryList_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 CategoryViewModel currentCategory =
 categoryList.SelectedItem as CategoryViewModel;
 if (currentCategory == null)
 {
 productList.ItemsSource = null;
 }
 else
 {
 productList.ItemsSource = currentCategory.Products;
 }
}

View Models and Details
While we don’t want to distract you from the data binding details too much, there are
a couple of points about the data sources in Example 20-30 that are worth being aware
of. First, you’ll have noticed the term view model cropping up in the names. This is a
common name for a class that is not part of the view—it contains no UI code—but
which is designed to be a data source for a particular view. We rarely data-bind directly
to underlying domain model objects, because user interfaces usually introduce view-
specific state and logic that does not belong in the domain model. We want to be able
to test this logic easily, so we don’t want to bake it into the view code. We therefore
add a layer between the view and the model, sometimes called the view model layer.
You’ll also sometimes see this approach described as separated presentation.

Second, you might be wondering why the ListBox can’t handle master/detail binding
on its own, without us needing to add an event handler. Actually it can, but in this
particular application, we don’t necessarily have all the details up front—we might
want to fetch a product list for a category on demand, rather than making the user wait
until the whole lot has been fetched before showing anything. In these situations, testing
is often easier if you add explicit event handlers so that you know exactly when child
data is going to be fetched. In the experience of the authors, supposedly clever code
that implicitly relies on obscure tricks to get data binding to do the work in these
situations is usually more trouble than it’s worth.

Data Binding | 771

This has some code to deal with the fact that we sometimes get a SelectionChanged
event to notify us that nothing at all is selected. But the interesting code here looks
much the same as before—once again we’re just setting the ItemsSource of a ListBox
(the one on the right this time) to a collection of objects, the products in the selected
category.

Example 20-30 sets the ItemsSource in much the same way as Example 20-29, but the
two listboxes—on the left and right of Figure 20-16—look very different. That’s be-
cause the Xaml for the second listbox is different:

<ListBox
 x:Name="productList"
 Grid.Column="1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <TextBlock Text="{Binding Path=DisplayName}" />
 <Image Grid.Column="1" Source="{Binding Path=Thumbnail}" />
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Instead of using DisplayMemberPath to specify what text to display, this sets the
ItemTemplate, which does for an items control’s data items roughly what a control’s
Template property does for the whole control—it defines the appearance. For each item
in the ItemsSource, an instance of that DataTemplate will be created, with its
DataContext set to the source item in question. So those two Binding expressions will
pick up the Text property for the TextBlock and the Thumbnail property for the Image
from the data source object for the product.

The fact that our source object provides a Thumbnail property is a good
example of why we need a view model class that’s distinct from the
model. The underlying model may well offer the bitmap—indeed, in this
example, there is a model object (not shown, but available for down-
load) with a property containing the raw binary data for the bitmap.
And while WPF can automatically convert a byte array to the Image
Source type the Image element requires, Silverlight cannot, and it be-
comes the job of the view model to transform the data into a suitable
data type. So although the view model has no dependencies on the view
code itself, it provides data tailored specifically for the view, even to the
point of offering properties with types specific to WPF or Silverlight.

772 | Chapter 20: WPF and Silverlight

There is a connection between data templates and content controls: any content control
is able to load a data template. (In fact, the heart of the mechanism is the ContentPre
senter type that appears in any content control’s template, as you saw in Exam-
ple 20-20. This is the element that knows how to load a data template.) The reason
items controls are able to instantiate a data template for each item is that the item
containers (ListBoxItem, TreeViewItem, etc.) are content controls. So you can use data
templates in all sorts of places—for the content of buttons, the headers and contents
of tab controls, the labels on tree views, and so on. Just as items controls offer an
ItemTemplate property, you’ll find similar ContentTemplate and HeaderTemplate prop-
erties that also accept data templates.

Summary
In this chapter, we discussed how you can build the structure of a user interface with
Xaml, and how the associated code behind file can handle events and provide the UI
elements with the information they need to perform their work. You saw some of the
more important control types, and in particular, you looked at the content controls
that can contain anything you like as content. You also saw how to connect your ap-
plication’s data to the screen with data binding.

Summary | 773

CHAPTER 21

Programming ASP.NET Applications

Developers are writing more and more of their applications to run over the Web and
to be seen in a browser. As we saw in Chapter 20, Silverlight lets you write C# code to
run on the client side in the web browser. As for the server side of a web application,
the .NET Framework offers ASP.NET.

The focus of this chapter is to illustrate where ASP.NET and C# programming intersect
when using Web Forms. ASP.NET is a huge topic, and for intensive coverage of
ASP.NET, please see either Programming ASP.NET 3.5, Fourth Edition by Jesse Lib-
erty, Dan Maharry, and Dan Hurwitz, or Learning ASP.NET 3.5, Second Edition by
Jesse Liberty, Dan Hurwitz, and Brian MacDonald (both published by O’Reilly).

Web Forms Fundamentals
Web Forms brings Rapid Application Development (RAD) to the creation of web ap-
plications. From within Visual Studio or Visual Web Developer, you drag-and-drop
controls onto a form and write the supporting code in code-behind pages. The appli-
cation is deployed to a web server (typically IIS, which is shipped with most versions
of Windows, and Cassini, which is built into Visual Studio for testing your application),
and users interact with the application through a standard browser.

ASP.NET supports other models besides Web Forms. You can work
directly at the HTTP level, for example. And .NET 4 introduces a new
model called MVC (which stands for Model View Controller). MVC is
more complex, but is ultimately more powerful and flexible, making it
a good choice for more complex web applications. Since this is not an
ASP.NET-specific book, we will look only at the simpler, RAD-based
Web Forms model.

Web Forms offers a programming model in which web pages are dynamically generated
on a web server for delivery to a browser over the Internet. With Web Forms, you can
create an ASPX page consisting of HTML and web controls, and you write C# code to

775

http://oreilly.com/catalog/9780596529567/
http://oreilly.com/catalog/9780596518462/

respond to user actions and add additional dynamic content. The C# code runs on the
server, and the data your code produces is integrated with the controls on your page
to create an HTML page that is sent to the browser.

You should pick up the following three critical points from the preceding paragraph
and keep them in mind for this entire chapter:

• Web pages can have both HTML and web controls (described later).

• ASP.NET processing happens on the server in managed code. (You can, of course,
use ASP.NET in conjunction with AJAX or Silverlight if you want client-side code.)

• ASP.NET controls produce standard HTML for the browser.

A web form divides the user interface into two parts: the visual part or user interface
(UI), and the logic that lies behind it. This is called code separation; and it is a good thing.

The UI for an ASP.NET page is stored in a file with the extension .aspx. When you run
the form, the server generates HTML that it sends to the client browser. This code uses
the rich Web Forms types found in the System.Web and System.Web.UI namespaces of
the .NET FCL.

With Visual Studio, Web Forms programming couldn’t be simpler: open a form, drag
some controls onto it, and write the code to handle events. Presto! You’ve written a
web application.

On the other hand, even with Visual Studio, writing a robust and complete web appli-
cation can be a daunting task. Web forms offer a very rich UI; the number and com-
plexity of web controls have greatly multiplied in recent years, and user expectations
about the look and feel of web applications have risen accordingly.

In addition, web applications are inherently distributed. Typically, the client will not
be in the same building as the server. For most web applications, you must take network
latency, bandwidth, and network server performance into account when creating the
UI; a round trip from client to host might take a few seconds.

To simplify this discussion, and to keep the focus on C#, we’ll ignore
client-side processing for the rest of this chapter, and focus on server-
side ASP.NET controls.

Web Forms Events
Web forms are event-driven. An event represents the idea that “something happened”
(see Chapter 5 for a full discussion of events).

An event is raised when the user clicks a button, or selects from a listbox, or otherwise
interacts with the UI. Of course, in web applications these user interactions happen on
the client’s machine in the web browser, but ASP.NET events are handled on the server.
For this to work, user interactions require a round trip—the browser needs to send a

776 | Chapter 21: Programming ASP.NET Applications

message to the server, and the server needs to respond to handle the event completely.
This can take a while, so our hands are somewhat tied compared to classic Windows
application event handling—it’s just not practical for ASP.NET to offer server-side
event handlers for things like mouse move events. So ASP.NET offers only a limited set
of events, such as button clicks and text changes. These are events that the user might
expect to cause a significant change, and for which it’s reasonable to perform a round
trip to the server.

Postback versus nonpostback events

Postback events are those that cause the form to be posted back to the server immedi-
ately. These include click-type events, such as the button Click event. In contrast, many
events are considered nonpostback, meaning that the form isn’t posted back to the
server immediately.

You can force controls with nonpostback events to behave in a postback
manner by setting their AutoPostBack property to true.

Nonpostback events are raised at the point at which ASP.NET discovers it needs to
raise them, which may be some considerable time after the user performed the actions
to which the events relate. For example, the TextBox web control has a TextChanged
event. You wouldn’t expect a web page to submit a form automatically the moment
you typed into a text box, and so this is a nonpostback event. If the user fills in several
text fields in a form, the server knows nothing about that—this change in state happens
on the client side, and it’s only when the user clicks a button to submit the form that
ASP.NET discovers the changes. So this is when it will raise TextChanged events for all
the text boxes that changed. Consequently, you can expect to see multiple events during
the handling of a single submission.

View state

Users tend to expect controls in user interfaces to remember their state—it’s discon-
certing when text boxes lose their content, or listboxes forget which item was selected.
Sadly, the Web is inherently a “stateless” environment.* This means that every post to
the server loses the state from previous posts, unless the developer takes great pains to
preserve this session knowledge. The Web is rife with sites where you fill in a form,
only for it to lose all of your data if anything goes wrong. Developers have to do a lot
of extra work to prevent this. ASP.NET, however, provides support for maintaining
some of the state automatically.

* There are good architectural reasons for this, but it’s bad for usability.

Web Forms Fundamentals | 777

Whenever a web form is posted to the server, the server re-creates it from scratch before
it is returned to the browser. ASP.NET provides a mechanism that automatically main-
tains state for server controls (ViewState). Thus, if you provide a list and the user has
made a selection, that selection is preserved after the page is posted back to the server
and redrawn on the client.

Web Forms Life Cycle
Every request for a page made to a web server causes a chain of events at the server.
These events, from beginning to end, constitute the life cycle of the page and all its
components. The life cycle begins with a request for the page, which causes the server
to load it. When the request is complete, the page is unloaded. From one end of the
life cycle to the other, the goal is to render appropriate HTML output back to the
requesting browser.

Since ASP.NET is a server-side technology, its view of the lifetime of the
page is quite different from the user’s view. By the time the user sees the
page, the server has already finished with it. Once the HTML has
reached the browser, you can switch off and unplug the web server and
the user will be none the wiser for as long as she’s looking at that page.

The life cycle of a page is marked by the following events. ASP.NET performs specific
processing at each stage, but you can attach handlers to any of these events to perform
additional work:

Initialize
Initialize is the first phase in the life cycle for any page or control. It is here that any
settings needed for the duration of the incoming request are initialized.

Load ViewState
The ViewState property is populated. The ViewState lives in a hidden input tag in
the HTML—when ASP.NET first renders a page, it generates this field, and uses
it to persist the state across round trips to the server. The input string from this
hidden variable is parsed by the page framework, and the ViewState property is set.
This allows ASP.NET to manage the state of your control across page loads so that
each control isn’t reset to its default state each time the page is posted.

Process Postback Data
During this phase, the data sent to the server in the posting is processed.

Load
CreateChildControls() is called, which creates and initializes server controls in the
control tree. State is restored, and the form controls contain client-side data.

Send Postback Change Modifications
If there are any state changes between the current state and the previous state,
change events are raised via the RaisePostDataChangedEvent() method.

778 | Chapter 21: Programming ASP.NET Applications

Handle Postback Events
The client-side event that caused the postback is handled.

PreRender
This is your last chance to modify control properties prior to rendering. (In web
forms, “rendering” means generating the HTML that will eventually be sent to the
browser.)

Save State
Near the beginning of the life cycle, the persisted view state was loaded from the
hidden variable. Now it is saved back to the hidden variable, persisting as a string
object that will complete the round trip to the client.

Render
This is where the output to be sent back to the client browser is generated.

Dispose
This is the last phase of the life cycle. It gives you an opportunity to do any final
cleanup and release references to any expensive resources, such as database
connections.

Creating a Web Application
Visual Studio offers two ways to build ASP.NET applications. This isn’t just a case of
two different menu items for the same feature—the two options work quite differently
in ways Visual Studio doesn’t make especially obvious at the point where you make
the decision. You can use the New Project dialog, which offers various ASP.NET project
templates under the Visual C#→Web section, which produce various kinds of web
application projects. Alternatively, you can choose File→New→Web Site from the main
menu, and this lets you create various kinds of website projects. Web application
projects are fully fledged Visual Studio projects that are built in much the same way as
other kinds of projects such as libraries, console applications, or WPF applications.
Website projects are somewhat more lightweight—there’s no .csproj file to represent
the project, nor do you need to build the project; your project consists of nothing but
source files and you end up copying these to the web server. For this chapter, we’ll use
a web application project because it’s the most similar to all the other project types
we’ve looked at in this book.

To create the simple web form that we will use in the next example, start up Visual
Studio .NET and select File→New→Project. In the New Project dialog, select the Visual
C#→Web templates and choose ASP.NET Empty Web Application from the templates.

As the template name suggests, Visual Studio creates a web application with no pages.
It contains a Web.config file to hold website configuration settings, but nothing else.
To add a web form, select Project→Add New Item and choose Visual C#→Web from
the templates list on the left. Select the Web Form template, and call it Hello-
Web.aspx. Visual Studio creates a HelloWeb.aspx.cs code-behind file as part of the web

Creating a Web Application | 779

form, which you can see by expanding the HelloWeb.aspx file in the Solution Explorer.
(You’ll also see a HelloWeb.aspx.designer.cs file which is where Visual Studio puts any
code it needs to generate automatically. Don’t put any of your own code in there,
because Visual Studio deletes and rebuilds that file anytime it needs to change the
generated code.)

Code-Behind Files
Let’s take a closer look at the .aspx and code-behind files that Visual Studio created.
Look at the HTML view of HelloWeb.aspx. (When you edit an .aspx file, Visual Studio
can show three different views. The default view is the “Source” view, which shows the
raw HTML. There are three buttons at the bottom left of the editor that let you switch
between a “Design” view, which shows the content with the layout and design it will
have in the browser, the “Source” view, which shows the raw HTML, or a “Split” view
which shows both.) You can see that a form has been specified in the body of the page
using the standard HTML form tag:

<form id="form1" runat="server">

ASP.NET web forms require you to have at least one form element to manage the user
interaction, so Visual Studio creates one when you add a new .aspx page. The attribute
runat="server" is the key to the server-side magic. Any tag that includes this attribute
is considered a server-side control to be executed by the ASP.NET Framework on the
server.

Although the form tag is standard HTML, the runat attribute is not. But
ASP.NET removes that attribute from the page before sending it to the
browser. The attribute only has any meaning on the server side.

Within the form, Visual Studio provides an opening and closing pair of div tags to give
you somewhere to put your controls and text.

Having created an empty web form, the first thing you might want to do is add some
text to the page. By switching to the Source view, you can add script and HTML directly
to the file. For example, we can add content to the div element in the body segment of
the .aspx page, as the highlighted line in Example 21-1 shows.

Example 21-1. Adding HTML content

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="HelloWeb.aspx.cs"
Inherits="ProgrammingCSharpWeb.HelloWeb" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

780 | Chapter 21: Programming ASP.NET Applications

 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Hello World! It is now <%= DateTime.Now.ToString() %>
 </div>
 </form>
</body>
</html>

This will cause it to display a greeting and the current local time:

Hello World! It is now 4/4/2010 5:24:16 PM

The <% and %> marks work just as they did in classic ASP, indicating that code falls
between them (in this case, C#). The = sign immediately following the opening tag
causes ASP.NET to evaluate the expression inside the tags and display the value. Run
the page by pressing F5.

Adding Controls
You can add server-side controls to a web form in three ways: by writing markup in
the .aspx page, by dragging controls from the toolbox (to either the Source or Design
view), or by writing code that adds them at runtime. For example, suppose you want
to use radio buttons to let the user choose one of three shipping companies when
placing an order. You can write the following HTML into the <form> element in the
HTML window:

<asp:RadioButton GroupName="Shipper" id="Speedy"
 text="Speedy Express" Checked="True" runat="server">
</asp:RadioButton>
<asp:RadioButton GroupName="Shipper" id="United"
 text="United Package" runat="server">
</asp:RadioButton>
<asp:RadioButton GroupName="Shipper" id="Federal"
 text="Federal Shipping" runat="server">
</asp:RadioButton>

The asp tags declare server-side ASP.NET controls that are replaced with normal HTML
when the server processes the page. When you run the application, the browser displays
three radio buttons in a button group; selecting one deselects the others.

You can create the same effect more easily by dragging three buttons from the Visual
Studio toolbox onto the form, or to make life even easier, you can drag a radio button
list onto the form, which will manage a set of radio buttons as a group. When you select
a radio button list control in the Design view, a smart tag appears, prompting you to
choose a data source (which allows you to bind to a collection; perhaps one you’ve
obtained from a database) or to edit items. Clicking Edit Items opens the ListItem
Collection Editor, where you can add three radio buttons.

Creating a Web Application | 781

Each radio button is given the default name ListItem, but you may edit its text and
value in the ListItem properties, where you can also decide which of the radio buttons
is selected, as shown in Figure 21-1.

Figure 21-1. List item collection

You can improve the look of your radio button list by changing properties in the Prop-
erties window, including the font, colors, number of columns, repeat direction (vertical
is the default), and so forth, as well as by utilizing Visual Studio’s extensive support for
CSS styling, as shown in Figure 21-2.

In Figure 21-2, you can just see that in the lower-righthand corner you can switch
between the Properties window and the Styles window. Here, we’ve used the Properties
window to set the tool tip, and the Styles window to create and apply the ListBox style,
which creates the border around our listbox and sets the font and font color. We’re
also using the split screen option to look at Design and Source at the same time.

782 | Chapter 21: Programming ASP.NET Applications

Figure 21-2. Using properties and styles

The tag indications (provided automatically at the bottom of the window) show us our
location in the document; specifically, inside a ListItem, within the ListBox which is
inside a div which itself is inside form1. Very nice.

Server Controls
Web Forms offers two types of server-side controls. The first is server-side HTML
controls. These look like normal HTML controls, but with the extra attribute
runat="server".

The alternative to marking HTML controls as server-side controls is to use ASP.NET
Server Controls, also called web controls. Web controls have been designed to provide
a more convenient server-side API for working with standard HTML controls. Web
controls provide a more consistent object model and more consistently named attrib-
utes. For example, with HTML controls, there are myriad ways to handle input:

<input type="radio">
<input type="checkbox">
<input type="button">
<input type="text">
<textarea>

Creating a Web Application | 783

Each behaves differently and takes different attributes. This is the unfortunate upshot
of the rather haphazard way in which HTML evolved in the early days of the Web. The
web controls try to normalize the set of controls, using attributes consistently through-
out the web control object model. Here are the web controls that correspond to the
preceding HTML server-side controls:

<asp:RadioButton>
<asp:CheckBox>
<asp:Button>
<asp:TextBox rows="1">
<asp:TextBox rows="5">

The HTML that ASP.NET actually serves to the web browser does not contain these
tags beginning with asp: which is just as well, because no browser would know what
to make of them. It converts them all into standard HTML, so from a client-side per-
spective, there’s no difference between these ASP.NET web controls and HTML con-
trols. It’s purely a matter of what API you’d like to use on the server side: do you want
your server-side code to work with the same element types and property names as you
will see on the client, or would you prefer your controls to use the same conventions
as all the other .NET classes you use?

The remainder of this chapter focuses on web controls.

Data Binding
While some of the content in a web application may be fixed, any interesting website
will change over time. So it’s highly likely that you’ll want some of the controls on your
web page to display data that can change from time to time, and which is probably
stored in a database. Many ASP.NET controls can be data-bound, which simplifies
display and modification of data.

In the preceding section we hardcoded radio buttons onto a form—one for each of
three shippers. That can’t be the best way to do it—relationships with suppliers change,
and there’s a good chance that we may want to work with different shippers in the
future. We don’t really want to have to go back and rewire the controls each time that
kind of business relationship changes. It makes more sense to store the list of shippers
in a database, and have the UI reflect that. (In fact, if you’re familiar with Microsoft’s
sample databases, you may recognize the three shippers in the earlier examples as the
ones provided in the “Northwind” sample database.) This section shows you how you
can create these controls dynamically and then bind them to data in the database, by
using the RadioButtonList control’s data binding support.

Add a new web form called DisplayShippers.aspx to your project. Put the editor into
Split mode. From the toolbox, drag a RadioButtonList onto the new form, either onto
the design pane or within the <div> in the Source view.

784 | Chapter 21: Programming ASP.NET Applications

If you don’t see the radio buttons on the left of your work space, try
clicking on View→Toolbox to open the toolbox, and then expanding
the Standard tab of the toolbox. Right-click on any control in the tool-
box, and choose Sort Items Alphabetically.

In the Design pane, click on the new control’s smart tag—the little arrow that appears
at the top right of the control. Then, select Choose Data Source and the Data Source
Configuration dialog opens, as shown in Figure 21-3.

Figure 21-3. Data Source Configuration dialog

Drop down the “Select a data source” menu and choose <New Data Source>. You are
then prompted to choose a data source from the datatypes on your machine. Select
Database, assign it an ID, and click OK. The Configure Data Source dialog box opens,
as shown in Figure 21-4.

You can either choose an existing connection, or in this case, choose New Connection
to configure a new data source, and the Add Connection dialog opens.

Data Binding | 785

Figure 21-4. Choosing a data connection

Fill in the fields: choose your server name, how you want to log in to the server (if in
doubt, choose Windows Authentication), and the name of the database (for this ex-
ample, Northwind). Be sure to click Test Connection to test the connection. When
everything is working, click OK, as shown in Figure 21-5.

After you click OK, the connection properties will be filled in for the Configure Data
Source dialog. Review them, and if they are OK, click Next. On the next wizard page,
name your connection (e.g., NorthWindConnectionString) if you want to save it to your
web.config file.

When you click Next, you’ll have the opportunity to specify the tables and columns
you want to retrieve, or to specify a custom SQL statement or stored procedure for
retrieving the data.

Open the Table list, and scroll down to Shippers. Select the ShipperID and Company-
Name fields, as shown in Figure 21-6.

786 | Chapter 21: Programming ASP.NET Applications

Figure 21-5. The Add Connection dialog

Click Next, and test your query to see that you are getting back the values you expected,
as shown in Figure 21-7.

It is now time to attach the data source you’ve just built to the RadioButtonList. A
RadioButtonList (like most lists) distinguishes between the value to display (e.g., the
name of the delivery service) and the value of that selection (e.g., the delivery service
ID). Set these fields in the wizard, using the drop down, as shown in Figure 21-8.

Data Binding | 787

Figure 21-6. Configuring the Select statement

Figure 21-7. Testing the query

788 | Chapter 21: Programming ASP.NET Applications

Figure 21-8. Binding radio buttons to the data source

Examining the Code
Before moving on, there are a few things to notice. When you press F5 to run this
application, it appears in a web browser, and the radio buttons come up as expected.
Choose View→Source, and you’ll see that what is being sent to the browser is simple
HTML, as shown in Example 21-2.

Example 21-2. HTML Source view

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>

</title></head>
<body>
 <form method="post" action="DisplayShippers.aspx" id="form1">
<div class="aspNetHidden">
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwUJMjMzNjY1MzU4D2QWAgIDD2QWAgIBDxAPFgIeC18hRGF0YUJvdW5kZ2QQFQMOU3BlZWR5
IEV4cHJlc3MOVW5pdGVkIFBhY2thZ2UQRmVkZXJhbCBTaGlwcGluZxUDATEBMgEzFCsDA2dnZ2RkZCOksd8
IILjpH4OAdNkxGqjSa0RYAA3N2F8zJz4lyxsv" />
</div>

<div class="aspNetHidden">

Data Binding | 789

 <input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION"
 value="/wEWBQK02+CfAgL444i9AQL544i9AQL644i9AQL3jKLTDWylFXks1YMe8G5o7AkyHjJysQk0
 Cliwu8U/2yTrYA/Y" />
</div>
 <div>
 <table id="RadioButtonList1">
 <tr>
 <td><input id="RadioButtonList1_0" type="radio"
 name="RadioButtonList1" value="1" />
 <label for="RadioButtonList1_0">Speedy Express</label></td>
 </tr><tr>
 <td><input id="RadioButtonList1_1" type="radio"
 name="RadioButtonList1" value="2" />
 <label for="RadioButtonList1_1">United Package</label></td>
 </tr><tr>
 <td><input id="RadioButtonList1_2" type="radio"
 name="RadioButtonList1" value="3" />
 <label for="RadioButtonList1_2">Federal Shipping</label></td>
 </tr>
</table>

 </div>
 </form>
</body>
</html>

Notice that the HTML has no RadioButtonList; it has a table, with cells, within which
are standard HTML input objects and labels. ASP.NET has translated the developer
controls to HTML understandable by any browser.

A malicious user may create a message that looks like a valid post from
your form, but in which he has set a value for a field you never provided
in your form. This may enable him to choose an option not properly
available (e.g., a Premier-customer option), or even to launch a SQL
injection attack. You want to be especially careful about exposing im-
portant data such as primary keys in your HTML, and take care that
what you receive from the user may not be restricted to what you provide
in your form. For more information on secure coding in .NET, see http:
//msdn.microsoft.com/security/.

Adding Controls and Events
By adding just a few more controls, you can create a complete form with which users
can interact. You will do this by adding a more appropriate greeting (“Welcome to
NorthWind”), a text box to accept the name of the user, two new buttons (Order and
Cancel), and text that provides feedback to the user. Figure 21-9 shows the finished
form.

790 | Chapter 21: Programming ASP.NET Applications

http://msdn.microsoft.com/security/
http://msdn.microsoft.com/security/

Figure 21-9. The completed shipper form

This form won’t win any awards for design, but its use will illustrate a number of key
points about Web Forms.

I’ve never known a developer who didn’t think he could design a per-
fectly fine UI. At the same time, I never knew one who actually could.
UI design is one of those skills (such as teaching) that we all think we
possess, but only a few very talented folks are good at it. As developers,
we know our limitations: we write the code, and someone else lays it
out on the page and ensures that usability issues are reviewed. For more
on this, I highly recommend every programmer read Don’t Make Me
Think: A Common Sense Approach to Web Usability by Steve Krug (New
Riders Press) and Why Software Sucks...and What You Can Do About
It by David Platt (Addison-Wesley).

Example 21-3 is the complete .aspx file.

Example 21-3. The .aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="DisplayShippers.aspx.cs"
 Inherits="ProgrammingCSharpWeb.DisplayShippers" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

Data Binding | 791

<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>Welcome to NorthWind</div>
 <div>
 Your name:
 <asp:TextBox ID="txtName" runat="server"></asp:TextBox></div>
 <div>Shipper:</div>
 <div>
 <asp:RadioButtonList ID="rblShippers" runat="server"
 DataSourceID="SqlDataSource1" DataTextField="CompanyName"
 DataValueField="ShipperID">
 </asp:RadioButtonList>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommand="SELECT [ShipperID], [CompanyName] FROM [Shippers]">
 </asp:SqlDataSource>
 </div>
 <div>
 <asp:Button ID="btnOrder" runat="server" Text="Order" />
 <asp:Button ID="Button2" runat="server" Text="Cancel" />
 </div>
 <div>
 <asp:Label id="lblMsg" runat=server></asp:Label>
 </div>
 </form>
</body>
</html>

When the user clicks the Order button, you’ll read the value that the user has typed in
the Name text box, and you’ll also provide feedback on which shipper was chosen.
Remember, at design time, you can’t know the name of the shipper, because this is
obtained from the database at runtime, but we can ask the RadioButtonList for the
chosen name or ID.

To accomplish all of this, switch to Design mode, and double-click the Order button.
Visual Studio will put you in the code-behind page, and will create an event handler
for the button’s Click event.

To simplify this code, we will not validate that the user has entered a
name in the text box. For more on the controls that make such validation
simple, please see Programming ASP.NET.

You add the event-handling code, setting the text of the label to pick up the text from
the text box, and the text and value from the RadioButtonList:

protected void btnOrder_Click(object sender, EventArgs e)
{
 lblMsg.Text = "Thank you " + txtName.Text.Trim() +

792 | Chapter 21: Programming ASP.NET Applications

 ". You chose " + rblShippers.SelectedItem.Text +
 " whose ID is " + rblShippers.SelectedValue;
}

When you run this program, you’ll notice that none of the radio buttons are selected.
Binding the list did not specify which one is the default. There are a number of ways
to do this, but the easiest is to add a single line in the Page_Load method that Visual
Studio created:

protected void Page_Load(object sender, EventArgs e)
{
 rblShippers.SelectedIndex = 0;
}

This sets the RadioButtonList’s first radio button to Selected. The problem with this
solution is subtle. If you run the application, you’ll see that the first button is selected,
but if you choose the second (or third) button and click OK, you’ll find that the first
button is reset. You can’t seem to choose any but the first selection. This is because
each time the page is loaded, the OnLoad event is run, and in that event handler you are
(re)setting the selected index.

The fact is that you only want to set this button the first time the page is selected, not
when it is posted back to the browser as a result of the OK button being clicked.

To solve this, wrap the setting in an if statement that tests whether the page has been
posted back:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 rblShippers.SelectedIndex = 0;
 }
}

When you run the page, the IsPostBack property is checked. The first time the page is
posted, this value is false, and the radio button is set. If you click a radio button and
then click OK, the page is sent to the server for processing (where the btnOrder_Click
handler is run), and then the page is posted back to the user. This time, the
IsPostBack property is true, and thus the code within the if statement isn’t run, and
the user’s choice is preserved, as shown in Figure 21-10.

Example 21-4 shows the complete code-behind form.

Example 21-4. Code-behind form for DisplayShippers aspx.cs

using System;

namespace ProgrammingCSharpWeb
{
 public partial class DisplayShippers : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)

Data Binding | 793

 {
 if (!IsPostBack)
 {
 rblShippers.SelectedIndex = 0;
 }
 }

 protected void btnOrder_Click(object sender, EventArgs e)
 {
 lblMsg.Text = "Thank you " + txtName.Text.Trim() +
 ". You chose " + rblShippers.SelectedItem.Text +
 " whose ID is " + rblShippers.SelectedValue;
 }
 }
}

Figure 21-10. The user’s choices preserved on postback

Summary
In this chapter, we saw how to create a simple ASP.NET web application using Web
Forms. We bound a list of radio buttons to a database table, and added server-side
event handlers that respond to a user’s interaction with a web page.

794 | Chapter 21: Programming ASP.NET Applications

CHAPTER 22

Windows Forms

Windows Forms offers a way to build Windows desktop applications using the .NET
Framework. This may sound rather familiar if you’re reading the chapters in order—
surely WPF does that? The two technologies do overlap, but they work very differently.
Windows Forms is essentially a wrapper around the classic Win32-based UI: when you
create a Windows Forms text box, you get an ordinary Windows text box with a .NET
wrapper. That’s not true in WPF—in order to escape the limitations of the Win32 UI
its controls are all rebuilt from scratch. So while they go to great lengths to look and
behave like their Win32 counterparts, they’re not based on them. (And Silverlight can
run on Mac OS X, so it’s clearly not dependent on any of the Windows common con-
trols either.)

Since WPF rebuilds so much of the UI infrastructure from the ground up, it took awhile
to emerge—it only appeared in .NET version 3.0, almost half a decade after .NET 1.0
shipped. Windows Forms was available from day one, presumably due in part to its
less ambitious scope—since Windows provided the underpinnings it has less to do
than WPF.

While this history explains how we ended up with two different technologies for build-
ing Windows desktop applications in C#, it leaves the question: why might you care
about Windows Forms today? WPF was invented to get away from some limitations
of the underlying Win32 UI system, so it’s more powerful than Windows Forms, but
Windows Forms offers a couple of advantages.

First, because Windows Forms was around long before WPF, it’s very well supported,
both by Microsoft’s tools and by third parties. In Visual Studio, the Windows Forms
designer is more mature than the WPF one—in Windows Forms, you can get a higher
proportion of things done in the designer than in WPF, where you can end up needing
to do more things by hand in C# or Xaml. And if you’re looking to reuse existing
controls, you might be able to find Windows Forms controls that offer more of the
features you would like than the nearest WPF equivalent. (You can mix WPF and
Windows Forms in a single application, so you might end up using a Windows Forms

795

control in a WPF application, although using two different UI frameworks can com-
plicate your program.)

The second advantage of Windows Forms is that it tends to be somewhat more frugal.
WPF applications often have a larger memory footprint than an equivalent application
would in Windows Forms. Of course, it’s not always possible to build an equivalent
application in Windows Forms, but if you’re not exploiting any of the potential benefits
of WPF, you may be paying for things you don’t need. If your application needs to run
on older machines with low specifications, this may be the deciding factor.

If neither of these benefits is useful to you, WPF is likely to be a better choice. Windows
Forms lacks WPF’s powerful composition-based model, exemplified by the content
model and powerful template system. Windows Forms is less strong graphically, and
has no animation support. It doesn’t have styling features, has a much more basic data
binding system, and has no equivalent of Xaml, which seems to have had the result that
very few tools outside of Visual Studio offer any kind of Windows Forms support,
whereas tools that can export to Xaml are rather more widespread. (And while it’s
technically possible to create Windows Forms user interfaces in Xaml, Visual Studio
doesn’t support this, and it’s rather cumbersome because Windows Forms was not
designed with Xaml in mind.) Moreover, Microsoft has indicated that Windows Forms
is unlikely to see much significant new development—it will be fully supported for
years to come, but it will not grow many new features.

Since you’ve continued reading, presumably the benefits are of interest to you, so in
this chapter, we’ll walk through the creation of a simple Windows Forms application
to show you the Visual Studio designer support and the main aspects of the program-
ming model.

Creating the Application
We’ll build a simple application for showing and editing a to-do list. To create a new
Windows Forms application, open the New Project dialog (Ctrl-Shift-N) and in the
Installed Templates on the left, select Visual C#→Windows. In the templates in the
middle, select Windows Forms Application. We’ll call our project ToDoList. Visual
Studio will create a new project with a single form called Form1—a class derived from
the Form base class. A Form is just a window—the name reflects the fact that one of the
tasks Windows Forms is particularly well suited to is making line-of-business applica-
tions that involve filling in forms.

Visual Studio will be showing the empty form in a design view that you can drag controls
onto. However, before we start adding the UI, we’re going to define a class to represent
the to-do items in our application. So we’ll add a new class called ToDoEntry to the
project, shown in Example 22-1.

796 | Chapter 22: Windows Forms

Example 22-1. Class representing to-do list entries

public class ToDoEntry
{
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime DueDate { get; set; }
}

If you’re following this in Visual Studio, make sure you build your
project after adding this class. We’re going to be using some design-time
features of Visual Studio that will need to know about your class, and
you need to have built the project for these to work.

Next, we need to make sure Windows Forms knows we’re using this class as a data
source, which we’ll do by creating a binding source.

Adding a Binding Source
The BindingSource class keeps track of how a Windows Forms UI is using a particular
data source. When you have a collection of items, such as the entries in our to-do list,
the BindingSource tracks which item is currently selected and can coordinate additions,
deletions, and changes. Using a BindingSource can also make life easier in the UI de-
signer, because it provides Visual Studio with information about the data you’re work-
ing with so that it can help connect that data to your controls.

We add a BindingSource by going back to the design view of Form1, making sure Visual
Studio’s Toolbox is open (which you can do from the View menu if it’s not already
visible), and then expanding the Data section of the Toolbox. This section contains a
BindingSource item, which we drag onto the form.

Utility components that aren’t visible at runtime, such as timers or data
sources, don’t appear on the form itself at design time. A panel at the
bottom of the design view, outside the form, contains all such nonvisual
components.

Visual Studio picks a nondescript name—bindingSource1. We can change this by se-
lecting the item and then going to the Properties panel—we’ll set its (Name) property
to entriesSource. Next we need to tell it what we’re using as a data source. The Prop-
erties panel will show a DataSource property for the BindingSource, and if you expand
its drop down, a pop up showing available data sources in the project will appear, as
Figure 22-1 shows. There are none right now, so we need to click on the Add Project
Data Source link at the bottom.

Creating the Application | 797

Figure 22-1. Configuring a binding source

Clicking this link opens the Data Source Configuration Wizard window. This supports
a few different kinds of sources. It may vary depending on exactly which edition of
Visual Studio you have installed, but you may see Database, Service, Object, and
SharePoint offered. We’re binding to objects—that’s why we added the ToDoEntry
class—so we’ll select Object and click Next. The next page, shown in Figure 22-2, lets
us choose the object types we plan to bind to—the ToDoEntry class in this case.

When we click Finish, the BindingSource now knows what kind of object it will be
working with. The final step is to supply it with the specific objects. If we had connected
to a database, Visual Studio could arrange to fetch the data automatically, but since
we’re binding to objects, it’s our job to provide those objects. We do this in the code
behind. By default, Visual Studio shows you the design view for a form, but if you right-
click, you’ll see a View Code option (or you can just press F7) to see the code behind.
As with WPF, Silverlight, and ASP.NET, the code behind is a partial class in which you
add code to handle events and work with the UI—Visual Studio generates the other
part of this partial class based on what you do in the designer. We’ll modify the code
behind by making the additions highlighted in Example 22-2.

798 | Chapter 22: Windows Forms

Figure 22-2. Selecting a source object type

Example 22-2. Supplying objects to a binding source

public partial class Form1 : Form
{
 private BindingList<ToDoEntry> entries = new BindingList<ToDoEntry>();

 public Form1()
 {
 InitializeComponent();

 entriesSource.DataSource = entries;
 }
...

The BindingList<T> class raises events when its contents change, enabling the Windows
Forms data binding system to remain up-to-date if we add or remove data items. So
the binding source now has the objects, and because we’ve configured the source ap-
propriately, Visual Studio will know exactly what properties are available and will be
able to connect those to any controls we add to our user interface. So next, we’re going
to need to add some controls.

Creating the Application | 799

Controls
The Control class in Windows Forms is the base class of almost all visual elements. A
handful of exceptions—most notably menus and tool tips—work differently in Win-
dows Forms because they also work differently in Win32, but the vast majority of UI
elements you’ll use in a Windows Forms application will be controls.

This is a significant difference between Windows Forms and WPF.
WPF’s Control class (the one in System.Windows.Controls, as opposed
to the Windows Forms one in System.Windows.Forms) is more special-
ized, as you saw in Chapter 20. In Windows Forms, not only do inter-
active elements such as Button derive from Control, so do layout
elements. The nearest equivalent to the Windows Forms Control class
in WPF and Silverlight is actually FrameworkElement.

Our application is going to have a list of entries at the top, and some fields to edit the
selected entry at the bottom. We’ll use a SplitContainer to arrange these two sections—
SplitContainer provides a draggable splitter bar that can be used to resize a pair of
panels sharing some space on-screen. We add this by dragging it from the Toolbox’s
Containers section onto the form. It automatically fills the whole window. However,
it splits the window with a vertical splitter—the two halves are on the left and right,
but we wanted them on the top and bottom. This is easily fixed, because like many
controls, the SplitContainer offers a pop-up window for performing common tasks.
At the top-righthand corner of the control, a little arrow in a box appears, and if we
click on this, the pop up appears, as Figure 22-3 shows. Clicking “Horizontal splitter
orientation” gives use the orientation we require.

In the top half of the UI, we want a list showing each to-do entry. We’re likely to want
to show at least a couple of pieces of information—the entry title and its due date, for
example. The simple ListBox control is not sufficient here. Unlike the WPF ListBox,
Windows Forms cannot easily add multiple columns, because it’s based on the Win32
ListBox. It wouldn’t be completely impossible as you can write code that customizes
how each item is rendered, but that seems like an unnecessarily complex solution when
the ListView provides multicolumn list support.

While ListView is the right control for presenting the information to the user, we just
caused ourselves a problem. Support for data binding in Windows Forms is somewhat
uneven, and while you can data-bind a ListBox, you can’t do that with ListView. This
puts us in a tricky situation: either we use a ListBox, compromising the UI to make life
easier for us, the developers, or we have to do more work by hand to use the
ListView, in order to do right by the end user. Or we could use a data grid, but for such
a simple application, it seems like overkill—the ListView is something all Windows
users will be familiar with, and it fits the bill. And because it means doing a few things

800 | Chapter 22: Windows Forms

by hand, it also gives us an opportunity to explore a few details of the data binding
system that we might otherwise not have seen, so we’ll go with that.

The ListView control is in the Common Controls section of the Toolbox. When we
drag it onto the top panel in the SplitContainer, we need to fix a few things with the
Tasks pop up. First, we want the list view to fill the whole of the top panel—there’s a
Dock in parent container task just for that. We also have to change its View—the
default is LargeIcon, but we need to change that to Details for the multicolumn view
we want. And finally, we need to tell it about the columns, by clicking the Edit
Columns task.

Figure 22-3. Pop up showing common tasks

The ColumnHeader Collection Editor opens. Clicking Add a couple of times adds two
columns. As Figure 22-4 shows, Visual Studio has been characteristically unadventur-
ous with the names—columnHeader1 and columnHeader2 don’t say much. These are the
names it will give to the fields that make these objects accessible to us in the code
behind. It’s usually a good idea to provide more informative names each time you add
anything in the Windows Forms designer—whether it’s a control, a nonvisual com-
ponent, or a column like this. Otherwise, your program rapidly acquires a long list of
incomprehensible identifiers. So we’ll set the (Name) on the right to titleColumn for the
first column, and dueDateColumn for the second.

Of course, we also want the displayed text in the column headers to be a bit more useful
than the default, ColumnHeader, so we’ll change the Text property of the two columns
to Title and Due Date, respectively. Finally, to ensure that the two columns make rea-
sonably good use of the space initially available, we’ll set their Width properties to 200
and 70. Figure 22-5 shows how the form looks once this is done. We haven’t given the
ListView itself a good name yet, so we’ll call it entriesListView.

Controls | 801

Figure 22-4. Editing ListView columns

Figure 22-5. ListView with columns

802 | Chapter 22: Windows Forms

Some developers have a stylistic objection to field or variable names that
include information about the type, and would argue that entriesList
View is unnecessarily verbose. However, it’s quite common in UI appli-
cations to have several different objects all representing the same thing
at different layers—we’ve put the underlying model in a field called
entries, we have the binding source representing that model to the data
binding system, which we’ve called entriesSource, and we have a con-
trol displaying the information, called entriesListView. Clearly these
objects can’t all be called entries. We could call the control entries
View, but that sounds less like an individual control and more like a
description of the whole form we’re building right now. So entriesList
View feels right because it seems to be a minimally descriptive and unique
name.

We would not recommend just slapping the type name on the end of
your control names out of habit, of course. Choosing identifier names
requires thought (and that goes for all identifiers, not just those in Win-
dows Forms apps). You should aim for the shortest possible name that
will make it easy to understand the code when you return to it six
months after you wrote it. If that happens to be a name that includes
the type name, that’s fine, as long as you thought about it first.

Finally, ListView supports multiple-item selection, but we want to have only one item
selected at a time. Since multiple selection is the default, we need to set the
MultiSelect property to false.

Next, we’ll add a TextBox so that the user can edit entry titles and a corresponding
Label so that the user can see what the TextBox is for. These controls are found in the
Common Controls section of the toolbar. We’ll set the Text property of the Label to
&Title:—the ampersand denotes an access key so that the user can press Alt-T to put
the focus into the text box. Access keys make user interfaces much easier to use from
the keyboard.

When you give a Label an access key, it puts the focus into whichever
control is next in the tab order. By default, the tab order will be the order
in which you added the controls to the form. But you can change this
by selecting the View menu’s Tab Order item (which is present only
when a Windows Forms design view has the focus). When you enable
Tab Order mode, you can click on the controls one after another, and
the order in which you click will define the tab order.

Therefore, your life will be marginally easier if you add each Label con-
trol just before you add the associated TextBox control because you
won’t then need to go back and redo the tab order.

Controls | 803

We’ll also add a label with the text &Due Date: followed by a DateTimePicker control,
and finally another text box with a label of Descri&ption:. (Note that we’ve been careful
to avoid ambiguous access keys; Alt-D is for the due date, so we had to pick a different
letter for the description—Alt-P.) For the description, we’d like the user to be able to
write multiple lines of text, so we need to do two things. We need to set the AcceptsRe
turn property to true—this prevents the Return key from having the usual effect of
clicking the form’s default button, and lets the text box handle returns instead. We also
need to set the Multiline property to true. These two properties may seem redundant,
but sometimes it’s useful to support multiple lines with word wrapping but still have
the Return key click the default button, which is why these two aspects are separated
out. In this application we need to set both.

Finally, we need a couple of buttons—one to add new items and one to delete items.
We’ll set the Text properties to &New and &Delete, once more taking care to keep access
keys unique. Again, we want all our controls to have sensible names, so we’ll go with
titleText, dueDatePicker, descriptionText, newButton, and deleteButton for the vari-
ous controls we’ve just added. (The names of the Label controls are not so significant,
as we won’t be using them from the code behind, but out of a slightly obsessive sense
of neatness we’ll called those titleLabel, dueDateLabel, and descriptionLabel.) Fig-
ure 22-6 shows the work in progress.

Figure 22-6. The basic layout

In fact, we’re not quite done here because there’s a problem when the user resizes the
form. As Figure 22-7 shows, the ListView fills all the width, but the remaining controls
have somewhat disappointing behavior. Fortunately, we can fix this.

804 | Chapter 22: Windows Forms

Figure 22-7. Poor resize behavior

Docking and Anchoring
Windows Forms controls support a couple of kinds of automatic resizing behavior.
They can be docked—we already have two docked controls, in fact. The SplitCon
tainer is docked to fill the entire form, and the ListView is docked to fill the top half
of the SplitContainer. If you edit the Dock property with the Properties window (instead
of the Task pop up we used earlier) you can also dock controls to a particular edge of
their container, rather than having to fill the whole thing—this is useful for menus and
toolbars that need to appear along the top edge of a window.

The other form of automatic resizing is anchoring. An anchored control doesn’t have
to fill the whole width and/or height of its container, but instead can resize or move as
its container resizes. You can anchor the top, left, bottom, or right of any control to
the corresponding edge of its container. In fact, by default, controls are anchored to
the top and left sides of their container—this means that when the container (e.g., the
window) moves, the contained controls go with it, but if the user resizes the window
by moving either the right or bottom edge, the controls remain as they are.

Controls | 805

We can exploit this to make our controls resize. The Title text box and the date picker
should both be anchored to the top, left, and right, as shown in Figure 22-8. So as the
window changes width, the righthand edge of these controls will follow its righthand
edge. The Description text box should be anchored on all four sides, so it resizes both
vertically and horizontally.

Figure 22-8. Anchoring to the left, top, and right

The two buttons should be anchored only on the bottom and right, meaning you need
to unanchor them from the top and left. That’s because we want them to follow the
bottom-right corner of the window, but not to resize.

With these changes in place, the user interface will now resize gracefully as the user
resizes the window or adjusts the splitter. Good though that looks, our application
doesn’t do anything yet. So the next step will be to hook up the controls to the data.

Data Binding
Earlier, we configured a data source and then we added some controls to represent our
data. Now it’s time to connect the two. If we select the text box for the title, and
then in the Properties panel scroll to the top of the list, there’s an expandable
(DataBindings) item, inside which is a list of properties you’re likely to want to bind.
(You can bind other properties, but most controls have only a handful of properties
that it’s likely to be useful to data-bind to.) If you show the drop down for the Text
property, the reason for adding a binding source earlier becomes apparent. As Fig-
ure 22-9 shows, Visual Studio offers a list of available data sources (just the one here
—our form’s entriesSource), which you can expand to select the property you require.

We’ll bind the two text boxes and date picker (binding the Value property in that case)
on our form to the three properties. To check that this is working, we’ll need some
data—the list we created earlier is currently empty. We’ll add a helper function to create
a new item; we’ll need this for when the user clicks the New button, as well as for
creating an initial item for when the application starts:

private void CreateNewItem()
{
 ToDoEntry newEntry = (ToDoEntry) entriesSource.AddNew();
 newEntry.Title = "New entry";

806 | Chapter 22: Windows Forms

 newEntry.DueDate = DateTime.Now;
 entriesSource.ResetCurrentItem();
}

Notice that we’re using the AddNew method offered by the binding source—this means
the binding system is aware that a new item is being created, and if other controls end
up being bound to the same source, they will be aware of the change. We then modify
two of the properties.

Since we’re using a BindingList, the data binding system would also be
aware of a new item if we just added it directly to the entries collection.
However, there’s a subtle difference with AddNew—rather than just ap-
pearing on the end of the list view, this new item will become the selected
item. And in fact, it’ll be in a tentative state until we move to a different
item or add another new one—this program happens not to exploit this,
but we could cancel the addition of a new item if the user presses the
Escape key.

Figure 22-9. Binding a property

Data Binding | 807

Our ToDoEntry class doesn’t offer change notification events, so we had to tell the bind-
ing source that it needs to refresh any controls bound to the current item by calling
ResetCurrentItem. If we implemented INotifyPropertyChanged on ToDoEntry so that it
raised an event anytime a property changed, this last line would be unnecessary.

We need to add a call to this new method in our constructor so that we have one entry
to start with:

public Form1()
{
 InitializeComponent();

 entriesSource.DataSource = entries;

 CreateNewItem();
}

With this in place, we’ll see the New entry title set by the CreateNewItem method ap-
pearing in the Title text box as Figure 22-10 shows. The description is empty for now,
so there’s nothing to see, and although the due date is now bound to the DueDate prop-
erty, there’s no obvious evidence of this—DueDate is set to the current time and date,
which is what the DateTimePicker control defaults to in the absence of any other infor-
mation, so we can’t see any change resulting from data binding for that control yet.

Figure 22-10. Form with bound controls

808 | Chapter 22: Windows Forms

There’s one glaring omission: the ListView isn’t showing any data. And that’s because,
as mentioned previously, it doesn’t have built-in support for data binding. We’re going
to need to write some code. Fortunately, it’s relatively straightforward—the binding
source raises events to let us know whenever something has changed. If you select the
entriesSource item in the form’s design view and then go to the Properties panel and
select the lightning bolt symbol to show the available events, there’s a ListChanged
event. We can add a handler by double-clicking that event. We expect three kinds of
changes in the application—addition of new items, updates to existing items, and de-
letion of existing items—so we’ll be writing three methods to handle that. The change
event argument tells us which kind of change we’re getting, so we just pick the relevant
method based on the change type, as Example 22-3 shows.

Example 22-3. Handling changes

private void entriesSource_ListChanged(object sender, ListChangedEventArgs e)
{
 switch (e.ListChangedType)
 {
 case ListChangedType.ItemAdded:
 MakeListViewItemForNewEntry(e.NewIndex);
 break;

 case ListChangedType.ItemDeleted:
 RemoveListViewItem(e.NewIndex);
 break;

 case ListChangedType.ItemChanged:
 UpdateListViewItem(e.NewIndex);
 break;
 }
}

You might be wondering why we are asking the binding source to tell us when items
have been added and changed, when we’re writing the code that adds and changes
items in the first place. The main reason is that there are certain tricky cases, such as
what happens if you have an event handler for a text box’s TextChanged event that runs
as a result of a data-binding-related change, but which in turn causes further data
binding changes; it’s easy to tie yourself in knots, or end up with code that’s rather
fragile because it depends on things happening in a specific order. But if we just perform
updates when the data binding system tells us to (via the events that BindingSource
raises) things tend to run more smoothly.

Let’s start with the code that handles the addition of a new entry. We need to create a
new ListViewItem for the list and ensure that it contains two columns. Since a new
ListViewItem already has one column by default, we need to add a second one, as
Example 22-4 shows. And then we just insert it into whatever position the binding
source said it was added to—in this application we always expect that to be the end,
but since we’re given a specific index, we may as well use it.

Data Binding | 809

Example 22-4. Adding new list items when new to-do entries appear

private void MakeListViewItemForNewEntry(int newItemIndex)
{
 ListViewItem item = new ListViewItem();
 item.SubItems.Add("");
 entriesListView.Items.Insert(newItemIndex, item);
}

This code doesn’t bother to provide values for the newly created item, because the
binding source immediately follows a new item notification with an item change noti-
fication. So by putting code to update the list view item in the change notification
handler, shown in Example 22-5, we cover two cases: new items and changes to existing
items.

Example 22-5. Making list view items reflect changes

private void UpdateListViewItem(int itemIndex)
{
 ListViewItem item = entriesListView.Items[itemIndex];
 ToDoEntry entry = entries[itemIndex];
 item.SubItems[0].Text = entry.Title;
 item.SubItems[1].Text = entry.DueDate.ToShortDateString();
}

Finally, Example 22-6 shows the code for handling deleted items. We’ve not added the
code to perform deletions yet, but we need this method in place for Example 22-3 to
compile.

Example 22-6. Removing list view items for deleted entries

private void RemoveListViewItem(int deletedItemIndex)
{
 entriesListView.Items.RemoveAt(deletedItemIndex);
}

Running the application will now show the title and due date for a newly created entry
in the list view immediately. And updating the title or date will also cause the list view
to update. There’s still one small problem. By default, data bindings don’t perform an
update until the focus moves away from the control in question. This is only mildly
annoying for the text box, but it looks quite odd with the date picker—selecting the
date involves clicking on a day, at which point the pop-up calendar disappears. This is
a sufficiently positive action that it feels weird to have to move the focus somewhere
else for the action to take effect. We can fix this by setting up the bindings manually,
because that gives us the opportunity to specify exactly when data is transferred.

810 | Chapter 22: Windows Forms

To do this, we must first remove the bindings we set up with Visual Studio—if we’re
creating them manually we don’t have any need for the ones the designer created. We
do this by going back to the (DataBindings) section in the Properties panel, right-
clicking on the relevant bound property, and selecting Reset. (If you switched to the
event list with the lightning bolt earlier, remember to switch the Properties panel back
to property mode.) You need to do this for only the due date and the title—the de-
scription isn’t shown anywhere other than in its text box, which means the default
updates are good enough, so we can leave that as is. Then, we can add the highlighted
code shown here in the form’s constructor directly after the call to InitializeComponent:

public Form1()
{
 InitializeComponent();

 titleText.DataBindings.Add("Text", entriesSource, "Title", true,
 DataSourceUpdateMode.OnPropertyChanged);
 dueDatePicker.DataBindings.Add("Value", entriesSource, "DueDate", true,
 DataSourceUpdateMode.OnPropertyChanged);

 entriesSource.DataSource = entries;

 CreateNewItem();
}

The first three arguments of each of these specify the control property, the data source,
and the source property—this defines what information the binding connects. The
true argument that follows says it’s OK for binding to format the data if necessary.
These arguments just do the same thing Visual Studio did for us previously. The final
argument is the interesting one. We’re saying we want the binding to refresh anytime
the property changes, rather than the default setting of waiting until either the focus
moves or something else means we can’t wait any longer (e.g., different data is about
to be loaded).

With this in place, changes to either the title or the due date will show up immediately
in the list view.

So we now have some controls that present the data, and in the case of the text boxes
and date picker, which will also modify the data. The next job is to make those buttons
do something.

Event Handling
To respond to user input in Windows Forms applications, we can just use ordinary C#
event handling—user interface elements are all represented as objects, and they raise
events in the usual way whenever anything interesting happens. As you already saw
with the binding source change notifications, Visual Studio can generate the event-
handling code for us.

Event Handling | 811

Controls define a default event, usually the event you are most likely to want to handle
for the control in question. So we can handle the Click events of the two buttons by
double-clicking on them in the designer. Visual Studio will add event handler methods
with suitable names and signatures, and will add the code to handle the event in the
generated part of the partial class. We simply need to provide the code. The New button
handler is pretty straightforward, because we already wrote the code to add a new item:

private void newButton_Click(object sender, EventArgs e)
{
 CreateNewItem();
}

Deletion is slightly more involved:

private void deleteButton_Click(object sender, EventArgs e)
{
 if (entriesListView.SelectedIndices.Count != 0)
 {
 int entryIndex = entriesListView.SelectedIndices[0];
 entriesSource.RemoveAt(entryIndex);
 }
}

The ListView control is able to support multiple selection. We’ve disabled this, but we
still have to negotiate an API designed to support it—it offers a SelectedIndices col-
lection, providing all the selected items. We just make sure it’s not empty, and then
use the first index. We remove the object via the binding source so that the data binding
system knows what’s going on, just as we did when adding a new item. (In fact, it would
work if we didn’t do this because this example uses a BindingList to hold the model,
and that raises change notifications. Unlike AddNew, there’s no particular advantage to
going via the binding source here, but since we’re treating the binding source as the
central point through which all changes are handled, it’s good to be consistent.)

We can now add multiple entries. This reveals a missing piece—we have done nothing
yet to ensure that when the user selects an item in the list view, the corresponding
entry’s properties appear in the rest of the form. So we need to add a handler to the list
view’s SelectedIndexChanged event. That’s its default event, so you can just double-
click the list view in the form designer. Then all we need to do is set the binding source’s
Position property:

private void entriesListView_SelectedIndexChanged(object sender, EventArgs e)
{
 if (entriesListView.SelectedIndices.Count != 0)
 {
 int entryIndex = entriesListView.SelectedIndices[0];
 entriesSource.Position = entryIndex;
 }
}

We’ve had to jump through the same hoop to get the selected item index. There’s really
just one line of interest here—the one that sets the Position.

812 | Chapter 22: Windows Forms

We have to do this only because the ListView doesn’t do data binding
automatically. The ListBox and most data grid controls will automati-
cally synchronize the current data binding position with the selected
item.

One little bug remains. When we delete all the items, the text boxes and date picker
are bound to nothing. This doesn’t crash the program; it just means the user can type
in details that go nowhere. There are a couple of ways we could fix this. In the list
change notification handler, we could look at the number of entries, and disable ev-
erything except the New button to make it clear that there’s nothing to edit right now.
Or we could handle change notifications in the text boxes—text box controls raise a
TextChanged event, and we could handle that (as well as changes to the date picker or
description) and create a new entry if the user types into an empty list. Since neither of
these would illustrate anything you haven’t already seen we’ll leave this part up to you.

Summary
Windows Forms provides a .NET wrapper around the Win32 user interface model.
Visible elements are represented as objects that derive from the Control base class.
Control features are configured with normal .NET properties, and we can use ordinary
C# event handlers to respond to user input. Data binding automates some aspects of
connecting data to the screen, although the support in Windows Forms is not as com-
prehensive as in WPF, and we needed to do some extra work to get the effect we re-
quired on the control we wanted to use. Windows Forms may be less powerful than
WPF, but it has a smaller memory footprint and may be more suitable on low-end
hardware, or if you need to use controls that are available only for Windows Forms.

Summary | 813

Index

Symbols
!= not equal to operator, 43
& address-of operator, 720
&& Boolean combination operator (if both

true), 43
* dereference operator, 720
* multiplication operator, 35
+ addition operator, 35
++ increment operator, 38
+= adding value operator, 38, 630
- subtraction operator, 35
-- decrement operator, 38
-> member access operator, 720
. delineation operator, 19
/ division operator, 35
/* */ multi-line comment, 25
// single-line comment, 25
/// XML Documentation Comments, 26
32-bit processes, 5, 30, 236, 713–716
3D graphics, 755
64-bit processes, 5, 30, 236, 713–716
: calling one constructor from another, 86
: part of ternary operator, 44
; end statement, 24
< less than operator, 43
<= less than or equal to operator, 43
= field initializer operator, 74
== equal to operator, 43
=> lambda expression, 163
> greater than operator, 43
>= greater than or equal to operator, 43
? part of ternary operator, 44
@" " string literal, 321
[] array index, 222

\ (backslash) escape character, 319–322
\n line feed, 346
\r carriage return, 346
{} braces, C# containment, 17, 24
|| Boolean combination operator (if either true),

43

A
∀ universal quantifier, 292
abstract base classes, 121–127, 139
abstracting ideas, 59–63
accepting incoming connections, 533
accessibility modifiers, 67, 114–116
ACL (access control list), 490
Action<T>, 156–160
ActiveX Controls, 707–710
Add method, 245, 257, 308, 576
Add Reference menu item, 23
AddAnything method, 691, 697
AddBefore/AddAfter methods, 312
adding value (+=) operator, 38, 630
addition (+) operator, 35
AddNew method, 807
AddNumbers method, 254, 258, 259
AddProcess method, 159
AddRange method, 246, 279
AddTo methods, 574
administrative privileges, 490
ADO.NET, 540–544, 571
Adobe PDF Reader control, 708–710
affine transformations, 747
aggregation, 105, 292
air traffic control example

constructors, overloading, 88–92
declaring an enum, 79–82

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

815

defining classes, 64–66
defining methods, 95–98
defining variables/types, 82–87
initializing with a constructor, 68–72
object initializers, 92–95
setting protection levels, 66–68
setting up fields and properties, 72–79
specs for, 62
static fields and properties, 99–102

aliases, 30
All operator, 291
ampersand (&), address-of operator, 720
anchoring, 805
animation, 753
anonymous methods, 162
anonymous type, 283
Any operator, 291
APM (Asynchronous Programming Model),

652–655, 663
appdomains, 605
AppendLine method, 350
application isolation, 434
args variable, 39
argument exceptions, 216
arrays, 39

construction and initialization of, 222–225
custom indexers in, 247–253
custom types in, 225–230
jagged, 236–238, 241
List<T> as resizable, 243–254
members/elements of, 230–236
multidimensional, 238
params keyword, 225
rectangular, 238–243
size of, 236–243

as keyword, 141
ASCII, 361
ASP.NET (see Web Forms and ASP.NET)
.aspx extension, 776
assemblies

loading, 601–605
naming, 598–601
overview, 589
protecting, 595–598
referencing, 590–592
writing libraries, 593–595

AssemblyInfo.cs, 21
assignment statements, 38
associations, 104, 108, 556–558

asterisk (*) dereference operator, 720
asynchronous file operations, 425–428, 517
asynchronous programming, 651–656, 663
Atom, 514
attached properties, 741
attributes, 456–459, 671–677
authentication, 518
Authenticode signature, 434
auto properties, 73

B
backlog, 533
backslash (\), escape character, 319–322
base classes, 106, 116–118, 121
Base64 encoding, 444–446
basic authentication, 519
basic profile, 474
Begin methods, 652, 663
BeginTransaction/EnlistTransaction methods,

579
behaviors, 754
Berners-Lee, Tim, 512
BigInteger, 31
binary, 20, 33, 444–446, 589
bindings, 508, 763, 767–769, 784–787, 806–

811
bit fields, 81
bitmaps, 751
bitness, 713
blocking APIs, 651
BlockingCollection, 650
BOM (Byte Order Mark), 363
bool type, 42
boxing, 127
braces {}, C# containment, 17, 24
brackets [], array index, 222
break keyword, 46, 53
breakpoints, 50, 200, 438
buffering, 423
bugs, defined, 185
Bustamante, Michele Leroux, 486
button element, 732–735, 740–748, 755–765,

777, 784–793
Byte Order Mark, 363

C
C#

compared to Java, 6

816 | Index

creating a new program in, 11
improvements in version 2.0, 258
improvements in version 3.0, 92, 265, 284
improvements in version 4.0, 7–9, 725–

727
Internet resources for, 9
language style, 3–7
and managed code, 5
overview, 1–9

C++
memory management issues in, 5
and .NET Framework, 3

caching, 302–305, 520
calculated properties, 71
call stack, 57, 200
callback interface, 501
calling base class methods, 116–118
calling client from server, 505–508
camel casing, 65, 154
CancelAsync method, 656
cancellation, 663
cancelling events, 177–180
Canvas panel, 742
carriage return (\r), 346
cascading deletes, 576
cast operator, 33
catch blocks, 207–215
chaining enumerations, 262
char types, 317, 360
characters, 341, 343–344
charmap, 365
child elements, 450
Church, Alonzo, 163
cipher text, 440
classes

defined, 62
how to decide on, 63
how to define, 17, 64
in .NET, 3
nested, 159
sealing, 119

CleanupTestDirectories method, 394
CLI (Common Language Infrastructure), 87
ClickOnce Publication Wizard, 434
Close method, 9
closures, 169
CLR (Common Language Runtime), 3
code pages, 361
code points, 362

code separation, 776
code-behind files, 733, 775, 780, 793
codespace, 362
collection classes

defined, 56
dictionaries, 299–307
HashSet and SortedSet, 310
IDictionary<TKey>, <TValue>, 308–310
lazy, 261–264
linked lists, 312
and polymorphisms, 254–258
queues, 311
stacks, 313
when working in C++, 3

colon (:), calling one constructor from another,
86

COM automation, 7, 689, 693
Combine methods, 387
command-line inputs, 39
comments, use of, 25–27
Common Language Infrastructure (CLI), 87
Common Language Runtime (CLR), 3
comparable types, 234
CompareBytes method, 417
CompareFiles method, 410
CompareTo method, 233
comparison operators, 42, 355
Comparison<T>, 233
compilation, 20, 91, 250, 271, 285
Compile method, 567
composability with delegates (see extensibility

with delegates)
composing strings, 344–348
composite formatting, 337
composition, 105, 273
Concat method, 345, 691
concatenation, 279, 345, 387
conceptual models, 549
Concurrent Programming on Windows (Joe

Duffy), 632
Configure method, 154
Connect method, 504, 531
connection handling, database, 571–573
Console Application template, 12
const modifier, 75
constrained layout, 744
constructors, 68, 87–88, 423–425
Contains method, 310
contended resource, defined, 186

Index | 817

content controls, 755–761
contention, 611
context switches, 620
contextual keywords, 71
continuations, 661
ContinueWith method, 661, 666
control characters, 361, 362
controls

ActiveX, 707–710
Adobe PDF Reader, 708–710
Silverlight/WPF, 755–761
web form, 783, 790–793
Windows Forms, 800–804
Xaml libraries, 759

conversions, 37, 296
cookies, 521
copying array elements, 234
CopyTo method, 235, 421
Count method/property, 246, 293
countdown, 650
coupling, 144
CreateDirectory methods, 387
CreateEncryptor method, 443
CreateFile method, 399, 720
CreateInstance/CreateComInstanceFrom/

CreateComInstanceFrom methods,
684

CreateNewItem method, 808
CreateText method, 397
CRUD (Create, Read, Update, and Delete)

operations, 574–576
CryptoStream, 443
.cs extension, 12
culture sensitivity, 338–340
currency values, 323
current working directory, 376
Curry, Haskell, 163
custom attributes, 673–677
custom dynamic objects, 702
custom event storage, 181–182
custom exceptions, 218–220
custom indexers, 247–253
custom interfaces (COM), 694
custom numeric format strings, 329–332

D
Dahl, Ole-Johan, 62
data access with LINQ, 4
data binding, 767–769, 784–787, 806–811

data parallelism, 666–670
database LINQ providers, 544
databases

changing the mapping of, 554
connection handling, 571–573
context and entity lifetime, 583
creating, updating, deleting data, 574–576
Entity data model, 548–550
and ESQL, 568–571
functions delegates versus expressions, 567
generated code from .edmx, 551–554
and object context, 571–573, 583
optimistic concurrency, 581–583
queries, 563–571
relationships between tables, 555–562
and SQL Server 2008 Express, 547
transactions, 576–581
WCF Data Services, 546, 584–588

DataSet class, 543
date and time strings, 332–335
daytime service, 527, 534
deadlocks, 632
deadly embraces, 632
debugger (Visual Studio), 50, 205, 379, 438
decimal floating point, 34
decimal format, 324
declarative pinning, 722
decoding, 363, 365
decrement (--) operator, 38
decryption, 445
default constructors, 87
default named parameters, 89–92
deferred execution, 263, 274, 544, 563
degenerate query, 282
degrees, in relationships, 560
delegates, 150–156, 165–167, 271
Delete method, 381, 400
DeleteObject method, 576
deleting files, 381
Dequeue method, 311
derived classes, 106–109
Descendants method, 466
Deserialize method, 469
design by contract philosophy, 202
dictionaries, 299–307
digest authentication, 519
digital signing, 599
Dijkstra, Edsger, 54
directories

818 | Index

creating and securing, 388–394
deleting, 394–396
inspecting, 371–375

disambiguation, 15
Disconnect method, 504, 507
disconnected operation, 543
DisplayMatches function, 409
DisplayResults method, 411
Distinct operator, 295
divide-by-zero problems, 190
division (/) operator, 35
division, integer versus floating-point, 36
DLL, 19, 589, 602, 716, 759
.dll extension, 19, 589
do while Statements, 53
docking, 805
DockPanel, 743
document processing example (see extensibility

with delegates)
Domain Name Service (DNS), 524
Don’t Make Me Think (Krug), 791
dot (.) delineation operator, 19
double keyword, 28
double type, 31–34, 191
Download methods, 512, 513, 651, 655
downloading from URL, 512
dry (don’t repeat yourself) principle, 72
dual-mode sockets, 532
Duffy, Joe, 632
duplex clients, 509–511
duplex contracts, 501
dynamic keyword, 9, 693, 695, 700, 703
dynamic object types, 693–703
dynamic programming, 7, 687–693
dynamic properties, 305
dynamic type, 690
DynamicWhere method, 704

E
∃ existential quantifier, 292
EDM (Entity Data Model), 549
.edmx extension, 551
EF (Entity Framework), 548–550

and ADO.NET, 571
connection handling in, 571–573
and CRUD operations, 574–576
and EDM, 548–550
and ESQL, 568–571
first release, 544

inheritance, 562
and Link to Entities, 563–571
and mapping, 555
multiplicity, 560
and navigation properties, 556–558
queries in, 563, 567
versus LINQ to SQL, 545
and WCF, 546, 584

elements
array, 230–234
graphical, 748–755
method, 465
UI, 738–748
XML, 450, 455

embarrassingly parallel tasks, 626
empty strings, 355–357
encapsulation, 60, 71, 150
encoding characters, 360–370
encryption, 439–446
EncryptString method, 442
End methods, 652, 654, 663
EndGetHostEntry method, 654
endpoints, 490
English, cultural variants in, 338
Enqueue method, 311
Entity Data Model (EDM), 549
Entity Framework (EF) (see EF (Entity

Framework))
entity lifetime, 583
Entity SQL (ESQL), 568–571
entry point, 589
enum keyword, 79–82, 197
EnumerateFiles method, 266
enumerations

FileMode, FileAccess, FileShare, 422
filenames, 266
lazy, 261–264
and variance, 257

equals (=), field initializer operator, 74
Equals methods, 300
errors

custom exceptions, 218–220
debugging with return values, 200
deciding what to catch, 215–218
exceptions, 201–214
overview, 185–191
setting return values, 194–201
task handling, 665
try, catch, finally blocks, 207–215, 260

Index | 819

when and how to fail, 191–194
escape characters, 319–322
ESQL (Entity SQL), 568–571
evaluation order, 37
event keyword, 171
event overlaps, 291
event storage management, 181–182
EventHandler<T>, 176
events handling, 171–182, 649, 776, 790–793,

811
exception types, 215
exceptions, 201–214, 260

custom, 218–220
for files, 400–409

.exe extension, 19, 589
existential quantifier, 292
ExpandoObject class, 701
explicit

element types, 224
interface implementation, 136–139
loading, 604
member access, 97
TreeViewItem containers, 757

exponential form, 325
Expression Blend, Microsoft, 736
expression trees, 164
Expression<T> type, 567
expressions, 35–38
extensibility and polymorphism

all types derived from Object, 127–132
association through composition and

aggregation, 104
calling base class methods, 116–118
checking types at runtime, 141
deriving interfaces from other interfaces,

135–140
inheritance and polymorphism, 106–108
inheritance and protection, 114–116
marking a class sealed, 118–121
multiple inheritance, 132–135
replacing methods in derived classes, 109–

114
requiring overrides with abstract, 121–127
XML, 452

extensibility with delegates
creating delegates with lambda expressions,

163–165
delegates in properties, 165–167

functional composition with delegate, 150–
156

generic action with Action<T>, 156–160
generic delegates for functions, 167–171
generic predicates with Predicate<T>, 160–

162
notifying clients with events, 171–182
setup, 143–150
using anonymous methods, 162

extension methods, 268–270, 344, 698
external client, 480
external party web service, 479

F
F#, 4
factory methods, 92
fall-through in case statements, 46
fetching, 512
fibers, 613
field initializer, 74
fields, 72–79
File.Exists method, 401
FileInfo object, 377, 406
FileOptions enumeration, 425
files and streams

asynchronous file operations, 425–428
concatenating path elements safely, 387
creating and securing directory hierarchies,

388–394
creating temporary files, 381
CryptoStream, 443
dealing with exceptions, 400–409
deleting a directory, 394–396
deleting files, 381
examining directories, 374
FileStream constructors, 423–425
finding and modifying permissions, 404–

409
inspecting directories and files, 371–375
isolated storage, 428–439
managing user storage with quotas, 436–

439
manipulating file paths, 375–377
MemoryStream, 444
reading files into memory, 409–413
reading, writing, and locking files, 422–423
streams, 413–421
streams that aren’t files, 439–446
well-known folders, 383–387

820 | Index

writing text files, 396–400
filtering, 275
finalization, 666
finally blocks, 207
FindAll method, 231, 237, 254
finding and replacing content, 353
fine-grained concurrency, 659
firefighter training and simulation example (see

extensibility and polymorphism)
firewalls, 502, 535
fixed keyword, 721, 724
Fixed-point format, 326
[Flags] enum, 81
flags-style enumeration, 425
floating point types, 31–34
flow control, 39–54
flushing data, 423
fonts, 316
for statements, 50
ForEach methods, 628, 667–670
foreach statements, 48, 254, 258–260
format characters, 362
format items, 337
formatting data for output, 322–329
friendly feed rendering, 586
FromAsync method, 663
Func<> types, 167
functional coding/style, 18, 143, 273, 279
functional decomposition, 61
functions, 60, 167–171
futures, 661

G
GAC (global assembly cache), 603
garbage collection, 5
general format, 326
GenerateIV/GenerateKey methods, 441
generic classes

List<T>, 243–254
generic delegates

Action<T>, 156–160
EventHandler<T>, 176
Predicate<T>, 160–162

generic types, 244
get accessor, 64–71, 130
GetAccessControl method, 405
GetAllFilesInDirectory method, 266
GetCipherText method, 445
GetEnumerator method, 255

GetFiles method, 374
GetFolderPath method, 383, 387
GetHashCode method, 300
GetLength method, 243
GetMachineStoreForApplication/Domain/

Assembly methods, 436
GetMembers method, 682, 683
GetMethods, 683
GetRandomFileName method, 382
GetResourceStream method, 604
GetStream method, 517
GetString method, 367, 723
GetTempFileName method, 381
GetType method, 468, 680
GetUserStoreForAssembly/

GetUserStoreForDomain methods,
432

GetWeb methods, 515
global assembly cache (GAC), 603
global namespace, 16
Go method, 614, 621, 630
GoNow method, 642
governing type, 80
graphic characters, 362
Grid panel, 739–742
groupby clause, 286
grouping, 280–282
guard clauses, 202

H
hardware threads, 612
hashes, 300
HashSet, 310
heap, on the, 84
heap-allocated objects, 5
Hejlsberg, Anders, 65
“Hello, world”, 2, 12, 18, 21, 24
hexadecimal format, 324
hiding methods, 109–111
hierarchies, directory, 388–394
high surrogates, 362
HighlightTrademarks method, 155
HorizontalAlignment, 744
Hurwitz, Dan, 775
hyperthreading, 612

Index | 821

I
IANA (Internet Assigned Numbers Authority),

527
ICollection<T>, 293
IDataReader, 540–544
IDictionary<TKey>, <TValue>, 308–310
IEnumerable<T> and IEnumerator<T>, 255,

269, 273
if statements, 40–45
if...else statements, 44–45
IL (Intermediate Language), 5, 20
images, 751
immutability

of sources, 273
of strings, 341
of value types, 84, 251

implementation, switching of, 71
implicit transactions, 579
Implicit type conversions, 37
in keyword, 257
Include method, 559
IncreaseQuotaTo method, 436
increment operator (++), 38
indexed properties, 725
indexers, 247–253
indexes, array, 222
IndexOf method, 353
infinite series, 263
inheritance, 106–108, 562
initialization vector, 440
initialization, field, 74
initializer list, 223
InitializeService method, 585
inline array initializer, 224
inlined methods, 162
inner exceptions, 212
inscrutable identifiers, 302
InspectDirectories method, 373, 406
integers (int), 29–31, 80
IntelliSense, 165, 339, 696, 734
interface keyword, 133
interfaces, 132–140, 255
Intermediate Language, 5, 20
internal protection level, 66, 596–598
Internet Assigned Numbers Authority (IANA),

527
Internet Protocol, 523–528
interop assemblies, 711–713
interop scenarios, 423

interop syntax enhancements, 725–727
interoperability, 7, 707
into keyword, 281
intrinsic ordering, 233
Invoke function, 152, 684
IP/IPv6, 523–528
is keyword, 141
is-a association, 106
IsAssignableFrom method, 682
ISet<T>, 311
IsHighSurrogate/IsLowSurrogate methods,

362
IsNumber/IsLetter methods, 362
isolated storage, 371, 428–439
IsWhitespace method, 360
iteration statements, 47–54
iteration variables, 51

J
jagged arrays, 236–238, 241
Java, compared to C#, 6
JavaScript, 694, 737
Join method, 617, 641
joining of sources, 295
JSON (JavaScript Object Notation), 474

K
key pairs, 600
key type, 300
keys, 342, 586
Kleene, S. C., 163
Krug, Steve, 791

L
lambda expressions, 163–165, 271, 700
late binding, 683–685
layout panels, 739–748
layout properties, 743–748
layout slot, 743
lazy enumeration, 261–264, 274
lazy loading, 558
Learning ASP.NET 3.5 (Liberty, Hurwitz,

MacDonald), 775
Learning WCF (Bustamante), 486
least-significant byte (LSB), 369
let clauses, 271
Liberty, Jesse, 775
libraries, 22, 593–595

822 | Index

life cycle, 778
LIFO (last in, first out) queues, 660
ligatures, 362
lightweight value types, 85
line feed, 346
linked lists, 312
LINQ (Language Integrated Query)

aggregation, 292
concatenation, 279
concepts and techniques, 271–275
conversions, 296
data access with, 4
and databases, 544
filtering, 275
grouping, 280–282
joining, 295
namespace, 15
ordering, 276–279
projections, 282–288
query expressions, 265–268
searching in XML with, 461–464
set operations, 294
zipping, 288

LINQ to Entities, 563–571
LINQ to SQL, 544
LINQ to XML, 452–455
Linux, 7, 730
Liskov Substitution Principle (LSP), 107
Liskov, Barbara, 107
List<T> class, 129, 148, 243–254
listening, 533–534
literal expressions, 35
literal strings/chars, 318
little-endian form, 369
livelocks, 632
Load method, 455, 558, 604, 680
LoadFile method, 416, 604
LoadFiles function, 410
loading assemblies, 601–605
localhost, 525, 532
lock keyword, 641
locking, 637–649
logical processors, 611
loops, breaking out of, 53
low surrogates, 362
lowercase letters, 347
Lowy, Juval, 486
LSP (Liskov Substitution Principle), 107

M
Mac OS X, 7
MacDonald, Brian, 775
machine isolation, 435
machine language, 20
machine translation (see extensibility with

delegates)
Maharry, Dan, 775
Main method, 18, 39, 97
MakeTestDirectories method, 386, 404
Managed Extensibility Framework (MEF),

604
many-to-many relationships, 562
mapping, database, 548, 554
media, 753
MEF (Managed Extensibility Framework),

604
member access (->) operator, 720
members of a type, 682
memory, reading files into, 409–413
MemoryStream, 444
Message property, 203
metadata, 496, 589, 677
methods

abstracting ideas with, 59–63
anonymous, 162
calling base class, 116–118
declaring, 95–99
defined, 17
hiding, 109–111
and LINQ queries, 267
needs of users and developers, 60
overloaded, 89–92
overview, 55–57
replacing, 112–114
static, 98
versus functions, 60
virtual, 112–114, 120

MIME features, 536
ML programming language, 4
monitors

BlockingCollection, 650
events, 649
locking, 637–649
notification, 641–645
overview, 634–640

Moonlight project, 7
MoveFile method, 716
moving/copying array elements, 234

Index | 823

MSB (most-significant byte), 369
multidimensional arrays, 238
multiple inheritance, 132–135
multiple sort criteria, 277
multiple sources, 286
multiplexing, 608
multiplication (*) operator, 35
multiplicity, relationship, 560
multithreaded coding, 629–633
mutable strings, 349–353
mutexes, 648

N
namespaces (.NET), 14–19, 22
NaN (not a number), 191
navigation properties, EF, 556, 575
nested classes, 159
.NET client/server, 477–480
.NET Framework

and array size, 236
and assemblies, 589
and C#, 2–4
and C++, 3
class library, 2
and collections, 254
continuity with Windows ecosystem, 6
and cookies, 521
and data access, 539–544
and default constructors, 91
memory management in, 84
and multiple inheritance, 132–135
multiple language support in, 3
order of static initialization, 101
security model of, 6
types derived from Object, 127
version 4, 7–9

networking, 473
(see also WCF (Windows Communication
Foundation))
bidirectional communication with duplex

contracts, 501–511
choosing technology, 473
client-side code, 474–477
external party web service, 479
HTTP, 511–519
Internet Protocol, 523–528
.NET client/server, 477–480
sockets, 522, 528–536

new keyword, 109, 226, 283

NHibernate, 546
NIST (National Institute of Standards and

Technology), 528
no-PIA, 9, 712
nodes, 465
noninterop scenarios (dynamic), 703–706
nonpostback events, 777
not equal to (!=) operator, 43
NotePosted method, 507
null character, 320, 356
null keyword, 83
numbering from zero, 40
numbering items, 288
numeric format, 327
Nygaard, Kristen, 62

O
object context, 553, 571, 583
object-oriented programming, 62
objects

defined, 62
initializers, 92–95
and Xaml, 735–737

Office, Microsoft, 7–9, 687, 689, 712
one-to-many relationships, 560
one-to-one relationships, 561
OnGetHostEntryComplete method, 654
OnProcessing/OnProcessed methods, 172
Open method, 9, 693
OpenRead/OpenWrite methods, 422, 515
optimistic concurrency, 581–583
order of evaluation, 37
OrderBy method, 278
ordering, 276–279
Organize Usings item, 16
orthotopes, 239
out keyword, 257
output

formatting, 322–329
to console, 2

overexpression of concurrency, 659
overloading, 88–92, 141
overriding, 112, 121–127

P
P/Invoke, 716–720
Page_Load method, 793
Parallel class, 667–670

824 | Index

parallel execution, 607
Parallel LINQ, 669
parameter list, 18
parameters, avoiding SQL attacks with, 542
params keyword, 225
parent-child relationships, 659
parental element, 450
partial keyword, 554
partial-trust scenarios, 720
Pascal casing, 65, 154
Path class/methods, 375, 387
patterns, 92
peer-to-peer networking, 536
percent format, 327
permissions, 389–394, 391–409, 424
PIAs (primary interop assemblies), 9, 712
pinging, 536
pinning, 721
“pit of success,” designing for the, 75
Platt, David, 791
PLINQ (Parallel LINQ), 669
POCO (Plain Old CLR Object), 553
pointers, 720–725
polymorphism, 107, 254–258

(see also extensibility and polymorphism)
popping, 57
port numbers, 527
post conditions, 202
Post method, 623
postback events, 777
PostNote method, 497
precedence, 37
preconditions, 202
predicate, defined, 159
Predicate<T>, 160–162
primary interop assemblies (PIAs), 9, 712
printable characters, 361
private protection level, 66–69
procedural coding, 18
Process method, 178
Program.cs, 12
Programming ASP.NET 3.5 (Liberty, Maharry,

and Hurwitz), 775
Programming WCF Services (Lowy), 486
programming, basic techniques

comments, regions, and readability, 24–27
expressions and statements, 35–39
flow control with selection statements, 39–

54

getting started, 11–14
methods, 55–57
namespaces and types, 14–19
projects and solutions, 19–24
variables, 28–35

project
creating in Visual Studio, 27
defined, 12, 19

projections, 282–288
properties, 64–71, 165–167
Properties panel (Solution Explorer), 47
property elements, 739
protected internal modifier, 114–116
protected modifier, 114–116
protection levels, 66–68, 595–598
Proust, Marcel, 723
proxies, 497–501, 520
public protection level, 66
Pulse/PulseAll methods, 641
pushing, 57

Q
quantifiers, 292
quantum, 613
query expressions, 265–268
queues, 311
QueueUserWorkItem method, 621
quotas, 436

R
race conditions, 629–631
RAD (Rapid Application Development), 775
radio buttons, 781, 784–793
RaisePostDataChangedEvent method, 778
raising events, 172
random numbers, 382, 441
range checking, 192
range variables, 266
Rapid Application Development, 775
Read method, 415, 421, 721
read-only fields and properties, 76–79, 101
ReadAll methods, 48, 409, 624
reader/writer locks, 647
ReadLines method, 409, 687
ReadNumbersFromFile method, 55
ReadToEnd method, 529
rectangular arrays, 238–243
ref object, 726

Index | 825

refactoring, 57
reference types, 83, 226, 230
reference versus value, 83
References item, 23
references, assembly, 590–592
reflection, 677–685
Refresh method, 583
regions and readability, 24–27
Register method, 664
Remove Unused Usings item, 16
Remove/RemoveAt method, 245
RemoveAt method, 636
repaginating (see extensibility with delegates)
Replace methods, 354, 688
replacing methods, 112–114
responsiveness, 608
REST (Representational State Transfer), 477
RESTful Web Services (Ruby and Richardson),

477
rethrowing an exception, 211
return keyword, 56
return values, 194–201
Richardson, Leonard, 477
Right method, 343
root element, 450
round-trip format, 328
Ruby, Sam, 477
runnable threads, 612
runtime, 141

S
Sandcastle, Microsoft, 27
SaveChanges method, 574
schedulers, 612, 662
Schneier, Bruce, 440
sealing classes, 119
search axes, 466
Secrets and Lies: Digital Security in a

Networked World (Schneier), 440
security issues

access control lists, 490
accessibility modifiers, 67, 115
authentication, 519
directory hierarchies, 388–394
dynamic queries, 568
encryption, 439–446
exceptions, 400–409
fields initialization, 75
firewalls, 502

.NET security model, 6, 429, 439, 790
Silverlight, 720
stack traces, 491
WCF contracts, 483
WCF data services, 546, 584

Seek method, 419
select clause, 267
Select method, 268, 282
selection statements, flow control with, 39–54
SelectKeyAndIV method, 441
SelectMany method, 287
semicolon (;) end statement, 24
separated presentation, 771
serialization, 220, 467–471
server configuration, 508
server-side controls, 778, 781, 783
service contract, 482
session-based communication, 503
set accessor, 64, 130
set-based operations, 294
SetAccessControl method, 405
shapes, 748–751
sharing contracts, 496
side effects, 163
signed assemblies, 432
signed integer types, 29
Silverlight, Microsoft, 729

(see also WPF (Windows Presentation
Foundation) and Silverlight)
and assembly references, 592
and cookies, 521
and Data Access, 546
and graphical elements, 748–755
loading from, 603
and partial trust, 720
script objects, 694
and WCF, 474–477, 489, 514, 584, 731–

737
Simula 67, 62
Skip operator, 289
SMT (simultaneous multithreading), 612
SMTP relays, 536
sockets, 522, 528–536
Solution Explorer, 21
solutions, 19
SortedSet<T>, 310
sorting arrays, 232, 253
source code, 20
sparse arrays, 306

826 | Index

special folders, 383–385
special permissions, 389
speculation, 608
spellchecking (see extensibility with delegates)
SpinLock, 646
Split method, 347
splitting strings, 346
SQL injection attacks, 542, 568
SQL Profiler, 564
SQL Server 2008 Express, 547
stacks, 57, 84, 200, 313, 613–620
standard numeric format strings, 323–329
Start method, 614, 645
StartNew method, 658, 661
state sharing, 614–619
state, view, 777
statement-form lambda, 164, 170
statements, 36
static fields/properties, 17, 98–102, 598, 687
static keyword, 97
static versus dynamic, 687–693
Step Into item, 50
storage management for events, 181–182
store schemas, 549
stores, 429
Stream buffering, 423
streams, 413–421, 439–446, 514
StreamWriter/Reader, 397–400, 430
StringBuilder, 349–353
strings

accessing characters by index, 341
checking character types, 360
comparing, 42, 355
composing, 344–348
composite formatting with String.Format,

337
converting to other types, 336
culture sensitivity, 338–340
custom numeric format, 329–332
dates and times, 332–335
empty, 355–357
encoding, 360–370
exploring formatting rules, 340
finding and replacing content, 353
formatting data for output, 322
getting a range of characters, 343–344
immutability of, 341
literal strings and chars, 318–322
manipulating text with, 348–353

overview, 315–317
standard numeric format, 323–329
string and char types, 317
trimming whitespace, 357–360

strongly named assemblies, 600
strongly typed DataSet, 543
struct keyword, 86
styles, 764–765
subscribing to events, 171, 173
Substring method, 343
subtraction (-) operator, 35
Sum method, 699
surface area, minimizing, 67
Swann’s Way (Proust), 723
switch and case statements, 45
symmetric algorithm, 440
synchronization primitives

monitors, 634–640
notification, 641–645
overview, 634–640

System namespace types, 14
System.Double type, 191

T
Take method, 650
Take operator, 289
target, attribute, 671
Task Parallel Library, 656–663
tasks, 656–663
TCP (Transmission Control Protocol), 526–

534
templates, 761–773
temporary files, 381
ternary operator, 44
ternary relationships, 560
test command-line switch, 379
test directories, 386
Test method, 704
text

and culture sensitivity, 338–340
encoding/decoding, 360–370
encryption, 439–446
fonts, 316
manipulating, 348
reading and writing, 430
strings, 316
and text boxes, 623, 768, 803, 806–813
and TextBlock, 734
whitespace in, 356–360

Index | 827

writing files, 396–400
TextWriter, 398
this keyword, 86, 97, 247, 269
thread pools, 620
threads, 634, 651

(see also asynchronous programming)
(see also synchronization primitives)
affinity and context, 622
multithreaded coding, 629–633
myths regarding, 623–629
and OS Scheduler, 611–613
overview, 609–611
safety and, 636
and stack, 613–620

throw keyword, 212
Thumbnail property, 772
tightly controlled deployment, 478
ToArray method, 56, 254, 445
ToBuffer method, 445
ToLowerInvariant/ToUpperInvariant, 348
ToString method, 322, 333
TPL (Task Parallel Library), 656–663
transactions, database, 576–581
transforms, 747
Transmission Control Protocol, 526–534
triggers, 754
trimming whitespace, 357–360
try blocks, 207–215
TryGetValue method, 305, 308
TryParse methods, 336
turtle robotics example

custom exceptions, 218–220
debugging with return values, 200
deciding what errors to catch, 215–218
exceptions, 201–214
setting return values, 194–201
setup, 186–191
try, catch, finally blocks, 207–215
when and how to fail, 191–194

types
bool, 42
and discovery, 679–681
and equivalence, 712
implicit conversion of, 37
namespace, 14–19
numeric, 28
and parameters, 244
variable, 28–57

U
UI (user interface), 776, 791
UML 2.0, 105
unboxing, 128
“unexpected” errors, 185
unhandled exceptions, 205
Unicode, 362, 365
Unified Modeling Language (UML) 2.0, 105
Uniform Resource Identifiers (URIs), 512
Uniform Resource Locators (see URLs)
universal quantifier, 292
universal sortable form, 334
unsafe keyword, 720, 722
unsigned integer types, 29
UpdatePosition method, 97
UpdateUi method, 662
uploading methods, 514
uppercase letters, 347
Uri class, 512
URIs (Uniform Resource Identifiers), 512
URLs (Uniform Resource Locators)

appdomains, 605
Daytime Protocol, 527
defined, 512
Dijkstra letter on go-to statements, 54
Exception class, 203
MEF, 604
misleading MSDN documentation on

structs, 84
MSDN on culture-sensitive string

operations, 348
MSDN on long paths, 402
naming/capitalization conventions, 65
.NET Framework class library namespaces,

15
NHibernate, 546
precedence in expression evaluation, 37
Project Gutenberg, 723
Sandcastle documentation tool, 27
secure coding in .NET, 790
Silverlight Toolkit, 743
Spec#, 202
strong names, 601
Visual Studio Express (free edition), 11
Visual Studio logging privileges, 491
Wireshark, 486

UseItem method, 637, 641
user controls, 760
user interface (UI), 776

828 | Index

user state, 427
user storage, 436
UseStream method, 430
using directives, 14
UTF-8, UTF-16, 362–370, 399, 444
utility features, .NET Framework, 2

V
VALUE keyword, 569
value types, 83, 127, 228
value versus reference, 83
var keyword, 266, 285, 301, 692
variables, 28–35
variance, 257
VB.NET, 3
VBA (Visual Basic for Applications), 689
Vertical Stack panel, 741–743
view models, 771
virtual methods, 112–114, 120
visibility and accessibility modifiers, 67
visual state manager, 766
Visual Studio, Microsoft

2010, 3, 7–9
free Express version, 11
generated code in, 554
handling of libraries, 23, 593–595
New Project dialog box, 11
and references, 591
running client and server copies, 535
and Xaml, 732

void keyword, 18

W
Wait method, 641, 658
WaitAll method, 658
WaitUntilReady method, 642
WCF (Windows Communication Foundation),

3, 305
contracts, 482–483
creating a project, 481
Data Services, 546, 584–588
and Entity Framework, 546
hosting a service, 486–493
Test Client and Host, 483–486
writing a client program, 493–501
and XML, 481

weakly controlled deployment, 479
web application projects, 779

Web Forms and ASP.NET
adding controls and events, 790–793
adding controls to, 781–784
code-behind files, 780
creating a web application, 779
data binding, 784–787
events, 776
examining the code, 789–790
life cycle, 778
overview, 775

WebClient, 512–515
WebRequest and WebResponse, 516–522
website projects, 779
well-known folders, 383–387
where clauses, 271, 466
Where method, 268, 704
while and do statements, 52–53
whitespace

in C# code, 24, 65
in text output, 356–360

Why Software Sucks (Platt), 791
Windows Communication Foundation (see

WCF)
Windows Forms

and ActiveX, 708–710
adding a binding source, 797–799
controls, 800–804
creating the application, 796
data binding, 806–813
docking and anchoring, 805–806
event handling, 811
versus WPF, 795

Windows, .NET and, 6
word wrapping, 743
WPF (Windows Presentation Foundation) and

Silverlight, 3
control templates, 761–765
controls, 738, 755–761
data binding, 767–769
data templates, 769–773
elements, 738
layout panels, 739–748
overview, 729–731
transforms, 747
versus Windows Forms, 795
visual state manager, 766
and Xaml, 731–737

WrapPanel, 743
wrappers, .NET Framework, 2

Index | 829

Write method, 421, 723
“write-only code”, 24
WriteAllText methods, 397, 399
WriteLine method, 18, 36, 430, 534
writing data with streams, 421

X
Xaml, 731–737
Xaml Browser Application (XBAP), 474
.xap extension, 592, 603
XBAP (Xaml Browser Application), 474
XHTML, 451
XML 1.0

attributes, 456–459
creating documents, 452–455
elements, 450, 455
extensibility, 452
and LINQ, 459–464
overview, 449
search axes, 466
serialization, 467–471, 671
single node search, 465
and where clauses, 466
XHTML, 451

XML Documentation Comments, 26
XML documents, 363
XML literals, 5

Y
yield return, 259–264
yielding, 647

Z
zero, dividing by, 190
zero, numbering from, 40
zero-day attack, 502
zipping, 288

830 | Index

About the Authors
Ian Griffiths is an independent WPF consultant, developer, speaker and Pluralsight
instructor and a widely recognized expert on the subject. He lives in London but can
often be found on various developer mailing lists and newsgroups, where a popular
sport is to see who can get him to write the longest email in reply to the shortest possible
question. Ian maintains a popular blog and is co-author of O’Reilly Media’s .NET
Windows Forms in a Nutshell and of Mastering Visual Studio .NET.

Matthew Adams is the Director of Development at Digital Healthcare Ltd. The last
three years have kept him fully occupied in the development of a C#/.NET-based dis-
tributed imaging platform for healthcare applications. Before that, he studied Natural
Sciences at Cambridge University, worked on banking and imaging applications in
North America, became a fully-paid-up C++ junkie, and was the lead architect on
software solutions for drug-discovery for a large US corporation. He thinks that .NET
is a major philosophical stride forward for the computer industry: so much so that he
almost doesn’t miss his first love—generics—in C#. He has written articles and given
papers on the subject to both technical and non-technical audiences, and looks forward
to the day when he doesn't have to answer the question “So, what is .NET?” any more!

Jesse Liberty, “Silverlight Geek,” is a senior program manager for Microsoft Silverlight
in the Silverlight Development Division where he is responsible for the creation of
tutorials, videos, and other content to facilitate the learning and use of Silverlight.

Even before joining Microsoft, Jesse was well known in the industry in part because of
his many bestselling books, including O’Reilly Media’s Programming .NET 3.5, Pro
gramming C# 3.0, Learning ASP.NET with AJAX, and the soon to be published Pro-
gramming Silverlight. He has over two decades of experience writing software, con-
sulting, and training, with stints at AT&T as a Distinguished Software Engineer and at
Citibank as a Vice President in the Information Division.

Colophon
The animal on the cover of Programming C# 4.0, Sixth Edition, is an African crowned
crane. This tall, skinny bird wanders the marshes and grasslands of West and East
Africa (the Western and Eastern African crowned cranes are known as Balearica pav-
onia pavonia and Balearica regulorum gibbericeps, respectively).

Adult birds stand about three feet tall and weigh six to nine pounds. Inside their long
necks is a five-foot long windpipe—part of which is coiled inside their breastbone—
giving voice to loud calls that can carry for miles. They live for about 22 years, spending
most of their waking hours looking for the various plants, small animals, and insects
they like to eat. (One crowned crane food-finding technique, perfected during the 38
to 54 million years these birds have existed, is to stamp their feet as they walk, flushing
out tasty bugs.) They are the only type of crane to perch in trees, which they do at night
when sleeping.

http://www.interact-sw.co.uk/iangblog/
http://oreilly.com/catalog/9780596003388/
http://oreilly.com/catalog/9780596003388/
http://oreilly.com/catalog/9780596003609/
http://oreilly.com/catalog/9780596527563/
http://oreilly.com/catalog/9780596527433
http://oreilly.com/catalog/9780596527433
http://oreilly.com/catalog/9780596513979/

Social and talkative, African crowned cranes group together in pairs or families, and
the smaller groups band together in flocks of more than 100 birds. Their elaborate
mating dance has served as a model for some of the dances of local people.

The cover image is an original engraving from the 19th century. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	How This Book Is Organized
	Where to Find Features New in C# 4.0 and .NET 4

	Who This Book Is For
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	Acknowledgments
	From Ian Griffiths
	From Matthew Adams

	Chapter 1. Introducing C#
	Why C#? Why .NET?
	The .NET Framework Class Library
	Language Style
	Composability
	Managed Code
	Continuity and the Windows Ecosystem

	C# 4.0, .NET 4, and Visual Studio 2010
	Summary

	Chapter 2. Basic Programming Techniques
	Getting Started
	Namespaces and Types
	Projects and Solutions
	Comments, Regions, and Readability
	Bad Comments
	XML Documentation Comments

	Variables
	Variable Types
	Integers
	Floating point
	Decimal floating point

	Expressions and Statements
	Assignment Statements
	Increment and Decrement Operators

	Flow Control with Selection Statements
	if Statements
	if...else

	switch and case Statements

	Iteration Statements
	foreach Statements
	for Statements
	while and do Statements
	Breaking Out of a Loop

	Methods
	Summary

	Chapter 3. Abstracting Ideas with Classes and Structs
	Divide and Conquer
	Abstracting Ideas with Methods
	Abstracting Ideas with Objects and Classes
	Object-oriented analysis

	Defining Classes
	Representing State with Properties
	Protection Levels
	Initializing with a Constructor
	Fields: A Place to Put Data
	Fields Can Be Fickle, but const Is Forever
	Read-only Fields and Properties

	Related Constants with enum
	Value Types and Reference Types
	Too Many Constructors, Mr. Mozart
	Overloading
	Overloaded Methods and Default Named Parameters

	Object Initializers
	Defining Methods
	Declaring Static Methods

	Static Fields and Properties
	Static Constructors

	Summary

	Chapter 4. Extensibility and Polymorphism
	Association Through Composition and Aggregation
	Inheritance and Polymorphism
	Replacing Methods in Derived Classes
	Hiding Base Members with new
	Replacing Methods with virtual and override

	Inheritance and Protection
	Calling Base Class Methods
	Thus Far and No Farther: sealed
	Requiring Overrides with abstract
	All Types Are Derived from Object
	Boxing and Unboxing Value Types

	C# Does Not Support Multiple Inheritance of Implementation
	C# Supports Multiple Inheritance of Interface
	Deriving Interfaces from Other Interfaces
	Explicit Interface Implementation

	The Last Resort: Checking Types at Runtime
	Summary

	Chapter 5. Composability and Extensibility with Delegates
	Functional Composition with delegate
	Generic Actions with Action<T>
	Generic Predicates with Predicate<T>
	Using Anonymous Methods
	Creating Delegates with Lambda Expressions
	Delegates in Properties
	Generic Delegates for Functions
	Notifying Clients with Events
	Exposing Large Numbers of Events

	Summary

	Chapter 6. Dealing with Errors
	When and How to Fail
	Returning Error Values
	Debugging with Return Values

	Exceptions
	Handling Exceptions
	When Do finally Blocks Run?
	Deciding What to Catch
	Custom Exceptions

	Summary

	Chapter 7. Arrays and Lists
	Arrays
	Construction and Initialization
	Array arguments and the params keyword

	Custom Types in Arrays
	Array Members
	Finding elements
	Ordering elements
	Moving or copying elements

	Array Size
	Arrays of arrays (or jagged arrays)
	Rectangular arrays

	List<T>
	Custom Indexers
	Immutability and List<T>

	Finding and Sorting

	Collections and Polymorphism
	Creating Your Own IEnumerable<T>
	Lazy collections

	Summary

	Chapter 8. LINQ
	Query Expressions
	Query Expressions Versus Method Calls
	Extension Methods and LINQ
	let Clauses

	LINQ Concepts and Techniques
	Delegates and Lambdas
	Functional Style and Composition
	Deferred Execution

	LINQ Operators
	Filtering
	Ordering
	Concatenation
	Grouping
	Projections
	Anonymous types
	Using multiple sources
	Numbering items

	Zipping
	Getting Selective
	Testing the Whole Collection
	Aggregation
	Set Operations
	Joining
	Conversions

	Summary

	Chapter 9. Collection Classes
	Dictionaries
	Common Dictionary Uses
	Looking up values
	Caching
	Dynamic properties
	Sparse arrays

	IDictionary<TKey, TValue>
	Dictionaries and LINQ

	HashSet and SortedSet
	Queues
	Linked Lists
	Stacks
	Summary

	Chapter 10. Strings
	What Is a String?
	The String and Char Types
	Literal Strings and Chars
	Escaping Special Characters

	Formatting Data for Output
	Standard Numeric Format Strings
	Currency
	Decimal
	Hexadecimal
	Exponential form
	Fixed point
	General
	Numeric
	Percent
	Round trip

	Custom Numeric Format Strings
	Dates and Times
	Going the Other Way: Converting Strings to Other Types
	Composite Formatting with String.Format

	Culture Sensitivity
	Exploring Formatting Rules

	Accessing Characters by Index
	Strings Are Immutable
	Getting a Range of Characters
	Composing Strings
	Splitting It Up Again
	Upper- and Lowercase

	Manipulating Text
	Mutable Strings with StringBuilder

	Finding and Replacing Content
	All Sorts of “Empty” Strings
	Trimming Whitespace
	Checking Character Types
	Encoding Characters
	Why Encodings Matter
	Encoding and Decoding
	Why Represent Strings As Byte Sequences?

	Summary

	Chapter 11. Files and Streams
	Inspecting Directories and Files
	Examining Directories
	Manipulating File Paths
	Path and the Current Working Directory

	Examining File Information
	Creating Temporary Files
	Deleting Files
	Well-Known Folders
	Concatenating Path Elements Safely
	Creating and Securing Directory Hierarchies
	Deleting a Directory
	Writing Text Files
	Writing a Whole Text File at Once
	Writing Text with a StreamWriter

	When Files Go Bad: Dealing with Exceptions
	Finding and Modifying Permissions

	Reading Files into Memory
	Streams
	Moving Around in a Stream
	Writing Data with Streams

	Reading, Writing, and Locking Files
	FileStream Constructors
	Stream Buffers
	Setting Permissions During Construction
	Setting Advanced Options

	Asynchronous File Operations
	Isolated Storage
	Stores
	Reading and Writing Text
	Defining “Isolated”
	Isolation by user and assembly
	Isolation by user, domain, and assembly
	Isolation by user and application
	Machine isolation

	Managing User Storage with Quotas
	Managing Isolated Storage

	Streams That Aren’t Files
	An Adapting Stream: CryptoStream
	In Memory Alone: The MemoryStream
	Representing Binary As Text with Base64 Encoding

	Summary

	Chapter 12. XML
	XML Basics (A Quick Review)
	Elements
	XHTML

	X Stands for eXtensible
	Creating XML Documents
	XML Elements
	XML Attributes
	Putting the LINQ in LINQ to XML

	Searching in XML with LINQ
	Searching for a Single Node
	Search Axes
	Where Clauses

	XML Serialization
	Customizing XML Serialization Using Attributes

	Summary

	Chapter 13. Networking
	Choosing a Networking Technology
	Web Application with Client-Side Code
	.NET Client and .NET Server
	Tightly controlled deployment
	Weakly controlled deployment

	.NET Client and External Party Web Service
	External Client and .NET Web Service

	WCF
	Creating a WCF Project
	WCF Contracts
	WCF Test Client and Host
	Hosting a WCF Service
	WCF configuration

	Writing a WCF Client
	Sharing contracts
	Proxy

	Bidirectional Communication with Duplex Contracts
	Session-based communication
	Calling the client from the server
	Server configuration for duplex and sessions
	Duplex client

	HTTP
	WebClient
	Downloading resources
	Uploading resources
	Stream-based uploads and downloads

	WebRequest and WebResponse
	Authentication
	Working with proxies
	Controlling cache behavior
	Using cookies

	Sockets
	IP, IPv6, and TCP
	Connecting to Services with the Socket Class
	Implementing Services with the Socket Class

	Other Networking Features
	Summary

	Chapter 14. Databases
	The .NET Data Access Landscape
	Classic ADO.NET
	IDataReader and friends
	ADO.NET data sets

	LINQ and Databases
	Non-Microsoft Data Access Technologies
	WCF Data Services
	Silverlight and Data Access
	Databases
	Getting up and running with SQL Server 2008 Express

	The Entity Data Model
	Generated Code
	Changing the Mapping
	Relationships
	Navigation properties
	Multiplicity

	Inheritance

	Queries
	LINQ to Entities
	Entity SQL
	Mixing ESQL and LINQ
	The EntityClient ADO.NET Provider

	Object Context
	Connection Handling
	Creating, Updating, and Deleting
	Transactions
	Optimistic Concurrency
	Context and Entity Lifetime

	WCF Data Services
	Summary

	Chapter 15. Assemblies
	.NET Components: Assemblies
	References
	Writing Libraries
	Protection
	Internal protection

	Naming
	Signing and Strong Names

	Loading
	Loading from the Application Folder
	Loading from the GAC
	Loading from a Silverlight .xap File
	Explicit Loading
	Unloading

	Summary

	Chapter 16. Threads and Asynchronous Code
	Threads
	Threads and the OS Scheduler
	The Stack
	The Thread Pool
	Thread Affinity and Context
	Common Thread Misconceptions
	Myth: Threads are necessary to get work done
	Myth: Multiple logical processors will necessarily make things faster
	Myth: Maxing the CPU must mean we’re going really fast

	Multithreaded Coding Is Hard
	Race conditions
	Deadlocks and livelocks

	Multithreading Survival Strategies
	Abstinence
	Isolation
	Immutability
	Synchronization

	Synchronization Primitives
	Monitor
	Notification

	Other Lock Types
	SpinLock
	Reader/writer locks
	Mutexes

	Other Coordination Mechanisms
	Events
	Countdown
	BlockingCollection

	Asynchronous Programming
	The Asynchronous Programming Model
	The Event-Based Asynchronous Pattern
	Ad Hoc Asynchrony

	The Task Parallel Library
	Tasks
	Parent-child relationships
	Fine-grained concurrency
	Tasks with results
	Continuations
	Schedulers
	Tasks and the Asynchronous Programming Model

	Cancellation
	Error Handling

	Data Parallelism
	Parallel For and ForEach
	PLINQ: Parallel LINQ

	Summary

	Chapter 17. Attributes and Reflection
	Attributes
	Types of Attributes
	Attribute targets
	Applying attributes

	Custom Attributes
	Defining a custom attribute
	Naming an attribute
	Constructing an attribute
	Using an attribute

	Reflection
	Inspecting Metadata
	Type Discovery
	Reflecting on a Specific Type
	Finding all type members
	Finding type methods

	Late Binding

	Summary

	Chapter 18. Dynamic
	Static Versus Dynamic
	The Dynamic Style and COM Automation

	The dynamic Type
	Object Types and dynamic
	COM objects
	Silverlight script objects
	Ordinary .NET objects
	Objects from other dynamic languages
	ExpandoObject
	Custom dynamic objects

	dynamic in Noninterop Scenarios?
	Summary

	Chapter 19. Interop with COM and Win32
	Importing ActiveX Controls
	Importing a Control in .NET

	Interop Assemblies
	No PIA

	64-bit Versus 32-bit
	P/Invoke
	Pointers
	C# 4.0 Interop Syntax Enhancements
	Indexed Properties
	Optional ref

	Summary

	Chapter 20. WPF and Silverlight
	Xaml and Code Behind
	Xaml and Objects

	Elements and Controls
	Layout Panels
	General-purpose layout properties
	Transforms

	Graphical Elements
	Shapes
	Images
	Media
	Animation
	3D graphics

	Controls
	Content controls
	Items controls

	User Controls

	Control Templates
	Styles
	The Visual State Manager

	Data Binding
	Data Templates

	Summary

	Chapter 21. Programming ASP.NET Applications
	Web Forms Fundamentals
	Web Forms Events
	Postback versus nonpostback events
	View state

	Web Forms Life Cycle

	Creating a Web Application
	Code-Behind Files
	Adding Controls
	Server Controls

	Data Binding
	Examining the Code
	Adding Controls and Events

	Summary

	Chapter 22. Windows Forms
	Creating the Application
	Adding a Binding Source

	Controls
	Docking and Anchoring

	Data Binding
	Event Handling
	Summary

	Index

