
C# Tutorial Create a side scrolling platform

game in visual studio

n this tutorial we will show you how to create a simple yet efficient side scrolling game only

using Visual Studio toolbox components using the c# programming language. We have create

another c# platform game tutorial before where you played the game in a static level for this one,

we thought we can do better by adding the side scrolling and platform elements together. The

main objective of this game, you the player are in a level where there is a locked door, you need

to collect the key from the other end of the level while collecting some of the coins and not

dropping off the platforms. Once you collect the key you are able to open the door and complete

the level. Premise is fairly simple and it’s a lot of fun to make, let get started.

note – games development is a lot about trial and error, don’t be afraid to of the errors or the

game breaking, while doing this tutorial it seems a lot easier to follow through but if you want to

add more functionalities to it, don’t be afraid to try it out, if the worse happens this tutorial is

here to help other than that you can try to make anything you want.

Lesson Objectives

1. Create a full side scrolling platform game in visual studio with c# programming language

2. Use several picture boxes and control them using timers

3. Use Loops to easily identify the platforms, coins, keys and doors

4. Create gravity and jump force in visual studio

5. Using Key down and Key up events to control the character

6. Smoothly scrolling the background, items and platforms as the player moves between left

or right

Above is the background image, this is a large image with a width of 2000 pixels and height of 480

pixels. This is the background image for the game this will be used to make the game on top of and we

will scroll this image left to right.

This is the coin image, this is an animated coin gif

This is the door closed image, this will be default view of the door

This is the door open image, when the player collects the key and collides with the

door it will change to this image

This is the key image.

This is the platform image. All the platforms in the game will have this as their

background image.

7. If you are new to games development, then let me let you in a secret that is games are

illusions on a computer system, when you see Mario or sonic moving through a level they

are not necessarily moving themselves the environment is moving towards them giving

them an illusion of movement. We are going to do something similar to that in this

tutorial. When the player will press left or right we will move the character little bit but

we will move the environment more towards them which will give the player an

ILLUSION of movement.

8.
9. Create a new project in visual studio, Make sure its Visual C# and Windows Form

Application. Name this project side scrolling platform game and click OK.

10.
11. In the properties window change the size to 614, 520 and the text to “Side Scrolling

Platform Game”.

12.

13. From the toolbox drag and drop a picture box to the form. This will be used as the main

background for our side scrolling game. Once you dropped it on the form please change

the following in its properties window.

14. Name: background

15. Location: 0,0

16.
17. In the same properties window find the option for image and click on the 3 dotted button

to the right.

18.
19. Once clicked you will see this window. This is the resource selection window it allows us

to import images and other files to the project. While the Project Resource File option is

selected click on import.

20.

21. Navigate to the images you downloaded from MOOICT, select all the files and click on

the open button.

22.
23. You will be taken back to the resource selection window and from the list of images

choose the background image and click OK.

24. This is what the image will look like now.

25.
26. While the image is selected go to the properties window, change the size mode to

AutoSize this will change the size to 2000, 480 which is the native size of the image.

27.
28. This is what the form looks like now, as you can see most of the image is not visible,

This is the right size for the form but we need to some elements to the whole game not

just the first part of it. When you click on the form you can extend the width as you

require, extend it so you can see the whole picture. If you can’t select the form because

the picture is covering it, then just click on the title bar and it will select the form.

29.
30. As you can see here we have extended the form to the full size now we can add

platforms, coins, door and key on the level.

31. Add another picture box to the form.

32. Select the picture box and change the following in its

properties.

33. In the properties window

select the background image option and click on the 3 dotted button to the right.

34.
35. This will take you the resource selection window, from this window select the platform

image and click OK.

36.
37. From the properties window add a tag to the picture box called “platform” all lower case.

As we will have more than 1 platform in the game its best to give them a tag which will

help organize it and identify them in the code.

38. because we set the image as the

background for this platform we can extend it and make it smaller the background will

tile with it. Now you can feel free to add as many platforms as you want, the easiest way

to do this is to simply copy and paste this platform multiple times, it will copy the

background image and the tag with it.

39.
40. Add another picture box to the form

41. Name: door

42. Tag: door

43. Image: door

44. Size Mode: Auto Size

45. Location: you can place this door picture box anywhere in the level, we placed it on

the top left over a platform see the level details below.

46.
47. Add another picture box to the form

48. Name: player

49. Tag: none

50. Image: player

51. Size Mode: Auto Size

52. Location: 86, 398

53.
54. Add another picture box to the form

55. Tag: coin

56. Image: coin

57. Size Mode: Stretch Image

58. Size: 35, 30

59. Location: place this object on top of the platforms, once you got one set up, you can

copy and paste it many times.

60.
61. Add another picture box to the form

62. Name: key

63. Tag: key

64. Image: key

65. Size Mode: Auto Size

66. Location: Place on the top right platform. See the level layout below.

67.
68. Above is the final level design. As you can see we have placed the door, coins, platforms

and key to this level. For now you can follow the same level design and may be once you

got the grip you can design your own with more details.

69. Click on the form title again, we need to set the forms size back to normal. Set the form

size back to 614 in the size option in the properties window.

70.

This is the form size you should apply now.

71.
72. From the toolbox drag and drop a timer to the form.

73.
74. In the timers properties window change the following. Set name to gameTimer, set

enabled to True and Interval to 20. Double check the image and see if it matches with

yours.

75.
76. Click on the little lightning bolt icon In the properties window, this will take you to the

events manager window, for the timer there is only one event TICK. Type in

mainGameTimer and press enter. This will take you the code view, comeback to the

design view we need to add 2 more events to the game.

77.
78. Click on the form, make sure you have selected the form and see the events manager by

clicking on the small lightning bolt icon. Find the key down event and type in keyisdown

and press enter. Find the key up event type in keyisup and press enter.

79. Start Coding
80. This is the code view of the game so far. There are three empty events in this game we

are going to start by adding variables first.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace side_scrolling_platform_game

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

 }

 private void mainGameTimer(object sender, EventArgs e)

 {

 }

 private void keyisdown(object sender, KeyEventArgs e)

 {

 }

 private void keyisup(object sender, KeyEventArgs e)

 {

 }

 }

}

81. Add the highlighted code where you see in the code below. All the codes are commented

to further your understanding of the process.

1

2

3

4

5

6

7

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

using System.Threading.Tasks;

using System.Windows.Forms;

namespace side_scrolling_platform_game

{

 public partial class Form1 : Form

 {

 bool goleft = false; // boolean which will control players going left

 bool goright = false; // boolean which will control players going right

 bool jumping = false; // boolean to check if player is jumping or not

 bool hasKey = false; // default value of whether the player has the key

 int jumpSpeed = 10; // integer to set jump speed

 int force = 8; // force of the jump in an integer

 int score = 0; // default score integer set to 0

 int playSpeed = 18; //this integer will set players speed to 18

 int backLeft = 8; // this integer will set the background moving speed to 8

 public Form1()

 {

 InitializeComponent();

 }

 private void mainGameTimer(object sender, EventArgs e)

 {

36

37

38

39

40

41

42

43

44

45

46

47

48

 }

 private void keyisdown(object sender, KeyEventArgs e)

 {

 }

 private void keyisup(object sender, KeyEventArgs e)

 {

 }

 }

}

82. There are 4 Booleans first goleft and goright Booleans will be used to detect the players

movement, jumping Boolean will be used to control how the player jumps in the game

and lastly the haskey Booleans will be set true once the player collects the key.

83. After that we have 5 integers. JumpSpeed will control how fast the player jumps, force

will be used to check how high the player can jump, score is obvious off course to keep

score, playSpeed will control how fast the player moves left or right and finally

backLeft will control the environment speed relative to the player.

84. Key is Down Event
85. This event will trigger when the player presses a key on the keyboard. We will map out

three different keys for this game, left right and space key.

1

2

3

4

5

6

7

 private void keyisdown(object sender, KeyEventArgs e)

 {

 //if the player pressed the left key AND the player is inside the panel

 // then we set the car left boolean to true

 if (e.KeyCode == Keys.Left)

 {

 goleft = true;

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 }

 // if player pressed the right key and the player left plus player width is less then the panel1

width

 if (e.KeyCode == Keys.Right)

 {

 // then we set the player right to true

 goright = true;

 }

 //if the player pressed the space key and jumping boolean is false

 if (e.KeyCode == Keys.Space && !jumping)

 {

 // then we set jumping to true

 jumping = true;

 }

 }

86. //if the player pressed the left key AND the player is inside the panel

87. // then we set the car left boolean to true

88. if (e.KeyCode == Keys.Left)

89. {

90. goleft = true;

91. }

92. // if player pressed the right key and the player left plus player width is less then the

panel1 width

93.
94. if (e.KeyCode == Keys.Right)

95. {

96. // then we set the player right to true

97. goright = true;

98. }

99. The two if statements above will be waiting for the left or right key to be press and when

they are we will set either the goleft or goright Boolean to true.

100. //if the player pressed the space key and jumping boolean is false

101.

102. if (e.KeyCode == Keys.Space && !jumping)

103. {

104. // then we set jumping to true

105. jumping = true;

106. }

107. Lastly in this event we are looking at the space key, in this if statement we have

two different condition and they both have to be true in order for this event to trigger. We

are looking for the player to press the space key AND the jumping Boolean needs to be

false. In short hand code we can tell the code !jumping means jumping is not true. If both

of these conditions are met then we set jumping back to true, this is a popular method to

stop players from double, triple jumping in the game.

108. Key is up event
109. This is event similar to the key is down event, in simple terms we setting

everything back to false once the represented keys are released. also notice we are not

specifically calling the space key because we know the jumping will have to be true so if

the keys are released then we set it false.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 private void keyisup(object sender, KeyEventArgs e)

 {

 // if the LEFT key is up we set the car left to false

 if (e.KeyCode == Keys.Left)

 {

 goleft = false;

 }

 // if the RIGHT key is up we set the car right to false

 if (e.KeyCode == Keys.Right)

 {

 goright = false;

 }

 //when the keys are released we check if jumping is true

 // if so we need to set it back to false so the player can jump again

 if (jumping)

 {

17

18

19

 jumping = false;

 }

 }

110. Main Game Timer event
111. This event controls the whole game, from the movements of the player, to the

environment and also removing objects from the form as they collide with each other.

Follow the code in this event closely because its long and can get complicated, do one

line at a time and if you get any errors check back with this tutorial.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 private void mainGameTimer(object sender, EventArgs e)

 {

 // linking the jumpspeed integer with the player picture boxes to location

 player.Top += jumpSpeed;

 // refresh the player picture box consistently

 player.Refresh();

 // if jumping is true and force is less than 0

 // then change jumping to false

 if (jumping && force < 0)

 {

 jumping = false;

 }

 // if jumping is true

 // then change jump speed to -12

 // reduce force by 1

 if (jumping)

 {

 jumpSpeed = -12;

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

 force -= 1;

 }

 else

 {

 // else change the jump speed to 12

 jumpSpeed = 12;

 }

 // if go left is true and players left is greater than 100 pixels

 // only then move player towards left of the

 if (goleft && player.Left > 100)

 {

 player.Left -= playSpeed;

 }

 // by doing the if statement above, the player picture will stop on the forms left

 // if go right Boolean is true

 // player left plus players width plus 100 is less than the forms width

 // then we move the player towards the right by adding to the players left

 if (goright && player.Left + (player.Width + 100) < this.ClientSize.Width)

 {

 player.Left += playSpeed;

 }

 // by doing the if statement above, the player picture will stop on the forms right

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

 // if go right is true and the background picture left is greater 1352

 // then we move the background picture towards the left

 if (goright && background.Left > -1353)

 {

 background.Left -= backLeft;

 // the for loop below is checking to see the platforms and coins in the level

 // when they are found it will move them towards the left

 foreach (Control x in this.Controls)

 {

 if (x is PictureBox && x.Tag == "platform" || x is PictureBox && x.Tag == "coin" || x is

PictureBox && x.Tag == "door" || x is PictureBox && x.Tag == "key")

 {

 x.Left -= backLeft;

 }

 }

 }

 // if go left is true and the background pictures left is less than 2

 // then we move the background picture towards the right

 if (goleft && background.Left < 2)

 {

 background.Left += backLeft;

 // below the is the for loop thats checking to see the platforms and coins in the level

 // when they are found in the level it will move them all towards the right with the

background

 foreach (Control x in this.Controls)

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

 {

 if (x is PictureBox && x.Tag == "platform" || x is PictureBox && x.Tag == "coin" || x is

PictureBox && x.Tag == "door" || x is PictureBox && x.Tag == "key")

 {

 x.Left += backLeft;

 }

 }

 }

 // below if the for loop thats checking for all of the controls in this form

 foreach (Control x in this.Controls)

 {

 // is X is a picture box and it has a tag of platform

 if (x is PictureBox && x.Tag == "platform")

 {

 // then we are checking if the player is colliding with the platform

 // and jumping is set to false

 if (player.Bounds.IntersectsWith(x.Bounds) && !jumping)

 {

 // then we do the following

 force = 8; // set the force to 8

 player.Top = x.Top - player.Height; // also we place the player on top of the picture

box

 jumpSpeed = 0; // set the jump speed to 0

 }

 }

 // if the picture box found has a tag of coin

 if (x is PictureBox && x.Tag == "coin")

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

 {

 // now if the player collides with the coin picture box

 if (player.Bounds.IntersectsWith(x.Bounds))

 {

 this.Controls.Remove(x); // then we are going to remove the coin image

 score++; // add 1 to the score

 }

 }

 }

 // if the player collides with the door and has key boolean is true

 if (player.Bounds.IntersectsWith(door.Bounds) && hasKey)

 {

 // then we change the image of the door to open

 door.Image = Properties.Resources.door_open;

 // and we stop the timer

 gameTimer.Stop();

 MessageBox.Show("You Completed the level!!"); // show the message box

 }

 // if the player collides with the key picture box

 if (player.Bounds.IntersectsWith(key.Bounds))

 {

 // then we remove the key from the game

 this.Controls.Remove(key);

134

135

136

137

138

139

140

141

142

143

144

 // change the has key boolean to true

 hasKey = true;

 }

 // this is where the player dies

 // if the player goes below the forms height then we will end the game

 if (player.Top + player.Height > this.ClientSize.Height + 60)

 {

 gameTimer.Stop(); // stop the timer

 MessageBox.Show("You Died!!!"); // show the message box

 }

 }

112.

113. // linking the jumpspeed integer with the player picture boxes to location

114. player.Top += jumpSpeed;

115. The code above is linking the jump speed with the player picture boxes top

location. This will artificially add gravity to the player by including += meaning in every

frame the player character will be pushed down according to the value of jump speed.

116. // refresh the player picture box consistently

117. player.Refresh();

118. Every picture box comes with several functions built in them, one of them is the

refresh function. The picture box will flicker when you are playing the game so using this

refresh function allows that to be reduced down a little bit.

119. // if jumping is true and force is less than 0

120. // then change jumping to false

121. if (jumping && force < 0)

122. {

123. jumping = false;

124. }

125. The if statement above means that if the jumping Boolean is true and force is less

than 0 then we set jumping to false.

126. // if jumping is true

127. // then change jump speed to -12

128. // reduce force by 1

129. if (jumping)

130. {

131. jumpSpeed = -12;

132. force -= 1;

133. }

134. else

135. {

136. // else change the jump speed to 12

137. jumpSpeed = 12;

138. }

139. In the if statement above if jumping is true then we reverse the jump speed which

will propel the player upwards and we reduce 1 from the force as the character jumps,

else statement will trigger when the if statement condition becomes false. If the character

is not jumping then we add force to the character in the jump speed.

140. // if go left is true and players left is greater than 100 pixels

141. // only then move player towards left of the

142. if (goleft && player.Left > 100)

143. {

144. player.Left -= playSpeed;

145. }

146. // by doing the if statement above, the player picture will stop on the forms

left

147. In the if statement above if the go left Boolean is true and the player is further

than 100 pixels from the left then we will allow the player to move the left. By doing an

if statement like this we can stop the player from leaving the form from the left.

148. // if go right Boolean is true

149. // player left plus players width plus 100 is less than the forms width

150. // then we move the player towards the right by adding to the players left

151. if (goright && player.Left + (player.Width + 100) < this.ClientSize.Width)

152. {

153. player.Left += playSpeed;

154. }

155. In this if statement above we are looking if the go right Boolean is true AND

players left position + player width + 100 pixels is less than the forms width meaning the

right side of the form then we allow the player to move towards the right. if this condition

is not met then the player will not move.

156. // if go right is true and the background picture left is greater 1352

157. // then we move the background picture towards the left

158. if (goright && background.Left > -1353)

159. {

160. background.Left -= backLeft;

161. // the for loop below is checking to see the platforms and coins in the level

162. // when they are found it will move them towards the left

163. foreach (Control x in this.Controls)

164. {

165. if (x is PictureBox && x.Tag == “platform” || x is PictureBox && x.Tag ==

“coin” || x is PictureBox && x.Tag == “door” || x is PictureBox && x.Tag == “key”)

166. {

167. x.Left -= backLeft;

168. }

169. }

170. }

171. In the if statement above you will see that we have a for each loop inside it. Lets

break this down and explain it further.

172. IF GORIGHT AND BACKGROUND IMAGES LEFT POSITION IS GREATER

THAN -1353 (this number is not random I tested it couple of times and this is the number

that fits the best with the game.)

173. If those conditions are true then we move the background towards the left with

background.Left -= backLeft; So if the player is moving right the background should

move left.

174. Now the next part should make you aware of why we used tags, in visual studio

two objects cannot share the same name however they can share the same tag. So we use

tags to identify multiple objects. Because there are so many different platforms, coins,

door and key on the level we need to move them all with the background at one speed

giving the illusion of movement. We are using this symbol || in the if statement to

differentiate the conditions, the is the way the program reads this statement

175. IF X IS A PICTURE BOX AND IT HAS THE TAG PLATFORM OR X IS A

PICTURE BOX AND IT HAS THE TAG COIN OR IF X IS A PICTURE BOX AND IT

HAS THE TAG DOOR OR IF X IS A PICTURE BOX AND IT HAS THE TAG KEY.

176. // the for loop below is checking to see the platforms and coins in the level

177. // when they are found it will move them towards the left

178. foreach (Control x in this.Controls)

179. {

180. if (x is PictureBox && x.Tag == “platform” || x is PictureBox && x.Tag ==

“coin” || x is PictureBox && x.Tag == “door” || x is PictureBox && x.Tag == “key”)

181. {

182. x.Left -= backLeft;

183. }

184. }

185. This for look inside that if statement simply states that we loop through every

control component in this.Controls meaning this form. Then we identify if those controls

are a picture box AND they have the given tags then we move them towards the left with

the backLeft speed. Each of those controls will be linked in that x variable in the loop and

they will be process to move towards the left.

186. // if go left is true and the background pictures left is less than 2

187. // then we move the background picture towards the right

188. if (goleft && background.Left < 2)

189. {

190. background.Left += backLeft;

191. // below the is the for loop thats checking to see the platforms and coins in the

level

192. // when they are found in the level it will move them all towards the right

with the background

193. foreach (Control x in this.Controls)

194. {

195. if (x is PictureBox && x.Tag == “platform” || x is PictureBox && x.Tag ==

“coin” || x is PictureBox && x.Tag == “door” || x is PictureBox && x.Tag == “key”)

196. {

197. x.Left += backLeft;

198. }

199. }

200. }

201. The above if statement now controlling the background from moving to the right.

202. IF GOLEFT IS TRUE AND BACKGROUND LEFT POSITION IS LESS THAN

2

203. THEN WE MOVE THE BACKGROUND TO THE LEFT USING +=

BACKLEFT VALUE.

204. We’ve done the similar thing to move the background, platforms, coins, door and

key towards the right of the screen.

205. // below if the for loop thats checking for all of the controls in this form

206. foreach (Control x in this.Controls)

207. {

208. // is X is a picture box and it has a tag of platform

209. if (x is PictureBox && x.Tag == “platform”)

210. {

211. // then we are checking if the player is colliding with the platform

212. // and jumping is set to false

213. if (player.Bounds.IntersectsWith(x.Bounds) && !jumping)

214. {

215. // then we do the following

216. force = 8; // set the force to 8

217. player.Top = x.Top – player.Height; // also we place the player on top of the

picture box

218. jumpSpeed = 0; // set the jump speed to 0

219. }

220. }

221. // if the picture box found has a tag of coin

222. if (x is PictureBox && x.Tag == “coin”)

223. {

224. // now if the player collides with the coin picture box

225. if (player.Bounds.IntersectsWith(x.Bounds))

226. {

227. this.Controls.Remove(x); // then we are going to remove the coin image

228. score++; // add 1 to the score

229. }

230. }

231. }

232. After that we are running another loop in the timer event, this one will check

when we jump on top of the platform and collide with the coins.

233. The first if statement in the loop is checking if X control is a picture box and it

has a tag of platform then we are also checking if the player intersects with it and player

is not jumping if this is true then, we set the force back to 8, we place the player on top of

the given platform by using player.top = x.top + player.Height. then we are setting the

jumpSpeed to 0.

234. After the platform calculations we move on to the coin, now we don’t want the

player to jump on top of the coin, we want the coin to disappear from the scene and we

want to add 1 to the score integer. So we are once again checking the if X is a picture box

and it has a tag of coin, then we are also checking if the player intersects with the coin

then we remove the coin from the game and add 1 to the score integer, it’s as simple as

this. Now we don’t usually do this but I have some homework for you regarding the

score. Remember this section because it will be relating to this later in the tutorial.

235. // if the player collides with the door and has key boolean is true

236. if (player.Bounds.IntersectsWith(door.Bounds) && hasKey)

237. {

238. // then we change the image of the door to open

239. door.Image = Properties.Resources.door_open;

240. // and we stop the timer

241. gameTimer.Stop();

242. MessageBox.Show(“You Completed the level!!”); // show the message box

243. }

244. In the is statement above we are looking at the collision between the player and

the door. In this if statement the player will have to intersects with the door AND the

hasKey Boolean must be true, if so then we change the door image to the door open

image, stop the game timer and show the level complete message.

245. // if the player collides with the key picture box

246. if (player.Bounds.IntersectsWith(key.Bounds))

247. {

248. // then we remove the key from the game

249. this.Controls.Remove(key);

250. // change the has key boolean to true

251. hasKey = true;

252. }

253. In the if statement above we are checking if the player intersects with the key then

we will remove the key and change the hasKey Boolean to true. Remember without the

hasKey Boolean being true the door will not open thus the game is not going to end.

254. // this is where the player dies

255. // if the player goes below the forms height then we will end the game

256. if (player.Top + player.Height > this.ClientSize.Height + 60)

257. {

258. gameTimer.Stop(); // stop the timer

259. MessageBox.Show(“You Died!!!”); // show the message box

260. }

261. Above is the last if statement in this program, this one is checking if the player

has dropped off the form from the bottom then we stop the timer and show a message that

states you died, in the nicest way possible off course. The way to read this if statement is

IF THE PLAYERS TOP LOCATION + PLAYERS HEIGHT IS GREATER THAN THE

FORMS HEIGHT + 60 PIXELS then we follow the instructions inside the if statement.

262. Let’s try to run the game – Click on the

start button on the top tool bar.

263.
264. Homework –

265. Remember when I mentioned that score integer and we will come back to it, at the

moment you have the score being added as you collect the coins however nothing on the

screen or the end screen message is showing the score. Can you fix That? Add something

to the code or to the form that allows you to see how many coins you collected.

