
Introduction to 8086 Assembly Language Programming(alp7) 1

Improving Computer Performance

How can we make computers faster ?

The Fetch-Execute Cycle and Pipelining

The fetch-execute cycle represents the fundamental process in the
operation of the CPU, attention has been focused on ways of making it
more efficient.

One possibility is to improve the speed at which instructions and data
may be retrieved from memory, since the CPU can process information
at a faster rate than it can retrieve it from memory.

The use of a cache memory system, which is discussed later, can
improve matters in this respect.

Another way of improving the efficiency of the fetch execute cycle is to
use a system known as pipelining.

The basic idea here is to break the fetch-execute cycle into a number of
separate stages, so that when one stage is being carried out for a
particular instruction, the CPU can carry out another stage for a second
instruction, and so on. This idea originates from the assembly line
concept used in manufacturing industry.

Consider a simplified car manufacturer’s assembly line as shown in
Figure 1. The production of a car involves a number of stages, three of
which are illustrated. So, for example, if a car goes through 10 stages
before being completed, then we can have up to ten cars being operated
on at the same time on the assembly line. If, for the sake of simplicity,
we assume that each stage takes one hour to complete, then it will take
10 hours to complete the first car since it will be processed for 1 hour at
every stage on the assembly line.

However, when the first car has moved to the second stage of the
assembly line, we can start work on a second car at the first stage of the

Introduction to 8086 Assembly Language Programming(alp7) 2

assembly line. When the first car moves on to the third stage, the
second car can move on to the second stage and a third car can be
started on the first stage of the assembly line.

This process continues, so that when the first car reaches the 10th and
final stage, there are 9 other cars in the first nine stages of production.
This means that when the first car is finished after 10 hours, then
another car will be completed every hour thereafter.

Stage 6

Fit Wheels

Stage 7

Fit Engine

Stage 8

Fit Lights

Figure 1: Assembly line production

The great advantage of assembly line production is the increase in
throughput that is achieved. After the first car is completed we
continue production with a throughput of one car per hour.

If we did not use an assembly line and worked on one car at a time,
each car would take 10 hours to produce and the throughput would be
one car per 10 hours.

For example, the time taken to complete 20 cars on the assembly line is
29 hours, while without using the assembly line, the time taken would
be 200 hours. It should be noted that on the assembly line, each car still
requires 10 hours of processing, i.e. it still takes 10 hours of work to
produce a car, the point is that because we are doing the work in stages,
we can work on 10 cars at the same time, i.e. in parallel.
Flowthrough Time
The time taken for all stages of the assembly line to become active is
called the flowthrough time, i.e. the time for the first car to reach the

Introduction to 8086 Assembly Language Programming(alp7) 3

last stage. Once all the assembly line stages are busy, we achieve
maximum throughput.

We have simplified the analysis of the assembly line and in particular
the assumption that all stages take the same amount of time is not likely
to be true. The stage that takes the longest time to complete creates a
bottleneck in an assembly line.

For example, if we assume that stage 5 in our car assembly line takes 3
hours then the throughput decreases to 1 car per 3 hours. This is
because stage 6 must wait for 3 hours before it can begin and this delay
is passed on to the remaining stages, slowing the time to complete each
car to 3 hours.

Clock period
We can express this by saying the clock period of the assembly line
(time between completed cars) is 3 hours. The clock period, denoted by
Tp, of an assembly line is given by the formula:

Tp = max(t1, t2, t3,, tn)

where ti is the time taken for the ith stage and there are n stages in the
assembly line. This means that the clock period is determined by the
time taken by the stage that requires the most processing time.

In a non-assembly line system, the total time T, taken to complete a car,
is the sum of the time for the individual stages, i.e.

T = t1+ t2 + t3 + + tn

In our example, if all stages take 1 hour to complete, then T = 10 hours,
it takes 10 hours to complete every car.

If stage 5 takes 3 hours and the other stages take 1 hour to complete
then T rises to 12 hours and it will take 12 hours to complete every car.

Throughput

Introduction to 8086 Assembly Language Programming(alp7) 4

We can define the throughput of an assembly line to be 1/Tp.

Using this definition, the throughput for our assembly line where all
stages take 1 hour is 1/1, i.e. 1 car/hour. If we assume stage 5 takes 3
hours to complete, the throughput falls to 1/3 or .333 cars/hour. For
non-assembly line production the respective throughputs are 1/10 or .1
cars/hour and 1/12 or .083 cars/hour.

Pipelining
The same principle as that of the assembly line can be applied to the
fetch-execute cycle of a processor where we refer to it as pipelining.

Earlier we described the fetch-execute cycle as consisting of 3 stages,
which are repeated continuously:

1. Fetch an instruction
2. Decode the instruction
3. Execute the instruction

Assuming each stage takes one clock cycle, then in a non-pipelined
system, we use 3 cycles for the first instruction, followed by 3 cycles
for the second instruction and so on, as illustrated in Figure 2:

Instruction 1

Instruction 2

cycle 1 cycle 2

Fetch ExecuteDecode

cycle 3 cycle 4 cycle 5 cycle 6

Fetch ExecuteDecode

Figure 2: Fetch-execute cycle

The throughput for such a system would be 1 instruction per 3 cycles. If
we adopt the assembly line principle, then we can improve the
throughput dramatically.

Figure 3 illustrates the fetch-execute cycle employing pipelining.

Introduction to 8086 Assembly Language Programming(alp7) 5

Instruction 1

Instruction 2

cycle 1 cycle 2

Fetch ExecuteDecode

cycle 3 cycle 4 cycle 5 cycle 6

Fetch ExecuteDecode

Fetch ExecuteDecode

Fetch ExecuteDecode

Instruction 3

Instruction 4

Figure 7.3: Fetch-execute cycle with pipelining

Using pipelining, we overlap the processing of instructions, so that
while the first instruction is in the decode stage, the second instruction
is being fetched. While the first instruction is in the execute stage, the
second instruction is in the decode stage and the third instruction is
being fetched.

After 3 cycles the first instruction is completed and thereafter an
instruction is completed on every cycle as opposed to a throughput of 3
cycles per instruction in a non-pipelined system.

Again, as in the assembly line example, each instruction still takes the
same number of cycles to complete, the gain comes from the fact that
the CPU can operate on instructions in the different stages in parallel.
The clock period and throughput of a pipeline are as defined for the
assembly line above:

Clock period Tp = max(t1, t2, t3,, tn)
(for n stage pipeline)

Throughput = 1/Tp

The above description is quite simplified, ignoring the fact for example
that all stages may not be completed in a single cycle. It also omits
stages that arise in practice such as an operand fetch stage, which is
required to fetch an operand from memory, or a write back stage to
store the result of an ALU operation in a register or in memory. In

Introduction to 8086 Assembly Language Programming(alp7) 6

practice, pipelined systems range from having 3 to 10 stages, for
example, Intel’s Pentium microprocessor uses a 5-stage pipeline for
integer instructions.

There are difficulties in pipelining that would not arise on a factory
assembly line, due to the nature of computer programs. Consider the
following 3 instructions in a pipeline:

 jg label
 move y, 0
 move x, 3

......

......
label:

When the j g instruction is being executed, the following two
instructions will be in earlier stages, one being fetched and the other
being decoded. However, if the jg instruction evaluates the condition
to be true, it means that the two move instructions will not be executed
and new instructions have to be loaded, starting at the instruction
indicated by label.

This means that we have to flush the pipeline and reload it with new
instructions. The time taken to reload the pipeline is called the branch
penalty and may take several clock cycles. Branch instructions occur
very frequently in programs and so it is important to process them as
efficiently as possible.

A technique known as branch prediction can be used to alleviate the
problem of conditional branch instructions, whereby the system
“guesses” the outcome of a conditional branch evaluation before the
instruction is evaluated and loads the pipeline appropriately. Depending
on how successfully the guess is made, the need for flushing the
pipeline can be reduced. When the branch has been evaluated, the
processor can take appropriate action if a wrong guess was made. In the
event of an incorrect guess, the pipeline will have to be flushed and new
instructions loaded. Branch prediction is used on a number of
microprocessors such as the Pentium and PowerPC. Successful guesses

Introduction to 8086 Assembly Language Programming(alp7) 7

ranging from 80% to 85% of the time are cited for the Pentium
microprocessor.

Another technique is to use delayed branching. In this case, the
instruction following the conditional jump instruction is always
executed. For example, if the conditional jump instruction is
implementing a loop by jumping backwards, it may be possible to place
one of the loop body instructions after the conditional jump instruction.
If a useful instruction cannot be placed here, then a nop instruction can
be used.

Introduction to 8086 Assembly Language Programming(alp7) 8

Increasing Execution Speed: More Hardware

Consider the following two instructions:

add i, 10
add x, y

In a simple processor these instructions would be executed in sequence
by transferring the operands to the ALU and carrying out the addition
operations.

One way of speeding things up is to have to two ALUs so that the
instructions can be carried out at the same time, i.e. the two ALUs can
carry out the instructions in parallel. This idea is now widely employed
by the current generation of microprocessors such as the Pentium,
PowerPC and Alpha.

The term superscalar is used to describe an architecture with two or
more functional units which can carry out two or more instructions in
the same clock cycle.

These may include integer units (IUs), floating-point units (FPUs)
and branch processing units (BPUs, devoted to handling branch
instructions).

The micro-architecture of a hypothetical superscalar processor is
illustrated in Figure 4. The term micro-architecture is used to refer to
the internal architecture of a processor.

Introduction to 8086 Assembly Language Programming(alp7) 9

Cache Memory

ALU ALU FPU BPU

Register File

To System Bus

Figure 4: Micro-architecture of a superscalar processor

The processor shown in Figure 4 has four execution units and could
execute four instructions concurrently, in theory.

The register file is the collective name given to the CPU’s registers. A
processor with an on-chip FPU would have a separate set of floating-
point registers (FPRs) in addition to the usual general purpose registers
(GPRs).

The cache memory is used to speed up the processor’s access to
instructions and data (see later). The extra functional units allow the
CPU carry out more operations per clock cycle. Figure 5 illustrates the
fetch-execute cycle for a superscalar architecture, with two functional
units operating in parallel.

Introduction to 8086 Assembly Language Programming(alp7) 10

Instruction 1 Fetch ExecuteDecode

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6

Instruction 2 Fetch ExecuteDecode
Instruction 3
Instruction 4

Fetch ExecuteDecode

Instruction 5
Instruction 6

Fetch ExecuteDecode
Fetch ExecuteDecode
Fetch ExecuteDecode

Fetch ExecuteDecode
Fetch ExecuteDecode

Instruction 7
Instruction 8

Figure 5: Superscalar architecture fetch-execute cycle

As can be seen from Figure 5, two instructions are in each stage of the
pipeline at the same time, doubling the throughput of the pipeline, in
theory.

If we consider cycle 3 we can see that the processor is handling six
stages of six instructions at the same time.

In practice, this can give rise to a number of problems, since there are
situations that arise, which mean that instructions cannot be executed in
parallel. One problem that arises is that of inter-instruction
dependencies. Consider the following three instructions:

sub r1, x
add r1, 2
sub r0, r3

The first two instructions (add and sub) cannot be carried out in
parallel as they both modify the same operand, r1, giving rise to a data
dependency.

A data dependency arises between two instructions if the destination
operand of one instruction is accessed by the other instruction.

Introduction to 8086 Assembly Language Programming(alp7) 11

In this particular example, a solution is possible called instruction
reordering (scheduling) because by reordering the instructions in the
sequence:

sub r1, x
sub r0, r3
add r1, 2

the two sub instructions can now be executed in parallel, since their
operands do not conflict with each other. This is a software solution and
can be implemented by a compiler, when translating a program to
machine code. The compiler software must be aware of the processor’s
superscalar architecture for this solution to be implemented.

This is why processor aware compilers and native compilers1 are
very important, if programs are to take advantage of the advanced
features of a processor. For example, a compiler that only generates
code for an Intel 80386 can also be used on a PC with Intel’s Pentium
processor. However, the code produced will not perform nearly as well,
as code produced by a native Pentium compiler.

The number of functional units for a superscalar architecture typically
varies from 3 to 5 while the number of instructions that a machine may
issue in a cycle typically varies from 1 to 3.

An important implication of the superscalar fetch-execute pipeline as
illustrated in Figure 5, is that since two instructions are fetched at the
same time, the CPU bus must be wide enough to transfer the two
instructions to the control unit. It is important to point out, that
pipelining and superscalar designs require rapid access to data and
instructions if they are to be successful in improving performance. The
provision of on-chip cache memory, as described later, facilitates such
rapid access.

Parallel Computers

1 A processor aware compiler is capable producing efficient code for more than processor such as an Intel 80486
and a Pentium. A native compiler is designed to generate efficient code for a specific processor.

Introduction to 8086 Assembly Language Programming(alp7) 12

Another very important technique for increasing a computers
performance is the use of more than one processor in a computer
system, as for example, in a multiprocessor or parallel computer. Such
machines may have from 2 to many thousands of interconnected
processors. Each processor may have its own private memory or they
may share a common memory.

One of the difficulties with such machines is the development of
software to take advantage of their parallel nature. It is important to
note that such machines will only yield significant performance gains if
the problems they are being used to handle can be expressed in a
parallel form. The manipulation of matrices is one such problem.

For example, given two 10,000 element matrices which have to be
summed to produce a third matrix, and a parallel machine with 10,000
processors, one processor can be dedicated to the addition of each pair
of elements.

Thus, in crude terms, the computation can be carried out in the time
taken for the addition of one pair of elements, since the 10,000
processors can carry out the operation in parallel. The same operation
on a conventional processor would require the time taken for all 10,000
additions.

The performance gain is striking but it must be stressed that this
example is precisely suited to a parallel machine. A major design issue
in the construction of parallel computers is how the processors
communicate with each other and memory. Various solutions are
possible such as crossbar connections and hypercube connections.

Introduction to 8086 Assembly Language Programming(alp7) 13

Increasing Execution Speed: Faster Clock

The clock speed of a computer determines the rate at which the CPU
operates.

It is measured in megahertz (MHz) or millions of cycles per second and
GigaHertz (GHz).

1 GHz = 1000Mhz

Early microcomputers had a clock speed in the low MHz range, e.g. 1
to 4 MHz. With advancing chip technology, higher and higher clock
speed have been obtained.

Standard personal computers currently run at typical speeds in the
1500MHz to 3000MHz i.e 1.5 GHz to 3 GHz

These speeds seemed impossible for a microprocessor only a few years
ago.

To gain some insight into clock speed, consider a 1000MHz clock rate.

At 1000MHz, each clock cycle takes

one thousandth of a millionth of a second,
or
0.001 microseconds or 1 nanosecond.

Light travels at about 1 foot per nanosecond,

so one clock cycle of a 1000MHz clock
takes the same amount of time as
the time light takes to travel 1 foot!

Introduction to 8086 Assembly Language Programming(alp7) 14

The von Neumann bottleneck
It should be noted that increasing the clock speed does not guarantee
significant performance gains. This is because the speed of the
processor is effectively determined by the rate at which it can fetch
instructions and data from memory.

Thus if the processor spends 90% of its time waiting on memory, the
performance gained by doubling the processor speed (without
improving the memory access time) is only 5%.

For example, assume a task takes 100 units of time, and 90 units are
spent waiting on memory access with 10 units spent on CPU
processing.

By doubling the CPU speed, CPU processing time is reduced to 5 units
and so the overall time is reduced to 95 time units, i.e. a 5%
improvement. It is obviously important then to reduce the time the CPU
has to wait for memory accesses.

This is known as the von Neumann bottleneck - caused by the
mismatch in speed between the CPU and memory.

The CPU can process data at a low nanosecond rate while RAM can
only deliver it at a high nanosecond rate. For example, if RAM delivers
data to the CPU at a rate of 100ns per data item (10 million items per
second!) and the CPU can consume data at say 5ns per item, then the
CPU will still spend 95% of its time waiting on memory.

I/O Delays
The processor will also usually have to wait for I/O operations to
complete and indeed it is usually the case that I/O speeds determine the
speed of program execution. Recall that it is of the order of 100,000
times slower to retrieve data from disk than it is to retrieve it from
memory. This means that for programs that carry out I/O, the processor
is idle most of the time, waiting for the I/O operations to complete. This
in turn, means that using a more powerful processor to execute such
programs, results in very little gain in overall execution speed.

Introduction to 8086 Assembly Language Programming(alp7) 15

Improving Memory Access Time: Cache memory
One way of improving memory access time involves the use of a cache
memory system.

The processor operates at its maximum speed if the data to be processed
is in its registers. Unfortunately, register storage capacity is very limited
and so memory is used to store programs and data.

One, very effective way of overcoming the slow access time of main
memory, is to design a faster intermediate memory system, that lies
between the CPU and main memory.

Such memory is called cache memory (or simply cache) and it may be
visualised as in Figure 8.

CPU
Registers

Cache
Memory

Main
Memory

xMbxKbx00b

Figure 8: Cache Memory: Early systems had small cache memory
systems measured in kilobytes, compared to today’s megabyte cache
memory systems

Cache memory is high speed memory (e.g. SRAM) which can be
accessed much more quickly than normal memory (usually dynamic
RAM (DRAM)). It has a smaller capacity than main memory and it
holds recently accessed data from main memory.

The cache memory system is usually not visible to the programmer

Introduction to 8086 Assembly Language Programming(alp7) 16

The reason why cache memory works so well in improving
performance is due to what is known as the principle of locality of
reference. This roughly means that having accessed a particular
location in memory, it is highly likely that you will access neighbouring
memory locations subsequently. This is because:

• programs tend to execute instructions sequentially and instructions
are stored in neighbouring memory locations

• programs often have loops whereby a group of neighbouring
instructions are repeatedly executed

• arrays of data elements get accessed sequentially

As a result, when an instruction or data element is fetched from
memory, if you also fetch its neighbouring instructions or data elements
and store them in cache memory, then it is very likely that the next item
to be fetched will be in cache memory and can be obtained very
quickly, relative to accessing it in main memory.

Cache memory operates so that when the CPU initiates a memory
access (for data or an instruction), the cache memory is first checked2 to
see if the information is already there.

If it is there (called a cache hit), it can be transferred to the CPU very
quickly. If the information is not in cache memory (a cache miss), then
a normal memory access occurs, but, the information is passed to both
the CPU and the cache memory.

In addition, while the CPU is using the information, the cache memory
system fetches nearby information from memory, independently of the
CPU, so that if neighbouring information is required (a likely event),
then it will already be in cache memory and can be accessed very
quickly. If enough cache memory is available, the instructions making
up a loop in a program could be stored in cache. This would mean that
the loop could be executed an arbitrary number of times without
causing any memory fetches for instructions, after the instructions have

2Cache memory is designed so that it can be checked very quickly to ascertain if an item is stored in it.

Introduction to 8086 Assembly Language Programming(alp7) 17

been initially fetched. This can yield great improvements in program
execution speeds.

In this way a cache hit rate of 90% and greater is possible, i.e. 90% or
more of information requested by the CPU is found in cache memory,
without the CPU having to access main memory. The speed of a
memory system using cache memory is the weighted average of the
cache speed and main memory speed.

For example, assume a 100ns delay for main memory and 20ns delay
for cache memory with a 90% hit rate, then the apparent speed of
memory access is

(0.9 * 20) + (0.1* 100) = 28ns.

This is a significant improvement in memory access performance, since
the access time is now on average 28ns as opposed to 100ns if cache
memory was not used.

Introduction to 8086 Assembly Language Programming(alp7) 18

Cache memory is now also included on the CPU chip (on-chip cache)
of many microprocessors such as Intel’s Pentium microprocessors,
Digital’s Alpha microprocessor and the IBM/Apple PowerPC
microprocessor.

Since the cache memory is on the CPU chip, the speed of cache
memory access is improved over that of off-chip cache memory. The
capacity of on-chip cache memory varies from 8Kb to around 32Kb at
the moment while off-chip cache memory may range from x00Kb to a
few megabytes.

Computers may use separate memories to store instructions and data
and such an architecture is called a Harvard Architecture because this
idea emerged from machines built at Harvard University.

Instructions and data may be stored in the same cache memory which is
referred to as a unified cache memory. Alternatively, separate caches
for instructions and data may be maintained along the lines of the
Harvard Architecture. The advantage of the Harvard Architecture is that
instructions and data can be fetched simultaneously, i.e. in parallel,
since they will be connected to the other CPU components by separate
buses.

Introduction to 8086 Assembly Language Programming(alp7) 19

Measuring Computer Performance
How can we compare the performance of different computer systems ?

It is important to consider the performance of a computer system as a
whole, including both the hardware and software and not just to
consider the performance of the components of the system in isolation.
It is very important to understand that measuring computer performance
is a very difficult problem.

There are a number of criteria that can be used for measuring the
performance of a computer system and it is a non-trivial matter as to
how to weigh up the relative importance of these criteria when
comparing two computer systems. In addition, it is not easy to obtain
totally objective information about different manufacturers’ machines
or to get the information in a form that makes it easy to use for
comparison purposes.

Computer Performance Metrics
There are a number of ways of measuring the performance of a
computer system or indeed that of the components that make up a
computer system. One common measure is processor speed. The
question of how to measure processor speed is not as simple as it
appears.

One simple measure is the number of instructions that can be executed
per second, expressed in millions of instructions per second or MIPS.
So, a given processor might have a processor speed of 5 MIPS, i.e. it
can execute 5 million instructions per second.

But, all instructions do not take the same amount of execution time. An
instruction to clear a register might take 1 clock cycle. A multiplication
instruction might take more than 10 clock cycles.

The way to compute the MIPS rate more usefully is to calculate the
average time the processor takes to execute its instructions, weighted by
the frequency with which each instruction is used.

Introduction to 8086 Assembly Language Programming(alp7) 20

However, the frequency of instruction usage depends on the software
being used. So for example, word processing software would not
require much use of a multiplication instruction whereas spreadsheet
software would be more likely to use many multiplication instructions.
When we compare the MIPS rate of two different machines, we must
ensure that they are counting the same type of instructions. Another
problem with the MIPS metric, is that the amount of work an individual
instruction carries out, varies from processor to processor. For example,
a single VAX add instruction is capable of adding two 32-bit memory
variables and storing the result in a third memory variable, whereas a
machine such as the 8086 requires three instructions (e.g. an add and
two mov instructions) to accomplish the same task. Naively counting
the number of add instructions that can be executed per second on
these two machine will not give a true picture of either machines
performance.

We must also remember to take account of the processor word size
when comparing instruction counts. A 32-bit processor is a more
powerful machine than a 16-bit processor with the same MIPS rate,
since it can operate on 32-bit operands as opposed to 16-bit operands.
Similarly, a 64-bit processor will be more powerful than a 32-bit
processor with the same MIPS rating.

Another metric that is similar to the MIPS rate is the FLOPS or
floating-point operations per second rate which is expressed in
megaFLOPS (MFLOPS) and gigaFLOPS (GFLOPS). This metric is
used particularly for machines targeted at the scientific/engineering
community where a lot of applications software requires large amounts
of floating-point arithmetic. executed more quickly than others (e.g.
addition versus division). Like the MIPS metric, the FLOPS metric
needs to be approached with caution.

Introduction to 8086 Assembly Language Programming(alp7) 21

The MIPS and MFLOPS metrics are concerned with processor speed.
The processor is a crucial component of a computer system when it
comes to performance measurement but it is not the only one and, in
fact, it may not be the determining factor of the performance of a
system.

Other components are the memory and I/O devices whose performance
are also crucial to the overall system performance. For example, a
database application may require searching for information among
millions of records stored on hard disk. The dominant performance
metric for such an application is the speed of disk I/O operations. In
such an application, the CPU spends most of its time waiting for disk
I/O operations to complete. If we use a faster processor without
increasing the speed of the disk I/O operations, then the overall
improvement in performance will be negligible.

I/O performance may be measured in terms of the number of megabytes
that can be transferred per second (I/O bandwidth). This can be
deceptive, as the maximum transfer rate quoted may not be achieved in
practice.

Take disk I/O, if the information required is stored on different tracks,
then the seek time to move the head to the required tracks will slow I/O
down considerably, whereas if the information is on the same track it
can be transferred much more quickly. Another measure is the number
I/O operations that can be completed per second, which can take
account of the fact that the information may not be conveniently
available on disk.

Memory performance is often measured in terms of its access time, i.e.
the time taken to complete a memory write or read operation which is in
the 20 to 100ns range. The amount of memory present is also a very
important factor in system performance. The larger the amount of
memory present, the less likelihood for page faults to occur in a virtual
memory system.

Introduction to 8086 Assembly Language Programming(alp7) 22

Overall system performance is determined by the performance of the
processor, memory and I/O devices as well as the operating system and
applications software performance.

One measure of system performance to take account of the processor,
memory and I/O performance is the number of transactions per second
(TPS) that the system can cope with. A transaction might be defined as
the amount of work required to retrieve a customer record from disk,
update the record and write it back to disk, as modelled on a typical
bank transaction.

System performance can also be evaluated by writing benchmark
programs and running the same benchmark program on a series of
machines.

A benchmark program is one written to measure some aspect of a
computer’s performance. For example, it might consist of a loop to
carry out 1 million floating-point additions or a loop to carry out a
million random read and write operations on a disk file. The time taken
to execute the benchmark program gives a measure of the computer
system’s performance. By constructing a number of such programs for
the different aspects of a systems performance, a suite of benchmarks
may be developed that allow different computer systems to be
compared. Benchmark programs are also used to test the performance
of systems software such as compilers. The size of the executable file
produced by the compiler and the efficiency of the machine code are
two metrics that are used to compare compilers.

Another system performance measure is the SPECmark which is
obtained in a similar fashion to the use of benchmark programs, except
instead of using contrived benchmark programs, a suite of ten real
world application programs are used (these include a compiler
application, a nuclear reactor simulation and a quantum chemistry
application). SPECmarks are used by companies such as Sun and
Hewlett Packard to measure the performance of their workstations.

Introduction to 8086 Assembly Language Programming(alp7) 23

One difficulty about using benchmarks and SPECmarks to evaluate
system performance, is that you are dependent on a compiler to
translate the programs into efficient machine code for the computer
under evaluation.

However, compilers are not all equally efficient and particularly with
the advent of new processor features such as multiple functional units
capable of parallel operation, compiler writers have a complex task in
designing good so-called optimising compilers. The code produced by
a poor quality compiler can run significantly slower and use more
memory than code produced by a good compiler. A computer
manufacturer may have benchmark programs optimised for a particular
machine so that the machine’s performance is apparently superior to
another machine running the same benchmark programs which have
not, however, been optimised for the second machine! Caveat emptor
(“Let the buyer beware”).

In addition to the effects of the compiler, the operating system will also
influence the performance of a computer system. In the case, where two
computer systems running different operating systems, are being
evaluated, care must be taken to ensure that both operating systems are
properly configured. For example, a good machine with an efficient
operating system may perform poorly as a result of having insufficient
memory allocated to user programs, in comparison to a less powerful
machine which has been expertly tuned to run its programs.

Other non-performance issues that arise when comparing computer
systems are the actual cost of the system, and its reliability together
with the availability of hardware and software support. Computer
systems fail due to either hardware or software problems, or both. It is
fundamentally important to take account of computing failures, from
the moment of evaluating a new system right through to its day to day
operation.

There’s no point in having the most sophisticated computer system in
the world, if when it fails, you cannot get it operational again, in a short
period of time.

Introduction to 8086 Assembly Language Programming(alp7) 24

In summary, evaluating computer system performance is fraught with
difficulties and the use of apparently simple metrics such as MIPS and
MFLOPS can be quite misleading. The reality is that there is no easy
alternative to that of running real world application programs
(preferably the ones you wish to use) and choosing the system which
best matches the performance criteria that you have laid down.

Introduction to 8086 Assembly Language Programming(alp7) 25

