
Introduction to 8086 Assembly Language Programming(alp4) 1

Character Conversion: Uppercase to Lowercase

To convert an uppercase letter to lowercase, we note that
ASCII codes for the uppercase letters ‘A’ to ‘Z’ form a
sequence from 65 to 90.

The corresponding lowercase letters ‘a‘ to ‘z’ have codes in
sequence from 97 to 122.

We say that ASCII codes form a collating sequence and we
use this fact to sort textual information into alphabetical order.

To convert from an uppercase character to its lowercase
equivalent, we add 32 to the ASCII code of the uppercase
letter to obtain the ASCII code of the lowercase equivalent.

To convert from lowercase to uppercase, we subtract 32 from
the ASCII code of the lowercase letter to obtain the ASCII
code of the corresponding uppercase letter.

The number 32 is obtained by subtracting the ASCII code for
‘A’ from the ASCII code for ‘a’
(i.e. ‘A’ - ‘a’ = 97 - 65 = 32).

Example 3.19: Write a program to prompt the user to enter an
uppercase letter, read the letter entered and display the
corresponding lowercase letter. The program should then
convert the letter to its to lowercase equivalent and display it,
on a new line.

Introduction to 8086 Assembly Language Programming(alp4) 2

; char.asm: character conversion: uppercase to
lowercase

.model small

.stack 100h

CR equ 13d
LF equ 10d

.data
msg1 db ‘Enter an uppercase letter: $’
result db CR, LF, ‘The lowercase equivalent is:
$’

.code

; main program
start:

mov ax, @data
mov ds, ax

mov dx, offset msg1
call puts ; prompt for uppercase letter
call getc ; read uppercase letter
mov bl, al ; save character in bl

add bl, 32d ; convert to lowercase

mov dx, offset result
call puts ; display result message
mov dl, bl
call putc ; display lowercase letter

mov ax, 4c00h
int 21h ; return to ms-dos

Introduction to 8086 Assembly Language Programming(alp4) 3

; user defined subprograms

puts: ; display a string terminated by $
; dx contains address of string

mov ah, 9h
int 21h ; output string
ret

putc: ; display character in dl
mov ah, 2h
int 21h
ret

getc: ; read character into al
mov ah, 1h
int 21h
ret

end start

Executing this program produces as output:

Enter an uppercase letter: G
The lowercase equivalent is: g

The string result is defined to begin with the Return and
Line-feed characters so that it will be displayed on a new line.
An alternative would have been to include the two characters
at the end of the string msg1, before the ‘$’ character, e.g.

msg1 db ‘Enter an uppercase letter: ’,CR, LF, ‘$’

After displaying msg1, as defined above, the next item to be
displayed will appear on a new line.

Introduction to 8086 Assembly Language Programming(alp4) 4

Exercises
3.11 Modify the above program to convert a lowercase letter
to its uppercase equivalent.

3.12 Write a program to convert a single digit number such as
5 to its character equivalent ‘5’ and display the character.

I/O Subprogram Consistency
We have now written three I/O subprograms: putc, getc
and puts.

One difficulty with these subprograms is that they use
different registers for parameters based on the requirements of
the MS-DOS I/O subprograms.

This means that we have to be careful to remember which
register (al, dl, dx) to use to pass parameters.

A more consistent approach would be to use the same register
for passing the parameters to all the I/O subprograms, for
example the ax register could be used.

Since we cannot change the way MS-DOS operates, we can
do this by modifying our subprograms. We will use al to
contain the character to be displayed by putc and ax to
contain the address of the string to be displayed by puts.
The getc subprogram returns the character entered in al
and so does not have to be changed.

Introduction to 8086 Assembly Language Programming(alp4) 5

Example 3.20: Revised versions of puts and putc:

puts: ; display a string terminated by $
; ax contains address of string

mov dx, ax ; copy address to dx for ms-dos
mov ah, 9h
int 21h ; call ms-dos to output string
ret

putc: ; display character in al
mov dl, al ; copy al to dl for ms-dos
mov ah, 2h
int 21h
ret

Introduction to 8086 Assembly Language Programming(alp4) 6

Example 3.21: To illustrate the use of the new definitions of
putc and puts , we rewrite the Program 3.19, which
converts an uppercase letter to its lowercase equivalent:

; char2.asm: character conversion: uppercase to
lowercase

.model small

.stack 100h

CR equ 13d
LF equ 10d

.data

msg1 db ‘Enter an uppercase letter: $'
result db CR, LF, ‘The lowercase equivalent is: $'

.code
; main program
start:

mov ax, @data
mov ds, ax

mov ax, offset msg1
call puts
call getc ; read uppercase letter
mov bl, al ; save character in bl

add bl, 32d ; convert to lowercase

mov ax, offset result
call puts ; display result message
mov al, bl
call putc ; display lowercase letter

mov ax, 4c00h
int 21h ; return to ms-dos

Introduction to 8086 Assembly Language Programming(alp4) 7

; user defined subprograms

puts: ; display a string terminated by $
; ax contains address of string

mov dx, ax
mov ah, 9h
int 21h ; call ms-dos to output string
ret

putc: ; display character in al
mov dl, al
mov ah, 2h
int 21h
ret

getc: ; read character into al
mov ah, 1h
int 21h
ret

end start

3.4.1 Saving Registers
There is one disadvantage in using the above method of
implementing putc and puts.

We now use two registers where formerly we only used one
register to achieve the desired result. This reduces the number
of registers available for storing other information.

Introduction to 8086 Assembly Language Programming(alp4) 8

Another important point also arises. In the puts subprogram,
for example, the dx register is modified. I

f we were using this register in a program before the call to
puts then the information stored in dx would be lost, unless
we saved it before calling puts.

This can cause subtle but serious errors, in programs, that are
difficult to detect. The following code fragment illustrates the
problem:

mov dx, 12 ; dx = 12

mov ax, offset msg1 ; display message msg1

call puts ; dx gets modified
add dx, 2 ; dx will NOT contain 14

It may be much later in the execution of the program before
this error manifests itself. Beginners make this type of error
quite frequently in assembly language programs.

When a program behaves strangely, it is usually a good
debugging technique to check for this type of situation, i.e.
check that subprograms do not modify registers which you are
using for other purposes.

This is a general problem with all subprograms that change
the values of registers. All of our subprograms carrying out
I/O change the value of the ah register. Thus, if we are using
the ah register before calling a subprogram, we must save it
before the subprogram is called.

Introduction to 8086 Assembly Language Programming(alp4) 9

In addition, the MS-DOS subprogram invoked using the int
instruction may also change a register’s value. For example,
subprogram number 2h (used by getc) does this. It modifies
the al register to return the value entered at the keyboard.
The MS-DOS subprogram may also change other register
values and you must be careful to check for this when using
such subprograms.

There is a straightforward solution to this problem. We can
and should write our subprograms so that before modifying
any registers they first save the values of those registers.
Then, before returning from a subprogram, we restore the
registers to their original values.

(In the case of getc, however, we would not save the value
of the al register because we want getc to read a value into
that register.)

The stack is typically used to save and restore the values of
registers used in subprograms.

The stack is an area of memory (RAM) where we can
temporarily store items. We say that we “push the item onto
the stack” to save it.

To get the item back from the stack, we “pop the item from
the stack”.

The 8086 provides push and pop instructions for storing and
retrieving items from the stack. See Chapter 2 for details.

Introduction to 8086 Assembly Language Programming(alp4) 10

Example 3.22: We now rewrite the getc, putc and puts
subprograms to save the values of registers and restore them
appropriately. The following versions of getc, putc and
puts are therefore safer in the sense that registers do not get
changed without the programmer realising it.

puts: ; display a string terminated by $
; dx contains address of string

push ax ; save ax
push bx ; save bx
push cx ; save cx
push dx ; save dx

mov dx, ax
mov ah, 9h
int 21h ; call ms-dos to output string

pop dx ; restore dx
pop cx ; restore cx
pop bx ; restore bx
pop ax ; restore ax
ret

putc: ; display character in al
push ax ; save ax
push bx ; save bx
push cx ; save cx
push dx ; save dx

mov dl, al
mov ah, 2h
int 21h

pop dx ; restore dx
pop cx ; restore cx
pop bx ; restore bx
pop ax ; restore ax
ret

Introduction to 8086 Assembly Language Programming(alp4) 11

getc: ; read character into al
push bx ; save bx
push cx ; save cx
push dx ; save dx

mov ah, 1h
int 21h

pop dx ; restore dx
pop cx ; restore cx
pop bx ; restore bx

ret

Note that we pop values from the stack in the reverse order
to the way we pushed them on, due to the last-in-first-out
(LIFO) nature of stack operations.

From now on, when we refer to getc, putc and puts in
these notes, the definitions above are those intended.

Note: It is vital, when using the stack in subprograms, to pop
off all items pushed on the stack in the subprogram before
returning from the subprogram.

Failure to do so leaves an item on the stack which will be
used by the ret instruction as the return address. This will
cause your program to behave weirdly to say the least! If you
are lucky, it will crash! Otherwise, it may continue to execute
from any point in the program, producing baffling results.

The point is worth repeating: when using the stack in a
subprogram, be sure to remove all items pushed on, before
returning from the subprogram.

Introduction to 8086 Assembly Language Programming(alp4) 12

3.5 Control Flow: Jump Instructions

3.5.1 Unconditional Jump Instruction
The 8086 unconditional jmp instruction causes control flow
(i.e. which instruction is next executed) to transfer to the point
indicated by the label given in the jmp instruction.

Example 3.23: This example illustrates the use of the jmp
instruction to implement an endless loop – not something you
would noramlly wish to do!

again:
call getc ; read a character
call putc ; display character
jmp again ; jump to again

This is an example of a backward jump as control is
transferred to an earlier place in the program.

The code fragment causes the instructions between the label
again and the jmp instruction to be repeated endlessly.

You may place a label at any point in your program and the
label can be on the same line as an instruction e.g.

again: call getc ; read a character

The above program will execute forever
unless you halt it with an interrupt,
e.g. by pressing ctrl/c or by switching
off the machine.

Introduction to 8086 Assembly Language Programming(alp4) 13

Example 3.24: The following code fragment illustrates a
forward jump, as control is transferred to a later place in the
program:

call getc ; read a character
call putc ; display the character
jmp finish ; jump to label finish

<do other things>; Never gets done !!!

finish:
mov ax, 4c00h
int 21h

In this case the code between jmp instruction and the label
finish will not be executed because the jmp causes control
to skip over it.

3.5.2 Conditional Jump Instructions
The 8086 provides a number of conditional jump instructions
(e.g. je , jne , ja). These instructions will only cause a
transfer of control if some condition is satisfied.

For example, when an arithmetic operation such as add or
subtract is carried out, the CPU sets or clears a flag (Z-flag) in
the status register to record if the result of the operation was
zero, or another flag if the result was negative and so on.

If the Z-flag has value 1, it means that the result of the last
instruction which affected the Z-flag was 0.

If the Z-flag has value 0, it means that the result of the last
instruction which affected the Z-flag was not 0.

Introduction to 8086 Assembly Language Programming(alp4) 14

By testing these flags, either individually or a combination of
them, the conditional jump instructions can handle the various
conditions (==, !=, <, >, <=, >=) that arise when comparing
values. In addition, there are conditional jump instructions to
test for conditions such as the occurrence of overflow or a
change of sign.

The conditional jump instructions are sometimes called
jump-on-condition instructions. They test the values of the
flags in the status register.

(The value of the cx register is used by some of them). One
conditional jump is the jz instruction which jumps to another
location in a program just like the jmp instruction except that
it only causes a jump if the Z-flag is set to 1, i.e. if the result
of the last instruction was 0. (The jz instruction may be
understood as standing for ‘jump on condition zero’ or ‘jump
on zero’).

Introduction to 8086 Assembly Language Programming(alp4) 15

Example 3.25: Using the jz instruction.

mov ax, 2 ; ax = 2
sub ax, bx ; ax = 2 - bx
jz nextl ; jump if (ax-bx) == 0
inc ax ; ax = ax + 1

nextl:
inc bx

The above is equivalent to:

ax = 2;
if (ax != bx)
{

ax = ax + 1 ;
}

bx = bx + 1 ;

Introduction to 8086 Assembly Language Programming(alp4) 16

In this example, the Z-flag will be set (to 1) only if bx
contains 2. If it does, then the jz instruction will cause the
jump to take place as the test of the Z-flag yields true.

We are effectively comparing ax with bx and jumping if they
are equal.

The 8086 provides the cmp instruction for such comparisons
It works exactly like the sub instruction except that the
operands are not affected, i.e. it subtracts the source operand
from the destination but discards the result leaving the
destination operand unchanged. However, it does modify the
status register. All the flags that would be set or reset by sub
are set or reset by cmp. So, if you wish to compare two values
it makes more sense to use the cmp instruction.

Example 3.26: The above example could be rewritten using
cmp:

mov ax, 2 ; ax becomes 2
cmp ax, bx ; set flags according to (ax - bx)
jz equals ; jump if (ax == bx)
inc ax ; executed only if bx != ax

equals:
inc bx

Note: The cmp compares the destination operand with the
source operand. The order is obviously important because for
example, an instruction such as jng dest, source will
cause a branch only if dest <= source .

Introduction to 8086 Assembly Language Programming(alp4) 17

Most jump-on-condition instructions have more than one
name, for example the jz (jump on zero) instruction is also
called je (jump on equal). Thus the above code could be
written:

cmp ax, bx
je equals ; jump if ax == bx

This name for the instruction makes the code more readable in
a situation where we are testing two values for equality.

The jump-on-condition instructions may be used to jump
forwards (as in the above example) or backwards and thus
implement loops.

There are sixteen jump-on-condition instructions which test
whether flags or combinations of flags are set or cleared.

However, rather than concentrating on the flag settings, it is
easier to understand them in terms of comparing numbers
(signed and unsigned separately) as equal, not equal, less
than, greater than, greater than or equal and less than or equal.

Introduction to 8086 Assembly Language Programming(alp4) 18

Table 3.1 lists the jump-on-condition instructions. It gives the
alternative names for those that have them.

Name(s) Jump if Flags tested
je / jz equal/zero zf = 1
jne / jnz not equal/not zero zf = 0

Operating with Unsigned Numbers

ja / jnbe above/not below or equal (cf or zf) = 0
jae / jnb above or equal/not below cf = 0

jb / jnae / jc below/not above or equal/carry cf = 1
jbe / jna below or equal/not above (cf or zf) = 1

Operating with Signed Numbers

jg / jnle greater/not less than nor equal zf=0 and
sf = of
jge / jnl greater or equal/not less sf = of

jl / jnge less /not greater nor equal sf <> of
jle / jng less or equal/not greater (zf=1) or
(sf!=of)

jo overflow of = 1
jno not overflow of = 0

jp / jpe parity/parity even pf = 1
jnp / jpo no parity/odd parity pf = 0

js sign sf = 1
jns no sign sf = 0

Table 3.1: Conditional jump instructions

Introduction to 8086 Assembly Language Programming(alp4) 19

Notes:
• cf, of, zf, pf and sf are the carry, overflow, zero, parity
and sign flags of the flags (status) register.

• (cf or zf) = 1 means that the jump is made if either cf or
zf is set to 1.

• In the above instructions, the letter a can be taken to mean
above and the letter b to mean below. Instructions using these
letters (e.g. ja, jb etc.) operate on unsigned numbers.

The letter g can be taken to mean greater than and the letter l
to mean less than. Instructions using these letters (e.g. jg, jl
etc.) operate on signed numbers.

It is the programmer’s responsibility to use the correct
instruction depending on whether signed or unsigned numbers
are being manipulated.

There are also four jump instructions involving the cx
register: jcxz, loop, loope, loopne. For example, the
jcxz instruction causes a jump if the contents of the cx
register is zero.

Introduction to 8086 Assembly Language Programming(alp4) 20

3.5.3 Implementation of if-then control structure
The general form of the if-then control structure in C is:

if (condition)
{

/* action statements */
}
<rest of program>

It consists of a condition to be evaluated and an action to be
performed if the condition yields true.

Example 3.27:

C version
if (i == 10)
{

i = i + 5 ;
j = j + 5 ;

}
/* Rest of program */

Introduction to 8086 Assembly Language Programming(alp4) 21

There are two ways of writing this in assembly language. One
method tests if the condition (i == 10) is true. It branches
to carry out the action if the condition is true. If the condition
is false, there is a second unconditional branch to the next part
of the program. This is written as:

8086 version 1:

cmp i, 10
je label1 ; if i == 10 goto label1
jmp rest ; otherwise goto rest

label1: add i, 5
add j, 5

rest: ; rest of program

The second method tests if the condition (i != 10) is
true, branching to the code to carry out the rest of the program
if this is the case. If this is not the case, then the action
instructions are executed:

8086 version 2:

cmp i, 10
jne rest ; if i != 10 goto rest
add i, 5 ; otherwise do action part
add j, 5

rest: ; rest of program

The second method only requires a single branch instruction
and is to be preferred.

Introduction to 8086 Assembly Language Programming(alp4) 22

So, in general, to implement an if-then construct in assembly
language, we test the inverse of the condition that would be
used in the high level language form of the construct, as in
version 2 above.

3.5.4 Implementation of if-then-else control
structure
The general form of this control structure in C is:

if (condition)
{

/* action1 statements */
}
else
{

/* action2 statements */
}

Example 3.28: Write a code fragment to read a character
entered by the user and compare it to the character ‘A’.
Display an appropriate message if the user enters an ‘A’. This
code fragment is the basis of a guessing game program.

C version:
printf(“Guessing game: Enter a letter (A

to Z): “);
c = getchar() ;
if (c == ‘A’)

printf(“You guessed correctly !! “);
else

printf(“Sorry incorrect guess “) ;

Introduction to 8086 Assembly Language Programming(alp4) 23

8086 version:
mov ax, offset prompt ; prompt user
call puts
call getc ; read character

cmp al, ‘A’ ; compare it to ‘A’
jne is_not_an_a ; jump if not ‘A’
mov ax, offset yes_msg ; if

action
call puts ; display correct guess

jmp end_else ; skip else action
is_not_an_A: ; else action

mov ax, offset no_msg
call puts ; display wrong guess

end_else:

If the value read is the letter ‘A‘, then the jne will not be
executed, yes_msg will be displayed and control transferred
to end_else. If the value entered is not an ‘A‘, then the
jne is executed and control is transferred to is_not_an_A.

Introduction to 8086 Assembly Language Programming(alp4) 24

Example 3.29: The complete program to play a guessing
game based on the above code fragment is:

; guess.asm: Guessing game program.
;User is asked to guess which letter the program
‘knows’
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

CR equ 13d
LF equ 10d

.data
prompt db “Guessing game: Enter a letter (A to Z):
$“
yes_msg db CR, LF,“You guessed correctly !! $“
no_msg db CR, LF,“Sorry incorrect guess $“

.code
start:

mov ax, @data
mov ds, ax
mov ax, offset prompt
call puts ; prompt for input

call getc ; read character
cmp al, ‘A’
jne is_not_an_a ; if (al != ‘A’) skip

action
mov ax, offset yes_msg ; if action
call puts ; display correct guess
jmp end_else1 ; skip else action

is_not_an_A: ; else action
mov ax, offset no_msg
call puts ; display wrong guess

end_else1:

Introduction to 8086 Assembly Language Programming(alp4) 25

finish: mov ax, 4c00h
int 21h

; User defined subprograms
; < puts getc defined here>

end start

Note: In this program we use the label end_else1 to
indicate the end of the if-then-else construct.

It is important, if you use this construct a number of times in a
program, to use different labels each time the construct is
used. So a label such as end_else2 could be used for the
second occurrence of the construct although it is to be
preferred if a more meaningful label such as is_not_an_A
is used.

Introduction to 8086 Assembly Language Programming(alp4) 26

Example 3.30: Modify Program 3.19, which converts an
uppercase letter to lowercase, to test that an uppercase letter
was actually entered. To test if a letter is uppercase, we need
to test if its ASCII code is in the range 65 to 90 (‘A’ to ‘Z’).
In C such a test could be written as:

if (c >= ‘A‘ && c <= ‘Z‘)
/* it is uppercase letter */

The opposite condition, i.e. to test if the letter is not uppercase
may be written as:

if (c < ‘A‘ || c > ‘Z‘)
/* it is not uppercase letter */

The variable c contains the ASCII code of the character
entered. It is being compared with the ASCII codes of ‘A’ and
‘Z’.

The notation && used in the first condition, reads as AND, in
other words if the value of c is greater than or equal to ‘A’
AND it is less than or equal to ‘Z’, then c contains an
uppercase letter.

The notation || used in the second condition reads as OR, in
other words, if the value of c is less than ‘A’ OR if it is
greater than ‘Z’, it cannot be an uppercase letter. We use the
first condition in the 8086 program below.

Introduction to 8086 Assembly Language Programming(alp4) 27

C version:

main() /* char.c: convert letter to lowercase */
{

char c;

printf(“\nEnter an uppercase letter: “);
c = getchar();
if (c >= ‘A‘ && c <= ‘Z‘)
{

c = c + (‘a’ - ‘A’) ; /* convert to
lowercase */

printf(“\nThe lowercase equivalent is: %c “,
c);

}
else

printf(“\nNot an uppercase letter %c “, c);
}

8086 version:

; char3.asm: character conversion: uppercase to
lowercase
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

CR equ 13d
LF equ 10d

.data

msg1 db CR, LF,‘Enter an uppercase letter:
$’
result db CR, LF,‘The lowercase equivalent is: $’
bad_msg db CR, LF,‘Not an uppercase letter: $’

.code ; main program

Introduction to 8086 Assembly Language Programming(alp4) 28

start:
mov ax, @data
mov ds, ax

mov ax, offset msg1
call puts
call getc ; read uppercase letter
mov bl, al ; save character in bl
cmp bl, ‘A‘
jl invalid ; if bl < ‘A‘ goto invalid
cmp bl, ‘Z‘ ; if bl > ‘Z‘ goto invalid
jg invalid

; otherwise its valid
add bl, 32d ; convert to lowercase

mov ax, offset result
call puts ; display result message
mov al, bl
call putc ; display lowercase letter
jmp finish

invalid:
mov ax, offset bad_msg ; not uppercase
call puts ; display bad_msg
mov al, bl
call putc ; display character

entered

finish:
mov ax, 4c00h
int 21h ; return to ms-dos

; subprograms getc, putc and puts should be defined
here

end start

Introduction to 8086 Assembly Language Programming(alp4) 29

This program produces as output, assuming the digit 8 is
entered:

Enter an uppercase letter: 8
Not an uppercase letter: 8

It produces as output, assuming the letter Y is entered:

Enter an uppercase letter: Y
The lowercase equivalent is: y

Introduction to 8086 Assembly Language Programming(alp4) 30

Exercises
3.13 Write a program to read a digit and display an error
message if a non-digit character is entered.

3.14 In the code fragments below where will execution
continue from when <jump-on-condition> is replaced by (a)
je lab1 ; (b) jg lab1; (c) jle lab1; (d) jz lab1
(i) mov ax, 10h

cmp ax, 9h
<jump-on-condition>
; rest of program
...........
...........

lab1:

(ii) mov cx, 0h
cmp cx, 0d
<jump-on-condition>
; rest of program
...........
...........

lab1:

3.15 Write programs to test that a character read from the
keyboard and transfer control to label ok_here, if the
character is:

(i) a valid lowercase letter (‘a’ <= character <= ‘z’)
(ii) either an uppercase or lowercase letter (‘A’ <=

character <= ‘Z’ OR ‘a’ <= character <= ‘z’)
(iii) is not a lowercase letter, i.e. character < ‘a’ or character

> ‘z’.
The programs should display appropriate messages to prompt
for input and indicate whether the character satisfied the
relevant test.

Introduction to 8086 Assembly Language Programming(alp4) 31

3.5.5 Loops
We have already seen how loops could be implemented using
the jmp instruction to jump backwards in a program.
However, we noted that since jmp is an unconditional jump,
it gives rise to infinite loops. The solution is to use jump-on-
condition instructions. For example, a while loop to display
the ‘*’ character 60 times may be implemented as in Example
3.31.

Example 3.31: Display a line of 60 stars.

C version:
count = 1 ;
while (count <= 60)
{

putchar(‘*’) ;
count = count + 1 ;

}

8086 version:

mov cx, 1d ; cx = 1
mov al, ‘*’ ; al = ‘*’

disp_char:
cmp cx, 60d
jnle end_disp ; if cx > 60 goto end_disp

call putc ; display ‘*’
inc cx ; cx = cx + 1

jmp disp_char ; repeat loop
test

end_disp:

Introduction to 8086 Assembly Language Programming(alp4) 32

The instruction jnle (jump if not less than or equals) may also
be written as jg (jump if greater than). We use a similar
technique to that used in the implementation of an if-then
construct in that we test the inverse of the condition used in
the C code fragment(count <= 60). This allows us write
clearer code in assembly language.

Example 3.32: Write a code fragment to display the
characters from ‘a’ to ‘z’ on the screen using the knowledge
that the ASCII codes form a collating sequence. This means
that the code for ‘b’ is one greater than the code for ‘a’ and
the code for ‘c’ is one greater than that for ‘b’ and so on.

C version:
c = ‘a‘ ; /* c = 97 (ASCII for ‘a‘)
while (c <= ‘z‘)
{

putchar(c);
c = c + 1 ;

}

8086 version:

mov al, ‘a’
startloop:

cmp al, ‘z’
jnle endloop ; while al <= ‘z’

call putc ; display character
inc al ; al = al + 1

jmp startloop ; repeat test
endloop:

This program produces as output
abcdefghijklmnopqrstuvwxyz

Introduction to 8086 Assembly Language Programming(alp4) 33

In the last two examples, we specified how many times the
loop action was to be carried out (such a loop is called a
deterministic loop).

We frequently encounter cases when we do not know how
many times the loop will be executed. For example, at each
iteration we may ask the user if the loop action is to be
repeated and the loop continues to execute or is terminated on
the basis of the user’s response.

Example 3.33: Program 3.19 reads an uppercase letter,
converts it to lowercase and displays the lowercase
equivalent. We now modify it, so that the user may repeat this
process as often as desired. The user is asked to enter ‘y’ to
carry out the operation, after each iteration.

C version:
main()
{

char c, reply;

reply = ‘y‘;

while (reply == ‘y‘)
{

printf(“\nEnter an uppercase letter: “);
c = getchar();
c = c + (‘a’ - ‘A’) ; /* convert to lowercase

*/
printf(“\nThe lowercase equivalent is: %c “, c);
printf(“\nEnter y to continue: “);
reply = getchar();

}
}

Introduction to 8086 Assembly Language Programming(alp4) 34

8086 version:
; char4.asm: character conversion: upper to lowercase

.model small

.stack 100h
CR equ 13d
LF equ 10d

.data
reply db ‘y’
msg0 db CR, LF, ‘Enter y to continue: $’
msg1 db CR, LF, ‘Enter an uppercase letter: $’
result db CR, LF, ‘The lowercase equivalent is: $’

.code
; main program
start:

mov ax, @data
mov ds, ax

readloop:
cmp reply, ‘y’ ; while (reply == ‘y‘)
jne finish ; do loop body

mov ax, offset msg1
call puts ; prompt for letter
call getc ; read character
mov bl, al ; save character in bl
add bl, 32d ; convert to lowercase

mov ax, offset result
call puts ; display result message
mov al, bl
call putc ; display lowercase letter

mov ax, offset msg0
call puts ; prompt to continue
call getc ; read reply
mov reply, al ; save character in reply
jmp readloop ; repeat loop test

finish:
mov ax, 4c00h
int 21h ; return to ms-dos

; user defined subprograms should be defined here
end start

Introduction to 8086 Assembly Language Programming(alp4) 35

Executing this program produces as output, assuming the user
enters the characters C, y, X and n:

Enter an uppercase letter: C
The lowercase equivalent is: c
Enter y to continue: y
Enter an uppercase letter: X
The lowercase equivalent is: x
Enter y to continue: n

Exercises
3.16 Modify the program in Example 3.33 to test that the
letter entered is a valid uppercase letter. If it isn’t an
uppercase letter a suitable error message should be displayed
and the program should continue executing for as long as the
user wishes.

3.17 Modify the guessing game program (Program 3.29) to
allow the user three guesses, terminating if any guess is
correct.

3.18 Modify the guessing game program to allow users guess
as many or as few times as they wish, terminating if any guess
is correct.

3.19 Modify the guessing game program to loop until a
correct guess is made.

Introduction to 8086 Assembly Language Programming(alp4) 36

3.5.6 Counting Loops
Counting loops, where we know in advance how many times
to repeat the loop body, occur frequently in programming and
as a result most high-level languages have a special construct
called a for-loop to implement them.

In Program 3.31, to display the ‘*’ character 60 times, we
counted upwards from 1 to 60, testing each time around the
loop to see if we have reached 60. In assembly language
programming, it is common to count downwards, e.g. from 60
to 0.

Because this type of situation occurs frequently in
programming, it can be implemented by using the loop
instruction.

The loop instruction combines testing of cx with zero and
the decrementing of cx in a single instruction, i.e. the loop
instruction decrements cx by 1 and tests if cx equals zero.

It causes a jump if cx does not equal 0. It can only be used in
conjunction with the cx register (known as the count
register), i.e. the cx register is initialised with the number of
times the loop is to be repeated. Program 3.31 can be
rewritten to use the loop instruction as follows:

Example 3.36: Using loop instruction.

mov al, ‘*’ ; al = ‘*’
mov cx, 60d ; cx = 60 ; loop count

disp_char:

Introduction to 8086 Assembly Language Programming(alp4) 37

call putc ; display ‘*’
loop disp_char ; cx = cx - 1, if (cx != 0)

goto disp_char

Here, cx is initialised to 60, the number of iterations required.
The instruction loop disp_char first decrements cx and
then tests if cx is not equal to 0, branching to disp_char
only if cx does not equal 0.

General format for using loop instruction:

mov cx, count ; count = # of times to repeat
loop
start_loop: ; use any label name

 <loop body> ; while cx > 0
; repeat loop body

instructions
loop start_loop

To use the loop instruction, simply store the number of
iterations required in the cx register and construct a loop
body as outlined above. The last instruction of the loop body
is the loop instruction.

Note 1: The loop body will always be executed at least once,
since the loop instruction tests the value of cx after
executing the loop body.

Introduction to 8086 Assembly Language Programming(alp4) 38

Note 2: What happens if cx is initialised to 0? The loop
instruction decrements cx before testing the condition (cx
!= 0).

Thus we continue around the loop, with cx becoming more
negative. We will repeat the loop body 65,536 times.

Why ?

The reason is because we keep subtracting 1 from cx until we
reach 0. Eventually, by making cx more negative, the largest
negative number that cx can contain is reached. Since cx is
16-bit register, we know from Appendix 2, that this number is
-32768d, which is the 16-bit number 1000 0000 0000
0000.

Subtracting 1 from this yields the 16-bit number
 0111 1111 1111 1111 or 32767d.

We can subtract 1 from this number 32767 times before
reaching 0, which terminates the loop instruction. Thus the
total number of iterations is 32768 + 32767 + 1 which
equals 65,535 + 1 (the extra 1 is because cx started at 0 and
was decremented to -1 before the test).

