
Introduction to 8086 Assembly Language Programming Section 2 1

Input and Output (I/O) in 8086 Assembly Language

Each microprocessor provides instructions for I/O with the devices
that are attached to it, e.g. the keyboard and screen.

The 8086 provides the instructions in for input and out for
output. These instructions are quite complicated to use, so we
usually use the operating system to do I/O for us instead.

The operating system provides a range of I/O subprograms, in
much the same way as there is an extensive library of subprograms
available to the C programmer. In C, to perform an I/O operation,
we call a subprogram using its name to indicate its operations, e.g.
putchar(), printf(), getchar(). In addition we may pass
a parameter to the subprogram, for example the character to be
displayed by putchar() is passed as a parameter e.g.
putchar(c).

In assembly language we must have a mechanism to call the
operating system to carry out I/O.

In addition we must be able to tell the operating system what kind
of I/O operation we wish to carry out, e.g. to read a character from
the keyboard, to display a character or string on the screen or to do
disk I/O.

Finally, we must have a means of passing parameters to the
operating subprogram.

Introduction to 8086 Assembly Language Programming Section 2 2

In 8086 assembly language, we do not call operating system
subprograms by name, instead, we use a software interrupt
mechanism

An interrupt signals the processor to suspend its current activity
(i.e. running your program) and to pass control to an interrupt
service program (i.e. part of the operating system).

A software interrupt is one generated by a program (as opposed to
one generated by hardware).

The 8086 int instruction generates a software interrupt.

It uses a single operand which is a number indicating which MS-
DOS subprogram is to be invoked.

For I/O and some other operations, the number used is 21h.

Thus, the instruction int 21h transfers control to the operating
system, to a subprogram that handles I/O operations.

This subprogram handles a variety of I/O operations by calling
appropriate subprograms.

This means that you must also specify which I/O operation (e.g.
read a character, display a character) you wish to carry out. This is
done by placing a specific number in a register. The ah register is
used to pass this information.

For example, the subprogram to display a character is subprogram
number 2h.

Introduction to 8086 Assembly Language Programming Section 2 3

This number must be stored in the ah register. We are now in a
position to describe character output.

When the I/O operation is finished, the interrupt service program
terminates and our program will be resumed at the instruction
following int.

3.3.1 Character Output
The task here is to display a single character on the screen. There
are three elements involved in carrying out this operation using the
int instruction:

1. We specify the character to be displayed. This is done by storing
the character’s ASCII code in a specific 8086 register. In this case
we use the dl register, i.e. we use dl to pass a parameter to the
output subprogram.

2. We specify which of MS-DOS’s I/O subprograms we wish to use.
The subprogram to display a character is subprogram number 2h.
This number is stored in the ah register.

3. We request MS-DOS to carry out the I/O operation using the int
instruction. This means that we interrupt our program and transfer
control to the MS-DOS subprogram that we have specified using
the ah register.

Example 1: Write a code fragment to display the character ’a’ on
the screen:

Introduction to 8086 Assembly Language Programming Section 2 4

C version:
putchar(‘a‘) ;

8086 version:

mov dl, ‘a‘ ; dl = ‘a‘
mov ah, 2h ; character output subprogram
int 21h ; call ms-dos output character

As you can see, this simple task is quite complicated in assembly
language.

3.3.2 Character Input
The task here is to read a single character from the keyboard.
There are also three elements involved in performing character
input:

1. As for character output, we specify which of MS-DOS’s I/O
subprograms we wish to use, i.e. the character input from the
keyboard subprogram. This is MS-DOS subprogram number 1h.
This number must be stored in the ah register.

2. We call MS-DOS to carry out the I/O operation using the int
instruction as for character output.

3. The MS-DOS subprogram uses the al register to store the
character it reads from the keyboard.
Example 2: Write a code fragment to read a character from the
keyboard:

C version:

Introduction to 8086 Assembly Language Programming Section 2 5

c = getchar() ;

8086 Version:
mov ah, 1h ; keyboard input subprogram
int 21h ; character input

; character is stored in al
mov c, al ; copy character from al to c

The following example combines the two previous ones, by
reading a character from the keyboard and displaying it.

Example 3: Reading and displaying a character:

C version:
c = getchar() ;
putchar(c) ;

8086 version:

mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al

mov dl, al ; copy character to dl

mov ah, 2h ; character output subprogram
int 21h ; display character in dl

Introduction to 8086 Assembly Language Programming Section 2 6

A Complete Program
We are now in a position to write a complete 8086 program. You
must use an editor to enter the program into a file. The process of
using the editor (editing) is a basic form of word processing. This
skill has no relevance to programming.

We use Microsoft’s MASM and LINK programs for assembling and
linking 8086 assembly language programs. MASM program files
should have names with the extension (3 characters after period)
asm. We will call our first program prog1.asm, it displays the
letter ‘a‘ on the screen. (You may use any name you wish. It is a
good idea to choose a meaningful file name). Having entered and
saved the program using an editor, you must then use the MASM
and LINK commands to translate it to machine code so that it may
be executed as follows:

C> masm prog1

If you have syntax errors, you will get error messages at this point.
You then have to edit your program, correct them and repeat the
above command, otherwise proceed to the link command,
pressing Return in response to prompts for file names from masm
or link.

C> link prog1

To execute the program, simply enter the program name and press
the Return key:

C> prog1
a
C>

Introduction to 8086 Assembly Language Programming Section 2 7

Example 4: A complete program to display the letter ‘a‘ on the
screen:

; prog1.asm: displays the character ‘a’ on the screen
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.code
start:

mov dl, ‘a’ ; store ascii code of ‘a’ in dl

mov ah, 2h ; ms-dos character output function
int 21h ; displays character in dl register

mov ax, 4c00h ; return to ms-dos
int 21h
end start

The first three lines of the program are comments to give the name
of the file containing the program, explain its purpose, give the
name of the author and the date the program was written.

The first two directives, .model and .stack are concerned with
how your program will be stored in memory and how large a stack
it requires. The third directive, .code , indicates where the
program instructions (i.e. the program code) begin.

For the moment, suffice it to say that you need to start all assembly
languages programs in a particular format (not necessarily that
given above.

Introduction to 8086 Assembly Language Programming Section 2 8

 Your program must also finish in a particular format, the end
directive indicates where your program finishes.

In the middle comes the code that you write yourself.

You must also specify where your program starts, i.e. which is the
first instruction to be executed. This is the purpose of the label,
start.

(Note: We could use any label, e.g. begin in place of start).

This same label is also used by the end directive. When a program
has finished, we return to the operating system.

Like carrying out an I/O operation, this is also accomplished by
using the int instruction. This time MS-DOS subprogram number
4c00h is used.

It is the subprogram to terminate a program and return to MS-
DOS. Hence, the instructions:

mov ax, 4c00h ; Code for return to MS-DOS
int 21H ; Terminates program

terminate a program and return you to MS-DOS.

Time-saving Tip
Since your programs will start and finish using the same format,
you can save yourself time entering this code for each program.
You create a template program called for example,
template.asm, which contains the standard code to start and

Introduction to 8086 Assembly Language Programming Section 2 9

finish your assembly language programs. Then, when you wish to
write a new program, you copy this template program to a new file,
say for example, prog2.asm, as follows (e.g. using the MS-DOS
copy command):

C> copy template.asm io2.asm

You then edit prog2.asm and enter your code in the appropriate
place.

Example 3.9: The following template could be used for our first
programs:

; <filename goes here>.asm:
; Author:
; Date:

.model small

.stack 100h

.code
start:

; < your code goes here >

mov ax, 4c00h ; return to ms-dos
int 21h
end start

To write a new program, you enter your code in the appropriate
place as indicated above.

Introduction to 8086 Assembly Language Programming Section 2 10

Example 3.10: Write a program to read a character from the
keyboard and display it on the screen:

; prog2.asm: read a character and display it
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.code
start:

mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al

mov dl, al

mov ah, 2h ; display subprogram
int 21h ; display character in dl

mov ax, 4c00h ; return to ms-dos
int 21h

end start

Assuming you enter the letter ‘B’ at the keyboard when you
execute the program, the output will appear as follows:

C> prog2
BB

Rewrite the above program to use a prompt:
C>prog4
?B B

Introduction to 8086 Assembly Language Programming Section 2 11

; prog4.asm: prompt user with ?
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.code
start:
; display ?

mov dl, ‘?’ ; copy ? to dl
mov ah, 2h ; display subprogram
int 21h ; call ms-dos to display ?

; read character from keyboard
mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al

; save character entered while we display a space
mov bl, al ; copy character to bl

; display space character
mov dl, ‘ ’ ; copy space to dl
mov ah, 2h ; display subprogram
int 21h ; call ms-dos to display space

; display character read from keyboard
mov dl, bl ; copy character entered to dl
mov ah, 2h ; display subprogram
int 21h ; display character in dl

mov ax, 4c00h ; return to ms-dos
int 21h
end start

Note: In this example we must save the character entered (we save
it in bl) so that we can use ax for the display subprogram number.

Introduction to 8086 Assembly Language Programming Section 2 12

Example 3.12: Modify the previous program so that the
character entered, is displayed on the following line giving the
effect:

C> io4
? x
x

In this version, we need to output the Carriage Return and
Line-feed characters.

Carriage Return, (ASCII 13D) is the control character to
bring the cursor to the start of a line.

Line-feed (ASCII 10D) is the control character that brings the
cursor down to the next line on the screen.

(We use the abbreviations CR and LF to refer to Return and
Line-feed in comments.)

In C and Java programs we use the newline character ‘\n’ to
generate a new line which in effect causes a Carriage Return
and Linefeed to be transmitted to your screen.

Introduction to 8086 Assembly Language Programming Section 2 13

; io4.asm: prompt user with ?,
; read character and display the CR, LF characters
; followed by the character entered.
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.code
start:
; display ?

mov dl, ‘?’ ; copy ? to dl
mov ah, 2h ; display subprogram
int 21h ; display ?

; read character from keyboard
mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al

; save character while we display a Return and Line-
feed

mov bl, al ; save character in bl

;display Return
mov dl, 13d ; dl = CR
mov ah, 2h ; display subprogram
int 21h ; display CR

;display Line-feed
mov dl, 10d ; dl = LF
mov ah, 2h ; display subprogram
int 21h ; display LF

; display character read from keyboard
mov dl, bl ; copy character to dl
mov ah, 2h ; display subprogram
int 21h ; display character in dl

mov ax, 4c00h ; return to ms-dos
int 21h
end start

Introduction to 8086 Assembly Language Programming Section 2 14

Note: Indentation and documentation, as mentioned before,
are the responsibility of the programmer. Program 3.13 below
is a completely valid way of entering the program presented
earlier in Example 3.12:

Example 3.13 without indentation and comments.

.model small

.stack 100h

.code
start:
 mov dl,‘?’
 mov ah,2h
 int 21h
 mov ah,1h
 int 21h
 mov bl,al
 mov dl,13d
 mov ah,2h
 int 21h
 mov dl,10d
 mov ah,2h
 int 21h
 mov dl,bl
 mov ah,2h
 int 21h
 mov ax,4c00h
 int 21h
end start

Which program is easier to read and understand ?

Introduction to 8086 Assembly Language Programming Section 2 15

String Output
A string is a list of characters treated as a unit. In
programming languages we denote a string constant by using
quotation marks, e.g. “Enter first number”.

In 8086 assembly language, single or double quotes may be
used.

Defining String Variables
The following 3 definitions are equivalent ways of defining a
string “abc“:

version1 db “abc” ; string constant
version2 db ‘a’, ‘b’, ‘c’ ; character constants
version3 db 97, 98, 99 ; ASCII codes

The first version uses the method of high level languages and
simply encloses the string in quotes. This is the preferred
method.

The second version defines a string by specifying a list of the
character constants that make up the string.

The third version defines a string by specifying a list of the
ASCII codes that make up the string

We may also combine the above methods to define a string as
in the following example:

message db “Hello world”, 13, 10, ‘$’

Introduction to 8086 Assembly Language Programming Section 2 16

The string message contains ‘Hello world’ followed by
Return (ASCII 13), Line-feed (ASCII 10) and the ‘$’
character.

This method is very useful if we wish to include control
characters (such as Return) in a string.

We terminate the string with the ‘$’ character because there
is an MS-DOS subprogram (number 9h) for displaying
strings which expects the string to be terminated by the ‘$’
character.

It is important to understand that db is not an assembly
language instruction. It is called a directive.

A directive tells the assembler to do something, when
translating your program to machine code.

The db directive tells the assembler to store one or more
bytes in a named memory location. From the above
examples, the named locations are v e r s i o n 1 ,
version2, version3 and message.

These are in effect string variables.

In order to display a string we must know where the string
begins and ends.

The beginning of string is given by obtaining its address using
the offset operator.

Introduction to 8086 Assembly Language Programming Section 2 17

The end of a string may be found by either knowing in
advance the length of the string or by storing a special
character at the end of the string which acts as a sentinel.

We have already used MS-DOS subprograms for character
I/O (number 1h to read a single character from the keyboard
and number 2h to display a character on the screen.)

String Output
MS-DOS provides subprogram number 9h to display strings
which are terminated by the ‘$’ character. In order to use it
we must:

1 Ensure the string is terminated with the ‘$’ character.

2 Specify the string to be displayed by storing its address in
the dx register.

3 Specify the string output subprogram by storing 9h in ah.

4 Use int 21h to call MS-DOS to execute subprogram
9h.

The following code illustrates how the string ‘Hello
world’, followed by the Return and Line-feed characters,
can be displayed.

Introduction to 8086 Assembly Language Programming Section 2 18

Example 3.14: Write a program to display the message
‘Hello world’ followed by Return and Line-feed :

; io8.asm: Display the message ‘Hello World’
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.data
message db ‘Hello World‘, 13, 10, ‘$‘

.code
start:

mov ax, @data
mov ds, ax

; copy address of message to dx
mov dx, offset message

mov ah, 9h ; string output
int 21h ; display string

mov ax, 4c00h
int 21h

end start

In this example, we use the .data directive. This directive is
required when memory variables are used in a program.

Introduction to 8086 Assembly Language Programming Section 2 19

The instructions

mov ax, @data
mov ds, ax

are concerned with accessing memory variables and must be
used with programs that use memory variables. See textbook
for further information.

The offset operator allows us to access the address of a
variable. In this case, we use it to access the address of
message and we store this address in the dx register.

Subprogram 9h can access the string message (or any
string), once it has been passed the starting address of the
string.

Exercises

• Write a program to display ‘MS-DOS’ using (a) character
output and (b) using string output.

• Write a program to display the message ‘Ding! Ding! Ding!’
and output ASCII code 7 three times. (ASCII code 7 is the
Bel character. It causes your machine to beep!).

• Write a program to beep, display ‘?’ as a prompt, read a
character and display it on a new line.

Introduction to 8086 Assembly Language Programming Section 2 20

Control Flow Instructions: Subprograms
A subprogram allows us to give a name to a group of
instructions and to use that name when we wish to execute
those instructions, instead of having to write the instructions
again.

For example, the instructions to display a character could be
given the name putc (or whatever you choose). Then to
display a character you can use the name putc which will
cause the appropriate instructions to be executed.

This is referred to as calling the subprogram. In 8086
assembly language, the instruction call is used to invoke a
subprogram, so for example, a putc subprogram would be
called as follows:

call putc ; Display character in dl

The process of giving a group of instructions a name is
referred to as defining a subprogram. This is only done once.

Definition of putc, getc and puts subprograms.

putc: ; display character in dl
mov ah, 2h
int 21h
ret

getc: ; read character into al
mov ah, 1h
int 21h
ret

Introduction to 8086 Assembly Language Programming Section 2 21

puts: ; display string terminated by $
; dx contains address of string

mov ah, 9h
int 21h
ret

The ret instruction terminates the subprogram and
arranges for execution to resume at the instruction
following the call instruction.

We usually refer to that part of a program where execution
begins as the main program.

In practice, programs consist of a main program and a
number of subprograms. It is important to note that
subprograms make our programs easier to read, write and
maintain even if we only use them once in a program.

Note: Subprograms are defined after the code to terminate
the program, but before the end directive.

If we placed the subprograms earlier in the code, they
would be executed without being called (execution would
fall through into them). This should not be allowed to
happen.

The following program illustrates the use of the above
subprograms.

C> sub
Enter a character: x
You entered: x

Introduction to 8086 Assembly Language Programming Section 2 22

; subs.asm: Prompt user to enter a character
; and display the character entered
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.data
prompt db ‘Enter a character: $‘
msgout db ‘You entered: $‘

.code
start:

mov ax, @data
mov ds, ax

; copy address of message to dx
mov dx, offset prompt
call puts ; display prompt

call getc ; read character into al
mov bl, al ; save character in bl

;display next message
mov dx, offset msgout
call puts ; display msgout

; display character read from keyboard
mov dl, bl ; copy character to dl
call putc

mov ax, 4c00h ; return to ms-dos
int 21h

Introduction to 8086 Assembly Language Programming Section 2 23

Defining Constants: Macros

The equ directive is used to define constants.

For example if we wish to use the names CR and LF, to
represent the ASCII codes of Carriage Return and Line-feed,
we can use this directive to do so.

CR equ 13d
LF equ 10d
MAX equ 1000d
MIN equ 0

The assembler, replaces all occurrences of CR with the
number 13 before the program is translated to machine code.
It carries out similar replacements for the other constants.

Essentially, the equ directive provides a text substitution
facility. One piece of text (CR) is replaced by another piece of
text (13), in your program. Such a facility is often call a
macro facility.

We use constants to make our programs easier to read and
understand.

Introduction to 8086 Assembly Language Programming Section 2 24

Example 3.18: The following program, displays the message
‘Hello World’, and uses the equ directive.

; io9.asm: Display the message ‘Hello World’
; Author: Joe Carthy
; Date: March 1994

.model small

.stack 100h

.data

CR equ 13d
LF equ 10d

message db ‘Hello World’, CR, LF, ‘$’

.code
start:

mov ax, @data
mov ds, ax

mov dx, offset message
call puts ; display message

mov ax, 4c00h
int 21h

; User defined subprograms

puts: ; display a string terminated by $
; dx contains address of string

mov ah, 9h
int 21h ; output string
ret

end start

Introduction to 8086 Assembly Language Programming Section 2 25

