
1

TUTORIAL

Emulador Emu8086 do

Microprocessador 8086

2

8086 Assembler Tutorial for Beginners (Part 1)

This tutorial is intended for those who are not familiar with assembler at all, or have a very distant idea about it. Of
course if you have knowledge of some other programming language (Basic, C/C++, Pascal...) that may help you a
lot. But even if you are familiar with assembler, it is still a good idea to look through this document in order to
study Emu8086 syntax.

It is assumed that you have some knowledge about number representation (HEX/BIN), if not it is highly
recommended to study Numbering Systems Tutorial before you proceed.

What is an assembly language?

Assembly language is a low level programming language. You need to get some knowledge about computer
structure in order to understand anything. The simple computer model as I see it:

The system bus (shown in yellow) connects the various components of a computer.
The CPU is the heart of the computer, most of computations occur inside the CPU.
RAM is a place to where the programs are loaded in order to be executed.

Inside the CPU

3

GENERAL PURPOSE REGISTERS

8086 CPU has 8 general purpose registers, each register has its own name:

• AX - the accumulator register (divided into AH / AL).
• BX - the base address register (divided into BH / BL).
• CX - the count register (divided into CH / CL).
• DX - the data register (divided into DH / DL).
• SI - source index register.
• DI - destination index register.
• BP - base pointer.
• SP - stack pointer.

Despite the name of a register, it's the programmer who determines the usage for each general purpose register. The
main purpose of a register is to keep a number (variable). The size of the above registers is 16 bit, it's something
like: 0011000000111001b (in binary form), or 12345 in decimal (human) form.

4 general purpose registers (AX, BX, CX, DX) are made of two separate 8 bit registers, for example if AX=
0011000000111001b, then AH=00110000b and AL=00111001b. Therefore, when you modify any of the 8 bit
registers 16 bit register is also updated, and vice-versa. The same is for other 3 registers, "H" is for high and "L" is
for low part.

Because registers are located inside the CPU, they are much faster than memory. Accessing a memory location
requires the use of a system bus, so it takes much longer. Accessing data in a register usually takes no time.
Therefore, you should try to keep variables in the registers. Register sets are very small and most registers have
special purposes which limit their use as variables, but they are still an excellent place to store temporary data of
calculations.

SEGMENT REGISTERS

• CS - points at the segment containing the current program.
• DS - generally points at segment where variables are defined.
• ES - extra segment register, it's up to a coder to define its usage.
• SS - points at the segment containing the stack.

Although it is possible to store any data in the segment registers, this is never a good idea. The segment registers
have a very special purpose - pointing at accessible blocks of memory.

Segment registers work together with general purpose register to access any memory value. For example if we
would like to access memory at the physical address 12345h (hexadecimal), we should set the DS = 1230h and SI =
0045h. This is good, since this way we can access much more memory than with a single register that is limited to
16 bit values.
CPU makes a calculation of physical address by multiplying the segment register by 10h and adding general
purpose register to it (1230h * 10h + 45h = 12345h):

The address formed with 2 registers is called an effective address.
By default BX, SI and DI registers work with DS segment register;
BP and SP work with SS segment register.
Other general purpose registers cannot form an effective address!
Also, although BX can form an effective address, BH and BL cannot!

4

SPECIAL PURPOSE REGISTERS

• IP - the instruction pointer.
• Flags Register - determines the current state of the processor.

IP register always works together with CS segment register and it points to currently executing instruction.
Flags Register is modified automatically by CPU after mathematical operations, this allows to determine the type
of the result, and to determine conditions to transfer control to other parts of the program.
Generally you cannot access these registers directly.

8086 Assembler Tutorial for Beginners (Part 2)

Memory Access

To access memory we can use these four registers: BX, SI, DI, BP.
Combining these registers inside [] symbols, we can get different memory locations. These combinations are
supported (addressing modes):

[BX + SI]
[BX + DI]
[BP + SI]
[BP + DI]

[SI]
[DI]
d16 (variable offset only)
[BX]

[BX + SI] + d8
[BX + DI] + d8
[BP + SI] + d8
[BP + DI] + d8

[SI] + d8
[DI] + d8
[BP] + d8
[BX] + d8

[BX + SI] + d16
[BX + DI] + d16
[BP + SI] + d16
[BP + DI] + d16

[SI] + d16
[DI] + d16
[BP] + d16
[BX] + d16

d8 - stays for 8 bit displacement.

d16 - stays for 16 bit displacement.

Displacement can be a immediate value or offset of a variable, or even both. It's up to compiler to calculate a single
immediate value.

Displacement can be inside or outside of [] symbols, compiler generates the same machine code for both ways.

Displacement is a signed value, so it can be both positive or negative.

Generally the compiler takes care about difference between d8 and d16, and generates the required machine code.

For example, let's assume that DS = 100, BX = 30, SI = 70.
The following addressing mode: [BX + SI] + 25
is calculated by processor to this physical address: 100 * 16 + 30 + 70 + 25 = 1725.

By default DS segment register is used for all modes except those with BP register, for these SS segment register is
used.

There is an easy way to remember all those possible combinations using this chart:

You can form all valid combinations by taking only one item from each column or skipping the column by not
taking anything from it. As you see BX and BP never go together. SI and DI also don't go together. Here is an
example of a valid addressing mode: [BX+5].

5

The value in segment register (CS, DS, SS, ES) is called a "segment",
and the value in purpose register (BX, SI, DI, BP) is called an "offset".
When DS contains value 1234h and SI contains the value 7890h it can be also recorded as 1234:7890. The physical
address will be 1234h * 10h + 7890h = 19BD0h.

In order to say the compiler about data type,
these prefixes should be used:

BYTE PTR - for byte.
WORD PTR - for word (two bytes).

For example:
BYTE PTR [BX] ; byte access.
 or
WORD PTR [BX] ; word access.
Emu8086 supports shorter prefixes as well:

b. - for BYTE PTR
w. - for WORD PTR

sometimes compiler can calculate the data type automatically, but you may not and should not rely on that when
one of the operands is an immediate value.

MOV instruction

• Copies the second operand (source) to the first operand (destination).

• The source operand can be an immediate value, general-purpose register or memory location.

• The destination register can be a general-purpose register, or memory location.

• Both operands must be the same size, which can be a byte or a word.

These types of operands are supported:

MOV REG, memory
MOV memory, REG
MOV REG, REG
MOV memory, immediate
MOV REG, immediate

For segment registers only these types of MOV are supported:

MOV SREG, memory
MOV memory, SREG
MOV REG, SREG
MOV SREG, REG

6

MOV SREG, REG

SREG: DS, ES, SS, and only as second operand: CS.

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

The MOV instruction cannot be used to set the value of the CS and IP registers.

Here is a short program that demonstrates the use of MOV instruction:

#MAKE_COM# ; instruct compiler to make COM file.
ORG 100h ; directive required for a COM program.
MOV AX, 0B800h ; set AX to hexadecimal value of B800h.
MOV DS, AX ; copy value of AX to DS.
MOV CL, 'A' ; set CL to ASCII code of 'A', it is 41h.
MOV CH, 01011111b ; set CH to binary value.
MOV BX, 15Eh ; set BX to 15Eh.
MOV [BX], CX ; copy contents of CX to memory at B800:015E
RET ; returns to operating system.

You can copy & paste the above program to Emu8086 code editor, and press [Compile and Emulate] button (or
press F5 key on your keyboard).

The Emulator window should open with this program loaded, click [Single Step] button and watch the register
values.

How to do copy & paste:

1. Select the above text using mouse, click before the text and drag it down until everything is selected.

2. Press Ctrl + C combination to copy.

3. Go to Emu8086 source editor and press Ctrl + V combination to paste.

As you may guess, ";" is used for comments, anything after ";" symbol is ignored by compiler.

You should see something like that when program finishes:

7

Actually the above program writes directly to video memory, so you may see that MOV is a very powerful
instruction.

8086 Assembler Tutorial for Beginners (Part 3)

Variables

Variable is a memory location. For a programmer it is much easier to have some value be kept in a variable named
"var1" then at the address 5A73:235B, especially when you have 10 or more variables.

Our compiler supports two types of variables: BYTE and WORD.

Syntax for a variable declaration:

name DB value

name DW value

DB - stays for Define Byte.
DW - stays for Define Word.

name - can be any letter or digit combination, though it should start with a letter. It's possible to declare
unnamed variables by not specifying the name (this variable will have an address but no name).

value - can be any numeric value in any supported numbering system (hexadecimal, binary, or decimal), or "?"
symbol for variables that are not initialized.

As you probably know from part 2 of this tutorial, MOV instruction is used to copy values from source to
destination.
Let's see another example with MOV instruction:

#MAKE_COM#
ORG 100h

MOV AL, var1
MOV BX, var2

RET ; stops the program.

VAR1 DB 7
var2 DW 1234h

Copy the above code to Emu8086 source editor, and press F5 key to compile and load it in the emulator. You
should get something like:

8

As you see this looks a lot like our example, except that variables are replaced with actual memory locations. When
compiler makes machine code, it automatically replaces all variable names with their offsets. By default segment is
loaded in DS register (when COM files is loaded the value of DS register is set to the same value as CS register -
code segment).

In memory list first row is an offset, second row is a hexadecimal value, third row is decimal value, and last row
is an ASCII character value.

Compiler is not case sensitive, so "VAR1" and "var1" refer to the same variable.

The offset of VAR1 is 0108h, and full address is 0B56:0108.

The offset of var2 is 0109h, and full address is 0B56:0109, this variable is a WORD so it occupies 2 BYTES. It is
assumed that low byte is stored at lower address, so 34h is located before 12h.

You can see that there are some other instructions after the RET instruction, this happens because disassembler has
no idea about where the data starts, it just processes the values in memory and it understands them as valid 8086
instructions (we will learn them later). You can even write the same program using DB directive only:

#MAKE_COM#
ORG 100h

DB 0A0h
DB 08h
DB 01h

DB 8Bh
DB 1Eh
DB 09h
DB 01h

DB 0C3h

DB 7

DB 34h
DB 12h

9

Copy the above code to Emu8086 source editor, and press F5 key to compile and load it in the emulator. You
should get the same disassembled code, and the same functionality!

As you may guess, the compiler just converts the program source to the set of bytes, this set is called machine
code, processor understands the machine code and executes it.

ORG 100h is a compiler directive (it tells compiler how to handle the source code). This directive is very important
when you work with variables. It tells compiler that the executable file will be loaded at the offset of 100h (256
bytes), so compiler should calculate the correct address for all variables when it replaces the variable names with
their offsets. Directives are never converted to any real machine code.
Why executable file is loaded at offset of 100h? Operating system keeps some data about the program in the first
256 bytes of the CS (code segment), such as command line parameters and etc.
Though this is true for COM files only, EXE files are loaded at offset of 0000, and generally use special segment
for variables. Maybe we'll talk more about EXE files later.

Arrays

Arrays can be seen as chains of variables. A text string is an example of a byte array, each character is presented as
an ASCII code value (0..255).

Here are some array definition examples:

a DB 48h, 65h, 6Ch, 6Ch, 6Fh, 00h
b DB 'Hello', 0

b is an exact copy of the a array, when compiler sees a string inside quotes it automatically converts it to set of
bytes. This chart shows a part of the memory where these arrays are declared:

You can access the value of any element in array using square brackets, for example:
MOV AL, a[3]

You can also use any of the memory index registers BX, SI, DI, BP, for example:
MOV SI, 3
MOV AL, a[SI]

If you need to declare a large array you can use DUP operator.
The syntax for DUP:

number DUP (value(s))
number - number of duplicate to make (any constant value).
value - expression that DUP will duplicate.

for example:
c DB 5 DUP(9)
is an alternative way of declaring:
c DB 9, 9, 9, 9, 9

one more example:
d DB 5 DUP(1, 2)
is an alternative way of declaring:
d DB 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

10

Of course, you can use DW instead of DB if it's required to keep values larger then 255, or smaller then -128. DW
cannot be used to declare strings!

The expansion of DUP operand should not be over 1020 characters! (the expansion of last example is 13 chars), if
you need to declare huge array divide declaration it in two lines (you will get a single huge array in the memory).

Getting the Address of a Variable

There is LEA (Load Effective Address) instruction and alternative OFFSET operator. Both OFFSET and LEA
can be used to get the offset address of the variable.
LEA is more powerful because it also allows you to get the address of an indexed variables. Getting the address of
the variable can be very useful in some situations, for example when you need to pass parameters to a procedure.

Reminder:
In order to tell the compiler about data type,
these prefixes should be used:

BYTE PTR - for byte.
WORD PTR - for word (two bytes).

For example:
BYTE PTR [BX] ; byte access.
 or
WORD PTR [BX] ; word access.
Emu8086 supports shorter prefixes as well:

b. - for BYTE PTR
w. - for WORD PTR

sometimes compiler can calculate the data type automatically, but you may not and should not rely on that when
one of the operands is an immediate value.

Here is first example:

ORG 100h

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.
LEA BX, VAR1 ; get address of VAR1 in BX.

Here is another example, that uses OFFSET instead of LEA:

ORG 100h

11

RET

VAR1 DB 22h

END

Both examples have the same functionality.

These lines:
LEA BX, VAR1
MOV BX, OFFSET VAR1
are even compiled into the same machine code: MOV BX, num
num is a 16 bit value of the variable offset.

Please note that only these registers can be used inside square brackets (as memory pointers): BX, SI, DI, BP!
(see previous part of the tutorial).

Constants

Constants are just like variables, but they exist only until your program is compiled (assembled). After definition of
a constant its value cannot be changed. To define constants EQU directive is used:

name EQU < any expression >

For example:

k EQU 5

MOV AX, k

The above example is functionally identical to code:

MOV AX, 5

You can view variables while your program executes by selecting "Variables" from the "View" menu of emulator.

To view arrays you should click on a variable and set Elements property to array size. In assembly language there
are not strict data types, so any variable can be presented as an array.

12

Variable can be viewed in any numbering system:

• HEX - hexadecimal (base 16).
• BIN - binary (base 2).
• OCT - octal (base 8).
• SIGNED - signed decimal (base 10).
• UNSIGNED - unsigned decimal (base 10).
• CHAR - ASCII char code (there are 256 symbols, some symbols are invisible).

You can edit a variable's value when your program is running, simply double click it, or select it and click Edit
button.

It is possible to enter numbers in any system, hexadecimal numbers should have "h" suffix, binary "b" suffix, octal
"o" suffix, decimal numbers require no suffix. String can be entered this way:
'hello world', 0
(this string is zero terminated).

Arrays may be entered this way:
1, 2, 3, 4, 5
(the array can be array of bytes or words, it depends whether BYTE or WORD is selected for edited variable).

Expressions are automatically converted, for example:
when this expression is entered:
5 + 2
it will be converted to 7 etc...

8086 Assembler Tutorial for Beginners (Part 4)

Interrupts

Interrupts can be seen as a number of functions. These functions make the programming much easier, instead of
writing a code to print a character you can simply call the interrupt and it will do everything for you. There are also
interrupt functions that work with disk drive and other hardware. We call such functions software interrupts.

Interrupts are also triggered by different hardware, these are called hardware interrupts. Currently we are
interested in software interrupts only.

To make a software interrupt there is an INT instruction, it has very simple syntax:

INT value

Where value can be a number between 0 to 255 (or 0 to 0FFh),
generally we will use hexadecimal numbers.
You may think that there are only 256 functions, but that is not correct. Each interrupt may have sub-functions.
To specify a sub-function AH register should be set before calling interrupt.
Each interrupt may have up to 256 sub-functions (so we get 256 * 256 = 65536 functions). In general AH register is
used, but sometimes other registers maybe in use. Generally other registers are used to pass parameters and data to
sub-function.

The following example uses INT 10h sub-function 0Eh to type a "Hello!" message. This functions displays a
character on the screen, advancing the cursor and scrolling the screen as necessary.

13

#MAKE_COM# ; instruct compiler to make COM file.
ORG 100h

; The sub-function that we are using
; does not modify the AH register on
; return, so we may set it only once.

MOV AH, 0Eh ; select sub-function.

; INT 10h / 0Eh sub-function
; receives an ASCII code of the
; character that will be printed
; in AL register.

MOV AL, 'H' ; ASCII code: 72
INT 10h ; print it!

MOV AL, 'e' ; ASCII code: 101
INT 10h ; print it!

MOV AL, 'l' ; ASCII code: 108
INT 10h ; print it!

MOV AL, 'l' ; ASCII code: 108
INT 10h ; print it!

MOV AL, 'o' ; ASCII code: 111
INT 10h ; print it!

MOV AL, '!' ; ASCII code: 33
INT 10h ; print it!

RET ; returns to operating system.

Copy & paste the above program to Emu8086 source code editor, and press [Compile and Emulate] button. Run
it!

See list of supported interrupts for more information about interrupts.

8086 Assembler Tutorial for Beginners (Part 5)

Library of common functions - emu8086.inc

To make programming easier there are some common functions that can be included in your program. To make
your program use functions defined in other file you should use the INCLUDE directive followed by a file name.
Compiler automatically searches for the file in the same folder where the source file is located, and if it cannot find
the file there - it searches in Inc folder.

Currently you may not be able to fully understand the contents of the emu8086.inc (located in Inc folder), but it's
OK, since you only need to understand what it can do.

To use any of the functions in emu8086.inc you should have the following line in the beginning of your source file:

include 'emu8086.inc'

emu8086.inc defines the following macros:

14

• PUTC char - macro with 1 parameter, prints out an ASCII char at current cursor position.

• GOTOXY col, row - macro with 2 parameters, sets cursor position.

• PRINT string - macro with 1 parameter, prints out a string.

• PRINTN string - macro with 1 parameter, prints out a string. The same as PRINT but automatically adds
"carriage return" at the end of the string.

• CURSOROFF - turns off the text cursor.

• CURSORON - turns on the text cursor.

To use any of the above macros simply type its name somewhere in your code, and if required parameters, for
example:

include emu8086.inc

ORG 100h

PRINT 'Hello World!'

GOTOXY 10, 5

PUTC 65 ; 65 - is an ASCII code for 'A'
PUTC 'B'

RET ; return to operating system.
END ; directive to stop the compiler.

When compiler process your source code it searches the emu8086.inc file for declarations of the macros and
replaces the macro names with real code. Generally macros are relatively small parts of code, frequent use of a
macro may make your executable too big (procedures are better for size optimization).

emu8086.inc also defines the following procedures:

• PRINT_STRING - procedure to print a null terminated string at current cursor position, receives address
of string in DS:SI register. To use it declare: DEFINE_PRINT_STRING before END directive.

• PTHIS - procedure to print a null terminated string at current cursor position (just as PRINT_STRING),
but receives address of string from Stack. The ZERO TERMINATED string should be defined just after
the CALL instruction. For example:

CALL PTHIS
db 'Hello World!', 0

To use it declare: DEFINE_PTHIS before END directive.

• GET_STRING - procedure to get a null terminated string from a user, the received string is written to
buffer at DS:DI, buffer size should be in DX. Procedure stops the input when 'Enter' is pressed. To use it
declare: DEFINE_GET_STRING before END directive.

• CLEAR_SCREEN - procedure to clear the screen, (done by scrolling entire screen window), and set
cursor position to top of it. To use it declare: DEFINE_CLEAR_SCREEN before END directive.

• SCAN_NUM - procedure that gets the multi-digit SIGNED number from the keyboard, and stores the
result in CX register. To use it declare: DEFINE_SCAN_NUM before END directive.

15

• PRINT_NUM - procedure that prints a signed number in AX register. To use it declare:
DEFINE_PRINT_NUM and DEFINE_PRINT_NUM_UNS before END directive.

• PRINT_NUM_UNS - procedure that prints out an unsigned number in AX register. To use it declare:
DEFINE_PRINT_NUM_UNS before END directive.

To use any of the above procedures you should first declare the function in the bottom of your file (but before
END!!), and then use CALL instruction followed by a procedure name. For example:

include 'emu8086.inc'

ORG 100h

LEA SI, msg1 ; ask for the number
CALL print_string ;
CALL scan_num ; get number in CX.

MOV AX, CX ; copy the number to AX.

; print the following string:
CALL pthis
DB 13, 10, 'You have entered: ', 0

CALL print_num ; print number in AX.

RET ; return to operating system.

msg1 DB 'Enter the number: ', 0

DEFINE_SCAN_NUM
DEFINE_PRINT_STRING
DEFINE_PRINT_NUM
DEFINE_PRINT_NUM_UNS ; required for print_num.
DEFINE_PTHIS

END ; directive to stop the compiler.

First compiler processes the declarations (these are just regular the macros that are expanded to procedures). When
compiler gets to CALL instruction it replaces the procedure name with the address of the code where the procedure
is declared. When CALL instruction is executed control is transferred to procedure. This is quite useful, since even
if you call the same procedure 100 times in your code you will still have relatively small executable size. Seems
complicated, isn't it? That's ok, with the time you will learn more, currently it's required that you understand the
basic principle.

8086 Assembler Tutorial for Beginners (Part 6)

Arithmetic and Logic Instructions

Most Arithmetic and Logic Instructions affect the processor status register (or Flags)

16

As you may see there are 16 bits in this register, each bit is called a flag and can take a value of 1 or 0.

• Carry Flag (CF) - this flag is set to 1 when there is an unsigned overflow. For example when you add
bytes 255 + 1 (result is not in range 0...255). When there is no overflow this flag is set to 0.

• Zero Flag (ZF) - set to 1 when result is zero. For none zero result this flag is set to 0.

• Sign Flag (SF) - set to 1 when result is negative. When result is positive it is set to 0. Actually this flag
take the value of the most significant bit.

• Overflow Flag (OF) - set to 1 when there is a signed overflow. For example, when you add bytes 100 +
50 (result is not in range -128...127).

• Parity Flag (PF) - this flag is set to 1 when there is even number of one bits in result, and to 0 when there
is odd number of one bits. Even if result is a word only 8 low bits are analyzed!

• Auxiliary Flag (AF) - set to 1 when there is an unsigned overflow for low nibble (4 bits).

• Interrupt enable Flag (IF) - when this flag is set to 1 CPU reacts to interrupts from external devices.

• Direction Flag (DF) - this flag is used by some instructions to process data chains, when this flag is set to
0 - the processing is done forward, when this flag is set to 1 the processing is done backward.

There are 3 groups of instructions.

First group: ADD, SUB,CMP, AND, TEST, OR, XOR

These types of operands are supported:

REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

After operation between operands, result is always stored in first operand. CMP and TEST instructions affect flags
only and do not store a result (these instruction are used to make decisions during program execution).

These instructions affect these flags only:

17

 CF, ZF, SF, OF, PF, AF.

• ADD - add second operand to first.

• SUB - Subtract second operand to first.

• CMP - Subtract second operand from first for flags only.

• AND - Logical AND between all bits of two operands. These rules apply:

1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0

As you see we get 1 only when both bits are 1.

• TEST - The same as AND but for flags only.

• OR - Logical OR between all bits of two operands. These rules apply:

1 OR 1 = 1
1 OR 0 = 1
0 OR 1 = 1
0 OR 0 = 0

As you see we get 1 every time when at least one of the bits is 1.

• XOR - Logical XOR (exclusive OR) between all bits of two operands. These rules apply:

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 1 = 1
0 XOR 0 = 0

As you see we get 1 every time when bits are different from each other.

Second group: MUL, IMUL, DIV, IDIV

These types of operands are supported:

REG
memory

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

MUL and IMUL instructions affect these flags only:
 CF, OF
When result is over operand size these flags are set to 1, when result fits in operand size these flags are set to 0.

For DIV and IDIV flags are undefined.

• MUL - Unsigned multiply:

18

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

• IMUL - Signed multiply:

when operand is a byte:
AX = AL * operand.

when operand is a word:
(DX AX) = AX * operand.

• DIV - Unsigned divide:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus). .

when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus). .

• IDIV - Signed divide:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus). .

when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus). .

Third group: INC, DEC, NOT, NEG

These types of operands are supported:

REG
memory

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

INC, DEC instructions affect these flags only:
 ZF, SF, OF, PF, AF.

NOT instruction does not affect any flags!

NEG instruction affects these flags only:
 CF, ZF, SF, OF, PF, AF.

• NOT - Reverse each bit of operand.

19

• NEG - Make operand negative (two's complement). Actually it reverses each bit of operand and then adds
1 to it. For example 5 will become -5, and -2 will become 2.

8086 Assembler Tutorial for Beginners (Part 7)

Program Flow Control

Controlling the program flow is a very important thing, this is where your program can make decisions according to
certain conditions.

• Unconditional Jumps

The basic instruction that transfers control to another point in the program is JMP.

The basic syntax of JMP instruction:

JMP label

To declare a label in your program, just type its name and add ":" to the end, label can be any character
combination but it cannot start with a number, for example here are 3 legal label definitions:

label1:
label2:
a:

Label can be declared on a separate line or before any other instruction, for example:

x1:
MOV AX, 1

x2: MOV AX, 2

Here is an example of JMP instruction:

ORG 100h

MOV AX, 5 ; set AX to 5.
MOV BX, 2 ; set BX to 2.

JMP calc ; go to 'calc'.

back: JMP stop ; go to 'stop'.

calc:
ADD AX, BX ; add BX to AX.
JMP back ; go 'back'.

stop:

RET ; return to operating system.
END ; directive to stop the compiler.

Of course there is an easier way to calculate the some of two numbers, but it's still a good example of JMP

20

instruction.
 As you can see from this example JMP is able to transfer control both forward and backward. It can jump
anywhere in current code segment (65,535 bytes).

• Short Conditional Jumps

Unlike JMP instruction that does an unconditional jump, there are instructions that do a conditional jumps
(jump only when some conditions are in act). These instructions are divided in three groups, first group
just test single flag, second compares numbers as signed, and third compares numbers as unsigned.

Jump instructions that test single flag

Instruction Description Condition Opposite
i

JZ , JE Jump if Zero (Equal). ZF = 1 JNZ, JNE

JC , JB, JNAE Jump if Carry (Below, Not Above Equal). CF = 1 JNC, JNB, JAE

JS Jump if Sign. SF = 1 JNS

JO Jump if Overflow. OF = 1 JNO

JPE, JP Jump if Parity Even. PF = 1 JPO

JNZ , JNE Jump if Not Zero (Not Equal). ZF = 0 JZ, JE

JNC , JNB,
JAE

Jump if Not Carry (Not Below, Above
Equal).

 CF = 0 JC, JB, JNAE

JNS Jump if Not Sign. SF = 0 JS

JNO Jump if Not Overflow. OF = 0 JO

JPO, JNP Jump if Parity Odd (No Parity). PF = 0 JPE, JP

•
As you can see there are some instructions that do that same thing, that's correct, they even are assembled
into the same machine code, so it's good to remember that when you compile JE instruction - you will get
it disassembled as: JZ.
Different names are used to make programs easier to understand and code.

Jump instructions for signed numbers

21

Jump if Not Less or Equal (not <=). and
SF = OF

JL , JNGE Jump if Less (<).
Jump if Not Greater or Equal (not >=). SF <> OF JNL, JGE

JGE , JNL Jump if Greater or Equal (>=).
Jump if Not Less (not <). SF = OF JNGE, JL

JLE , JNG Jump if Less or Equal (<=).
Jump if Not Greater (not >).

ZF = 1
or

SF <> OF
JNLE, JG

•

<> - sign means not equal.

Jump instructions for unsigned numbers

Instruction Description Condition Opposite Instruction

JE , JZ Jump if Equal (=).
Jump if Zero. ZF = 1 JNE, JNZ

JNE , JNZ Jump if Not Equal (<>).
Jump if Not Zero. ZF = 0 JE, JZ

JA , JNBE Jump if Above (>).
Jump if Not Below or Equal (not <=).

CF = 0
and

ZF = 0
JNA, JBE

JB , JNAE, JC
Jump if Below (<).
Jump if Not Above or Equal (not >=).
Jump if Carry.

CF = 1 JNB, JAE, JNC

JAE , JNB, JNC
Jump if Above or Equal (>=).
Jump if Not Below (not <).
Jump if Not Carry.

CF = 0 JNAE, JB

JBE , JNA Jump if Below or Equal (<=).
Jump if Not Above (not >).

CF = 1
or

ZF = 1
JNBE, JA

Generally, when it is required to compare numeric values CMP instruction is used (it does the same as SUB
(subtract) instruction, but does not keep the result, just affects the flags).

The logic is very simple, for example:
it's required to compare 5 and 2,
5 - 2 = 3
the result is not zero (Zero Flag is set to 0).

Another example:
it's required to compare 7 and 7,
7 - 7 = 0
the result is zero! (Zero Flag is set to 1 and JZ or JE will do the jump).

22

Here is an example of CMP instruction and conditional jump:

include emu8086.inc
ORG 100h

MOV AL, 25 ; set AL to 25.
MOV BL, 10 ; set BL to 10.

CMP AL, BL ; compare AL - BL.

JE equal ; jump if AL = BL (ZF = 1).

PUTC 'N' ; if it gets here, then AL <> BL,
JMP stop ; so print 'N', and jump to stop.

equal: ; if gets here,
PUTC 'Y' ; then AL = BL, so print 'Y'.

stop:

•

Try the above example with different numbers for AL and BL, open flags by clicking on [FLAGS] button,
use [Single Step] and see what happens, don't forget to recompile and reload after every change (use F5
shortcut).

•
All conditional jumps have one big limitation, unlike JMP instruction they can only jump 127 bytes
forward and 128 bytes backward (note that most instructions are assembled into 3 or more bytes).

We can easily avoid this limitation using a cute trick:

o Get a opposite conditional jump instruction from the table above, make it jump to label_x.

o Use JMP instruction to jump to desired location.

o Define label_x: just after the JMP instruction.

label_x: - can be any valid label name.

Here is an example:

23

not_equal:

; let's assume that here we
; have a code that is assembled
; to more then 127 bytes...

PUTC 'N' ; if it gets here, then AL <> BL,
JMP stop ; so print 'N', and jump to stop.

equal: ; if gets here,
PUTC 'Y' ; then AL = BL, so print 'Y'.

stop:

RET ; gets here no matter what.

END

Another, yet rarely used method is providing an immediate value instead of a label. When immediate value starts
with a '$' character relative jump is performed, otherwise compiler calculates instruction that jumps directly to
given offset. For example:

ORG 100h

; unconditional jump forward:
; skip over next 2 bytes,
JMP $2
a DB 3 ; 1 byte.
b DB 4 ; 1 byte.

; JCC jump back 7 bytes:
; (JMP takes 2 bytes itself)
MOV BL,9
DEC BL ; 2 bytes.
CMP BL, 0 ; 3 bytes.
JNE $-7

RET
END

8086 Assembler Tutorial for Beginners (Part 8)

Procedures

Procedure is a part of code that can be called from your program in order to make some specific task. Procedures
make program more structural and easier to understand. Generally procedure returns to the same point from where
it was called.

The syntax for procedure declaration:

name PROC

24

 ; here goes the code
 ; of the procedure ...

RET
name ENDP

name - is the procedure name, the same name should be in the top and the bottom, this is used to check correct
closing of procedures.

Probably, you already know that RET instruction is used to return to operating system. The same instruction is used
to return from procedure (actually operating system sees your program as a special procedure).

PROC and ENDP are compiler directives, so they are not assembled into any real machine code. Compiler just
remembers the address of procedure.

CALL instruction is used to call a procedure.

Here is an example:

ORG 100h

CALL m1
MOV AX, 2
RET ; return to operating system.

m1 PROC
MOV BX, 5
RET ; return to caller.
m1 ENDP

END

The above example calls procedure m1, does MOV BX, 5, and returns to the next instruction after CALL: MOV
AX, 2.

There are several ways to pass parameters to procedure, the easiest way to pass parameters is by using registers,
here is another example of a procedure that receives two parameters in AL and BL registers, multiplies these
parameters and returns the result in AX register:

ORG 100h

MOV AL, 1
MOV BL, 2

CALL m2
CALL m2
CALL m2

25

ORG 100h

MOV AL, 1
MOV BL, 2

CALL m2
CALL m2
CALL m2
CALL m2

RET ; return to operating system.

m2 PROC
MUL BL ; AX = AL * BL.
RET ; return to caller.
m2 ENDP

END

In the above example value of AL register is update every time the procedure is called, BL register stays
unchanged, so this algorithm calculates 2 in power of 4,
so final result in AX register is 16 (or 10h).

Here goes another example,
that uses a procedure to print a Hello World! message:

ORG 100h

LEA SI, msg ; load address of msg to SI.

26

msg DB 'Hello World!', 0 ; null terminated string.

END

"b." - prefix before [SI] means that we need to compare bytes, not words. When you need to compare words add
"w." prefix instead. When one of the compared operands is a register it's not required because compiler knows the
size of each register.

8086 Assembler Tutorial for Beginners (Part 9)

The Stack

Stack is an area of memory for keeping temporary data. Stack is used by CALL instruction to keep return address
for procedure, RET instruction gets this value from the stack and returns to that offset. Quite the same thing
happens when INT instruction calls an interrupt, it stores in stack flag register, code segment and offset. IRET
instruction is used to return from interrupt call.

We can also use the stack to keep any other data,
there are two instructions that work with the stack:

PUSH - stores 16 bit value in the stack.

POP - gets 16 bit value from the stack.

Syntax for PUSH instruction:

PUSH REG
PUSH SREG
PUSH memory
PUSH immediate

REG: AX, BX, CX, DX, DI, SI, BP, SP.

SREG: DS, ES, SS, CS.

memory: [BX], [BX+SI+7], 16 bit variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

Syntax for POP instruction:

POP REG
POP SREG
POP memory

REG: AX, BX, CX, DX, DI, SI, BP, SP.

SREG: DS, ES, SS, (except CS).

memory: [BX], [BX+SI+7], 16 bit variable, etc...

27

Notes:

• PUSH and POP work with 16 bit values only!

• Note: PUSH immediate works only on 80186 CPU and later!

The stack uses LIFO (Last In First Out) algorithm, this means that if we push these values one by one into the
stack: 1, 2, 3, 4, 5 the first value that we will get on pop will be 5, then 4, 3, 2, and only then 1.

It is very important to do equal number of PUSHs and POPs, otherwise the stack maybe corrupted and it will be
impossible to return to operating system. As you already know we use RET instruction to return to operating
system, so when program starts there is a return address in stack (generally it's 0000h).

PUSH and POP instruction are especially useful because we don't have too much registers to operate with, so here
is a trick:

• Store original value of the register in stack (using PUSH).

• Use the register for any purpose.

• Restore the original value of the register from stack (using POP).

Here is an example:

ORG 100h

MOV AX, 1234h
PUSH AX ; store value of AX in stack.
MOV AX, 5678h ; modify the AX value.
POP AX ; restore the original value of AX.

Another use of the stack is for exchanging the values,
here is an example:

ORG 100h

28

PUSH AX ; store value of AX in stack.
PUSH BX ; store value of BX in stack.
POP AX ; set AX to original value of BX.
POP BX ; set BX to original value of AX.
RET

END

The exchange happens because stack uses LIFO (Last In First Out) algorithm, so when we push 1212h and then
3434h, on pop we will first get 3434h and only after it 1212h.

The stack memory area is set by SS (Stack Segment) register, and SP (Stack Pointer) register. Generally operating
system sets values of these registers on program start.

"PUSH source" instruction does the following:

• Subtract 2 from SP register.

• Write the value of source to the address SS:SP.

"POP destination" instruction does the following:

• Write the value at the address SS:SP to destination.

• Add 2 to SP register.

The current address pointed by SS:SP is called the top of the stack.

For COM files stack segment is generally the code segment, and stack pointer is set to value of 0FFFEh. At the
address SS:0FFFEh stored a return address for RET instruction that is executed in the end of the program.

You can visually see the stack operation by clicking on [Stack] button on emulator window. The top of the stack is
marked with "<" sign.

8086 Assembler Tutorial for Beginners (Part 10)

Macros

Macros are just like procedures, but not really. Macros look like procedures, but they exist only until your code is
compiled, after compilation all macros are replaced with real instructions. If you declared a macro and never used it
in your code, compiler will simply ignore it. emu8086.inc is a good example of how macros can be used, this file
contains several macros to make coding easier for you.

Macro definition:

name MACRO [parameters,...]

 <instructions>

ENDM

29

MyMacro MACRO p1, p2, p3

 MOV AX, p1
 MOV BX, p2
 MOV CX, p3

ENDM

ORG 100h

MyMacro 1, 2, 3

MyMacro 4, 5, DX

RET

The above code is expanded into:

MOV AX, 00001h
MOV BX, 00002h
MOV CX, 00003h
MOV AX, 00004h
MOV BX, 00005h
MOV CX, DX

Some important facts about macros and procedures:

30

• To mark the end of the procedure, you should type the name of the procedure before the ENDP
directive.

Macros are expanded directly in code, therefore if there are labels inside the macro definition you may get
"Duplicate declaration" error when macro is used for twice or more. To avoid such problem, use LOCAL directive
followed by names of variables, labels or procedure names. For example:

MyMacro2 MACRO
 LOCAL label1, label2

 CMP AX, 2
 JE label1
 CMP AX, 3
 JE label2
 label1:
 INC AX
 label2:
 ADD AX, 2
ENDM

ORG 100h

MyMacro2
MyMacro2

RET

If you plan to use your macros in several programs, it may be a good idea to place all macros in a separate file.
Place that file in Inc folder and use INCLUDE file-name directive to use macros. See Library of common
functions - emu8086.inc for an example of such file.

8086 Assembler Tutorial for Beginners (Part 11)

Making your own Operating System

Usually, when a computer starts it will try to load the first 512-byte sector (that's Cylinder 0, Head 0, Sector 1) from
any diskette in your A: drive to memory location 0000h:7C00h and give it control. If this fails, the BIOS tries to
use the MBR of the first hard drive instead.

This tutorial covers booting up from a floppy drive, the same principles are used to boot from a hard drive. But
using a floppy drive has several advantages:

• You can keep your existing operating system intact (Windows, DOS...).

• It is easy to modify the boot record of a floppy disk.

Example of a simple floppy disk boot program:

; directive to create BOOT file:

31

#MAKE_BOOT#

; Boot record is loaded at 0000:7C00,
; so inform compiler to make required
; corrections:
ORG 7C00h

; load message address into SI register:
LEA SI, msg

; teletype function id:
MOV AH, 0Eh

print: MOV AL, [SI]
 CMP AL, 0
 JZ done
 INT 10h ; print using teletype.
 INC SI
 JMP print

; wait for 'any key':
done: MOV AH, 0
 INT 16h

; store magic value at 0040h:0072h:
; 0000h - cold boot.
; 1234h - warm boot.
MOV AX, 0040h
MOV DS, AX
MOV w.[0072h], 0000h ; cold boot.

JMP 0FFFFh:0000h ; reboot!

new_line EQU 13, 10

msg DB 'Hello This is My First Boot Program!'
 DB new_line, 'Press any key to reboot', 0

Copy the above example to Emu8086 source editor and press [Compile and Emulate] button. The Emulator
automatically loads ".boot" file to 0000h:7C00h.

You can run it just like a regular program, or you can use the Virtual Drive menu to Write 512 bytes at 7C00h to
the Boot Sector of a virtual floppy drive (FLOPPY_0 file in Emulator's folder).
After writing your program to the Virtual Floppy Drive, you can select Boot from Floppy from Virtual Drive
menu.

If you are curious, you may write the virtual floppy (FLOPPY_0) or ".boot" file to a real floppy disk and boot your
computer from it, I recommend using "RawWrite for Windows" from:
http://uranus.it.swin.edu.au/~jn/linux/rawwrite.htm
(recent builds now work under all versions of Windows!)

Note: however, that this .boot file is not an MS-DOS compatible boot sector (it will not allow you to read or write
data on this diskette until you format it again), so don't bother writing only this sector to a diskette with data on it.
As a matter of fact, if you use any 'raw-write' programs, such at the one listed above, they will erase all of the data
anyway. So make sure the diskette you use doesn't contain any important data.

32

".boot" files are limited to 512 bytes (sector size). If your new Operating System is going to grow over this size,
you will need to use a boot program to load data from other sectors. A good example of a tiny Operating System
can be found in "Samples" folder as:
micro-os_loader.asm
micro-os_kernel.asm

To create extensions for your Operating System (over 512 bytes), you can use ".bin" files (select "BIN Template"
from "File" -> "New" menu).

To write ".bin" file to virtual floppy, select "Write .bin file to floppy..." from "Virtual Drive" menu of emulator:

You can also use this to write ".boot" files.

Sector at:

Cylinder: 0
Head:0
Sector: 1

is the boot sector!

Idealized floppy drive and diskette structure:

33

For a 1440 kb diskette:

• Floppy disk has 2 sides, and there are 2 heads; one for each side (0..1), the drive heads move above the
surface of the disk on each side.

• Each side has 80 cylinders (numbered 0..79).

• Each cylinder has 18 sectors (1..18).

• Each sector has 512 bytes.

• Total size of floppy disk is: 2 x 80 x 18 x 512 = 1,474,560 bytes.

To read sectors from floppy drive use INT 13h / AH = 02h.

8086 Assembler Tutorial for Beginners (Part 12)

Controlling External Devices

There are 3 devices attached to the emulator: Traffic Lights, Stepper-Motor and Robot. You can view devices using
"Virtual Devices" menu of the emulator.

For technical information see I/O ports section of Emu8086 reference.

In general, it is possible to use any x86 family CPU to control all kind of devices, the difference maybe in base I/O
port number, this can be altered using some tricky electronic equipment. Usually the ".bin" file is written into the
Read Only Memory (ROM) chip, the system reads program from that chip, loads it in RAM module and runs the
program. This principle is used for many modern devices such as micro-wave ovens and etc...

Traffic Lights

34

Usually to control the traffic lights an array (table) of values is used. In certain periods of time the value is read
from the array and sent to a port. For example:

; directive to create BIN file:
#MAKE_BIN#
#CS=500#
#DS=500#
#SS=500#
#SP=FFFF#
#IP=0#

; skip the data table:
JMP start

table DW 100001100001b
 DW 110011110011b
 DW 001100001100b
 DW 011110011110b

start:

MOV SI, 0

; set loop counter to number
; of elements in table:
MOV CX, 4

next_value:

; get value from table:

35

LOOP next_value

; start from over from
; the first value
JMP start

; ==========================
PAUSE PROC
; store registers:
PUSH CX
PUSH DX
PUSH AX

; set interval (1 million
; microseconds - 1 second):
MOV CX, 0Fh
MOV DX, 4240h
MOV AH, 86h
INT 15h

; restore registers:
POP AX
POP DX
POP CX
RET
PAUSE ENDP
; ==========================

Stepper-Motor

The motor can be half stepped by turning on pair of magnets, followed by a single and so on.

The motor can be full stepped by turning on pair of magnets, followed by another pair of magnets and in the end
followed by a single magnet and so on. The best way to make full step is to make two half steps.

Half step is equal to 11.25 degrees.
Full step is equal to 22.5 degrees.

The motor can be turned both clock-wise and counter-clock-wise.

See stepper_motor.asm in Samples folder.

See also I/O ports section of Emu8086 reference.

36

Robot

Complete list of robot instruction set is given in I/O ports section of Emu8086 reference.

To control the robot a complex algorithm should be used to achieve maximum efficiency. The simplest, yet very
inefficient, is random moving algorithm, see robot.asm in Samples folder.

It is also possible to use a data table (just like for Traffic Lights), this can be good if robot always works in the same
surroundings.

Complete 8086 instruction set

Quick reference:

AAA
AAD
AAM
AAS
ADC
ADD
AND

CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV

JAE
JB
JBE
JC
JCXZ
JE
JG

JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE

JPO
JS
JZ
LAHF
LDS
LEA
LES

MOV
MOVSB
MOVSW
MUL
NEG
NOP
NOT

RCR
REP
REPE
REPNE
REPNZ
REPZ
RET

SCASB
SCASW
SHL
SHR
STC
STD
STI

37

CALL
CBW
CLC
CLD
CLI
CMC
CMP

HLT
IDIV
IMUL
IN
INC
INT
INTO
IRET
JA

JGE
JL
JLE
JMP
JNA
JNAE
JNB

JNO
JNP
JNS
JNZ
JO
JP
JPE

LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ

OR
OUT
POP
POPA
POPF
PUSH
PUSHA
PUSHF
RCL

RETF
ROL
ROR
SAHF
SAL
SAR
SBB

STOSB
STOSW
SUB
TEST
XCHG
XLATB
XOR

Operand types:

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

SREG: DS, ES, SS, and only as second operand: CS.

memory: [BX], [BX+SI+7], variable, etc...(see Memory Access).

immediate: 5, -24, 3Fh, 10001101b, etc...

Notes:

• When two operands are required for an instruction they are separated by comma. For example:

REG, memory

• When there are two operands, both operands must have the same size (except shift and rotate instructions).
For example:

AL, DL
DX, AX
m1 DB ?
AL, m1
m2 DW ?
AX, m2

• Some instructions allow several operand combinations. For example:

memory, immediate
REG, immediate

memory, REG
REG, SREG

• Some examples contain macros, so it is advisable to use Shift + F8 hot key to Step Over (to make macro
code execute at maximum speed set step delay to zero), otherwise emulator will step through each
instruction of a macro. Here is an example that uses PRINTN macro:

•
• #make_COM#
• include 'emu8086.inc'
• ORG 100h
• MOV AL, 1
• MOV BL, 2
• PRINTN 'Hello World!' ; macro.
• MOV CL, 3
• PRINTN 'Welcome!' ; macro.

 RET

38
These marks are used to show the state of the flags:

1 - instruction sets this flag to 1.
0 - instruction sets this flag to 0.
r - flag value depends on result of the instruction.
? - flag value is undefined (maybe 1 or 0).

Some instructions generate exactly the same machine code, so disassembler may have a problem decoding to
your original code. This is especially important for Conditional Jump instructions (see "Program Flow
Control" in Tutorials for more information).

Instructions in alphabetical order:

Instruction Operands Description

AAA No operands

ASCII Adjust after Addition.
Corrects result in AH and AL after addition when working with BCD values.

It works according to the following Algorithm:

if low nibble of AL > 9 or AF = 1 then:

• AL = AL + 6
• AH = AH + 1
• AF = 1
• CF = 1

else
• AF = 0
• CF = 0

in both cases:
clear the high nibble of AL.

Example:
MOV AX, 15 ; AH = 00, AL = 0Fh
AAA ; AH = 01, AL = 05
RET
C Z S O P A

r ? ? ? ? r

AAD No operands

ASCII Adjust before Division. Prepares two BCD values for division.
Algorithm:

• AL = (AH * 10) + AL
• AH = 0

Example:
MOV AX, 0105h ; AH = 01, AL = 05
AAD ; AH = 00, AL = 0Fh (15)
RET
C Z S O P A

? r r ? r ?

AAM No operands

ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values.

Algorithm:

• AH = AL / 10
• AL = remainder

Example:
MOV AL, 15 ; AL = 0Fh

39

AAM ; AH = 01, AL = 05
RET
C Z S O P A

? r r ? r ?

AAS No operands

ASCII Adjust after Subtraction.
Corrects result in AH and AL after subtraction when working with BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

• AL = AL - 6
• AH = AH - 1
• AF = 1
• CF = 1

else
• AF = 0
• CF = 0

in both cases:
clear the high nibble of AL.

Example:
MOV AX, 02FFh ; AH = 02, AL = 0FFh
AAS ; AH = 01, AL = 09
RET
C Z S O P A

r ? ? ? ? r

ADC

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

Add with Carry.
Algorithm:

operand1 = operand1 + operand2 + CF

Example:
STC ; set CF = 1
MOV AL, 5 ; AL = 5
ADC AL, 1 ; AL = 7
RET
C Z S O P A

r r r r r r

ADD

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

Add.

Algorithm:

operand1 = operand1 + operand2

Example:
MOV AL, 5 ; AL = 5
ADD AL, -3 ; AL = 2
RET
C Z S O P A

r r r r r r

AND

REG,
memory
memory,
REG

Logical AND between all bits of two operands. Result is stored in operand1.

These rules apply:

40

memory,
immediate
REG,
immediate

1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0

Example:
MOV AL, 'a' ; AL = 01100001b
AND AL, 11011111b ; AL = 01000001b ('A')
RET
C Z S O P

0 r r 0 r

CALL

procedure
name
label
4-byte
address

Transfers control to procedure, return address is (IP) is pushed to stack. 4-byte address may be
entered in this form: 1234h:5678h, first value is a segment second value is an offset (this is a
far call, so CS is also pushed to stack).

Example:
#make_COM#
ORG 100h ; for COM file.

CALL p1
ADD AX, 1
RET ; return to OS.

p1 PROC ; procedure declaration.
 MOV AX, 1234h
 RET ; return to caller.
p1 ENDP
C Z S O P A

unchanged

CBW No operands

Convert byte into word.
Algorithm:

if high bit of AL = 1 then:

• AH = 255 (0FFh)
else

• AH = 0

Example:
MOV AX, 0 ; AH = 0, AL = 0
MOV AL, -5 ; AX = 000FBh (251)
CBW ; AX = 0FFFBh (-5)
RET
C Z S O P A

unchanged

CLC No operands

Clear Carry flag.
Algorithm:

CF = 0
C

0

CLD No operands

Clear Direction flag. SI and DI will be incremented by chain instructions: CMPSB, CMPSW,
LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.
Algorithm:
DF = 0
D

41

0

CLI No operands

Clear Interrupt enable flag. This disables hardware interrupts.
Algorithm:
IF = 0
I

0

CMC No operands

Complement Carry flag. Inverts value of CF.
Algorithm:

if CF = 1 then CF = 0
if CF = 0 then CF = 1

C

r

CMP

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

Compare.
Algorithm:
operand1 - operand2

result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result.

Example:
MOV AL, 5
MOV BL, 5
CMP AL, BL ; AL = 5, ZF = 1 (so equal!)
RET
C Z S O P A

r r r r r r

CMPSB No operands

Compare bytes: ES:[DI] from DS:[SI].
Algorithm:

• DS:[SI] - ES:[DI]
• set flags according to result:

OF, SF, ZF, AF, PF, CF
• if DF = 0 then

o SI = SI + 1
o DI = DI + 1

else
o SI = SI - 1
o DI = DI - 1

Example:
see cmpsb.asm in Samples.
C Z S O P A

r r r r r r

CMPSW No operands

Compare words: ES:[DI] from DS:[SI].
Algorithm:

• DS:[SI] - ES:[DI]
• set flags according to result:

OF, SF, ZF, AF, PF, CF
• if DF = 0 then

o SI = SI + 2
o DI = DI + 2

else
o SI = SI - 2
o DI = DI - 2

42

Example:
see cmpsw.asm in Samples.
C Z S O P A

r r r r r r

CWD No operands

Convert Word to Double word.
Algorithm:

if high bit of AX = 1 then:

• DX = 65535 (0FFFFh)
else

• DX = 0
Example:
MOV DX, 0 ; DX = 0
MOV AX, 0 ; AX = 0
MOV AX, -5 ; DX AX = 00000h:0FFFBh
CWD ; DX AX = 0FFFFh:0FFFBh
RET
C Z S O P A

unchanged

DAA No operands

Decimal adjust After Addition.
Corrects the result of addition of two packed BCD values.
Algorithm:

if low nibble of AL > 9 or AF = 1 then:

• AL = AL + 6
• AF = 1

if AL > 9Fh or CF = 1 then:
• AL = AL + 60h
• CF = 1

Example:
MOV AL, 0Fh ; AL = 0Fh (15)
DAA ; AL = 15h
RET
C Z S O P A

r r r r r r

DAS No operands

Decimal adjust After Subtraction.
Corrects the result of subtraction of two packed BCD values.
Algorithm:
if low nibble of AL > 9 or AF = 1 then:

• AL = AL - 6
• AF = 1

if AL > 9Fh or CF = 1 then:
• AL = AL - 60h
• CF = 1

Example:
MOV AL, 0FFh ; AL = 0FFh (-1)
DAS ; AL = 99h, CF = 1
RET
C Z S O P A

r r r r r r

DEC
REG
memory

Decrement.
Algorithm:

43

Example:
MOV AL, 255 ; AL = 0FFh (255 or -1)
DEC AL ; AL = 0FEh (254 or -2)
RET
Z S O P A

r r r r r
CF - unchanged!

DIV
REG
memory

Unsigned divide.
Algorithm:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)

Example:
MOV AX, 203 ; AX = 00CBh
MOV BL, 4
DIV BL ; AL = 50 (32h), AH = 3
RET
C Z S O P A

? ? ? ? ? ?

HLT No operands

Halt the System.

Example:
MOV AX, 5
HLT
C Z S O P A

unchanged

IDIV
REG
memory

Signed divide.
Algorithm:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)

Example:
MOV AX, -203 ; AX = 0FF35h
MOV BL, 4
IDIV BL ; AL = -50 (0CEh), AH = -3 (0FDh)
RET
C Z S O P A

? ? ? ? ? ?

IMUL
REG
memory

Signed multiply.
Algorithm:

when operand is a byte:
AX = AL * operand.
when operand is a word:
(DX AX) = AX * operand.

Example:
MOV AL, -2
MOV BL, -4
IMUL BL ; AX = 8
RET

44

C Z S O P A

r ? ? r ? ?
CF=OF=0 when result fits into operand of IMUL.

IN

AL, im.byte
AL, DX
AX, im.byte
AX, DX

Input from port into AL or AX.
Second operand is a port number. If required to access port number over 255 - DX register
should be used.
Example:
IN AX, 4 ; get status of traffic lights.
IN AL, 7 ; get status of stepper-motor.
C Z S O P A

unchanged

INC
REG
memory

Increment.
Algorithm:

operand = operand + 1

Example:
MOV AL, 4
INC AL ; AL = 5
RET
Z S O P A

r r r r r
CF - unchanged!

INT immediate
byte

Interrupt numbered by immediate byte (0..255).
Algorithm:

Push to stack:
o flags register
o CS
o IP

• IF = 0
• Transfer control to interrupt procedure

Example:
MOV AH, 0Eh ; teletype.
MOV AL, 'A'
INT 10h ; BIOS interrupt.
RET
C Z S O P A I

unchanged 0

INTO No operands

Interrupt 4 if Overflow flag is 1.

Algorithm:

if OF = 1 then INT 4

Example:
; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
INTO ; process error.
RET

IRET No operands

45

Algorithm:
Pop from stack:

o IP
o CS
o flags register

C Z S O P A

popped

JA label

Short Jump if first operand is Above second operand (as set by CMP instruction). Unsigned.
Algorithm:

if (CF = 0) and (ZF = 0) then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 250
 CMP AL, 5
 JA label1
 PRINT 'AL is not above 5'
 JMP exit
label1:
 PRINT 'AL is above 5'
exit:
 RET
C Z S O P A

unchanged

JAE label

Short Jump if first operand is Above or Equal to second operand (as set by CMP instruction).
Unsigned.
Algorithm:

if CF = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 CMP AL, 5
 JAE label1
 PRINT 'AL is not above or equal to 5'
 JMP exit
label1:
 PRINT 'AL is above or equal to 5'
exit:
 RET
C Z S O P A

unchanged

JB label

Short Jump if first operand is Below second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 1
 CMP AL, 5
 JB label1
 PRINT 'AL is not below 5'
 JMP exit
label1:
 PRINT 'AL is below 5'

46

exit:
 RET
C Z S O P A

unchanged

JBE label

Short Jump if first operand is Below or Equal to second operand (as set by CMP instruction).
Unsigned.
Algorithm:

if CF = 1 or ZF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 CMP AL, 5
 JBE label1
 PRINT 'AL is not below or equal to 5'
 JMP exit
label1:
 PRINT 'AL is below or equal to 5'
exit:
 RET
C Z S O P A

unchanged

JC label

Short Jump if Carry flag is set to 1.
Algorithm:

if CF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 255
 ADD AL, 1
 JC label1
 PRINT 'no carry.'
 JMP exit
label1:
 PRINT 'has carry.'
exit:
 RET
C Z S O P A

unchanged

JCXZ label

Short Jump if CX register is 0.
Algorithm:

if CX = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV CX, 0
 JCXZ label1
 PRINT 'CX is not zero.'
 JMP exit
label1:
 PRINT 'CX is zero.'
exit:
 RET
C Z S O P A

unchanged

47

JE label

Short Jump if first operand is Equal to second operand (as set by CMP instruction).
Signed/Unsigned.
Algorithm:

if ZF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 CMP AL, 5
 JE label1
 PRINT 'AL is not equal to 5.'
 JMP exit
label1:
 PRINT 'AL is equal to 5.'
exit:
 RET
C Z S O P A

unchanged

JG label

Short Jump if first operand is Greater then second operand (as set by CMP instruction).
Signed.
Algorithm:

if (ZF = 0) and (SF = OF) then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 CMP AL, -5
 JG label1
 PRINT 'AL is not greater -5.'
 JMP exit
label1:
 PRINT 'AL is greater -5.'
exit:
 RET
C Z S O P A

unchanged

JGE label

Short Jump if first operand is Greater or Equal to second operand (as set by CMP instruction).
Signed.
Algorithm:

if SF = OF then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, -5
 JGE label1
 PRINT 'AL < -5'
 JMP exit
label1:
 PRINT 'AL >= -5'
exit:
 RET
C Z S O P A

unchanged

JL label Short Jump if first operand is Less then second operand (as set by CMP instruction). Signed.
Algorithm:

48

if SF <> OF then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, -2
 CMP AL, 5
 JL label1
 PRINT 'AL >= 5.'
 JMP exit
label1:
 PRINT 'AL < 5.'
exit:
 RET
C Z S O P A

unchanged

JLE label

Short Jump if first operand is Less or Equal to second operand (as set by CMP instruction).
Signed.
Algorithm:

if SF <> OF or ZF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, -2
 CMP AL, 5
 JLE label1
 PRINT 'AL > 5.'
 JMP exit
label1:
 PRINT 'AL <= 5.'
exit:
 RET
C Z S O P A

unchanged

JMP

label
4-byte
address

Unconditional Jump. Transfers control to another part of the program. 4-byte address may be
entered in this form: 1234h:5678h, first value is a segment second value is an offset.
Algorithm:

always jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 JMP label1 ; jump over 2 lines!
 PRINT 'Not Jumped!'
 MOV AL, 0
label1:
 PRINT 'Got Here!'
 RET
C Z S O P A

unchanged

JNA label

Short Jump if first operand is Not Above second operand (as set by CMP instruction).
Unsigned.
Algorithm:

if CF = 1 or ZF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#

49

 ORG 100h
 MOV AL, 2
 CMP AL, 5
 JNA label1
 PRINT 'AL is above 5.'
 JMP exit
label1:
 PRINT 'AL is not above 5.'
exit:
 RET
C Z S O P A

unchanged

JNAE label

Short Jump if first operand is Not Above and Not Equal to second operand (as set by CMP
instruction). Unsigned.
Algorithm:

if CF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 5
 JNAE label1
 PRINT 'AL >= 5.'
 JMP exit
label1:
 PRINT 'AL < 5.'
exit:
 RET
C Z S O P A

unchanged

JNB label

Short Jump if first operand is Not Below second operand (as set by CMP instruction).
Unsigned.
Algorithm:

if CF = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 7
 CMP AL, 5
 JNB label1
 PRINT 'AL < 5.'
 JMP exit
label1:
 PRINT 'AL >= 5.'
exit:
 RET
C Z S O P A

unchanged

JNBE label

Short Jump if first operand is Not Below and Not Equal to second operand (as set by CMP
instruction). Unsigned.
Algorithm:

if (CF = 0) and (ZF = 0) then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 7

50

 CMP AL, 5
 JNBE label1
 PRINT 'AL <= 5.'
 JMP exit
label1:
 PRINT 'AL > 5.'
exit:
 RET
C Z S O P A

unchanged

JNC label

Short Jump if Carry flag is set to 0.
Algorithm:

if CF = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 ADD AL, 3
 JNC label1
 PRINT 'has carry.'
 JMP exit
label1:
 PRINT 'no carry.'
exit:
 RET
C Z S O P A

unchanged

JNE label

Short Jump if first operand is Not Equal to second operand (as set by CMP instruction).
Signed/Unsigned.
Algorithm:

if ZF = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 3
 JNE label1
 PRINT 'AL = 3.'
 JMP exit
label1:
 PRINT 'Al <> 3.'
exit:
 RET
C Z S O P A

unchanged

JNG label

Short Jump if first operand is Not Greater then second operand (as set by CMP instruction).
Signed.
Algorithm:

if (ZF = 1) and (SF <> OF) then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 3
 JNG label1
 PRINT 'AL > 3.'

51

 JMP exit
label1:
 PRINT 'Al <= 3.'
exit:
 RET
C Z S O P A

unchanged

JNGE label

Short Jump if first operand is Not Greater and Not Equal to second operand (as set by CMP
instruction). Signed.
Algorithm:

if SF <> OF then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, 3
 JNGE label1
 PRINT 'AL >= 3.'
 JMP exit
label1:
 PRINT 'Al < 3.'
exit:
 RET
C Z S O P A

unchanged

JNL label

Short Jump if first operand is Not Less then second operand (as set by CMP instruction).
Signed.
Algorithm:

if SF = OF then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, -3
 JNL label1
 PRINT 'AL < -3.'
 JMP exit
label1:
 PRINT 'Al >= -3.'
exit:
 RET
C Z S O P A

unchanged

JNLE label

Short Jump if first operand is Not Less and Not Equal to second operand (as set by CMP
instruction). Signed.

Algorithm:

if (SF = OF) and (ZF = 0) then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 2
 CMP AL, -3
 JNLE label1
 PRINT 'AL <= -3.'
 JMP exit

52

label1:
 PRINT 'Al > -3.'
exit:
 RET
C Z S O P A

unchanged

JNO label

Short Jump if Not Overflow.

Algorithm:

if OF = 0 then jump
Example:
; -5 - 2 = -7 (inside -128..127)
; the result of SUB is correct,
; so OF = 0:

include 'emu8086.inc'
#make_COM#
ORG 100h
 MOV AL, -5
 SUB AL, 2 ; AL = 0F9h (-7)
JNO label1
 PRINT 'overflow!'
JMP exit
label1:
 PRINT 'no overflow.'
exit:
 RET
C Z S O P A

unchanged

JNP label

Short Jump if No Parity (odd). Only 8 low bits of result are checked. Set by CMP, SUB, ADD,
TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000111b ; AL = 7
 OR AL, 0 ; just set flags.
 JNP label1
 PRINT 'parity even.'
 JMP exit
label1:
 PRINT 'parity odd.'
exit:
 RET
C Z S O P A

unchanged

JNS label

Short Jump if Not Signed (if positive). Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
Algorithm:

if SF = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000111b ; AL = 7
 OR AL, 0 ; just set flags.

53

 JNS label1
 PRINT 'signed.'
 JMP exit
label1:
 PRINT 'not signed.'
exit:
 RET
C Z S O P A

unchanged

JNZ label

Short Jump if Not Zero (not equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
Algorithm:

if ZF = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000111b ; AL = 7
 OR AL, 0 ; just set flags.
 JNZ label1
 PRINT 'zero.'
 JMP exit
label1:
 PRINT 'not zero.'
exit:
 RET
C Z S O P A

unchanged

JO label

Short Jump if Overflow.
Algorithm:

if OF = 1 then jump
Example:
; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:

include 'emu8086.inc'
#make_COM#
org 100h
 MOV AL, -5
 SUB AL, 127 ; AL = 7Ch (124)
JO label1
 PRINT 'no overflow.'
JMP exit
label1:
 PRINT 'overflow!'
exit:
 RET
C Z S O P A

unchanged

JP label

Short Jump if Parity (even). Only 8 low bits of result are checked. Set by CMP, SUB, ADD,
TEST, AND, OR, XOR instructions.
Algorithm:

if PF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000101b ; AL = 5

54

 OR AL, 0 ; just set flags.
 JP label1
 PRINT 'parity odd.'
 JMP exit
label1:
 PRINT 'parity even.'
exit:
 RET
C Z S O P A

unchanged

JPE label

Short Jump if Parity Even. Only 8 low bits of result are checked. Set by CMP, SUB, ADD,
TEST, AND, OR, XOR instructions.
Algorithm:

if PF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000101b ; AL = 5
 OR AL, 0 ; just set flags.
 JPE label1
 PRINT 'parity odd.'
 JMP exit
label1:
 PRINT 'parity even.'
exit:
 RET
C Z S O P A

unchanged

JPO label

Short Jump if Parity Odd. Only 8 low bits of result are checked. Set by CMP, SUB, ADD,
TEST, AND, OR, XOR instructions.
Algorithm:

if PF = 0 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 00000111b ; AL = 7
 OR AL, 0 ; just set flags.
 JPO label1
 PRINT 'parity even.'
 JMP exit
label1:
 PRINT 'parity odd.'
exit:
 RET
C Z S O P A

unchanged

JS label

Short Jump if Signed (if negative). Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
Algorithm:

if SF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 10000000b ; AL = -128
 OR AL, 0 ; just set flags.
 JS label1

55

 PRINT 'not signed.'
 JMP exit
label1:
 PRINT 'signed.'
exit:
 RET
C Z S O P A

unchanged

JZ label

Short Jump if Zero (equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:

if ZF = 1 then jump
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AL, 5
 CMP AL, 5
 JZ label1
 PRINT 'AL is not equal to 5.'
 JMP exit
label1:
 PRINT 'AL is equal to 5.'
exit:
 RET
C Z S O P A

unchanged

LAHF No operands

Load AH from 8 low bits of Flags register.
Algorithm:

AH = flags register

AH bit: 7 6 5 4 3 2 1 0
 [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
C Z S O P A

unchanged

LDS REG,
memory

Load memory double word into word register and DS.
Algorithm:

• REG = first word
• DS = second word

Example:

#make_COM#
ORG 100h

LDS AX, m
RET

m DW 1234h
 DW 5678h

END

AX is set to 1234h, DS is set to 5678h.
C Z S O P A

unchanged

56

LEA REG,
memory

Load Effective Address.
Algorithm:

• REG = address of memory (offset)

Generally this instruction is replaced by MOV when assembling when possible.

Example:

#make_COM#
ORG 100h

LEA AX, m
RET

m DW 1234h

END

AX is set to: 0104h.
LEA instruction takes 3 bytes, RET takes 1 byte, we start at 100h, so the address of 'm' is
104h.
C Z S O P A

unchanged

LES REG,
memory

Load memory double word into word register and ES.
Algorithm:

• REG = first word
• ES = second word

Example:

#make_COM#
ORG 100h

LES AX, m
RET

m DW 1234h
 DW 5678h

END

AX is set to 1234h, ES is set to 5678h.
C Z S O P A

unchanged

LODSB No operands

Load byte at DS:[SI] into AL. Update SI.
Algorithm:

• AL = DS:[SI]
• if DF = 0 then

o SI = SI + 1
else

o SI = SI - 1
Example:
#make_COM#
ORG 100h

LEA SI, a1
MOV CX, 5
MOV AH, 0Eh

m: LODSB
INT 10h

57

LOOP m
RET
a1 DB 'H', 'e', 'l', 'l', 'o'
C Z S O P A

unchanged

LODSW No operands

Load word at DS:[SI] into AX. Update SI.
Algorithm:

• AX = DS:[SI]
• if DF = 0 then

o SI = SI + 2
else

o SI = SI - 2
Example:
#make_COM#
ORG 100h

LEA SI, a1
MOV CX, 5

REP LODSW ; finally there will be 555h in AX.

RET

a1 dw 111h, 222h, 333h, 444h, 555h
C Z S O P A

unchanged

LOOP label

Decrease CX, jump to label if CX not zero.
Algorithm:

• CX = CX - 1
• if CX <> 0 then

o jump
else

o no jump, continue
Example:
 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV CX, 5
label1:
 PRINTN 'loop!'
 LOOP label1
 RET
C Z S O P A

unchanged

LOOPE label

Decrease CX, jump to label if CX not zero and Equal (ZF = 1).

Algorithm:

• CX = CX - 1
• if (CX <> 0) and (ZF = 1) then

o jump
else

o no jump, continue
Example:
; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.

58

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AX, 0
 MOV CX, 5
label1:
 PUTC '*'
 ADD AX, 100
 CMP AH, 0
 LOOPE label1
 RET
C Z S O P A

unchanged

LOOPNE label

Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0).
Algorithm:

• CX = CX - 1
• if (CX <> 0) and (ZF = 0) then

o jump
else

o no jump, continue
Example:
; Loop until '7' is found,
; or 5 times.

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV SI, 0
 MOV CX, 5
label1:
 PUTC '*'
 MOV AL, v1[SI]
 INC SI ; next byte (SI=SI+1).
 CMP AL, 7
 LOOPNE label1
 RET
 v1 db 9, 8, 7, 6, 5
C Z S O P A

unchanged

LOOPNZ label

Decrease CX, jump to label if CX not zero and ZF = 0.
Algorithm:

• CX = CX - 1
• if (CX <> 0) and (ZF = 0) then

o jump
else

o no jump, continue
Example:
; Loop until '7' is found,
; or 5 times.

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV SI, 0
 MOV CX, 5
label1:
 PUTC '*'
 MOV AL, v1[SI]
 INC SI ; next byte (SI=SI+1).
 CMP AL, 7
 LOOPNZ label1
 RET

59

 v1 db 9, 8, 7, 6, 5
C Z S O P A

unchanged

LOOPZ label

Decrease CX, jump to label if CX not zero and ZF = 1.
Algorithm:

• CX = CX - 1
• if (CX <> 0) and (ZF = 1) then

o jump
else

o no jump, continue
Example:
; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.

 include 'emu8086.inc'
 #make_COM#
 ORG 100h
 MOV AX, 0
 MOV CX, 5
label1:
 PUTC '*'
 ADD AX, 100
 CMP AH, 0
 LOOPZ label1
 RET
C Z S O P A

unchanged

MOV

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

SREG,
memory
memory,
SREG
REG, SREG
SREG, REG

Copy operand2 to operand1.

The MOV instruction cannot:

• set the value of the CS and IP registers.
• copy value of one segment register to another segment register (should copy to

general register first).
• copy immediate value to segment register (should copy to general register first).

Algorithm:

operand1 = operand2
Example:
#make_COM#
ORG 100h
MOV AX, 0B800h ; set AX = B800h (VGA memory).
MOV DS, AX ; copy value of AX to DS.
MOV CL, 'A' ; CL = 41h (ASCII code).
MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh ; BX = position on screen.
MOV [BX], CX ; w.[0B800h:015Eh] = CX.
RET ; returns to operating system.
C Z S O P A

unchanged

MOVSB No operands

Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.
Algorithm:

• ES:[DI] = DS:[SI]
• if DF = 0 then

o SI = SI + 1
o DI = DI + 1

else

60

o SI = SI - 1
o DI = DI - 1

Example:
#make_COM#
ORG 100h

LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSB

RET

a1 DB 1,2,3,4,5
a2 DB 5 DUP(0)
C Z S O P A

unchanged

MOVSW No operands

Copy word at DS:[SI] to ES:[DI]. Update SI and DI.
Algorithm:

• ES:[DI] = DS:[SI]
• if DF = 0 then

o SI = SI + 2
o DI = DI + 2

else
o SI = SI - 2
o DI = DI - 2

Example:
#make_COM#
ORG 100h

LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSW

RET

a1 DW 1,2,3,4,5
a2 DW 5 DUP(0)
C Z S O P A

unchanged

MUL
REG
memory

Unsigned multiply.
Algorithm:

when operand is a byte:
AX = AL * operand.
when operand is a word:
(DX AX) = AX * operand.

Example:
MOV AL, 200 ; AL = 0C8h
MOV BL, 4
MUL BL ; AX = 0320h (800)
RET
C Z S O P A

r ? ? r ? ?
CF=OF=0 when high section of the result is zero.

NEG
REG
memory

Negate. Makes operand negative (two's complement).
Algorithm:

• Invert all bits of the operand
• Add 1 to inverted operand

61

Example:
MOV AL, 5 ; AL = 05h
NEG AL ; AL = 0FBh (-5)
NEG AL ; AL = 05h (5)
RET
C Z S O P A

r r r r r r

NOP No operands

No Operation.
Algorithm:

• Do nothing
Example:
; do nothing, 3 times:
NOP
NOP
NOP
RET
C Z S O P A

unchanged

NOT
REG
memory

Invert each bit of the operand.
Algorithm:

• if bit is 1 turn it to 0.
• if bit is 0 turn it to 1.

Example:
MOV AL, 00011011b
NOT AL ; AL = 11100100b
RET
C Z S O P A

unchanged

OR

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

Logical OR between all bits of two operands. Result is stored in first operand.
These rules apply:

1 OR 1 = 1
1 OR 0 = 1
0 OR 1 = 1
0 OR 0 = 0

Example:
MOV AL, 'A' ; AL = 01000001b
OR AL, 00100000b ; AL = 01100001b ('a')
RET
C Z S O P A

0 r r 0 r ?

OUT

im.byte, AL
im.byte, AX
DX, AL
DX, AX

Output from AL or AX to port.
First operand is a port number. If required to access port number over 255 - DX register should
be used.

Example:
MOV AX, 0FFFh ; Turn on all
OUT 4, AX ; traffic lights.

MOV AL, 100b ; Turn on the third
OUT 7, AL ; magnet of the stepper-motor.
C Z S O P A

unchanged

62

POP
REG
SREG
memory

Get 16 bit value from the stack.
Algorithm:

• operand = SS:[SP] (top of the stack)
• SP = SP + 2

Example:
MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
C Z S O P A

unchanged

POPA No operands

Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX from the stack.
SP value is ignored, it is Popped but not set to SP register).

Note: this instruction works only on 80186 CPU and later!
Algorithm:

• POP DI
• POP SI
• POP BP
• POP xx (SP value ignored)
• POP BX
• POP DX
• POP CX
• POP AX

C Z S O P A

unchanged

POPF No operands

Get flags register from the stack.
Algorithm:

• flags = SS:[SP] (top of the stack)
• SP = SP + 2

C Z S O P A

popped

PUSH

REG
SREG
memory
immediate

Store 16 bit value in the stack.

Note: PUSH immediate works only on 80186 CPU and later!
Algorithm:

• SP = SP - 2
• SS:[SP] (top of the stack) = operand

Example:
MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
C Z S O P A

unchanged

PUSHA No operands

Push all general purpose registers AX, CX, DX, BX, SP, BP, SI, DI in the stack.
Original value of SP register (before PUSHA) is used.

Note: this instruction works only on 80186 CPU and later!
Algorithm:

• PUSH AX
• PUSH CX

63

• PUSH DX
• PUSH BX
• PUSH SP
• PUSH BP
• PUSH SI
• PUSH DI

C Z S O P A

unchanged

PUSHF No operands

Store flags register in the stack.

Algorithm:

• SP = SP - 2
• SS:[SP] (top of the stack) = flags

C Z S O P A

unchanged

RCL

memory,
immediate
REG,
immediate

memory, CL
REG, CL

Rotate operand1 left through Carry Flag. The number of rotates is set by operand2.
When immediate is greater then 1, assembler generates several RCL xx, 1 instructions
because 8086 has machine code only for this instruction (the same principle works for all other
shift/rotate instructions).
Algorithm:

shift all bits left, the bit that goes off is set to CF and previous value of CF is inserted
to the right-most position.

Example:
STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCL AL, 1 ; AL = 00111001b, CF=0.
RET
C O

r r
OF=0 if first operand keeps original sign.

RCR

memory,
immediate
REG,
immediate

memory, CL
REG, CL

Rotate operand1 right through Carry Flag. The number of rotates is set by operand2.
Algorithm:

shift all bits right, the bit that goes off is set to CF and previous value of CF is
inserted to the left-most position.

Example:
STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCR AL, 1 ; AL = 10001110b, CF=0.
RET
C O

r r
OF=0 if first operand keeps original sign.

REP chain
instruction

Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX
times.
Algorithm:
check_cx:

if CX <> 0 then

• do following chain instruction
• CX = CX - 1
• go back to check_cx

else
• exit from REP cycle

64

Z

r

REPE chain
instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is
Equal), maximum CX times.

Algorithm:
check_cx:
if CX <> 0 then

• do following chain instruction
• CX = CX - 1
• if ZF = 1 then:

o go back to check_cx
else

o exit from REPE cycle
else

• exit from REPE cycle
Example:
see cmpsb.asm in Samples.
Z

r

REPNE chain
instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not
Equal), maximum CX times.
Algorithm:
check_cx:

if CX <> 0 then

• do following chain instruction
• CX = CX - 1
• if ZF = 0 then:

o go back to check_cx
else

o exit from REPNE cycle
else

• exit from REPNE cycle
Z

r

REPNZ chain
instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not
Zero), maximum CX times.
Algorithm:
check_cx:
if CX <> 0 then

• do following chain instruction
• CX = CX - 1
• if ZF = 0 then:

o go back to check_cx
else

o exit from REPNZ cycle
else

• exit from REPNZ cycle
Z

r

REPZ chain
instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is
Zero), maximum CX times.
Algorithm:

65

if CX <> 0 then
• do following chain instruction
• CX = CX - 1
• if ZF = 1 then:

o go back to check_cx
else

o exit from REPZ cycle
else

• exit from REPZ cycle
Z

r

RET
No operands
or even
immediate

Return from near procedure.
Algorithm:

• Pop from stack:
o IP

• if immediate operand is present: SP = SP + operand

Example:
#make_COM#
ORG 100h ; for COM file.

CALL p1

ADD AX, 1

RET ; return to OS.

p1 PROC ; procedure declaration.
 MOV AX, 1234h
 RET ; return to caller.
p1 ENDP
C Z S O P A

unchanged

RETF
No operands
or even
immediate

Return from Far procedure.
Algorithm:

• Pop from stack:
o IP
o CS

• if immediate operand is present: SP = SP + operand
C Z S O P A

unchanged

ROL

memory,
immediate
REG,
immediate

memory, CL
REG, CL

Rotate operand1 left. The number of rotates is set by operand2.
Algorithm:

shift all bits left, the bit that goes off is set to CF and the same bit is inserted to the
right-most position.

Example:
MOV AL, 1Ch ; AL = 00011100b
ROL AL, 1 ; AL = 00111000b, CF=0.
RET
C O

r r
OF=0 if first operand keeps original sign.

ROR

66

immediate
REG,
immediate

memory, CL
REG, CL

Algorithm:
shift all bits right, the bit that goes off is set to CF and the same bit is inserted to the
left-most position.

Example:
MOV AL, 1Ch ; AL = 00011100b
ROR AL, 1 ; AL = 00001110b, CF=0.
RET
C O

r r
OF=0 if first operand keeps original sign.

SAHF No operands

Store AH register into low 8 bits of Flags register.
Algorithm:

flags register = AH

AH bit: 7 6 5 4 3 2 1 0
 [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
C Z S O P A

r r r r r r

SAL

memory,
immediate
REG,
immediate

memory, CL
REG, CL

Shift Arithmetic operand1 Left. The number of shifts is set by operand2.
Algorithm:

• Shift all bits left, the bit that goes off is set to CF.
• Zero bit is inserted to the right-most position.

Example:
MOV AL, 0E0h ; AL = 11100000b
SAL AL, 1 ; AL = 11000000b, CF=1.
RET
C O

r r
OF=0 if first operand keeps original sign.

SAR

memory,
immediate
REG,
immediate

memory, CL
REG, CL

Shift Arithmetic operand1 Right. The number of shifts is set by operand2.
Algorithm:

• Shift all bits right, the bit that goes off is set to CF.
• The sign bit that is inserted to the left-most position has the same value as before

shift.
Example:
MOV AL, 0E0h ; AL = 11100000b
SAR AL, 1 ; AL = 11110000b, CF=0.

MOV BL, 4Ch ; BL = 01001100b
SAR BL, 1 ; BL = 00100110b, CF=0.

RET
C O

r r
OF=0 if first operand keeps original sign.

SBB

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

Subtract with Borrow.
Algorithm:
operand1 = operand1 - operand2 - CF

Example:
STC
MOV AL, 5
SBB AL, 3 ; AL = 5 - 3 - 1 = 1

RET

67

C Z S O P A

r r r r r r

SCASB No operands

Compare bytes: AL from ES:[DI].
Algorithm:

• ES:[DI] - AL
• set flags according to result:

OF, SF, ZF, AF, PF, CF
• if DF = 0 then

o DI = DI + 1
else

o DI = DI - 1
C Z S O P A

r r r r r r

SCASW No operands

Compare words: AX from ES:[DI].
Algorithm:

• ES:[DI] - AX
• set flags according to result:

OF, SF, ZF, AF, PF, CF
• if DF = 0 then

o DI = DI + 2
else

o DI = DI - 2
C Z S O P A

r r r r r r

SHL

memory,
immediate
REG,
immediate

memory, CL
REG, CL

Shift operand1 Left. The number of shifts is set by operand2.
Algorithm:

• Shift all bits left, the bit that goes off is set to CF.
• Zero bit is inserted to the right-most position.

Example:
MOV AL, 11100000b
SHL AL, 1 ; AL = 11000000b, CF=1.

RET
C O

r r
OF=0 if first operand keeps original sign.

SHR

memory,
immediate
REG,
immediate

memory, CL
REG, CL

Shift operand1 Right. The number of shifts is set by operand2.
Algorithm:

• Shift all bits right, the bit that goes off is set to CF.
• Zero bit is inserted to the left-most position.

Example:
MOV AL, 00000111b
SHR AL, 1 ; AL = 00000011b, CF=1.

RET
C O

r r
OF=0 if first operand keeps original sign.

STC No operands
Set Carry flag.
Algorithm:
CF = 1

68

C

1

STD No operands

Set Direction flag. SI and DI will be decremented by chain instructions: CMPSB, CMPSW,
LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.
Algorithm:

DF = 1
D

1

STI No operands

Set Interrupt enable flag. This enables hardware interrupts.
Algorithm:
IF = 1
I

1

STOSB No operands

Store byte in AL into ES:[DI]. Update SI.
Algorithm:

• ES:[DI] = AL
• if DF = 0 then

o DI = DI + 1
else

o DI = DI - 1
Example:
#make_COM#
ORG 100h

LEA DI, a1
MOV AL, 12h
MOV CX, 5

REP STOSB

RET

a1 DB 5 dup(0)
C Z S O P A

unchanged

STOSW No operands

Store word in AX into ES:[DI]. Update SI.
Algorithm:

• ES:[DI] = AX
• if DF = 0 then

o DI = DI + 2
else

o DI = DI - 2
Example:
#make_COM#
ORG 100h

LEA DI, a1
MOV AX, 1234h
MOV CX, 5
REP STOSW

RET

a1 DW 5 dup(0)

69

C Z S O P A

unchanged

SUB

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

Subtract.
Algorithm:
operand1 = operand1 - operand2

Example:
MOV AL, 5
SUB AL, 1 ; AL = 4

RET
C Z S O P A

r r r r r r

TEST

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

Logical AND between all bits of two operands for flags only. These flags are effected: ZF, SF,
PF. Result is not stored anywhere.

These rules apply:

1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0

Example:
MOV AL, 00000101b
TEST AL, 1 ; ZF = 0.
TEST AL, 10b ; ZF = 1.
RET
C Z S O P

0 r r 0 r

XCHG

REG,
memory
memory,
REG
REG, REG

Exchange values of two operands.
Algorithm:
operand1 < - > operand2

Example:
MOV AL, 5
MOV AH, 2
XCHG AL, AH ; AL = 2, AH = 5
XCHG AL, AH ; AL = 5, AH = 2
RET
C Z S O P A

unchanged

XLATB No operands

Translate byte from table.
Copy value of memory byte at DS:[BX + unsigned AL] to AL register.
Algorithm:

AL = DS:[BX + unsigned AL]
Example:
#make_COM#
ORG 100h
LEA BX, dat
MOV AL, 2
XLATB ; AL = 33h

RET

70

dat DB 11h, 22h, 33h, 44h, 55h
C Z S O P A

unchanged

XOR

REG,
memory
memory,
REG
REG, REG
memory,
immediate
REG,
immediate

Logical XOR (Exclusive OR) between all bits of two operands. Result is stored in first
operand.
These rules apply:

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 1 = 1
0 XOR 0 = 0

Example:
MOV AL, 00000111b
XOR AL, 00000010b ; AL = 00000101b
RET
C Z S O P A

0 r r 0 r ?

Copyright © 2003 Emu8086, Inc.
All rights reserved.

http://www.emu8086.com

