Emu8086

Open emu8086 (Figure 1)

e Click Continue... (Figure 2)

M08 S - el ilay znd BUH S EUSE W pessor Bl a‘
Emu8086 o

Microprocessaor Emulatar plus integrated Assembler
version 2,57

e @ =2

Code Samples Quick Start Tutor Recent Files

This product is registered to:
SeVeN

Registered for 30000 licenses

hitp: s emuB08E. cam

Continue. .. R
[Cominse.. | Figure 2

e From Tool Bar choose “NEW” (Figure 3)
[

Mew Figure 3

e Choose COM or EXE Template
A) COM File (Figure 4)

[
B Cjjuuas Taniplits fur) l=y Filz ai

fo COM Template

i E¥E Template

i~ BIM Template

= BOOT Template

Cahcel

Figure 4

B E a0 S - ey grdessady Enp bty shld sl il gy Lj g ai
File Edit Bookmarks Macro Compile Emulator Math Help
O = e . H | > I 2] 2 7 il
Mew Cpen Samples Save Compile Emulate Calculator Conwertor Options Help About
#make_COH#

; COM file is loaded at CS5:8188h
ORG 188h

Figure 5

B) EXE File (Figure 6)
. _1Choose IEMpiaiey oTNEWaLTIE 3]

" COM Template

" BIM Template

" BOOT Template

OK Cancel
Figure 6
L AEMIBOBESICroprocessopEmulaioyand sssemblenvioy
File Edit Bookmarks Macro Compile Emolabor Math Help
Ol = v . H . > = ' 7
Mew Qpen Samples Save Compile Emulate Calculator Conwerkor Options Help
#MAKE _EXEH
DSEG SEGHENT "DATA'

our data heret?t??

DSEG EHD3

SSEG SEGHEHT STACK "STACK®
DWW 188h DUP{?)

S5EG EHDS

CSEG SEGHMENT *CODE®

; 36 3 36 I 3 I I I I I I I I I I I I I IE I I I IE I I I I I I I E N NI E NN NN

START FROC FAR
; Store return address to 05:
PUSH Ds
HOY AKX, @
PUSH AX
; set segment registers:
HOY AX, DSEG
HOy DS, Ax
HOY ES, AX

add code heret??t?

; return to operating system:
RET

Figure7

e Example: Create COM file and write these tow instructions as shown in (Figure 8)

#tmake COME

; COH file is loaded at CS:8188h
ORG 188h

mov ax,2
mov bx,ax|

Figure 8
e Compile, correct errors if any, and then run (Emulate)... (Figure 9)
[2
Compile Emulate

Figure 9

e When you press Emulate, this window (Figure 10) will appear, it displays the value of all Registers, flags, block
of memory (1K) at a time as Hex value, Decimal value, and ASCII char, and disassembled machine code.
You can watch and change them during the executing of your code.

: 1 noname.com - BOBG MICTDPTOCESSoTREULaion JJB]
File Math Debug Wiew Wirtual Devices Yirtual Drive Help
J—
(M I» >3 .
Reload Single Step Run step delay ms: 0
HEQﬂESH L mermon (1K) at: ‘ Dizaszemble: ‘
s |00 [oo oBs& . {0100 oBs& . {0100
B |00 oo Offset: Hex Dec ASCI
A B, A0
¢ |00 |05 0101: 02 002 4 = (ADD [BX + 51, AL
D |00 |00 0102: 00000 ADD [BX + 51), AL
0103: 8B 139« ADD (B + 5], AL
LS 0BAk 0104: D2 216 & ADD [BX + 5], AL =
P o100 0105: 00 000 ADD [B + 31], AL
0106: 00 000 ADD B + 5], AL
35 |0B&E 0107 00 oo ADD [Bx + 31, AL
sP [FFFE | |0108:00000 ADD [BX + Sl], AL
010%: 00 000 ADD B + 5], AL
BF jujufu] 0104 00 000 ADD [BX + 51), AL
5 looon 0108: 00 000 ADD [B + 5], AL
010¢: 00 000 ADD [BX + 5I], AL
]l aooao 0100 00 000 ADD [BX + 1], AL
D5 |0B56 010E: 00 000 ADD [BX + 5I], AL
ES 0B&aE IJzer Screen | Actual Source | AL | Stack | FLAGS
Figure 10

e This window (Figure 11) views the source code; the highlighted instruction is the next one to be executed

tmake_COH# -

; COM file is loaded at CS:8188h
ORG 188h

mov ax,2
mov bx,ax

ET Y

e To change any register or any memory location, double click on the register (Figure 10), this window
(Figure 12) will appear, from Watch select the register then change it as HEX, BIN, or OCT
]

Figure 11

Wiatch: ljl

H L
HEx: | oo | 0o
BIN: | 00000000 | 00000000
ocT: | oo | aoo
Decimal 8 bit
Unzighed: | i] | u]
Signed: | i] | u]
ASCII; | |
Decimal 16 bit
Unzigned: | u]
Signed: | u]

Figure 12

Here we changed the lower byte of AX to 5E instead of 00 (Figure 13)

[]
Watch:’A}{—L|
H L
HE% | o0 | 5E
BiN: | oooooooo | 01011110
ocT: | 000 | 136
Decimal & bit
Unsigned: | 0 | a4
Signed: |] | g4
ascll. | | =
Decirnal 16 bit
Unsigned: | 94
Signed: | 94
Figure 13

Close the window in Figure 13; the value of AX is changed (blue color) (Figure 14)

Reqisters

H L
as EE Figure 14

e Here we will change tow memory locations at 0B56:0106
[1) Select MEM from Watch (Figure 15).
%]

“Watch: | s -
=5
sP - L
HEx: |gBP [oo
BIN: g'l b [oooooooo
ocT: |Ds | ooo
N =E B |
D ecim g o [——
Unsigned: | m)]
Signed: | o |]
sscl: | |
Drecimal 16 bit
Unzighed: | n]
Signed: | u]
Figure 15
2) Write the address “segment: offset” 0B56:0106 (Figure 16)
| x|
watch: [mEM; | [0BSE - [108]
H L
HE®: | 0 | BF
BIN: | oOo101100 | 01101111
ocT: | 054 | 157
Decimal 8 bit
Unsigned: | 44 [111
Signed: | 44 [111
asci: | - | o
Decimal 16 bit
Unsigned: | 11375
Signed: | 11375

Figure 16

3) Change 0B56:0106 to 01 and 0B56:0107 to A6h. (Figure 17)

%]
watch: [mEM: -] [0BSE : [108
H L

HEX: | AB | 01
EIN: | 10100110 | 00000001
OCT: | 246 | oo
Decimal 8 bit

Unsigred: | 166 | 1
Signed: | -80 K
ascl: |2 | @
Decimal 16 kit

Unzigned: | 42497

Signed: | -23039

Figure 17

4) Close the window in Figure 17; the value at offset 0106 and 0107 is changed (Figure 18)
‘mua:m 001 |

0107: A6 166 | Figure 18

e To start Running:
Press on Single Step (Figure 19)

1>

Single Step Figure 19
At CS:IP one instruction will be executed at a time.

e Figure 20 & 21 show the changes after executing MOV AX, 2

Registers H L mermory [1K] at: | Dizassemble: ‘
a [oo oz | JoBse - Jotoo 0856 - {0100
B Wlﬁ Offset Hex Dec ASCI [MOWAX, 00002h

’Hlﬁ E|'1DE|ZEE18-'-1A
- Hig g a ES[?%hP] 05720h, 5P

oo |oo 0102: 00 000 + ,
b ’_l_ DB GFh
C5 |0B&6 0104 ©3 19510 JB 0174h

: DB Gidh
010601 001 AND [DI], TR

55 |0BsE 0107: A6 166] OR DL, [Bx + 5[] + 0BCh Figure 20

Frs
—

st b Ep = Jujes T

ftmake COWEH

ORG 188h

mov ax,2
mov bhx,ax

|

: COM File is loaded at CS:8188h

= BX]

ol

Figure 21

e Then press again on Single Step for the next instruction until you finish your code.

e NOTE: Emulator has a complete 8086 instruction set, press on HELP

2 « Complete 8086 instruction set
Help

Complete 8086 instruction set

Quick reference:

=]
=
il
2]
=]
=
=
=

ARA CHPSY JRE JHBE JPO HOUSB RCR SCASB
AAD LuD JB JHC J3 HOUSY REP SCASYW
AAN baA JBE JHE J2Z HuL REPE SHL
AR bAs JC JNG LAHF HEG REPHNE SHR
ADC DEC JCyz JHGE LDS HOP REPHZ sTC
ADD bIv JE JHL LEA HOT REPZ STD
AND HLT J6 JHLE LES OR RET 311
caLL IDIY JGE JHD LODSB ouT RETF STOSB
[1HUL JL JNP LODSY POP ROL sTOSY
CLC IN JLE JHS LooP POPA ROR SUB
CLD 1NC JHp Jhz LOOPE POPF SAHF TEST
CLL INT JNA Jo LOOPHE PUSH SAL XCHG
cHE IHTO JHAE Jp LOOPHZ PUSHA SAR SLATB
CHP IRET JHB JPE LO0PZ PUSHF SBB XOR
Ja RCL
e Choose the instruction you want (i.e. ADC)
Acd with Carry.
Algorithm:
operandl = operandl + operand2 + CF
REG, memory
memory, REG Example:
ADC REG, REG
memory, immediate sTC ; set CF = 1
REG, immediate MOU AL, 5 ; AL = &
ADC AL, 1 ;s AL = 7
RET
czsoPn

I ligligligllallls

NOTE: The stack memory area is set by SS (Stack Segment) register, and SP (Stack Pointer) register.
Generally operating system sets values of these registers on program start.

""PUSH source™ instruction does the following:

e Subtract 2 from SP register.

e Write the value of source to the address SS:SP.
"POP destination™ instruction does the following:

e Write the value at the address SS:SP to destination.

e Add 2 to SP register.
The current address pointed by SS:SP is called the top of the stack.

For COM files stack segment is generally the code segment, and stack pointer is set to value of OFFFEh. At the
address SS:0FFFEh stored a return address for RET instruction that is executed in the end of the program.

Compiling Assembly Code

g2 EmuB086 - Assembler and Microprocessor Emulator 2,50
File Edit Bookmarks Macro Compile Emuolator BMath Help

[= =] ‘ > 32 ?

=T Open Save Compile Ermulate | Calculator Conertar O ptions Help Abot
BMAKE_COME instruct compiler to make COM file. =
ORG 1@8h directive required for a COM program.
MOU AX, BB8AAh set AX to hexadecimal value of BE8ABL.
MOU D5, AX copy value of AX to DS,
MoOU CL, "A° set CL to ASCII code of 'A', it is 41h.

MOU CH, 81811111b
MOU BX, 15Eh

set CH to binary value.

set Bx to 15Eh.

MOU [BX], CX copy contents of CX to memory at BBOO:81
RET returns to operating system.

of
[«] | »

10 Z
Type your code inside the text area, and click [Compile] button. You will be asked for a place where to save
the compiled file.

After successful compilation you can click [Emulate] button to load the compiled file in emulator.

The Output File Type Directives:

#MAKE_COM#

#MAKE_BIN#

#MAKE_BOOT#

#MAKE_EXE#
You can insert these directives in the source code to specify the required output type for the file. Only if
compiler cannot find any of these directives it will ask you for output type before creating the file.

Description of Output File Types:

#MAKE_COM# - the oldest and the simplest format of an executable file, such files are loaded with 100h
prefix (256 bytes). Compiler directive ORG 100h should be added before the code. Execution always starts
from the first byte of the file.

Supported by DOS and Windows Command Prompt.

ORG 100h is a compiler directive (it tells compiler how to handle the source code). This directive is very
important when you work with variables. It tells compiler that the executable file will be loaded at the offset of
100h (256 bytes), so compiler should calculate the correct address for all variables when it replaces the
variable names with their offsets.

Why executable file is loaded at offset of 100h? Operating system keeps some data about the program in the
first 256 bytes of the CS (code segment), such as command line parameters and etc.

#MAKE_EXE# - more advanced format of an executable file. Not limited by size and number of segments.
Stack segment should be defined in the program. You may select EXE Template from the New menu in to
create a simple EXE program with defined Data, Stack, and Code segments.

Entry point (where execution starts) is defined by a programmer.

Supported by DOS and Windows Command Prompt.

#MAKE_BIN# - a simple executable file. You can define the values of all registers, segment and offset for
memory area where this file will be loaded. Execution starts from values in CS:IP.
This file type is unique to Emu8086 emulator.

#MAKE_BOOQOT# - this type is a copy of the first track of a floppy disk (boot sector).

Compiler directive ORG 7C00h should be added before the code, when computer starts it loads first track of a
floppy disk at the address 0000:7C00.

The size of a .BOOT file should be less then 512 bytes (limited by the size of a disk sector).

Execution always starts from the first byte of the file.

This file type is unique to Emu8086 emulator.

Error Processing
Compiler reports about errors in a separate information window:

emu8086 , 5086,/8088 assembler and emulator, ... =] EX |

e S P

ORG 188h | |

MOU DS, 100G

Compiled in 1 paszes. Time spent; 0007 seconds.
MOU AL, 388 file HOT built, there are errars!
RET
EHD

Proceszing:

Cornpilation Errars:

[7] W rong parameters: MOY DS 700
[¥] Cannot uze Segment Regizter with an Immediate Value

click here to select the
corresponding line in

the source code

Broise.. ., | Close | Emulate

MOV DS, 100 - is illegal instruction because segment registers cannot be set directly, general purpose register
should be used:

MOV AX, 100

MOV DS, AX

MOV AL, 300 - is illegal instruction because AL register has only 8 bits, and thus maximum value for it is 255
(or 11111111b), and the minimum is -128.

Compiler makes several passes before generating the correct machine code; if it finds an error and does not
complete the required number of passes it may show incorrect error messages. For example:

#make COM#
ORG 100h

MOV AX, 0
MOV CX, 5
ml: INC AX
LOOP m1 : not a real error!

MOV AL, OFFFFh ;error is here.
RET

List of generated errors:
(7) Condition Jump out of range!: LOOP m1

(9) Wrong parameters: MOV AL, OFFFFh
(9) Operands do not match: Second operand is over 8 bits!

First error message (7) is incorrect, compiler did not finish calculating the offsets for labels, so it presumes that
the offset of m1 label is 0000, that address is out of the range because we start at offset 100h.

Make correction to this line: MOV AL, OFFFFh (AL cannot hold OFFFFh value). This fixes both errors! For
example:

#make_COM#
ORG 100h

MOV AX, 0

MOV CX, 5

m1: INC AX

LOOP ml ; same code no error!
MOV AL, OFFh ; fixed!

RET

