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Abstract 

The report presents the solver of the game 2048 base 

on artificial intelligent techniques. The solver is based 

on two different approaches, including tree search 

and expectimax algorithm. It discusses the 

differences in these two approaches and heuristics 

functions used to improve the performance of the 

expectimax algorithm.  

 

Introduction 

Creating effective artificial intelligent for games is one 

of the most interesting challenges as an 

undergraduate student. In this report, our group are 

trying to develop a solver to the game 2048, which is 

a popular game on mobile devices in the recent years, 

not only to investigate the potential of different 

algorithm and techniques we learned, but also to 

keep it interesting and exciting in the process of 

implementing these algorithms.  

In this report, we are going to develop the solver 

using two techniques, tree search and expectimax. 

The former one is relatively simple, but give an 

unsatisfactory performance. The later gives and 

better result, with the help of a number of different 

heuristics function that we would introduce later. 

 

The problem 

 

Figure 1: The game of 2048 

 

The game 2048 is a single player puzzle game, 

developed by Gabriele Cirulli.   Player needs to slide 

the puzzles using four actions, including moving left, 

right, up and down, which operates on all of the 

puzzles on the board. When two tiles have the same 

value and are slid to the same direction, two tiles will 

merge and the value of the tile will be the sum of the 

values of the original tiles. When each slide happens, 

a new tile will appear randomly on one of the empty 

grid with value of two at 90% chance or with value of 

for at 10% chance. The goal of this game is to get a 

2048 tile on the board, though the game can 

continues even after a 2048 tile is achieved. If the 

board is stuck with all 16 tiles with no possibility to 

move or merge, the player lose the game. 

 

 

Figure 2: The wining state 

 

Score is given at each merge with the value equal to 

value of the tile formed by merging. By calculation, 

getting a score higher than 20000 is equivalent to 

achieving a 2048 tile on the game board. 

 

 

 



Problem Definition and Environment 

Our artificial intelligent agent take all 16 numbers on 

the board (empty grid indicated as 0 value) as the 

input, and should output an optimal action one can 

do to maximize the possibility to win the game.  

For our project, we are using a terminal version of 

2048 named “term2048” written in python [1]. The 

original version of “term2048” project can be found 

on GitHub, with links provided in the references. We 

chose this version of 2048 because we believe a 

terminal version speed up the computation, and using 

python to develop the agent is more sample and 

efficient to understand the algorithms just from 

reading the source code. 

 

Challenges and Baseline 

The game may seems easy to play with at the first 

glimpse, with only 16 numbers on the board only, but 

the limit of space is what makes the game difficult. By 

simple calculation, we know that a 2048 tile is merged 

from 1024 tiles with value 2, while each of those tiles 

is generated when we play one move. To win the 

game, we need to merge those 1024 tiles in only 16 

grids space, with about 1024 move. This requires the 

agent to make almost no mistake in the whole 

process, making the development of the agent more 

difficult.  

Making matters worse, the game is including some 

randomness, as one tile will be generated at one of 

the empty grid after each move. As we will see later, 

one of the method to take advantages in this game is 

to put tiles with larger value at the corner and edges, 

but randomness make this a risky strategy. These 

large value tiles sometimes are forced to move to the 

center when no other moves are possible and a newly 

generated tile may block the large value tile to go 

back to edges. 

Moreover, the size of the state space of the game is 

huge. There are around 10^16 of states possible 

before getting a 2048 tile, and there is even more if 

we continue the game after winning. This prevent us 

using Q-learning techniques, which require a Q table, 

unless we use deep learning network to simulate the 

Q function.  

We take random moves as the baseline of our object.  

Performance of random movement in 100 episode 

 Random moves 

Highest score 3124 

Average score 1095 

Winning percentage 0% 

 

Random moves did not give a good result in the game, 

in did not even get a tile with value 512. This indicate 

that we need to find out move powerful methods to 

develop our solver. 

 

First Approach: Tree search 

The Algorithm 

Tree search is one of the basic method in artificial 

intelligent. It try to search for the possible future 

states and find out the one with the highest possibility 

to win the game. In our implementation, we use 

depth first search using recursion with a given depth 

to search for all possible state in a given steps, and 

record the score taken by the agent at each path, and 

select the path that receive the highest score. The 

next move of this agent will be the first move of the 

best possible path the agent choose.  

 

Result 

Tree search is possible to solve this game, but with a 

low success rate. 

 

Depth 1 2 3 4 5 

Highest 
score 

5216 16132 23676 35268 32112 

Average 
score 

1826 7319 10934 18092 16976 

Winning 
rate 

0% 0% 2.9% 28% 25% 

 



 

Figure 3: possibility of a game to reach certain score 

 

At depth equal to four, simple tree search reach its 

best performance, with successful rate around 28%, 

and we are seeing decline in performance in depth 

of five. Obviously, we need a better algorithm to 

solve the 2048 problem. 

 

Second Approach: Expectimax Search 

The Algorithm 

Expectimax search is a typical search algorithm to 

develop artificial intelligent for zero sum two player 

games. It is a specialized variation of minimax search.  

Minimax search tree classifies two player as 

maximizer and minimizer, where maximizer trying 

two maximize the overall utility of the game, while 

minimizer doing the opposite. A value is associated in 

each state of the game.  The difference in expectimx 

search is that instead of the minimizer trying to 

minimize the overall utility of the game, the “min” 

node take action by chance, and the value associated 

to the “min” node is the expected value of the utility 

of the states it may take. The algorithm search all 

possible states of the game given depth, and evaluate 

how good the state is using heuristic functions in the 

leave nodes. After getting the value, the algorithm 

carry the value up through the branches, and 

evaluate the value of each “min” node and “max” 

node, and finally the agent, which is represented as a 

“max” node, will choose the action that takes it to the 

“min” node with the highest value. 

In our 2048 problem, we define the “max” node as 

the artificial intelligent agent, while the “min” node 

as the game itself, which randomly place a newly 

generated tile on the empty grid on the board after 

each move. The agent first simulate four action that it 

could take, and pass the states to the “min” node, the  

“min” node evaluate its value by listing out all 

possible states that the new tile will possibly be, and 

take the expected value of all those states. Running 

this search tree recursively, and now we get a working 

expectimax search tree for this single player game. 

 

Figure 4: expectimax search tree for 2048 

 

In our expectimax search, we only consider the case 

that a new tile with value 2 is generated, we ignore 

the case of value 4 tiles, because it occurs at a low 

frequency. This assumption reduce the out branch of 

each “min” node by half, dramatically improved the 

searching speed. 

 

Evaluating the states 

To evaluate how good a state is at the leave node of 

the expectimax search tree, we used three different 

heuristic function. The overall heuristic value of each 

state is a weighted sum of these three heuristic 

functions. 



 

Pattern heuristics 

By carefully looking at how the tree search achieve 

high score in some of the game, and try it out 

ourselves, we observe some pattern in order to get 

high score. First, we find that the tile with the highest 

value should be at the corner of the board, and 

second the tile with the second highest and the third 

highest tile should be at the edge of the board and 

right next to the highest one.  These two observations 

are easy to explain; the tile with the highest value has 

the least probability to merge with the others, so it 

should be at the corner, otherwise it would become 

an obstacle for other smaller tile to merge. The 

second and third largest tile are at the edge for the 

same reason, and they are closed together because it 

is easy for them to merge once they are allow to so 

do. As a result, we design our first heuristic as follows. 

The value of the heuristics is obtained by element-

wise multiplication of the value on the game board 

and the table below.  

0 0 1 3 

0 1 3 5 

1 3 5 15 

3 5 15 30 

 

Cluster heuristics 

After some trials, we found out that the previous 

heuristics is not enough to keep the tiles with large 

value all together. Although three tiles with the 

largest value has a high probability to stay   at one 

corner, some of the other tiles are spread to two 

edges, at an opposite corner of the board. In order to 

tile with similar tile keep close together to ease 

merging, we introduce a penalty to tiles that stay 

close together but have very different value: 

penalty = 0 

for each cell on the board as i: 

 for each neighbour of i as j: 

  penalty = penalty + absolute(value[i] - value [j]) 

 end loop 

end loop 
 

In order for the agent to minimize the penalty, tiles 

with large value should come close together to form 

a cluster, while tiles with small values only introduce 

a smaller penalty because they are small in absolute 

value compare to the larger one, so this heuristics 

should have minimal effect on the merging of smaller 

tiles. 

 

Monotonic heuristics 

We use monotonic heuristics to ensure the tiles are 

aligned in increasing or decreasing order in their value. 

This make sure the game is mainly played in two 

direction, reducing the complexity of the game. 

 

Figure 5: Value of the tile align monotonically 

 

To implement this heuristics, we give reward to the 

states where the tile in the lower edge and right edge 

that align monotonically. We keep the other nine cells 

away from this calculation of this heuristics to make 

the merging of the tiles with smaller values remain 

unaffected. 

 

Result 



The expectimax search algorithm together with the 

above heuristics gives better result than the simple 

tree search in our first approach. 

 expectimax 

Highest score 49068 

Average score 24670 

Winning rate 79% 

Rate of getting 4096 2% 

 

Our expectimax agent on average can reach a score 

higher than 20000, with 79% of chance winning a 

game. It even can form a 4096 tile in some rare cases. 

 

Conclusion 

The result of the expectimax search algorithm, is 

generally a success, giving a better result than just 

simply looking in to all future states to maximize its 

score only. This experience gave us confident that it 

can be used to solve the real problem in the real world. 

On the other head, we found that finding a good, 

simple and effective heuristic is not that easy. It need 

both the insight in to the game, great mathematical 

ability and a clever mind. Our complicated heuristic 

just barely works, with a successful rate way less than 

what we expected when we first start the project. 

 

Future Work 

Here are several things than can be done to improve 

the 2048 solver: 

Implementing a better heuristic function: The 

heuristic we are using right now is complicated and 

computational expensive, we can find more pattern 

in the game to find a simpler and more effective 

heuristic. 

Using deep-Q-learning: while using simple Q learning 

using a table is impossible as this game due to its 

extremely large space states, deep reinforcement 

learning can use a deep neural network to 

approximate the Q function, making Q learning 

possible. This is original in our plan of this project, but 

our self-study plan slightly lagged behind. 
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