
Using Artificial intelligent to solve the game of 2048

Ho Shing Hin (20343288) WONG, Ngo Yin (20355097) Lam Ka Wing (20280151)

Abstract

The report presents the solver of the game 2048 base

on artificial intelligent techniques. The solver is based

on two different approaches, including tree search

and expectimax algorithm. It discusses the

differences in these two approaches and heuristics

functions used to improve the performance of the

expectimax algorithm.

Introduction

Creating effective artificial intelligent for games is one

of the most interesting challenges as an

undergraduate student. In this report, our group are

trying to develop a solver to the game 2048, which is

a popular game on mobile devices in the recent years,

not only to investigate the potential of different

algorithm and techniques we learned, but also to

keep it interesting and exciting in the process of

implementing these algorithms.

In this report, we are going to develop the solver

using two techniques, tree search and expectimax.

The former one is relatively simple, but give an

unsatisfactory performance. The later gives and

better result, with the help of a number of different

heuristics function that we would introduce later.

The problem

Figure 1: The game of 2048

The game 2048 is a single player puzzle game,

developed by Gabriele Cirulli. Player needs to slide

the puzzles using four actions, including moving left,

right, up and down, which operates on all of the

puzzles on the board. When two tiles have the same

value and are slid to the same direction, two tiles will

merge and the value of the tile will be the sum of the

values of the original tiles. When each slide happens,

a new tile will appear randomly on one of the empty

grid with value of two at 90% chance or with value of

for at 10% chance. The goal of this game is to get a

2048 tile on the board, though the game can

continues even after a 2048 tile is achieved. If the

board is stuck with all 16 tiles with no possibility to

move or merge, the player lose the game.

Figure 2: The wining state

Score is given at each merge with the value equal to

value of the tile formed by merging. By calculation,

getting a score higher than 20000 is equivalent to

achieving a 2048 tile on the game board.

Problem Definition and Environment

Our artificial intelligent agent take all 16 numbers on

the board (empty grid indicated as 0 value) as the

input, and should output an optimal action one can

do to maximize the possibility to win the game.

For our project, we are using a terminal version of

2048 named “term2048” written in python [1]. The

original version of “term2048” project can be found

on GitHub, with links provided in the references. We

chose this version of 2048 because we believe a

terminal version speed up the computation, and using

python to develop the agent is more sample and

efficient to understand the algorithms just from

reading the source code.

Challenges and Baseline

The game may seems easy to play with at the first

glimpse, with only 16 numbers on the board only, but

the limit of space is what makes the game difficult. By

simple calculation, we know that a 2048 tile is merged

from 1024 tiles with value 2, while each of those tiles

is generated when we play one move. To win the

game, we need to merge those 1024 tiles in only 16

grids space, with about 1024 move. This requires the

agent to make almost no mistake in the whole

process, making the development of the agent more

difficult.

Making matters worse, the game is including some

randomness, as one tile will be generated at one of

the empty grid after each move. As we will see later,

one of the method to take advantages in this game is

to put tiles with larger value at the corner and edges,

but randomness make this a risky strategy. These

large value tiles sometimes are forced to move to the

center when no other moves are possible and a newly

generated tile may block the large value tile to go

back to edges.

Moreover, the size of the state space of the game is

huge. There are around 10^16 of states possible

before getting a 2048 tile, and there is even more if

we continue the game after winning. This prevent us

using Q-learning techniques, which require a Q table,

unless we use deep learning network to simulate the

Q function.

We take random moves as the baseline of our object.

Performance of random movement in 100 episode

 Random moves

Highest score 3124

Average score 1095

Winning percentage 0%

Random moves did not give a good result in the game,

in did not even get a tile with value 512. This indicate

that we need to find out move powerful methods to

develop our solver.

First Approach: Tree search

The Algorithm

Tree search is one of the basic method in artificial

intelligent. It try to search for the possible future

states and find out the one with the highest possibility

to win the game. In our implementation, we use

depth first search using recursion with a given depth

to search for all possible state in a given steps, and

record the score taken by the agent at each path, and

select the path that receive the highest score. The

next move of this agent will be the first move of the

best possible path the agent choose.

Result

Tree search is possible to solve this game, but with a

low success rate.

Depth 1 2 3 4 5

Highest
score

5216 16132 23676 35268 32112

Average
score

1826 7319 10934 18092 16976

Winning
rate

0% 0% 2.9% 28% 25%

Figure 3: possibility of a game to reach certain score

At depth equal to four, simple tree search reach its

best performance, with successful rate around 28%,

and we are seeing decline in performance in depth

of five. Obviously, we need a better algorithm to

solve the 2048 problem.

Second Approach: Expectimax Search

The Algorithm

Expectimax search is a typical search algorithm to

develop artificial intelligent for zero sum two player

games. It is a specialized variation of minimax search.

Minimax search tree classifies two player as

maximizer and minimizer, where maximizer trying

two maximize the overall utility of the game, while

minimizer doing the opposite. A value is associated in

each state of the game. The difference in expectimx

search is that instead of the minimizer trying to

minimize the overall utility of the game, the “min”

node take action by chance, and the value associated

to the “min” node is the expected value of the utility

of the states it may take. The algorithm search all

possible states of the game given depth, and evaluate

how good the state is using heuristic functions in the

leave nodes. After getting the value, the algorithm

carry the value up through the branches, and

evaluate the value of each “min” node and “max”

node, and finally the agent, which is represented as a

“max” node, will choose the action that takes it to the

“min” node with the highest value.

In our 2048 problem, we define the “max” node as

the artificial intelligent agent, while the “min” node

as the game itself, which randomly place a newly

generated tile on the empty grid on the board after

each move. The agent first simulate four action that it

could take, and pass the states to the “min” node, the

“min” node evaluate its value by listing out all

possible states that the new tile will possibly be, and

take the expected value of all those states. Running

this search tree recursively, and now we get a working

expectimax search tree for this single player game.

Figure 4: expectimax search tree for 2048

In our expectimax search, we only consider the case

that a new tile with value 2 is generated, we ignore

the case of value 4 tiles, because it occurs at a low

frequency. This assumption reduce the out branch of

each “min” node by half, dramatically improved the

searching speed.

Evaluating the states

To evaluate how good a state is at the leave node of

the expectimax search tree, we used three different

heuristic function. The overall heuristic value of each

state is a weighted sum of these three heuristic

functions.

Pattern heuristics

By carefully looking at how the tree search achieve

high score in some of the game, and try it out

ourselves, we observe some pattern in order to get

high score. First, we find that the tile with the highest

value should be at the corner of the board, and

second the tile with the second highest and the third

highest tile should be at the edge of the board and

right next to the highest one. These two observations

are easy to explain; the tile with the highest value has

the least probability to merge with the others, so it

should be at the corner, otherwise it would become

an obstacle for other smaller tile to merge. The

second and third largest tile are at the edge for the

same reason, and they are closed together because it

is easy for them to merge once they are allow to so

do. As a result, we design our first heuristic as follows.

The value of the heuristics is obtained by element-

wise multiplication of the value on the game board

and the table below.

0 0 1 3

0 1 3 5

1 3 5 15

3 5 15 30

Cluster heuristics

After some trials, we found out that the previous

heuristics is not enough to keep the tiles with large

value all together. Although three tiles with the

largest value has a high probability to stay at one

corner, some of the other tiles are spread to two

edges, at an opposite corner of the board. In order to

tile with similar tile keep close together to ease

merging, we introduce a penalty to tiles that stay

close together but have very different value:

penalty = 0

for each cell on the board as i:

 for each neighbour of i as j:

 penalty = penalty + absolute(value[i] - value [j])

 end loop

end loop

In order for the agent to minimize the penalty, tiles

with large value should come close together to form

a cluster, while tiles with small values only introduce

a smaller penalty because they are small in absolute

value compare to the larger one, so this heuristics

should have minimal effect on the merging of smaller

tiles.

Monotonic heuristics

We use monotonic heuristics to ensure the tiles are

aligned in increasing or decreasing order in their value.

This make sure the game is mainly played in two

direction, reducing the complexity of the game.

Figure 5: Value of the tile align monotonically

To implement this heuristics, we give reward to the

states where the tile in the lower edge and right edge

that align monotonically. We keep the other nine cells

away from this calculation of this heuristics to make

the merging of the tiles with smaller values remain

unaffected.

Result

The expectimax search algorithm together with the

above heuristics gives better result than the simple

tree search in our first approach.

 expectimax

Highest score 49068

Average score 24670

Winning rate 79%

Rate of getting 4096 2%

Our expectimax agent on average can reach a score

higher than 20000, with 79% of chance winning a

game. It even can form a 4096 tile in some rare cases.

Conclusion

The result of the expectimax search algorithm, is

generally a success, giving a better result than just

simply looking in to all future states to maximize its

score only. This experience gave us confident that it

can be used to solve the real problem in the real world.

On the other head, we found that finding a good,

simple and effective heuristic is not that easy. It need

both the insight in to the game, great mathematical

ability and a clever mind. Our complicated heuristic

just barely works, with a successful rate way less than

what we expected when we first start the project.

Future Work

Here are several things than can be done to improve

the 2048 solver:

Implementing a better heuristic function: The

heuristic we are using right now is complicated and

computational expensive, we can find more pattern

in the game to find a simpler and more effective

heuristic.

Using deep-Q-learning: while using simple Q learning

using a table is impossible as this game due to its

extremely large space states, deep reinforcement

learning can use a deep neural network to

approximate the Q function, making Q learning

possible. This is original in our plan of this project, but

our self-study plan slightly lagged behind.

Acknowledgments

We would like to thank bfontaine and other open

source contributors to make the infrastructure of or

project, the terminal version of 2048 in python

“term2048”, possible for everyone on GitHub.

Inspired by them, we are going to make our project

available for everyone on GitHub.

Our project available at:

https://github.com/comp3211finalprojectgroup/204

8_ai

References

[1] term2048 project on GitHub

https://github.com/bfontaine/term2048

https://github.com/comp3211finalprojectgroup/2048_ai
https://github.com/comp3211finalprojectgroup/2048_ai
https://github.com/bfontaine/term2048

