

Peachpit Press

VISUAL QUICKSTART GUIDE

SQL
Third Edition

Chris Fehily

Visual QuickStart Guide

SQL, Third Edition
Chris Fehily

Peachpit Press
1249 Eighth Street

Berkeley, CA 94710

510/524-2178

510/524-2221 (fax)

Find us on the Web at www.peachpit.com

To report errors, please send a note to errata@peachpit.com

Peachpit Press is a division of Pearson Education

Copyright © 2008 by Chris Fehily

Editor: Cliff Colby

Copy Editor: Kim Wimpsett

Production Coordinator: Tracey Croom

Compositor: David Van Ness

Indexer: Rebecca Plunkett

Cover Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written

permission of the publisher. For information on getting permission for reprints and excerpts,

contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every

precaution has been taken in the preparation of the book, neither the author nor Peachpit Press

shall have any liability to any person or entity with respect to any loss or damage caused or

alleged to be caused directly or indirectly by the instructions contained in this book or by the

computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson

Education.

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and Peachpit was aware of a

trademark claim, the designations appear as requested by the owner of the trademark. All other

product names and services identified throughout this book are used in editorial fashion only and

for the benefit of such companies with no intention of infringement of the trademark. No such use,

or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-55357-7

ISBN 10: 0-321-55357-8

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

For my father, Jack Fehily

iv

Special thanks to…

Cliff Colby for two in a row

Kim Wimpsett for the hyphenectomy

Tracey Croom and David Van Ness for

kerning above and beyond

Rebecca Plunkett for the subsubentries

Troels Arvin (technical editor for the second

edition), Bryan Steinweg (technical editor

for the first edition), Russ Abbott, Darren

Pennington for their suggestions and

technical help

The data in the sample database are

fictional. I lifted two book titles from

Iain M. Banks’ Culture novels.

v

C
o

n
t

e
n

t
s

 a
t

 a
 G

l
a

n
c

e

Introduction xi

Chapter 1: DBMS Specifics 1

Chapter 2: The Relational Model 33

Chapter 3: SQL Basics 61

Chapter 4: Retrieving Data from a Table 87

Chapter 5: Operators and Functions 127

Chapter 6: Summarizing and Grouping Data 169

Chapter 7: Joins 193

Chapter 8: Subqueries 253

Chapter 9: Set Operations 303

Chapter 10: Inserting, Updating, and
Deleting Rows 315

Chapter 11: Creating, Altering, and
Dropping Tables 337

Chapter 12: Indexes 377

Chapter 13: Views 385

Chapter 14: Transactions 399

Chapter 15: SQL Tricks 405

Index 465

CONTENTS AT A GLANCE

vi

T
a

b
l
e

 o
f
 C

o
n

t
e

n
t

s

Introduction xi
About SQL . xii

About This Book . xvi

What You’ll Need . xx

Chapter 1: DBMS Specifics 1
Running SQL Programs . 2

Microsoft Access . 5

Microsoft SQL Server . 10

Oracle . 17

IBM DB2 . 20

MySQL . 27

PostgreSQL . 30

Chapter 2: The Relational Model 33
Tables, Columns, and Rows 34

Primary Keys . 38

Foreign Keys . 40

Relationships . 42

Normalization . 45

The Sample Database . 51

Creating the Sample Database 57

Chapter 3: SQL Basics 61
SQL Syntax . 62

SQL Standards and Conformance 65

Identifiers . 66

Data Types . 68

Character String Types . 70

Binary Large Object Type . 72

Exact Numeric Types . 73

Approximate Numeric Types 75

Boolean Type . 76

Datetime Types . 77

Interval Types . 80

Unique Identifiers . 82

Other Data Types . 83

Nulls . 84

TABLE OF CONTENTS

Chapter 4: Retrieving Data from a Table 87
Retrieving Columns with SELECT and FROM 88

Creating Column Aliases with AS 91

Eliminating Duplicate Rows with DISTINCT 93

Sorting Rows with ORDER BY 95

Filtering Rows with WHERE 101

Combining and Negating Conditions with

AND, OR, and NOT . 105

Matching Patterns with LIKE 114

Range Filtering with BETWEEN 118

List Filtering with IN . 121

Testing for Nulls with IS NULL 124

Chapter 5: Operators and Functions 127
Creating Derived Columns 128

Performing Arithmetic Operations 130

Determining the Order of Evaluation 133

Concatenating Strings with || 134

Extracting a Substring with SUBSTRING() 137

Changing String Case with UPPER()
and LOWER() . 140

Trimming Characters with TRIM() 142

Finding the Length of a String with

CHARACTER_LENGTH() . 147

Finding Substrings with POSITION() 149

Performing Datetime and Interval

Arithmetic . 152

Getting the Current Date and Time 154

Getting User Information 156

Converting Data Types with CAST() 157

Evaluating Conditional Values with CASE 161

Checking for Nulls with COALESCE() 165

Comparing Expressions with NULLIF() 166

Chapter 6: Summarizing and Grouping Data 169
Using Aggregate Functions 170

Creating Aggregate Expressions 171

Finding a Minimum with MIN() 172

Finding a Maximum with MAX() 173

Calculating a Sum with SUM() 174

Calculating an Average with AVG() 175

Counting Rows with COUNT() 178

Aggregating Distinct Values with DISTINCT . . . 179

Grouping Rows with GROUP BY 183

Filtering Groups with HAVING 190

vii

T
a

b
l
e

 o
f
 C

o
n

t
e

n
t

s

Table of Contents

viii

T
a

b
l
e

 o
f
 C

o
n

t
e

n
t

s

Table of Contents

Chapter 7: Joins 193
Qualifying Column Names 194

Creating Table Aliases with AS 196

Using Joins . 198

Creating Joins with JOIN or WHERE 200

Creating a Cross Join with CROSS JOIN 204

Creating a Natural Join with NATURAL JOIN 206

Creating an Inner Join with INNER JOIN 210

Creating Outer Joins with OUTER JOIN 235

Creating a Self-Join . 247

Chapter 8: Subqueries 253
Understanding Subqueries 254

Subquery Syntax . 256

Subqueries vs. Joins . 257

Simple and Correlated Subqueries 262

Qualifying Column Names in Subqueries 267

Nulls in Subqueries . 268

Using Subqueries as Column Expressions 270

Comparing a Subquery Value by Using a

Comparison Operator 275

Testing Set Membership with IN 281

Comparing All Subquery Values with ALL 288

Comparing Some Subquery Values with ANY . . 291

Testing Existence with EXISTS 294

Comparing Equivalent Queries 301

Chapter 9: Set Operations 303
Combining Rows with UNION 304

Finding Common Rows with INTERSECT 310

Finding Different Rows with EXCEPT 312

Chapter 10: Inserting, Updating, and
Deleting Rows 315
Displaying Table Definitions 316

Inserting Rows with INSERT 319

Updating Rows with UPDATE 327

Deleting Rows with DELETE 333

Chapter 11: Creating, Altering, and
Dropping Tables 337
Creating Tables . 338

Understanding Constraints 339

Creating a New Table with CREATE TABLE 341

Forbidding Nulls with NOT NULL 343

Specifying a Default Value with DEFAULT 346

ix

T
a

b
l
e

 o
f
 C

o
n

t
e

n
t

s

Table of Contents

Specifying a Primary Key with

PRIMARY KEY . 350

Specifying a Foreign Key with

FOREIGN KEY . 353

Forcing Unique Values with UNIQUE 359

Adding a Check Constraint with CHECK 363

Creating a Temporary Table with

CREATE TEMPORARY TABLE 366

Creating a New Table from an Existing One

with CREATE TABLE AS . 369

Altering a Table with ALTER TABLE 373

Dropping a Table with DROP TABLE 376

Chapter 12: Indexes 377
Creating an Index with CREATE INDEX 378

Dropping an Index with DROP INDEX 383

Chapter 13: Views 385
Creating a View with CREATE VIEW 386

Retrieving Data Through a View 391

Updating Data Through a View 394

Dropping a View with DROP VIEW 398

Chapter 14: Transactions 399
Executing a Transaction . 400

Chapter 15: SQL Tricks 405
Calculating Running Statistics 406

Generating Sequences . 409

Finding Sequences, Runs, and Regions 415

Limiting the Number of Rows Returned 421

Assigning Ranks . 430

Calculating a Trimmed Mean 432

Picking Random Rows . 433

Handling Duplicates . 435

Creating a Telephone List 438

Retrieving Metadata . 439

Working with Dates . 445

Calculating a Median . 451

Finding Extreme Values . 453

Changing Running Statistics Midstream 454

Pivoting Results . 456

Working with Hierarchies 458

Index 465

This page intentionally left blank

SQL (pronounced es-kyoo-el) is the standard

programming language for creating, updating,

and retrieving information that is stored in

databases. With SQL, you can turn your ordi-

nary questions (“Where do our customers

live?”) into statements that your database sys-

tem can understand (SELECT DISTINCT city,
state FROM customers;). You might already

know how to extract this type of information

by using a graphical query or reporting tool,

but perhaps you’ve noticed that this tool

becomes limiting or cumbersome as your

questions grow in complexity—that’s where

SQL comes in.

You also can use SQL to add, change, and

delete data and database objects. All modern

relational database management systems

(DBMSs) support SQL, although support

varies by product (more about that later in

this introduction).

This new edition of SQL: Visual QuickStart

Guide covers the most recent versions of

popular DBMSs, adds a chapter on SQL

tricks, and includes new programming tips,

new sidebars on subtle or advanced topics,

and other odds and ends.

xi

Introduction
i

I
n

t
r

o
d

u
c

t
i
o

n

About SQL
SQL is:

◆ A programming language

◆ Easy to learn

◆ Declarative

◆ Interactive or embedded

◆ Standardized

◆ Used to change data and database

objects

◆ Not an acronym

A programming language. SQL is a formal

language in which you write programs to

create, modify, and query databases. Your

database system executes your SQL program,

performs the tasks you’ve specified, and dis-

plays the results (or an error message).

Programming languages differ from natural

(spoken) languages in that programming

languages are designed for a specific pur-

pose, have a small vocabulary, and are inflex-

ible and utterly unambiguous. So if you don’t

get the results you expect, it’s because your

program contains an error—or bug—and

not because the computer misinterpreted

your instructions. (Debugging one’s pro-

grams is a cardinal programming task.)

SQL, like any formal language, is defined by

rules of syntax, which determine the words

and symbols you can use and how they can

be combined, and semantics, which deter-

mine the actual meaning of a syntactically

correct statement. Note that you can write

a legal SQL statement that expresses the

wrong meaning (good syntax, bad seman-

tics). Chapter 3 introduces SQL syntax and

semantics.

xii

Introduction

A
b

o
u

t
 S

Q
L

Database vs. DBMS

A database is not the same as the database

software that you’re running; it’s incorrect

to say, “Oracle is a database.” Database

software is called a database management

system (DBMS). A database, which is just

one component of a DBMS, is the data

itself—that is, it’s a container (one or more

files) that stores structured information.

Besides controlling the organization,

integrity, and retrieval of data in databases,

DBMSs handle tasks such as physical

storage, security, backup, replication, and

error recovery.

DBMS also is abbreviated RDBMS, in which

the R stands for relational. An RDBMS

organizes data according to the relational

model (see Chapter 2) rather than, say, a

hierarchical or network model. This book

covers only relational systems, so when I

use DBMS, the initial R is implied.

Easy to learn. Easy compared with other

programming languages, that is. If you’ve never

written a program before, you’ll find the

transition from natural to formal language

frustrating. Still, SQL’s statements read like

sentences to make things easy on humans.

A novice programmer probably would under-

stand the SQL statement SELECT au_fname,
au_lname FROM authors ORDER BY au_lname; to

mean “List the authors’ first and last names,

sorted by last name,” whereas the same

person would find the equivalent C or Perl

program impenetrable.

Declarative. If you’ve never programmed,

you can skip this point without loss of conti-

nuity. If you’ve programmed in a language

such as C or PHP, you’ve used a procedural

language, in which you specify the explicit

steps to follow to produce a result. SQL is a

declarative language, in which you describe

what you want and not how to do it; your

database system’s optimizer will determine

the “how.” As such, standard SQL lacks

traditional control-flow constructs such as

if-then-else, while, for, and goto statements.

To demonstrate this difference, I’ve written

programs that perform an equivalent task in

Microsoft Access Visual Basic (VB; a proce-

dural language) and SQL. Listing i.1 shows a

VB program that extracts author names from

a table that contains author information. You

needn’t understand the entire program, but

note that it uses a Do Until loop to define

explicitly how to extract data. Listing i.2

shows how to do the same task with a single

SQL statement (as opposed to about 20 lines

of VB code). With SQL, you specify only what

needs to be accomplished; the DBMS deter-

mines and performs internally the actual step-

by-step operations needed to get the result.

Moreover, Listing i.2 is a trivial SQL query. After

you add common operations such as sorts,

filters, and joins, you might need more than

100 lines of procedural code to accomplish

what a single SQL SELECT statement can do.

xiii

Introduction

A
b

o
u

t
 S

Q
L

Listing i.1 This Microsoft Access Visual Basic routine
extracts the first and last names from a database table
containing author information and places the results
in an array.

Sub GetAuthorNames()

Dim db As Database

Dim rs As Recordset

Dim i As Integer

Dim au_names() As String

Set db = CurrentDb()

Set rs = db.OpenRecordset("authors")

rs.MoveLast

ReDim au_names(rs.RecordCount - 1, 1)

With rs

.MoveFirst

i = 0

Do Until .EOF

au_names(i, 0) = ![au_fname]

au_names(i, 1) = ![au_lname]

i = i + 1

.MoveNext

Loop

End With

rs.Close

db.Close

End Sub

Listing i.2 This single SQL statement performs the
same query as the Visual Basic routine in Listing i.1.
Access’s internal optimizer determines the best way
to extract the data.

SELECT au_fname, au_lname

FROM authors;

Listing

Listing

Interactive or embedded. In interactive

SQL, you issue SQL commands directly to

your DBMS, which displays the results as

soon as they’re produced. DBMS servers

come with both graphical and command-line

tools that accept typed SQL statements or

text files that contain SQL programs (scripts).

If you’re developing database applications,

you can “embed” SQL statements in pro-

grams written in a host language, which

commonly is a general-purpose language

(C++, Java, or COBOL, for example) or a

scripting language (Perl, PHP, or Python). A

PHP CGI script can use an SQL statement to

query a MySQL database, for example;

MySQL will pass the query result back to a

PHP variable for further analysis or web-

page display. Drawing from the preceding

examples, I’ve embedded an SQL statement

in an Access Visual Basic program in

Listing i.3.

This book covers only interactive SQL. In

general, any SQL statement that can be used

interactively also can be used in a host lan-

guage, though perhaps with slight syntactic

differences, depending on your DBMS, host

language, and operating environment.

Standardized. SQL isn’t “owned” by any

particular firm. It’s an open standard defined

by an international standards working

group, under the joint leadership of the

International Organization for

Standardization (ISO) and the International

Engineering Consortium (IEC). The

American National Standards Institute

(ANSI) participates in the working groups

and has ratified the standard (Figure i.1).

“ISO/IEC SQL” isn’t a commonly used term,

so I’ll stick to the better-known “ANSI SQL”

name throughout this book. This book is

based on the 2003 SQL standard, so you

should consider ANSI SQL, SQL:2003, and

xiv

Introduction

A
b

o
u

t
 S

Q
L

Listing i.3 Here, Visual Basic serves as the host
language for embedded SQL.

Sub GetAuthorNames2()

Dim db As Database

Dim rs As Recordset

Set db = CurrentDb()

Set rs = db.OpenRecordset("SELECT au_fname,
➝ au_lname FROM authors;")

' --Do something with rs here.

rs.Close

db.Close

End Sub

Figure i.1 This is the cover of ISO/IEC 9075:2003,
which defines the SQL:2003 language officially. You
can buy it in electronic format at www.ansi.org or
www.iso.org if you like. Its intended audience is not
SQL programmers, however, but people who design
DBMS systems, compilers, and optimizers.

Listing

www.ansi.org
www.iso.org

SQL to be synonymous unless I note other-

wise. For more information, see “SQL

Standards and Conformance” in Chapter 3.

All DBMS vendors add proprietary features

to standard SQL to enhance the language.

These extensions usually are additional com-

mands, keywords, functions, operators, data

types, and control-flow constructs such as

if, while, and goto statements. Microsoft,

Oracle, and IBM have added so many features

to standard SQL that the resulting languages—

Transact-SQL, PL/SQL, and SQL PL, respec-

tively—can be considered to be separate

languages in their own right, rather than

just supersets of SQL. One vendor’s exten-

sions generally are incompatible with other

vendors’ products. I don’t cover proprietary

SQL extensions, but I do point out when a

vendor’s SQL dialect doesn’t comply with

the standard SQL examples in this book;

see “Using SQL with a specific DBMS” later

in this introduction.

Used to change data and database

objects. SQL statements are divided into

three categories:

◆ Data manipulation language (DML)

statements retrieve, reckon, insert, edit,

and delete data stored in a database.

Chapters 4 through 10 cover the DML

statements SELECT, INSERT, UPDATE, and

DELETE. Chapter 14 covers START (or BEGIN),

COMMIT, and ROLLBACK.

◆ Data definition language (DDL) state-

ments create, modify, and destroy database

objects such as tables, indexes, and

views. Chapters 11 through 13 cover the

DDL statements CREATE, ALTER, and DROP.

◆ Data control language (DCL) statements

authorize certain users to view, change,

or delete data and database objects. The

GRANT statement assigns privileges to

users and roles (a role is a named set of

privileges). The REVOKE statement removes

privileges. GRANT and REVOKE aren’t covered

in this book because they’re the respon-

sibility of database administrators.

All the DBMSs (except Access) covered

in this book support GRANT and REVOKE,

with variations on the SQL standard.

Not an acronym. It’s a common miscon-

ception that SQL stands for structured query

language; it stands for S–Q–L and nothing

else. Why? Because ANSI says so. The offi-

cial name is Database Language SQL (refer

to Figure i.1). Furthermore, referring to it as

a structured query language is a disservice

to new SQL programmers. It amuses insiders

to point out that “structured query lan-

guage” is the worst possible description,

because SQL:

◆ Isn’t structured (because it can’t be bro-

ken down into blocks or procedures)

◆ Isn’t for only queries (because it has

more than just the SELECT statement)

◆ Isn’t a language (because it’s not Turing-

complete, which you’ll study should you

take Theory of Computation)

xv

Introduction

A
b

o
u

t
 S

Q
L

About This Book
This book will teach you how to use the

SQL programming language to maintain

and query database information. After some

expository material about DBMSs, the rela-

tional model, and SQL syntax in Chapters 1

through 3, I revert to the task-based, visual

style that you’re familiar with if you’ve read

other Visual QuickStart books.

Although I don’t assume that you’ve had

programming experience, I do expect that

you’re competent with your operating sys-

tem’s filesystem and know how to issue

commands at a command prompt or shell

(called the DOS prompt in older Windows

versions or Terminal in Mac OS X).

This book isn’t an exhaustive guide to SQL;

I’ve limited its scope to the most-used state-

ments. For information about other SQL

statements, refer to your DBMS’s documen-

tation or an SQL reference that covers the

standard more completely.

✔ Tips

■ Peter Gulutzan and Trudy Pelzer’s SQL-99

Complete, Really (CMP Books) explains

the complete SQL-99 standard. It’s less

agonizing to read than the SQL standard

itself, but it doesn’t cover individual

DBMSs.

■ Kevin Kline, Daniel Kline, and Brand Hunt’s

SQL in a Nutshell (O’Reilly) is an extensive

SQL:2003 reference that covers the same

DBMSs as this book (except Access).

It’s appropriate for SQL programmers

who already have learned the basics.

■ Troels Arvin’s “Comparison of Different

SQL Implementations” explains how

different DBMSs implement various SQL

features, complete with links to source

documentation and other SQL books,

articles, and resources. It covers

SQL:2003 and the same DBMSs as this

book (except Access). It’s at http://
troels.arvin.dk/db/rdbms.

xvi

Introduction

A
b

o
u

t
 T

h
i
s

 B
o

o
k

Companion Website

At www.fehily.com, you’ll find correc-

tions, updates, all code listings, and the

sample database ready for download (see

“The Sample Database” in Chapter 2).

Click the Contact link to send me ques-

tions, suggestions, corrections, and gripes

related to this book.

www.fehily.com
http://troels.arvin.dk/db/rdbms
http://troels.arvin.dk/db/rdbms

Audience
My audience is database-application pro-

grammers and database end-users (not

database designers or administrators), so

this book is appropriate for you if you:

◆ Lack programming experience but are

familiar with computers.

◆ Are learning SQL on your own or from

an instructor.

◆ Are otherwise uninterested in databases

but must process large amounts of struc-

tured information because of the nature

of your work. This group includes statisti-

cians, epidemiologists, web programmers,

meteorologists, engineers, accountants,

investigators, scientists, analysts, sales

reps, financial planners and traders, office

managers, and managers.

◆ Want to move beyond friendly but

underpowered graphical query tools.

◆ Are moving from a desktop to a server

DBMS (see the sidebar in this section).

◆ Already know some SQL and want to

move past simple SELECT statements.

◆ Need to create, change, or delete data-

base objects such as tables, indexes,

and views.

◆ Need to embed SQL code in C, Java, Visual

Basic, PHP, Perl, or other host languages.

◆ Are a web programmer and need to dis-

play query results on web pages.

◆ Need a desktop SQL reference book.

◆ Are migrating from Microsoft Excel

to Access because your data lists have

grown too big or complex to manage

in a spreadsheet.

xvii

Introduction

A
b

o
u

t
 T

h
i
s

 B
o

o
k

SQL Server vs. Desktop DBMSs

An SQL server DBMS acts as the server

part of a client/server network; it stores

databases and responds to SQL requests

made by many clients. A client is an appli-

cation or computer that sends an SQL

request to a server and accepts the serv-

er’s response. The server does the actual

work of executing the SQL against a data-

base; the client merely accepts the answer.

If your network uses a client/server archi-

tecture, the client is the computer on

your desk, and the server is a powerful,

specialized machine in another room,

building, or country. The rules that

describe how client/server requests and

responses are transmitted are part of

DBMS protocols and interfaces such as

ODBC, JDBC, and ADO.NET.

A desktop DBMS is a stand-alone pro-

gram that can store a database and do all

the SQL processing itself or behave as a

client of an SQL server. A desktop DBMS

can’t accept requests from other clients

(that is, it can’t act like an SQL server).

SQL servers include Microsoft SQL Server,

Oracle, DB2, MySQL, and PostgreSQL.

Desktop systems include Microsoft Access

and FileMaker Pro. Note that SQL server

(not capitalized) can refer to any vendor’s

SQL server product, and SQL Server (capi-

talized) is Microsoft’s particular SQL server

product. By convention, I use client and

server to refer to client and server soft-

ware itself or to the machine on which

the software runs, unless the distinction

is important.

This book is not appropriate for you if you

want to learn:

◆ How to design databases (although I

review proper design concepts in

Chapter 2).

◆ Proprietary extensions that DBMS ven-

dors add beyond the basic SQL statements.

◆ Advanced programming or administra-

tion. I don’t cover installation, privileges,

triggers, recursion,* stored procedures,

replication, backup and recovery, cursors,

collations, character sets, translations,

XML, or object-oriented extensions.

Typographic conventions
I use the following typographic conventions:

Italic type introduces new terms or repre-

sents replaceable variables in regular text.

Monospace type denotes SQL code and

syntax in listings and in regular text. It also

shows executables, filenames, directory

(folder) names, URLs, and command-

prompt text.

Red monospace type highlights SQL code

fragments and results that are explained in

the accompanying text.

Italic monospace type denotes a variable in

SQL code that you must replace with a

value. You’d replace column with the name of

an actual column, for example.

Syntax conventions
SQL is a free-form language without restric-

tions on line breaks or the number of words

per line, so I use a consistent style in SQL

syntax diagrams and code listings to make

the code easy to read and maintain:

◆ Each SQL statement begins on a

new line.

◆ The indentation level is two spaces.

◆ Each clause of a statement begins on a

new, indented line:

SELECT au_fname, au_lname

FROM authors

ORDER BY au_lname;

◆ SQL is case insensitive, which means

that myname, MyName, and MYNAME are con-

sidered to be identical identifiers. I use

UPPERCASE for SQL keywords such as

SELECT, NULL, and CHARACTER (see “SQL

Syntax” in Chapter 3), and lowercase or

lower_case for user-defined values, such

as table, column, and alias names.

(User-defined identifiers are case sensitive

when quoted and in a few other situations

for some DBMSs, so it’s safest to respect

identifier case in SQL programs.)

◆ Table i.1 shows special symbols that I

use in syntax diagrams.

◆ All quote marks in SQL code are straight

quotes (such as ‘ and “), not curly, or

smart, quotes (such as ’ and “). Curly

quotes prevent code from working.

◆ When a column is too narrow to hold a

single line of code or output, I break it

into two or more segments. A gray arrow

➝ indicates a continued line.

xviii

Introduction

A
b

o
u

t
 T

h
i
s

 B
o

o
k

* To understand recursion, you first must understand

recursion.

Using SQL with a specific DBMS
This icon indicates a vendor-

specific departure from the

SQL:2003 standard. If you see this icon, it

means that a particular vendor’s SQL dialect

doesn’t comply with the standard, and you

must modify the listed SQL program to run

on your DBMS. For example, the standard

SQL operator that joins (concatenates) two

strings is || (a double pipe), but Microsoft

products use + (a plus sign) and MySQL uses

the CONCAT() function instead, so you’ll need

to change all occurrences of a||b in the

example SQL listing to a + b (if you’re using

Microsoft Access or Microsoft SQL Server)

or to CONCAT(a,b) (if you’re using MySQL).

In most cases, the SQL examples will work

as is or with minor syntactic changes.

Occasionally, SQL code won’t work at all

because the DBMS doesn’t support a partic-

ular feature.

This book covers the following DBMSs

(see the next chapter for details):

◆ Microsoft Access

◆ Microsoft SQL Server

◆ Oracle

◆ IBM DB2

◆ MySQL

◆ PostgreSQL

If you’re using a different DBMS (such as

Teradata, Sybase, or Informix), and one of

the SQL examples doesn’t work, read the

documentation to see how your DBMS’s

SQL implementation departs from the SQL

standard.

xix

Introduction

A
b

o
u

t
 T

h
i
s

 B
o

o
k

Table i.1

Syntax Symbols
C h a r a c t e r s D e s c r i p t i o n

| The vertical-bar or pipe symbol separates
alternative items. You can choose exactly
one of the given items. (Don’t type the ver-
tical bar.) A|B|C is read “A or B or C.”
Don’t confuse the pipe symbol with the
double-pipe symbol, ||, which is SQL’s
string-concatenation operator.

[] Brackets enclose one or more optional
items. (Don’t type the brackets.) [A|B|C]
means “type A or B or C or type nothing.”
[D] means “type D or type nothing.”

{} Braces enclose one or more required
items. (Don’t type the braces.) {A|B|C}
means “type A or B or C”.

... Ellipses mean that the preceding item(s)
can be repeated any number of times.

What You’ll Need
To replicate this book’s examples on your

own computer, you’ll need:

◆ A text editor

◆ The sample database

◆ A database management system

A text editor. Typing short or ad-hoc

interactive SQL statements at a prompt is

convenient, but you’ll want to store nontrivial

SQL programs in text files. A text editor is a

program that you use to open, create, and

edit text files, which contain only printable

letters, numbers, and symbols—no fonts,

formatting, invisible codes, colors, graphics,

or any of the clutter usually associated with

a word processor. Every operating system

includes a free text editor. Windows has

Notepad, Unix has vi and emacs, and Mac

OS X has TextEdit, for example. By conven-

tion, SQL files have the filename extension

.sql, but you can use .txt (or any extension)

if you prefer.

✔ Tips

■ Windows users might want to forgo

Notepad for a better alternative such

as TextPad ($30 U.S.; www.textpad.com),

EditPlus ($30 U.S.; www.editplus.com),

or Vim (free; www.vim.org).

■ You can type SQL programs in a word

processor such as Microsoft Word and

save them as text-only files, but that

practice causes maintenance problems

(and professionals consider it to be

bad form).

The sample database. Most examples in

this book use the same database, described

in “The Sample Database” in Chapter 2.

To build the sample database, follow the

instructions in “Creating the Sample

Database” in Chapter 2. If you’re working

with a production-server DBMS, you might

need permission from your database admin-

istrator to run SQL programs that create and

update data and database objects.

A database management system. How do

you get SQL? You don’t—you get a DBMS

that understands SQL and feed it an SQL

program. The DBMS runs your program

and displays the results, as described in the

next chapter.

xx

Introduction

W
h

a
t

 Y
o

u
’l

l
 N

e
e

d

www.textpad.com
www.editplus.com
www.vim.org

You need a database management system to

run SQL programs. You can have your own

private copy of a DBMS running on your

desktop (local) computer, or you can use a

shared DBMS over a network. In the latter

case, you use your desktop computer to con-

nect to a DBMS server running on another

machine. The computer where the DBMS is

running is called a host.

Because this book is about SQL and not

DBMSs, I won’t rehash the instructions for

installing and configuring database software.

This evasion might seem like a brush-off at

first glance, but setting up a DBMS varies by

vendor, product, version, edition, and oper-

ating system. All DBMSs come with exten-

sive installation, administration, reference,

and tutorial documentation. (To give you an

idea, just the installation manual for Oracle

runs more than 300 pages.)

1

DBMS Specifics
1

D
B

M
S

 S
p

e
c

i
f
i
c

s

Running SQL Programs
In this chapter, I’ll describe how to run SQL

programs on these DBMSs:

◆ Microsoft Access 2007

◆ Microsoft SQL Server 2008

◆ Oracle 11g

◆ IBM DB2 9.5

◆ MySQL 5.1

◆ PostgreSQL 8.3

These systems are the most popular com-

mercial and open-source DBMSs. I tested

the SQL examples in this book with the indi-

cated releases. The examples will work with

later versions but not necessarily with earlier

ones. SQL-standard conformance usually

improves in successive releases.

Microsoft Access’s graphical interface lets

you run only one SQL statement at a time.

The other systems, all DBMS servers, let you

run SQL programs in interactive mode or

script mode. In interactive mode, you type

individual SQL statements at a command

prompt and view the results of each state-

ment separately, so input and output are

interleaved. In script mode (also called batch

mode), you save your entire SQL program in

a text file (called a script or a batch file), and

a command-line tool takes the file, executes

the program, and returns the results without

your intervention. I use the sample database

and the SQL program shown in Listing 1.1

in all the examples in the rest of this chapter.

I also describe the minimal syntax of com-

mand-line tools; the complete syntax is

given in the DBMS documentation.

2

Chapter 1

R
u

n
n

i
n

g
 S

Q
L

P
r

o
g

r
a

m
s

The Command Line

Most database professionals prefer to

submit commands and SQL scripts through

a DBMS’s command-line environment

rather than mousing around the menus

and windows of a graphical front-end.

(Database administrators don’t add 1,000

users by pointing and clicking.) If you’re

new to DBMSs, you might find the com-

mand line to be cryptic and intimidating,

but experience will show you its power,

simplicity, and speed. Graphical tools do

have a few advantages, though:

◆ Full clipboard support for cut, copy,

and paste

◆ Boundless horizontal and vertical

scrolling

◆ Column widths that you can change

by dragging with the mouse

◆ Better history of the commands

and results

Command-line junkies might want to

look at HenPlus (http://henplus.source
forge.net), a free full-featured SQL shell

that works across DBMSs. You can find

others by searching the web for sql front

end or sql client. Unix lovers stuck with

Windows can run popular Unix shells by

using Cygwin (www.cygwin.com) or UWIN

(www.research.att.com/sw/tools/uwin).

Listing 1.1 This file, named listing0101.sql, contains
a simple SQL SELECT statement, which I’ll use to query
the sample database in subsequent DBMS examples.

SELECT au_fname, au_lname

FROM authors

ORDER BY au_lname;

Listing

www.cygwin.com
www.research.att.com/sw/tools/uwin
http://henplus.sourceforge.net
http://henplus.sourceforge.net

✔ Tips

■ When you specify the name of an SQL

file in script mode, you can include an

absolute or relative pathname (see the

sidebar in this section).

■ To run a command-line tool from any

particular directory (folder), your path

must include the directory that actually

contains the tool. A path is a list of direc-

tories that the OS searches for programs.

For some DBMSs, the installer handles

the path details; for others, you must add

the tool’s directory to your path yourself.

To view your path, type path (Windows) or

echo $PATH (Unix or Mac OS X Terminal)

at a command prompt. To change your

path, add the directory in which the tool

resides to the path environment variable.

Search Help for environment variable

(Windows), or modify the path command

in your login initialization file, usually

named .bash_login, .bashrc, .cshrc,

.login, .profile, or .shrc (Unix or

Mac OS X).

3

DBMS Specifics

R
u

n
n

i
n

g
 S

Q
L

P
r

o
g

r
a

m
s

Pathnames

A pathname specifies the unique loca-

tion of a directory or file in a filesystem

hierarchy. An absolute pathname specifies

a location completely, starting at the top-

most node of the directory tree, called

the root. A relative pathname specifies a

location relative to the current (or work-

ing) directory. In Windows, an absolute

path starts with a backslash (\) or with a

drive letter followed by a colon and a

backslash. In Unix or Mac OS X Terminal,

an absolute path starts with a slash (/).

C:\Program Files\Microsoft SQL Server
(Windows) and /usr/local/bin/mysql
(Unix) are absolute paths, for example.

scripts\listing0101.sql (Windows)

and doc/readme.txt (Unix) are relative

paths. Absolute pathnames for files and

folders on a network also can begin with

a double backslash and server name

(\\someserver, for example). If a path-

name contains spaces, surround the

entire pathname with double quotes.

Pathname commonly is shortened to path.

Although the difference is obvious from

context, I’ll use pathname to prevent con-

fusion with the PATH environment variable.

4

Chapter 1

R
u

n
n

i
n

g
 S

Q
L

P
r

o
g

r
a

m
s

Other DBMSs

FileMaker Pro (www.filemaker.com) is a desktop database program that supports a subset

of SQL. You can use the SQL Query Builder tool or the Execute SQL script step to run SQL

statements.

Sybase (www.sybase.com) is a commercial server DBMS. Sybase and Microsoft once had an

agreement for sharing source code, and their DBMSs were almost identical. Years ago, each

company went its own way with its own product. The shared heritage, however, means that

almost all the SQL examples that work in Microsoft SQL Server will work in Sybase Adaptive

Server as well.

Teradata (www.teradata.com) is a commercial server DBMS that supports huge databases

and numbers of transactions. The Teradata SQL dialect largely supports ANSI SQL, so you’ll

be able to run most of the examples in this book with few or no changes.

Firebird (www.firebirdsql.org) is an open-source DBMS descended from Borland’s

InterBase DBMS. It’s free, supports large databases and numbers of transactions, has high

conformance with ANSI SQL, and runs on many operating systems and hardware platforms.

SQLite (www.sqlite.org) is an open-source DBMS database engine. It’s free, supports large

databases and numbers of transactions, has moderate conformance with ANSI SQL, and runs

on many operating systems and hardware platforms. Applications that access SQLite data-

bases read and write directly from the database files on disk, with no intermediary server.

SAS (www.sas.com) is a commercial statistical and data-warehousing system. Even though

SAS isn’t a relational DBMS, you can use ANSI or DBMS-specific SQL to import and export

SAS data via PROC SQL or SAS/Access. A SAS dataset is equivalent to an SQL table, an

observation to an SQL row, and a variable to an SQL column.

You can find more information and useful links at http://en.wikipedia.org/wiki/
Comparison_of_relational_database_management_systems, “Comparison of Relational

Database Management Systems.”

www.filemaker.com
www.sybase.com
www.teradata.com
www.firebirdsql.org
www.sqlite.org
www.sas.com
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems

Microsoft Access
Microsoft Access is a commercial desktop

DBMS that supports small and medium-size

databases. Learn about Access at

www.microsoft.com/office/access and

download a free 60-day trial copy.

This book covers Microsoft Access 2007 but

also includes tips for 2000, 2002 (also known

as Access XP), and 2003. To determine

which version of Access you’re running, in

Access 2003 or earlier, choose Help > About

Microsoft Office Access. In Access 2007 or

later, choose Microsoft Office button >

Access Options > Resources (in the left

pane) > About.

In Access, you must turn on ANSI-92 SQL

syntax to run many of the examples in

this book.

To turn on ANSI-92 SQL syntax for a
database:

1. In Access, open the database if necessary.

2. In Access 2003 or earlier, choose Tools >

Options > Tables/Queries tab.

or

In Access 2007 or later, choose Microsoft

Office Button > Access Options > Object

Designers (in the left pane).

3. Below SQL Server Compatible Syntax

(ANSI 92), check This Database

(Figure 1.1).

4. Click OK.

Access closes, compacts, and then

reopens the database before the new set-

ting takes effect. You may see a few warn-

ings, depending on your security settings.

5

DBMS Specifics

M
i
c

r
o

s
o

f
t

 A
c

c
e

s
s

ANSI-89 vs. ANSI-92 SQL

Be careful switching between ANSI-89

(the default for Access) and ANSI-92 SQL

syntax mode. The modes aren’t compati-

ble, so you should pick a mode when you

create a database and never change it.

The range of data types, reserved words,

and wildcard characters differs by mode,

so SQL statements created in one mode

might not work in the other. The older

ANSI-89 standard is limited compared

with ANSI-92, so you should choose

ANSI-92 syntax for new databases. For

more information, see “SQL Standards

and Conformance” in Chapter 3.

If you’re using Access as a front-

end to query a Microsoft SQL

Server database, you must use ANSI-92

syntax. If you’re using Access 97 or earli-

er, you’re stuck with ANSI-89.

Figure 1.1 Check this box to turn on ANSI-92 SQL
syntax mode for the open database.

www.microsoft.com/office/access

If you’re a casual Access user, you’ve proba-

bly used the query design grid to create a

query. When you create a query in Design

View, Access builds the equivalent SQL

statement behind the scenes for you. You

can view, edit, and run the SQL statement in

SQL View.

To run an SQL statement in
Access 2000, 2002, or 2003:

1. Open a database, or press F11 to switch

to the Database window for the open

database.

2. In the Database window, click Queries

(below Objects), and then click New in

the toolbar (Figure 1.2).

3. In the New Query dialog box, click

Design View, and then click OK

(Figure 1.3).

4. Without adding tables or queries, click

Close in the Show Table dialog box

(Figure 1.4).

5. Choose View > SQL View (Figure 1.5).

6

Chapter 1

M
i
c

r
o

s
o

f
t

 A
c

c
e

s
s

Figure 1.2 On the toolbar, click the New
button to create a new query.

Figure 1.3 Select Design View to skip the hand-
holding wizards.

Figure 1.4 You don’t need to add tables graphically
because the SQL statement specifies the tables.

Figure 1.5 SQL View
hides the graphical
query grid and instead
shows a text editor
where you can type or
paste an SQL statement.

6. Type or paste an SQL statement

(Figure 1.6).

7. To run the SQL statement, click on

the toolbar or choose Query > Run

(Figure 1.7).

Access displays the results of a SELECT
statement (Figure 1.8) but blocks or

executes other types of SQL statements,

with or without warning messages,

depending on your settings.

7

DBMS Specifics

M
i
c

r
o

s
o

f
t

 A
c

c
e

s
s

Figure 1.6 Enter an SQL
statement...

Figure 1.7 ...and run it.

Figure 1.8 Access displays the results of
a SELECT statement.

To run an SQL statement in
Access 2007:

1. Open a database.

2. On the ribbon, choose Create tab > Other

group > Query Design (Figure 1.9).

3. Without adding tables or queries, click

Close in the Show Table dialog box

(Figure 1.10).

4. On the ribbon, choose Design tab >

Results group > SQL View (Figure 1.11).

8

Chapter 1

M
i
c

r
o

s
o

f
t

 A
c

c
e

s
s

Figure 1.9 Query Design
lets you skip the hand-
holding wizards.

Figure 1.11 SQL View hides the
graphical query grid and instead
shows a text editor where you can
type or paste an SQL statement.

Figure 1.10 You don’t need to add tables graphically
because the SQL statement specifies the tables.

5. Type or paste an SQL statement

(Figure 1.12).

6. On the ribbon, choose Design tab >

Results group > Run (Figure 1.13).

Access displays the results of a SELECT
statement (Figure 1.14) but blocks or

executes other types of SQL statements,

with or without warning messages,

depending on your settings.

✔ Tips

■ You can run only a single SQL statement

through an Access Query object. To run

multiple statements, use multiple Query

objects or a host language such as Visual

Basic or C#.

■ To display a list of existing

queries in Access 2007 or later,

press F11 to show the Navigation pane

(on the left), click the menu at the top of

the pane and choose Object Type, and

then click the menu again and choose

Queries (Figure 1.15).

9

DBMS Specifics

M
i
c

r
o

s
o

f
t

 A
c

c
e

s
s

Figure 1.13 ...and run it.

Figure 1.12 Enter an SQL statement...

Figure 1.14 Access displays the results of a
SELECT statement.

Figure 1.15 The Navigation
pane, new in Access 2007,
replaces the Database
window in earlier Access
versions (refer to Figure 1.2).

Microsoft SQL Server
Microsoft SQL Server is a commercial

DBMS that supports very large databases

and numbers of transactions. It runs on

only Microsoft Windows operating systems

and is complex enough to require a full-

time database administrator (DBA) to run

and maintain it.

Learn about SQL Server products at

www.microsoft.com/sql and download a

free 180-day trial copy of SQL Server or a

(permanently) free copy of SQL Server

Express Edition.

This book covers Microsoft SQL Server 2008

but also includes tips for 2000 and 2005.

To determine which version of Microsoft

SQL Server you’re running, run the SQL

Server command-line command osql -E
-Q "SELECT @@VERSION;" or run the query

SELECT SERVERPROPERTY('ProductVersion');
or SELECT @@VERSION;.

✔ Tip

■ You can use the SET ANSI_DEFAULTS ON
option to make SQL Server conform to

standard SQL more closely.

10

Chapter 1

M
i
c

r
o

s
o

f
t

 S
Q

L
S

e
r

v
e

r

SQL Server 2000, 2005,
and 2008

If you’re upgrading from SQL Server 2000

to 2005/2008, here are a few things to

know about running SQL programs:

◆ SQL Server 2005 and later support

some standard SQL features that 2000

doesn’t (such as the EXCEPT and

INTERSECT operators, described in

Chapter 9), but most of the SQL

examples in this book will run the

same in 2000, 2005, and 2008. If an

example doesn’t run in all versions,

look for a DBMS Tip.

◆ SQL Server 2005/2008’s SQL Server

Management Studio Query Editor

replaces 2000’s SQL Query Analyzer.

◆ SQL Server 2005/2008’s sqlcmd
command-line tool replaces 2000’s

osql. The sqlcmd tool has many of

the same command-line options as

osql (and osql is still available in

2005/2008 for backward compati-

bility). Run sqlcmd -? to show the

syntax summary.

◆ SQL Server Express Edition is a free,

easy-to-use, lightweight version of

SQL Server 2005/2008. SQL Server

Management Studio Express is a com-

panion graphical management tool,

available as a separate download or

bundled with SQL Server Express

Edition.

www.microsoft.com/sql

SQL Server 2000
To run SQL programs in SQL Server 2000,

use the SQL Query Analyzer graphical tool

or the osql command-line tool.

To use SQL Query Analyzer:

1. On the Windows desktop, choose Start >

All Programs > Microsoft SQL Server >

Query Analyzer.

2. In the Connect to SQL Server dialog box,

select the server and authentication

mode; then click OK.

3. On the toolbar (near the top edge of the

window), select a database in the drop-

down list (Figure 1.16).

4. To run SQL interactively, type or paste an

SQL statement in the query window.

or

To run an SQL script, choose File > Open

(or press Ctrl+Shift+P); navigate to and

select the script file; then click Open.

5. Choose Query > Execute (or press F5).

SQL Query Analyzer displays the results

in the bottom pane (Figure 1.17).

✔ Tip

■ You also can run isqlw at a command

prompt to launch SQL Query Analyzer.

11

DBMS Specifics

M
i
c

r
o

s
o

f
t

 S
Q

L
S

e
r

v
e

r

Figure 1.16 SQL Query
Analyzer uses the
selected database to
resolve references in
your SQL statements.

Figure 1.17 The results of a SELECT
statement in SQL Query Analyzer.

To use the osql command-line tool
interactively:

1. At a command prompt, type:

osql -E -d dbname

The -E option tells SQL Server to use a

trusted connection instead of requesting

a password. dbname is the name of the

database to use.

2. Type an SQL statement. The statement

can span multiple lines. Terminate it

with a semicolon (;) and then press Enter.

3. Type go and then press Enter to display

the results (Figure 1.18).

To use the osql command-line tool in
script mode:

1. At a command prompt, type:

osql -E -d dbname -n -i sql_script

The -E option tells SQL Server to use a

trusted connection instead of requesting

a password. dbname is the name of the

database to use. The -n option suppresses

numbering and prompt symbols (>) in the

output. sql_script is a text file containing

SQL statement(s) and can include an

absolute or relative pathname.

2. Press Enter to display the results (Figure

1.19).

12

Chapter 1

M
i
c

r
o

s
o

f
t

 S
Q

L
S

e
r

v
e

r

Figure 1.18 The same SELECT statement
in osql interactive mode.

Figure 1.19 The same SELECT statement in osql
script mode.

To exit the osql command-line tool:

◆ Type exit or quit and then press Enter.

To show osql command-line options:

◆ At a command prompt, type osql -? and

then press Enter.

✔ Tips

■ If SQL Server makes you specify a user

name and password instead of using a

trusted connection, replace the -E option

with -U login_id. login_id is your user

name. osql will prompt you for your

password.

■ If SQL Server is running on a remote

network computer, add the option

-S server to specify the SQL Server

instance to connect to. Ask your DBA

for the connection parameters. (The -S
option also works for local connections,

when SQL Server is running on your

own PC rather than on some server

elsewhere.)

13

DBMS Specifics

M
i
c

r
o

s
o

f
t

 S
Q

L
S

e
r

v
e

r

SQL Server 2005/2008
To run SQL programs in SQL Server 2005

and 2008, use the SQL Server Management

Studio graphical tool or the sqlcmd
command-line tool.

To use SQL Server Management
Studio:

1. On the Windows desktop, choose Start >

All Programs > Microsoft SQL Server >

SQL Server Management Studio.

In SQL Server Express Edition, the pro-

gram is named SQL Server Management

Studio Express.

2. In the Connect to Server dialog box,

select the server and authentication

mode; then click Connect.

3. In Object Explorer (the left pane),

expand the Databases folder of the server

that you’re using and then select a data-

base (Figure 1.20).

If Object Explorer isn’t visible, choose

View > Object Explorer (or press F8).

4. To run SQL interactively, click

New Query (on the toolbar) or right-click

the database (in Object Explorer) and

choose New Query; then type or paste an

SQL statement in the empty tab that

appears in the right pane.

or

To run an SQL script, choose File >

Open > File (or press Ctrl+O); navigate to

and select the script file; then click Open.

The file’s contents appear in a new tab in

the right pane.

5. Click Execute (on the toolbar) or

choose Query > Execute (or press F5).

SQL Server displays the results in the

bottom pane (Figure 1.21).

14

Chapter 1

M
i
c

r
o

s
o

f
t

 S
Q

L
S

e
r

v
e

r

Figure 1.20 SQL Server Management Studio
uses the selected database to resolve
references in your SQL statements.

Figure 1.21 The results of a SELECT statement in
SQL Server Management Studio.

To use the sqlcmd command-line tool
interactively:

1. At a command prompt, type:

sqlcmd -d dbname

dbname is the name of the database

to use.

2. Type an SQL statement. The statement

can span multiple lines. Terminate it

with a semicolon (;) and then press Enter.

3. Type go and then press Enter to display

the results (Figure 1.22).

To use the sqlcmd command-line tool
in script mode:

1. At a command prompt, type:

sqlcmd -d dbname -i sql_script

dbname is the name of the database to

use. sql_script is a text file containing

SQL statement(s) and can include an

absolute or relative pathname.

2. Press Enter to display the results

(Figure 1.23).

To exit the sqlcmd command-line tool:

◆ Type exit or quit and then press Enter.

To show sqlcmd command-line
options:

◆ At a command prompt, type sqlcmd -?
and then press Enter.

continues on next page

15

DBMS Specifics

M
i
c

r
o

s
o

f
t

 S
Q

L
S

e
r

v
e

r

Figure 1.22 The same SELECT statement in sqlcmd
interactive mode.

Figure 1.23 The same SELECT statement in sqlcmd
script mode.

✔ Tips

■ sqlcmd tries to use a trusted connection

by default. If instead you have to specify

a user name and password, add the

option -U login_id. login_id is your user

name. sqlcmd will prompt you for your

password.

■ If SQL Server is running on a remote

network computer, add the option

-S server to specify the SQL Server

instance to connect to. Ask your DBA

for the connection parameters. (The

-S option also works for local connec-

tions, when SQL Server is running on

your own PC rather than on some server

elsewhere.)

16

Chapter 1

M
i
c

r
o

s
o

f
t

 S
Q

L
S

e
r

v
e

r

Oracle
Oracle Database is a commercial DBMS that

supports very large databases and numbers

of transactions. It runs on many operating

systems and hardware platforms and is com-

plex enough to require a full-time database

administrator (DBA) to run and maintain it.

Learn about Oracle products at

www.oracle.com and download Oracle

Express Edition (XE)—a free, starter version

of Oracle Database. Documentation is at

www.oracle.com/technology/documentation.

This book covers Oracle 11g but also

includes tips for 10g, 9i, and 8i. The version

of Oracle that you’re running is displayed in

the initial “Connected to” message that

appears when you log on to SQL*Plus (or run

the query SELECT banner FROM v$version;).

To run SQL programs, use the SQL*Plus

(sqlplus) command-line tool.

✔ Tip

■ To open a command prompt in

Windows, choose Start > All Programs >

Accessories > Command Prompt.

17

DBMS Specifics

O
r

a
c

l
e

www.oracle.com
www.oracle.com/technology/documentation

To use the sqlplus command-line
tool interactively:

1. At a command prompt, type:

sqlplus user/password@dbname

user is your Oracle user name, password

is your password, and dbname is the

name of the database to connect to. For

security, you can omit the password and

instead type:

sqlplus user@dbname

SQL*Plus will prompt you for your pass-

word.

2. Type an SQL statement. The statement

can span multiple lines. Terminate it

with a semicolon (;) and then press Enter

to display the results (Figure 1.24).

To use the sqlplus command-line
tool in script mode:

◆ At a command prompt, type:

sqlplus user/password@dbname
➞ @sql_script

user is your Oracle user name, password

is your password, dbname is the name of

the database to connect to, and

sql_script is a text file containing SQL

statement(s) and can include an absolute

or relative pathname. For security, you

can omit the password, and instead type:

sqlplus user@dbname @sql_script

SQL*Plus will prompt you for your pass-

word (Figure 1.25).

18

Chapter 1

O
r

a
c

l
e

Figure 1.24 The results of a SELECT statement in
sqlplus interactive mode.

Figure 1.25 The same SELECT statement in sqlplus
script mode.

To exit the sqlplus command-line
tool:

◆ Type exit or quit and then press Enter.

To show sqlplus command-line
options:

◆ At a command prompt, type sqlplus -H
and then press Enter.

This command displays a few pages that

speed by. To view one page at a time,

type sqlplus -H | more and then press

Enter. Tap the spacebar to advance pages

(Figure 1.26).

✔ Tips

■ If you’re running Oracle locally, you can

use the user name system and the pass-

word you specified when you created the

database:

sqlplus system@dbname

If you’re connecting to a remote Oracle

database, ask your DBA for the connec-

tion parameters.

■ An alternative way to open SQL*Plus in

Windows: Choose Start > All Programs >

Oracle > Application Development >

SQL Plus.

19

DBMS Specifics

O
r

a
c

l
e

Figure 1.26 The sqlplus help screen.

IBM DB2
IBM DB2 is a commercial DBMS that sup-

ports very large databases and numbers of

transactions. It runs on many operating sys-

tems and hardware platforms and is com-

plex enough to require a full-time database

administrator (DBA) to run and maintain it.

Learn about DB2 products at

www.ibm.com/db2 and download a free

90-day trial copy of DB2 or a (permanently)

free copy of IBM DB2 Express-C.

This book covers DB2 9.5 but also includes

tips for earlier versions, back to 8.0. To deter-

mine which version of DB2 you’re running, run

the DB2 command-line command db2level
or run the query SELECT service_level FROM
SYSIBMADM.ENV_INST_INFO;.

To run SQL programs, use the Command

Center graphical tool in DB2 8.x, the

Command Editor graphical tool in DB2 9.x,

or the db2 command-line processor (CLP).

20

Chapter 1

I
B

M
 D

B
2

www.ibm.com/db2

To use Command Center (DB2 8.x):

1. Start Command Center.

This procedure varies by platform.

In Windows, for example, choose Start >

All Programs > IBM DB2 > Command

Line Tools > Command Center. In Unix

and Linux, use the command db2cctr.

Alternatively, if Control Center is open,

choose Tools > Command Center or

click .

2. Choose the command-type SQL

Statements and DB2 CLP Commands.

3. Click the Interactive tab.

4. In the Database Connection box, click ,

expand the object tree until you find the

Databases folder, select a database, and

then click OK.

5. To run SQL interactively, in the

Command box, type or paste an SQL

statement (Figure 1.27).

or

To run an SQL script, click the Scripts

tab, choose Script > Import, navigate to

and select the script file, and then click

OK.

6. Click or press Ctrl+Enter.

or

Choose Interactive > Execute or

Script > Execute.

Interactive-SQL results appear in the

Results tab (Figure 1.28). SQL-script

results appear in the box below the

Script box.

21

DBMS Specifics

I
B

M
 D

B
2

Figure 1.27 A ready-to-run SELECT statement in
Command Center.

Figure 1.28 The results of the SELECT statement.

To use Command Editor (DB2 9.x):

1. Start Command Editor.

This procedure varies by platform.

In Windows, for example, choose

Start > All Programs > IBM DB2 >

[db2_copy_name] > Command Line

Tools > Command Editor. In Unix and

Linux, use the command db2ce.

Alternatively, if Control Center is open,

choose Tools > Command Editor or

click .

2. On the Commands tab, choose a data-

base in the Target list.

If the desired database doesn’t appear in

the Target list, click Add (to the right of

the list), choose a database, and then

click OK.

3. To run SQL interactively, type or paste an

SQL statement in the top box of the

Commands tab (Figure 1.29).

or

To run an SQL script, choose Selected >

Open (or press Ctrl+O), navigate to and

select the script file, and then click OK.

4. Click or press Ctrl+Enter.

or

Choose Selected > Execute.

Command Editor displays the results in

the Query Results tab (Figure 1.30). The

bottom box of the Commands tab shows

query-processing information.

22

Chapter 1

I
B

M
 D

B
2

Figure 1.29 A ready-to-run SELECT statement in
Command Editor.

Figure 1.30 The results of the SELECT statement.

For technical reasons involving parent and

child processes, (only) Microsoft Windows

users must start the db2 command-line

processor with a special preliminary step.

To start the db2 command-line
processor in Windows:

◆ At a command prompt, type db2cmd and

then press Enter.

or

For DB2 8.x, choose Start > All Programs >

IBM DB2 > Command Line Tools >

Command Window.

or

For DB2 9.x, choose Start > All Programs >

IBM DB2 > [db2_copy_name] >

Command Line Tools > Command

Window.

A new DB2 CLP command-prompt win-

dow appears.

✔ Tips

■ You must use the DB2 CLP window for

all db2 commands (described next). If

you try to run db2 at a regular Windows

command prompt, DB2 responds with

the error “Command line environment

not initialized.”

■ If you launch a new DB2 CLP window via

the db2cmd command, you can close the

original command-prompt window.

■ In the DB2 CLP window, change (cd)

your working directory if necessary

before you run db2 commands.

23

DBMS Specifics

I
B

M
 D

B
2

To use the db2 command-line
processor interactively:

1. At a command prompt, type

db2 -t

and then press Enter. The -t option

tells db2 that a semicolon (;) terminates

statements.

The db2 => prompt appears.

2. At the db2 prompt, type

connect to dbname;

and then press Enter. dbname is the

name of the database to use.

3. Type an SQL statement. The statement

can span multiple lines. Terminate it

with a semicolon and then press Enter to

display the results (Figure 1.31).

✔ Tip

■ Alternatively, you can avoid the db2 =>
prompt by typing commands and SQL

statements right on the command line.

For example:

db2 connect to books

db2 SELECT * FROM authors

If you omit the -t option, as here, don’t

terminate commands and SQL state-

ments with a semicolon.

24

Chapter 1

I
B

M
 D

B
2

Figure 1.31 The same SELECT statement in db2
interactive mode.

25

DBMS Specifics

I
B

M
 D

B
2

To use the db2 command-line
processor in script mode:

1. At a command prompt, type:

db2 connect to dbname

dbname is the name of the database

to use.

2. At a command prompt, type:

db2 -t -f sql_script

sql_script is a text file containing SQL

statement(s) and can include an absolute

or relative pathname. The -t option

tells db2 that a semicolon (;) terminates

statements.

3. Press Enter to display the results

(Figure 1.32).

✔ Tips

■ In step 2, add the option -v if you want

to echo the contents of sql_script in the

output.

■ An alternative script tool is db2batch.
Figure 1.32 The same SELECT statement in db2 script
mode.

To exit the db2 command-line tool:

◆ At the db2 prompt, type quit; and then

press Enter. (Omit the semicolon if

you didn’t use the -t option when you

started db2.)

To show db2 command-line options:

◆ At a command prompt, type db2 ? and

then press Enter.

This command displays a few pages that

speed by quickly. To view one page at a

time, instead type db2 ? | more and then

press Enter. Tap the spacebar to advance

pages (Figure 1.33).

✔ Tips

■ To get help while you’re at a db2 =>
prompt, type ?; and then press Enter.

(Omit the semicolon if you didn’t use

the -t option when you started db2.)

■ DB2 for Linux, Unix, and Windows

(“LUW” in IBM-speak) differs somewhat

from DB2 on other platforms. This sec-

tion covers LUW DB2. If you’re running

non-LUW DB2 (on z/OS or OS/390, for

example), your commands might differ.

26

Chapter 1

I
B

M
 D

B
2

Figure 1.33 The db2 help screen.

MySQL
MySQL (pronounced my-es-kyoo-el) is an

open-source DBMS that supports large data-

bases and numbers of transactions. MySQL

is known for its speed and ease of use. It’s

free for personal use and runs on many

operating systems and hardware platforms.

You can download it at www.mysql.com.

This book covers MySQL 5.1 but also

includes tips for earlier versions, back to 4.0.

To determine which version of MySQL

you’re running, run the MySQL command-

line command mysql -V or run the query

SELECT VERSION();.

To run SQL programs, use the mysql
command-line tool.

✔ Tip

■ To open a command prompt in

Windows, choose Start > All Programs >

Accessories > Command Prompt.

To use the mysql command-line tool
interactively:

1. At a command prompt, type:

mysql -h host -u user -p dbname

host is the host name, user is your MySQL

user name, and dbname is the name of

the database to use. MySQL will prompt

you for your password (for a passwordless

user, either omit the -p option or press

Enter at the password prompt).

2. Type an SQL statement. The statement

can span multiple lines. Terminate it

with a semicolon (;) and then press Enter

to display the results (Figure 1.34).

27

DBMS Specifics

M
y

S
Q

L

Figure 1.34 The results of a SELECT statement in mysql
interactive mode.

www.mysql.com

To use the mysql command-line tool
in script mode:

1. At a command prompt, type:

mysql -h host -u user -p -t
➞ dbname < sql_script

host is the host name, user is your

MySQL user name, and dbname is the

name of the database to use. MySQL

will prompt you for your password (for

a passwordless user, either omit the -p
option or press Enter at the password

prompt). The -t option formats the

results as a table; omit this option if you

want tab-delimited output. dbname is

the name of the database to use. The <
redirection operator reads from the file

sql_script, which is a text file containing

SQL statement(s) and can include an

absolute or relative pathname.

2. Press Enter to display the results

(Figure 1.35).

28

Chapter 1

M
y

S
Q

L

Figure 1.35 The same SELECT statement in mysql script
mode.

To exit the mysql command-line tool:

◆ Type quit or \q and then press Enter.

To show mysql command-line
options:

◆ At a command prompt, type mysql -?
and then press Enter.

This command displays a few pages that

speed by. To view one page at a time,

type mysql -? | more and then press

Enter. Tap the spacebar to advance pages

(Figure 1.36).

✔ Tips

■ If MySQL is running on a remote net-

work computer, ask your database

administrator (DBA) for the connection

parameters. If you’re running MySQL

locally (that is, on your own computer),

then set host to localhost, set user to

root, and use the password you assigned

to root when you set up MySQL.

■ As an alternative to the command

prompt, you can use the graphical tools

at www.mysql.com/products/tools.

■ You can learn more about open-source

software at www.opensource.org.

29

DBMS Specifics

M
y

S
Q

L

Figure 1.36 The mysql help screen.

www.mysql.com/products/tools
www.opensource.org

PostgreSQL
PostgreSQL (pronounced post-gres-kyoo-el)

is an open-source DBMS that supports large

databases and numbers of transactions.

PostgreSQL is known for its rich feature set

and its high conformance with standard

SQL. It’s free and runs on many operating

systems and hardware platforms. You can

download it at www.postgresql.org.

This book covers PostgreSQL 8.3 but also

includes tips for earlier versions, back to 7.1.

To determine which version of PostgreSQL

you’re running, run the PostgreSQL

command-line command psql -V or run

the query SELECT VERSION();.

To run SQL programs, use the psql
command-line tool.

✔ Tip

■ To open a command prompt in

Windows, choose Start > All Programs >

Accessories > Command Prompt.

To use the psql command-line tool
interactively:

1. At a command prompt, type:

psql -h host -U user -W dbname

host is the host name, user is your

PostgreSQL user name, and dbname is

the name of the database to use.

PostgreSQL will prompt you for your

password (for a passwordless user, either

omit the -W option or press Enter at the

password prompt).

2. Type an SQL statement. The statement

can span multiple lines. Terminate it

with a semicolon (;) and then press Enter

to display the results (Figure 1.37).

30

Chapter 1

P
o

s
t

g
r

e
S

Q
L

Figure 1.37 The results of a SELECT statement in psql
interactive mode.

www.postgresql.org

To use the psql command-line tool in
script mode:

1. At a command prompt, type:

psql -h host -U user -W
➞ -f sql_script dbname

host is the host name, user is your

PostgreSQL user name, and dbname is

the name of the database to use.

PostgreSQL will prompt you for your

password (for a passwordless user, either

omit the -W option or press Enter at the

password prompt). The -f option speci-

fies the name of the SQL file sql_script,

which is a text file containing SQL state-

ment(s) and can include an absolute or

relative pathname. dbname is the name

of the database to use.

2. Press Enter to display the results

(Figure 1.38).

To exit the psql command-line tool:

◆ Type \q and then press Enter.

31

DBMS Specifics

P
o

s
t

g
r

e
S

Q
L

Figure 1.38 The same SELECT statement in psql
script mode.

To show psql command-line options:

◆ At a command prompt, type psql -?
and then press Enter.

This command displays a few pages that

speed by. To view one page at a time,

type psql -? | more and then press Enter.

Tap the spacebar to advance pages

(Figure 1.39).

✔ Tips

■ If PostgreSQL is running on a remote

network computer, ask your database

administrator (DBA) for the connection

parameters. If you’re running PostgreSQL

locally (that is, on your own computer),

then set host to localhost, set user to

postgres, and use the password you

assigned to postgres when you set up

PostgreSQL.

■ You can set the environment variables

PGDATABASE and PGUSER to specify the

default database and the user name

used to connect to the database. See

“Environment Variables” in the

PostgreSQL documentation.

■ As an alternative to the command

prompt, you can use the pgAdmin

graphical tool. If the PostgreSQL

installer didn’t install pgAdmin auto-

matically, you can download it for free

at http://pgadmin.org.

■ You can learn more about open-source

software at www.opensource.org.

32

Chapter 1

P
o

s
t

g
r

e
S

Q
L

Figure 1.39 The psql help screen.

http://pgadmin.org
www.opensource.org

Many good books about database design

are available; this book isn’t one of them.

Nevertheless, to become a good SQL pro-

grammer, you’ll need to become familiar

with the relational model (Figure 2.1), a

data model so appealingly simple and well

suited for organizing and managing data

that it squashed the competing network

and hierarchical models with a satisfying

Darwinian crunch.

The foundation of the relational model, set

theory, makes you think in terms of sets of

data rather than individual items or rows of

data. The model describes how to perform

common algebraic operations (such as unions

and intersections) on database tables in much

the same way that they’re performed on

mathematical sets (Figure 2.2). Tables are

analogues of sets: They’re collections of dis-

tinct elements having common properties.

A mathematical set would contain positive

integers, for example, whereas a database table

would contain information about students.

33

The
Relational Model

2

T
h

e
 R

e
l

a
t

i
o

n
a

l
 M

o
d

e
l

Figure 2.1 You can read E.F. Codd’s A Relational Model
of Data for Large Shared Data Banks (Communications
of the ACM, Vol. 13, No. 6, June 1970, pp. 377–387) at
www.seas.upenn.edu/~zives/03f/cis550/codd.pdf.
Relational databases are based on the data model
that this paper defines.

U
A B

Figure 2.2 You might remember the rudiments of set
theory from school. This Venn diagram expresses
the results of operations on sets. The rectangle (U)
represents the universe, and the circles (A and B) inside
represent sets of objects. The relative position and
overlap of the circles indicate relationships between
sets. In the relational model, the circles are tables,
and the rectangle is all the information in a database.

www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Tables, Columns,
and Rows
First, a little terminology: If you’re familiar

with databases already, you’ve heard alterna-

tive terms for similar concepts. Table 2.1

shows how these terms are related. Codd’s

relational-model terms are in the first column;

SQL-standard and DBMS-documentation

terms are in the second column; and the

third-column terms are holdovers from tra-

ditional (nonrelational) file processing. I use

SQL terms in this book (though in formal

texts the SQL and Model terms never are

used interchangeably).

Tables
From a user’s point of view, a database is a

collection of one or more tables (and nothing

but tables). A table:

◆ Is the database structure that holds data.

◆ Contains data about a specific entity

type. An entity type is a class of distin-

guishable real-world objects, events, or

concepts with common properties—

patients, movies, genes, weather condi-

tions, invoices, projects, or appoint-

ments, for example. (Patients and

appointments are different entities, so

you’d store information about them in

different tables.)

◆ Is a two-dimensional grid characterized by

rows and columns (Figures 2.3 and 2.4).

◆ Holds a data item called a value at each

row–column intersection (refer to

Figures 2.3 and 2.4).

◆ Has at least one column and zero or

more rows. A table with no rows is an

empty table.

◆ Has a unique name within a database

(or, strictly speaking, within a schema).

34

Chapter 2

T
a

b
l
e

s
,

C
o

l
u

m
n

s
,

a
n

d
 R

o
w

s

Table 2.1

Similar Concepts
M o d e l S Q L F i l e s

Relation Table File
Attribute Column Field
Tuple Row Record

Table

Columns

Value Rows

Figure 2.3 This grid is an abstract representation of a
table—the fundamental storage unit in a database.

au_id au_fname au_lname

----- --------------- ---------------

A01 Sarah Buchman

A02 Wendy Heydemark

A03 Hallie Hull

A04 Klee Hull

Figure 2.4 This grid represents an actual (not abstract)
table, shown as it usually appears in database
software and books. This table has 3 columns, 4 rows,
and 3 ✕ 4 = 12 values. The top “row” is not a row but a
header that displays column names.

Columns
Columns in a given table have these

characteristics:

◆ Each column represents a specific attrib-

ute (or property) of the table’s entity type.

In a table employees, a column named

hire_date might show when an employee

was hired, for example.

◆ Each column has a domain that restricts

the set of values allowed in that column.

A domain is a set of constraints that

includes restrictions on a value’s data

type, length, format, range, uniqueness,

specific values, and nullability (whether

the value can be null or not). You can’t

insert the string value ‘jack’ into the col-

umn hire_date, for example, if hire_date
requires a valid date value. Furthermore,

you can’t insert just any date if hire_date’s

range is further constrained to fall between

the date that the company started and

today’s date. You can define a domain

by using data types (Chapter 3) and con-

straints (Chapter 11).

◆ Entries in columns are single-valued

(atomic); see “Normalization” later in

this chapter.

◆ The order of columns (left to right) is

unimportant (Figure 2.5).

◆ Each column has a name that identifies

it uniquely within a table. (You can reuse

the same column name in other tables.)

35

The Relational Model

T
a

b
l
e

s
, C

o
l
u

m
n

s
, a

n
d

 R
o

w
s

au_lname au_id au_fname

--------------- ----- ---------------

Hull A04 Klee

Buchman A01 Sarah

Hull A03 Hallie

Heydemark A02 Wendy

Figure 2.5 Rows and columns are said to be unordered,
meaning that their order in a table is irrelevant for
informational purposes. Interchanging columns or
rows does not change the meaning of the table; this
table conveys the same information as the table in
Figure 2.4.

Rows
Rows in a given table have these characteristics:

◆ Each row describes a fact about an entity,

which is a unique instance of an entity

type—a particular student or appoint-

ment, for example.

◆ Each row contains a value or null for

each of the table’s columns.

◆ The order of rows (top to bottom) is

unimportant (refer to Figure 2.5).

◆ No two rows in a table can be identical.

◆ Each row in a table is identified uniquely

by its primary key; see “Primary Keys”

later in this chapter.

✔ Tips

■ Use the SELECT statement to retrieve

columns and rows; see Chapters 4

through 9. Use INSERT, UPDATE, and

DELETE to add, edit, and delete rows;

see Chapter 10. Use CREATE TABLE, ALTER
TABLE, and DROP TABLE to add, edit, and

delete tables and columns; see Chapter 11.

■ Tables have the attractive property of

closure, which ensures that any operation

performed on a table yields another table

(Figure 2.6).

■ A DBMS uses two types of tables: user

tables and system tables. User tables store

user-defined data. System tables contain

metadata—data about the database—

such as structural information, physical

details, performance statistics, and secu-

rity settings. System tables collectively

are called the system catalog; the DBMS

creates and manages these tables silently

and continually. This scheme conforms

with the relational model’s rule that all

data be stored in tables (Figure 2.7).

36

Chapter 2

T
a

b
l
e

s
,

C
o

l
u

m
n

s
,

a
n

d
 R

o
w

s

Unary table operation

Binary table operation

Figure 2.6 Closure guarantees that you’ll get
another table as a result no matter how you split
or merge tables. This property lets you chain any
number of table operations or nest them to any
depth. Unary (or monadic) table operations
operate on one table to produce a result table.
Binary (or dyadic) table operations operate on
two tables to produce a result table.

Figure 2.7 DBMSs store system information in special
tables called system tables. Here, the shaded tables
are the system tables that Microsoft SQL Server
creates and maintains for the sample database used
in this book. You access system tables in the same
way that you access user-defined tables, but don’t
alter them unless you know what you’re doing.

■ In practice, the number of rows in a table

changes frequently, but the number of

columns changes rarely. Database com-

plexity makes adding or dropping columns

difficult; column changes can affect keys,

referential integrity, privileges, and so on.

Inserting or deleting rows doesn’t affect

these things.

■ Database designers divide values into

columns based on the users’ needs.

Phone numbers, for example, might

reside in the single column tel_no or

be split into the columns country_code,

area_code, and subscriber_number,

depending on what users want to query,

analyze, and report.

■ The resemblance of spreadsheets to

tables is superficial. Unlike a spreadsheet,

a table doesn’t depend on row and column

order, doesn’t perform calculations, doesn’t

allow free-form data entry, strictly checks

each value’s validity, and is related easily

to other tables.

■ The SQL standard defines a hierarchy of

relational-database structures. A catalog

contains one or more schemas (sets of

objects and data owned by a given user).

A schema contains one or more objects

(base tables, views, and routines [functions/

procedures]).

■ DBMSs sometimes use other

terms for the same concepts.

An instance (analogous to a catalog) con-

tains one or more databases. A database

contains one or more schemas. A schema

contains tables, views, privileges, stored

procedures, and so on. To refer an object

unambiguously, each item at each level

in the hierarchy needs a unique name

(identifier). Table 2.2 shows how to

address objects. See also “Identifiers”

in Chapter 3.

37

The Relational Model

T
a

b
l
e

s
, C

o
l
u

m
n

s
, a

n
d

 R
o

w
s

Table 2.2

Object References
P l a t f o r m A d d r e s s

Standard SQL catalog.schema.object
Access database.object
SQL Server server.database.owner.object
Oracle schema.object
DB2 schema.object
MySQL database.object
PostgreSQL database.schema.object

Primary Keys
Every value in a database must be accessible.

Values are stored at row–column intersec-

tions in tables, so a value’s location must

refer to a specific table, column, and row.

You can identify a table or column by its

unique name. Rows are unnamed, however,

and need a different identification mecha-

nism called a primary key. A primary key is:

◆ Required. Every table has exactly one pri-

mary key. Remember that the relational

model sees a table as an unordered set

of rows. Because there’s no concept of a

“next” or “previous” row, you can’t identify

rows by position; without a primary key,

some data would be inaccessible.

◆ Unique. Because a primary key identi-

fies a single row in a table, no two rows

in a table can have the same primary-

key value.

◆ Simple or composite. A primary key

has one or more columns in a table; a

one-column key is called a simple key,

and a multiple-column key is called a

composite key.

◆ Not null. A primary-key value can’t be

empty. For composite keys, no column’s

value can be empty; see “Nulls” in

Chapter 3.

◆ Stable. Once created, a primary-key value

seldom if ever changes. If an entity is

deleted, its primary-key value isn’t

reused for a new entity.

◆ Minimal. A primary key includes only

the column(s) necessary for uniqueness.

38

Chapter 2

P
r

i
m

a
r

y
 K

e
y

s Learning Database Design

To learn serious design for production databases, read an academic text for a grounding in

relational algebra, entity–relationship (E–R) modeling, Codd’s relational model, system archi-

tecture, nulls, integrity, and other crucial concepts. I like Chris Date’s An Introduction to

Database Systems (Addison-Wesley), but alternatives abound—a cheaper option is Date’s

Database in Depth (O’Reilly). A modern introduction to set theory and logic is Applied

Mathematics for Database Professionals by Lex de Haan and Toon Koppelaars (Apress).

Classical introductions include Robert Stoll’s Set Theory and Logic (Dover) and the gentler

Logic by Wilfrid Hodges (Penguin). You also can search the web for articles by E. F. Codd,

Chris Date, Fabian Pascal, and Hugh Darwen. All this material might seem like overkill, but

you’ll be surprised at how complex a database gets after adding a few tables, constraints,

triggers, and stored procedures. Don’t regard theory as not practical—a grasp of theory, as in

all fields, lets you predict results and avoid trial-and-error fixes when things go wrong.

Avoid mass-market junk like Database Design for Dummies/Mere Mortals. If you rely on their

guidance, you will create databases where you get answers that you know are wrong, can’t

retrieve the information you want, enter the same data over and over, or type in data only to

have them go “missing.” Such books gloss over (or omit) first principles in favor of admin-

istrivia like choosing identifier names and interviewing subject-matter experts.

A database designer designates each table’s

primary key. This process is crucial because

the consequence of a poor key choice is the

inability to add data (rows) to a table.

I’ll review the essentials here, but read a

database-design book if you want to learn

more about this topic.

Suppose that you need to choose a primary

key for the table in Figure 2.8. The columns

au_fname and au_lname separately won’t work,

because each one violates the uniqueness

requirement. Combining au_fname and

au_lname into a composite key won’t work,

because two authors might share a name.

Names generally make poor keys because

they’re unstable (people divorce, companies

merge, spellings change). The correct choice

is au_id, which I invented to identify authors

uniquely. Database designers create unique

identifiers when natural or obvious ones

(such as names) won’t work.

After a primary key is defined, your DBMS

will enforce the integrity of table data. You

can’t insert the following row, because the

au_id value A02 already exists in the table:

A02 Christian Kells

Nor can you insert this row, because au_id
can’t be null:

NULL Christian Kells

This row is legal:

A05 Christian Kells

✔ Tips

■ See also “Specifying a Primary Key with

PRIMARY KEY” in Chapter 11.

■ In practice, the primary key often is

placed in a table’s initial (leftmost) col-

umn(s). When a column name contains

id, key, code, or num, it’s a clue that the

column might be a primary key or part

of one (or a foreign key, described in the

next section).

■ Database designers often forgo common

unique identifiers such as Social Security

numbers for U.S. citizens. Instead, they

use artificial keys that encode internal

information that is meaningful inside

the database users’ organization. An

employee ID, for example, might embed

the year that the person was hired. Other

reasons, such as privacy concerns, also

spur the use of artificial keys.

■ Database designers might have a choice

of several unique candidate keys in a table,

one of which is designated the primary

key. After designation, the remaining

candidate keys become alternate keys.

Candidate keys often have non-nullable,

unique constraints; see “Forcing Unique

Values with UNIQUE” in Chapter 11.

■ You could use au_id and, say, au_lname as

a composite key, but that combination

violates the minimality criterion. For an

example of a composite primary key, see

the table title_authors in “The Sample

Database” later in this chapter.

■ DBMSs provide data types and

attributes that provide unique

identification values automatically for

each row (such as an integer that auto-

increments when a new row is inserted).

See “Unique Identifiers” in Chapter 3.

39

The Relational Model

P
r

i
m

a
r

y
 K

e
y

s

au_id au_fname au_lname

----- --------------- ---------------

A01 Sarah Buchman

A02 Wendy Heydemark

A03 Hallie Hull

A04 Klee Hull

Figure 2.8 The column au_id is the primary key in
this table.

Foreign Keys
Information about different entities is

stored in different tables, so you need a way

to navigate between tables. The relational

model provides a mechanism called a foreign

key to associate tables. A foreign key has

these characteristics:

◆ It’s a column (or group of columns) in a

table whose values relate to, or reference,

values in some other table.

◆ It ensures that rows in one table have

corresponding rows in another table.

◆ The table that contains the foreign key

is the referencing or child table. The other

table is the referenced or parent table.

◆ A foreign key establishes a direct rela-

tionship to the parent table’s primary key

(or any candidate key), so foreign-key

values are restricted to existing parent-key

values. This constraint is called referential

integrity. A particular row in a table

appointments must have an associated

row in a table patients, for example, or

there would be appointments for patients

who don’t exist or can’t be identified. An

orphan row is a row in a child table for

which no associated parent-table row

exists. In a properly designed database,

you can’t insert new orphan rows or

make orphans out of existing child-table

rows by deleting associated rows in the

parent table.

◆ The values in the foreign key have the

same domain as the parent key. Recall

from “Tables, Columns, and Rows” earlier

in this chapter that a domain defines the

set of valid values for a column.

◆ Unlike primary-key values, foreign-key

values can be null (empty); see the Tips

in this section.

◆ A foreign key can have a different column

name than its parent key.

◆ Foreign-key values generally aren’t

unique in their own table.

◆ I’ve made a simplification in the first point:

In reality, a foreign key can reference the

primary key of its own table (rather than

only some other table). A table employees
with the primary key emp_id can have a

foreign key boss_id, for example, that

references the column emp_id. This type

of table is called self-referencing.

40

Chapter 2

F
o

r
e

i
g

n
 K

e
y

s

Figure 2.9 shows a primary- and foreign-key

relationship between two tables.

After a foreign key is defined, your DBMS

will enforce referential integrity. You can’t

insert the following row into the child table

titles, because the pub_id value P05 doesn’t

exist in the parent table publishers:

T07 I Blame My Mother P05

You can insert this row only if the foreign

key accepts nulls:

T07 I Blame My Mother NULL

This row is legal:

T07 I Blame My Mother P03

✔ Tips

■ See also “Specifying a Foreign Key with

FOREIGN KEY” in Chapter 11.

■ SQL lets you specify the referential-integrity

action that the DBMS takes when you

attempt to update or delete a parent-table

key value to which foreign-key values point;

see the Tips in “Specifying a Foreign Key

with FOREIGN KEY” in Chapter 11.

■ Allowing nulls in a foreign-key column

complicates enforcement of referential

integrity. In practice, nulls in a foreign

key often remain null temporarily, pend-

ing a real-life decision or discovery; see

“Nulls” in Chapter 3.

41

The Relational Model

F
o

r
e

i
g

n
 K

e
y

s

pub_id pub name
P01 Abatis Publishers
P02 Core Dump Books
P03 Schadenfreude Press
P04 Tenterhooks Press

Primary key

Primary key

publishers

title_id title_name pub_id

T01 1977! P01

T02 200 Years of Ger… P03

T03 Ask Your System… P02

T04 But I Did It Unco… P04

Foreign key

titles

P04Exchange of Plat…T05
P01How About Never?T06

Figure 2.9 The column pub_id is a foreign key of the
table titles that references the column pub_id of
publishers.

Relationships
A relationship is an association established

between common columns in two tables.

A relationship can be:

◆ One-to-one

◆ One-to-many

◆ Many-to-many

One-to-one
In a one-to-one relationship, each row in

table A can have at most one matching row

in the table B, and each row in table B can

have at most one matching row in table A.

Even though it’s practicable to store all the

information from both tables in only one

table, one-to-one relationships usually are

used to segregate confidential information

for security reasons, speed queries by split-

ting single monolithic tables, and avoid

inserting nulls into tables (see “Nulls” in

Chapter 3).

A one-to-one relationship is established

when the primary key of one table also is a

foreign key referencing the primary key of

another table (Figures 2.10 and 2.11).

42

Chapter 2

R
e

l
a

t
i
o

n
s

h
i
p

s

title_id advance
T01 10000
T02 1000
T04 20000

royalties

title_id title_name

T01 1977!

T02 200 Years of Ger…

T03 Ask Your System…

T04 But I Did It Unco…

titles

Figure 2.10 A one-to-one relationship. Each row
in titles can have at most one matching row in
royalties, and each row in royalties can have at
most one matching row in titles. Here, the primary
key of royalties also is a foreign key referencing
the primary key of titles.

titles
title_id
title_name

royalties
title_id
advance

Figure 2.11 This diagram shows an alternative way to
depict the one-to-one relationship in Figure 2.10. The
connecting line indicates associated columns. The
key symbol indicates a primary key.

One-to-many
In a one-to-many relationship, each row

in table A can have many (zero or more)

matching rows in table B, but each row in

table B has only one matching row in table A.

A publisher can publish many books, but

each book is published by only one publisher,

for example.

One-to-many relationships are established

when the primary key of the one table

appears as a foreign key in the many table

(Figures 2.12 and 2.13).

43

The Relational Model

R
e

l
a

t
i
o

n
s

h
i
p

s

pub_id pub name
P01 Abatis Publishers
P02 Core Dump Books
P03 Schadenfreude Press
P04 Tenterhooks Press

publishers

title_id title_name pub_id

T01 1977! P01

T02 200 Years of Ger… P03

T03 Ask Your System… P02

T04 But I Did It Unco… P04

titles

T05 Exchange of Plati… P04

Figure 2.12 A one-to-many relationship. Each row in
publishers can have many matching rows in titles,
and each row in titles has only one matching row in
publishers. Here, the primary key of publishers (the
one table) appears as a foreign key in titles (the
many table).

publishers
pub_id
pub_name

titles
title_id
title_name
pub_id

Figure 2.13 This diagram shows an alternative way to
depict the one-to-many relationship in Figure 2.12.
The connecting line’s unadorned end indicates the
one table, and the arrow indicates the many table.

Many-to-many
In a many-to-many relationship, each row

in table A can have many (zero or more)

matching rows in table B, and each row in

table B can have many matching rows in

table A. Each author can write many books,

and each book can have many authors,

for example.

A many-to-many relationships is established

only by creating a third table called a junction

table, whose composite primary key is a

combination of both tables’ primary keys;

each column in the composite key separately

is a foreign key. This technique always pro-

duces a unique value for each row in the

junction table and splits the many-to-many

relationship into two separate one-to-many

relationships (Figures 2.14 and 2.15).

✔ Tips

■ Joins (for performing operations on mul-

tiple tables) are covered in Chapter 7.

■ You can establish a many-to-many rela-

tionship without creating a third table if

you add repeating groups to the tables,

but that method violates first normal

form; see the next section.

■ A one-to-many relationship also is

called a parent–child or master–detail

relationship.

■ A junction table also is called an

associating, linking, pivot, connection,

or intersection table.

44

Chapter 2

R
e

l
a

t
i
o

n
s

h
i
p

s

title_id au_id
T01 A01
T02 A01
T03 A05
T04 A03
T04 A04
T05 A04

title_id title_name

T01 1977!

T02 200 Years of Ger…

T03 Ask Your System…

T04 But I Did It Unco…

T05 Exchange of Plati…

titles

au_id au_fname au_lname

A01 Sarah Buchman

A02 Wendy Heydemark

A03 Hallie Hull

A04 Klee Hull

authors

title_authors

Figure 2.14 A many-to-many relationship. The
junction table title_authors splits the many-to-many
relationship between titles and authors into two
one-to-many relationships. Each row in titles can
have many matching rows in title_authors, as can
each row in authors. Here, title_id in title_authors
is a foreign key that references the primary key of
titles, and au_id in title_authors is a foreign key
that references the primary key of authors.

titles
title_id
title_name

title_authors
title_id
au_id

authors
au_id
au_fname
au_lname

Figure 2.15 This diagram shows an alternative way to
depict the many-to-many relationship in Figure 2.14.

Normalization
It’s possible to consolidate all information

about books (or any entity type) into a single

monolithic table, but that table would be

loaded with duplicate data; each title (row)

would contain redundant author, publisher,

and royalty details. Redundancy is the enemy

of database users and administrators: It caus-

es databases to grow wildly large, it slows

queries, and it’s a maintenance nightmare.

(When someone moves, you want to change

her address in one place, not thousands of

places.)

Redundancies lead to a variety of update

anomalies—that is, difficulties with opera-

tions that insert, update, and delete rows.

Normalization is the process—a series of

steps—of modifying tables to reduce redun-

dancy and inconsistency. After each step,

the database is in a particular normal form.

The relational model defines three normal

forms, named after famous ordinal numbers:

◆ First normal form (1NF)

◆ Second normal form (2NF)

◆ Third normal form (3NF)

Each normal form is stronger than its prede-

cessors; a database in 3NF also is in 2NF

and 1NF. Higher normalization levels tend

to increase the number of tables relative to

lower levels. Lossless decomposition ensures

that table splitting doesn’t cause information

loss, and dependency-preserving decomposi-

tion ensures that relationships aren’t lost.

The matching primary- and foreign-key

columns that appear when tables are split

are not considered to be redundant data.

Normalization is not systematic; it’s an

iterative process that involves repeated table

splitting and rejoining and refining until the

database designer is (temporarily) happy

with the result.

45

The Relational Model

N
o

r
m

a
l
i
z

a
t

i
o

n

First normal form
A table in first normal form:

◆ Has columns that contain only atomic

values

and

◆ Has no repeating groups

An atomic value, also called a scalar value,

is a single value that can’t be subdivided

(Figure 2.16). A repeating group is a set of

two or more logically related columns

(Figure 2.17). To fix these problems, store

the data in two related tables (Figure 2.18).

A database that violates 1NF causes problems:

◆ Multiple values in a row–column inter-

section mean that the combination of

table name, column name, and key value

is insufficient to address every value in

the database.

◆ It’s difficult to retrieve, insert, update,

or delete a single value (among many)

because you must rely on the order of

the values.

◆ Queries are complex (a performance

killer).

◆ The problems that further normalization

solves become unsolvable.

46

Chapter 2

N
o

r
m

a
l
i
z

a
t

i
o

n

title_id title_name authors

-------- -------------------------------- -------------

T01 1977! A01

T04 But I Did It Unconsciously A03, A04

T11 Perhaps It's a Glandular Problem A03, A04, A06

Figure 2.16 In first normal form, each table’s row–column intersection must contain a single value that can’t be
subdivided meaningfully. The column authors in this table lists multiple authors and so violates 1NF.

title_id title_name author1 author2 author3

-------- -------------------------------- ------- ------- -------

T01 1977! A01

T04 But I Did It Unconsciously A03 A04

T11 Perhaps It's a Glandular Problem A03 A04 A06

Figure 2.17 Redistributing the column authors into a repeating group also violates 1NF. Don’t represent multiple
instances of an entity as multiple columns.

Second normal form
Before I give the constraints for second

normal form, I’ll mention that a 1NF table

automatically is in 2NF if:

◆ Its primary key is a single column (that

is, the key isn’t composite)

or

◆ All the columns in the table are part of

the primary key (simple or composite)

A table in second normal form:

◆ Is in first normal form

and

◆ Has no partial functional dependencies

A table contains a partial functional depend-

ency if some (but not all) of a composite

key’s values determine a nonkey column’s

value. A 2NF table is fully functionally

dependent, meaning that a nonkey column’s

value might need to be updated if any column

values in the composite key change.

The composite key in the table in Figure

2.19 is title_id and au_id. The nonkey

columns are au_order (the order in which

authors are listed on the cover of a book

with multiple authors) and au_phone (the

author’s phone number).

For each nonkey column, ask, “Can I deter-

mine a nonkey column value if I know only

part of the primary-key value?” A no answer

means the nonkey column is fully function-

ally dependent (good); a yes answer means

that it’s partially functionally dependent (bad).

47

The Relational Model

N
o

r
m

a
l
i
z

a
t

i
o

n

title_id au_id
T01 A01
T04 A03
T04 A04
T11 A03
T11 A04
T11 A06

title_id title_name

T01 1977!

T04 But I Did It Unco…

T11 Perhaps It's a Gla…

Figure 2.18 The correct design solution is to move the
author information to a new child table that contains
one row for each author of a title. The primary key in
the parent table is title_id, and the composite key in
the child table is title_id and au_id.

title_authors
title_id
au_id
au_order
au_phone

Figure 2.19 au_phone depends on
au_id but not title_id, so this
table contains a partial functional
dependency and isn’t in 2NF.

Atomicity

Atomic values are perceived to be indivis-

ible from the point of view of database

users. A date, a telephone number, and a

character string, for example, aren’t really

intrinsically indivisible because you can

decompose the date into a year, month,

and day; the phone number into a country

code, area code, and subscriber number;

and the string into its individual characters.

What’s important as far as you’re con-

cerned is that the DBMS provide operators

and functions that let you extract and

manipulate the components of “atomic”

values if necessary, such as a substring()
function to extract a telephone number’s

area code or a year() function to extract

a date’s year.

For the column au_order, the questions are:

◆ Can I determine au_order if I know only

title_id? No, because there might be

more than one author for the same title.

◆ Can I determine au_order if I know only

au_id? No, because I need to know the

particular title too.

Good—au_order is fully functionally

dependent and can remain in the table.

This dependency is written

{title_id, au_id} ➝ {au_order}

and is read “title_id and au_id determine

au_order” or “au_order depends on title_id
and au_id.” The determinant is the expres-

sion to the left of the arrow.

For the column au_phone, the questions are:

◆ Can I determine au_phone if I know only

title_id? No, because there might be

more than one author for the same title.

◆ Can I determine au_phone if I know only

au_id? Yes! The author’s phone number

doesn’t depend upon the title.

Bad—au_phone is partially functionally

dependent and must be moved elsewhere

(probably to an authors or phone_numbers
table) to satisfy 2NF rules.

48

Chapter 2

N
o

r
m

a
l
i
z

a
t

i
o

n

titles
title_id
price
pub_city
pub_id

Figure 2.20 pub_city depends
on pub_id, so this table contains
a transitive dependency and
isn’t in 3NF.

Third normal form
A table in third normal form:

◆ Is in second normal form

and

◆ Has no transitive dependencies

A table contains a transitive dependency if a

nonkey column’s value determines another

nonkey column’s value. In 3NF tables, non-

key columns are mutually independent and

dependent on only primary-key column(s).

3NF is the next logical step after 2NF.

The primary key in the table in Figure 2.20

is title_id. The nonkey columns are price
(the book’s price), pub_city (the city where

the book is published), and pub_id (the

book’s publisher).

For each nonkey column, ask, “Can I deter-

mine a nonkey column value if I know any

other nonkey column value?” A no answer

means that the column is not transitively

dependent (good); a yes answer means that

the column whose value you can determine

is transitively dependent on the other col-

umn (bad).

For the column price, the questions are:

◆ Can I determine pub_id if I know

price? No.

◆ Can I determine pub_city if I know

price? No.

For the column pub_city, the questions are:

◆ Can I determine price if I know

pub_city? No.

◆ Can I determine pub_id if I know

pub_city? No, because a city might

have many publishers.

For the column pub_id, the questions are:

◆ Can I determine price if I know

pub_id? No.

◆ Can I determine pub_city if I know

pub_id? Yes! The city where the book is

published depends on the publisher.

Bad—pub_city is transitively dependent

on pub_id and must be moved elsewhere

(probably to a publishers table) to satisfy

3NF rules.

As you can see, it’s not enough to ask, “Can

I determine A if I know B?” to discover a

transitive dependency; you also must ask,

“Can I determine B if I know A?”

49

The Relational Model

N
o

r
m

a
l
i
z

a
t

i
o

n

Other normal forms
Higher levels of normalization exist, but the

relational model doesn’t require (or even

mention) them. They’re useful in some cases

to avoid redundancy. Briefly, they are:

◆ Boyce-Codd normal form is a more rigor-

ous version of 3NF. BCNF deals with

tables that have multiple candidate keys,

composite candidate keys, or candidate

keys that overlap. A table is in BCNF if

every determinant is a candidate key.

(A determinant column is one on which

some of the columns are fully functionally

dependent.)

◆ A table in fourth normal form is in BCNF

and has no multivalued dependencies

(MVDs). An MVD occurs when in a table

containing at least three columns, one

column has multiple rows whose values

match a value of a single row of one of

the other columns.

Suppose that employees can be assigned

to multiple projects and each employee

can have multiple skills. If you stuff all

this information into a single table, you

must use all three attributes as the key

because nothing less can identify a row

uniquely. The relationship between

emp_id and proj_id is an MVD because

for each pair of emp_id/skill_id values

in the table, only emp_id (independent

of skill_id) determines the associated

set of proj_id values. The relationship

between emp_id and skill_id also is an

MVD because the set of skill values for

an emp_id/proj_id pair always depends

on only emp_id. To transform a table with

MVDs to 4NF, move each MVD pair to a

new table.

◆ A table in fifth normal form is in 4NF and

has no join dependencies, which are gen-

eralizations of MVDs. The aim of 5NF is

to have tables that can’t be decomposed

further into any number of smaller tables.

The redundancies and anomalies that

5NF cures are rare and unintuitive. In

real databases, you’ll see 1NF, 2NF, 3NF,

and occasionally 4NF. 4NF and even 3NF

tables almost always are 5NF too.

50

Chapter 2

N
o

r
m

a
l
i
z

a
t

i
o

n

Denormalization

The increased number of tables that normalization generates might sway you to denormalize

your database to speed queries (because having fewer tables reduces computationally expen-

sive joins and disk I/O). This common technique trades off data integrity for performance

and presents a few other problems. A denormalized database:

◆ Usually is harder to understand than a normalized one

◆ Usually makes retrievals faster but updates slower

◆ Increases the risk of inserting inconsistent data

◆ Might improve the performance of some database applications but hurt that of others

(because users’ table-access patterns change over time)

The need for denormalization isn’t a weakness in the relational model but reveals a flawed

implementation of the model in DBMSs. A common use for denormalized tables is as perma-

nent logs of data copied from other tables. The logged rows are redundant, but because

they’re only INSERTed (never UPDATEd), they serve as an audit trail immune to future changes

in the source tables.

The Sample Database
Pick up an SQL or database-design book, and

probably you’ll find a students/courses/

teachers, customers/orders/products, or

authors/books/publishers database. In a bow

to convention, most of the SQL examples in

this book use an authors/books/publishers

sample database named books. Here are some

things that you should know about books:

◆ Recall from “Tables, Columns, and Rows”

earlier in this chapter that a database

appears to the user as a collection of

tables (and nothing but tables). books
contains five tables that contain infor-

mation about authors, titles they’ve pub-

lished, their publishers, and their royal-

ties. Figure 2.21 depicts the tables and

relationships in books by using the

graphical conventions introduced earlier

in this chapter.

◆ The SQL statements in Chapters 10 and

later modify data in books (rather than just

retrieve data). Unless I note otherwise,

each new section in a chapter starts

with a pristine copy of books. In other

words, assume that database changes

made in one section don’t carry over to

the next section.

◆ Some of the concepts mentioned in this

section, such as data types and nulls, are

covered in the next chapter.

◆ books is a teaching tool; its structure and

size don’t approach the complexity of

real production databases.

◆ To create the sample database on your

own DMBS, see “Creating the Sample

Database” later in this chapter.

51

The Relational Model

T
h

e
 S

a
m

p
l
e

 D
a

t
a

b
a

s
e

authors
au_id
au_fname
au_lname
phone
address
city
state
zip

title_authors
title_id
au_id
au_order
royalty_share

publishers
pub_id
pub_name
city
state
country

titles
title_id
title_name
type
pub_id
pages
price
sales
pubdate
contract

royalties
title_id
advance
royalty_rate

Figure 2.21 The sample database books.

The table authors
The table authors describes the books’

authors. Each author has a unique identifier

that’s the primary key. Table 2.3 shows

the structure of the table authors, and

Figure 2.22 shows its contents.

52

Chapter 2

T
h

e
 S

a
m

p
l
e

 D
a

t
a

b
a

s
e

Table 2.3

authors Table Structure
C o l u m n N a m e D e s c r i p t i o n D a t a Ty p e N u l l s ? K e y s

au_id Unique author identifier CHAR(3) PK

au_fname Author first name VARCHAR(15)

au_lname Author last name VARCHAR(15)

phone Author telephone number VARCHAR(12) Yes

address Author address VARCHAR(20) Yes

city Author city VARCHAR(15) Yes

state Author state CHAR(2) Yes

zip Author zip (postal) code CHAR(5) Yes

au_id au_fname au_lname phone address city state zip

----- --------- ----------- ------------ -------------------- -------------- ----- -----

A01 Sarah Buchman 718-496-7223 75 West 205 St Bronx NY 10468

A02 Wendy Heydemark 303-986-7020 2922 Baseline Rd Boulder CO 80303

A03 Hallie Hull 415-549-4278 3800 Waldo Ave, #14F San Francisco CA 94123

A04 Klee Hull 415-549-4278 3800 Waldo Ave, #14F San Francisco CA 94123

A05 Christian Kells 212-771-4680 114 Horatio St New York NY 10014

A06 Kellsey 650-836-7128 390 Serra Mall Palo Alto CA 94305

A07 Paddy O'Furniture 941-925-0752 1442 Main St Sarasota FL 34236

Figure 2.22 The contents of the table authors.

The table publishers
The table publishers describes the books’

publishers. Every publisher has a unique

identifier that’s the primary key. Table 2.4

shows the structure of the table publishers,

and Figure 2.23 shows its contents.

53

The Relational Model

T
h

e
 S

a
m

p
l
e

 D
a

t
a

b
a

s
e

Table 2.4

publishers Table Structure
C o l u m n N a m e D e s c r i p t i o n D a t a Ty p e N u l l s K e y s

pub_id Unique publisher identifier CHAR(3) PK

pub_name Publisher name VARCHAR(20)

city Publisher city VARCHAR(15)

state Publisher state/province CHAR(2) Yes

country Publisher country VARCHAR(15)

pub_id pub_name city state country

------ ------------------- ------------- ----- -------

P01 Abatis Publishers New York NY USA

P02 Core Dump Books San Francisco CA USA

P03 Schadenfreude Press Hamburg NULL Germany

P04 Tenterhooks Press Berkeley CA USA

Figure 2.23 The contents of the table publishers.

The table titles
The table titles describes the books. Every

book has a unique identifier that’s the pri-

mary key. titles contains a foreign key,

pub_id, that references the table publishers
to indicate a book’s publisher. Table 2.5

shows the structure of the table titles,

and Figure 2.24 shows its contents.

54

Chapter 2

T
h

e
 S

a
m

p
l
e

 D
a

t
a

b
a

s
e

Table 2.5

titles Table Structure
C o l u m n N a m e D e s c r i p t i o n D a t a Ty p e N u l l s ? K e y s

title_id Unique title identifier CHAR(3) PK

title_name Book title VARCHAR(40)

type Subject of the book VARCHAR(10) Yes

pub_id Publisher identifier CHAR(3) FK publishers(pub_id)

pages Page count INTEGER Yes

price Cover price DECIMAL(5,2) Yes

sales INTEGER Yes

pubdate Date of publication DATE Yes

contract SMALLINTNonzero if author(s) signed
contract

Lifetime number of copies
sold

title_id title_name type pub_id pages price sales pubdate contract

-------- ------------------------------------ ---------- ------ ----- ----- ------- ---------- --------

T01 1977! history P01 107 21.99 566 2000-08-01 1

T02 200 Years of German Humor history P03 14 19.95 9566 1998-04-01 1

T03 Ask Your System Administrator computer P02 1226 39.95 25667 2000-09-01 1

T04 But I Did It Unconsciously psychology P04 510 12.99 13001 1999-05-31 1

T05 Exchange of Platitudes psychology P04 201 6.95 201440 2001-01-01 1

T06 How About Never? biography P01 473 19.95 11320 2000-07-31 1

T07 I Blame My Mother biography P03 333 23.95 1500200 1999-10-01 1

T08 Just Wait Until After School children P04 86 10.00 4095 2001-06-01 1

T09 Kiss My Boo-Boo children P04 22 13.95 5000 2002-05-31 1

T10 Not Without My Faberge Egg biography P01 NULL NULL NULL NULL 0

T11 Perhaps It's a Glandular Problem psychology P04 826 7.99 94123 2000-11-30 1

T12 Spontaneous, Not Annoying biography P01 507 12.99 100001 2000-08-31 1

T13 What Are The Civilian Applications? history P03 802 29.99 10467 1999-05-31 1

Figure 2.24 The contents of the table titles.

The table title_authors
Authors and books have a many-to-many

relationship, because an author can write

multiple books and a book can have multiple

authors. title_authors is the junction table

that associates the tables authors and

titles; see “Relationships” earlier in this

chapter. title_id and au_id together form

a composite primary key, and each column

separately is a foreign key that references

titles and authors, respectively. The non-

key columns indicate the order of the author’s

name on the book’s cover (always 1 for a

book with a sole author) and the fraction

of total royalties that each author receives

(always 1.0 for a book with a sole author).

Table 2.6 shows the structure of the table

title_authors, and Figure 2.25 shows

its contents.

55

The Relational Model

T
h

e
 S

a
m

p
l
e

 D
a

t
a

b
a

s
e

title_id au_id au_order royalty_share

-------- ----- -------- -------------

T01 A01 1 1.00

T02 A01 1 1.00

T03 A05 1 1.00

T04 A03 1 0.60

T04 A04 2 0.40

T05 A04 1 1.00

T06 A02 1 1.00

T07 A02 1 0.50

T07 A04 2 0.50

T08 A06 1 1.00

T09 A06 1 1.00

T10 A02 1 1.00

T11 A03 2 0.30

T11 A04 3 0.30

T11 A06 1 0.40

T12 A02 1 1.00

T13 A01 1 1.00

Figure 2.25 The contents of the table title_authors.

Table 2.6

title_authors Table Structure
C o l u m n N a m e D e s c r i p t i o n D a t a Ty p e N u l l s ? K e y s

title_id Title identifier CHAR(3) PK, FK titles(title_id)

au_id Author identifier CHAR(3) PK, FK authors(au_id)

au_order Author name order on book cover SMALLINT

royalty_share Author fractional royalty share DECIMAL(5,2)

The table royalties
The table royalties specifies the royalty

rate paid to all the authors (not each author)

of each book, including the total up-front

advance against royalties paid to all authors

(again, not each author) of a book. The

royalties primary key is title_id. The

table royalties has a one-to-one relation-

ship with titles, so the royalties primary

key also is a foreign key that references

the titles primary key. Table 2.7 shows

the structure of the table royalties, and

Figure 2.26 shows its contents.

56

Chapter 2

T
h

e
 S

a
m

p
l
e

 D
a

t
a

b
a

s
e

title_id advance royalty_rate

-------- ----------- ------------

T01 10000.00 0.05

T02 1000.00 0.06

T03 15000.00 0.07

T04 20000.00 0.08

T05 100000.00 0.09

T06 20000.00 0.08

T07 1000000.00 0.11

T08 0.00 0.04

T09 0.00 0.05

T10 NULL NULL

T11 100000.00 0.07

T12 50000.00 0.09

T13 20000.00 0.06

Figure 2.26 The contents of the table royalties.

Table 2.7

royalties Table Structure
C o l u m n N a m e D e s c r i p t i o n D a t a Ty p e N u l l s ? K e y s

title_id Unique title identifier CHAR(3) PK, FK titles(title_id)

advance Up-front payment to author(s) DECIMAL(9,2) Yes

royalty_rate Fraction of revenue paid author(s) DECIMAL(5,2) Yes

Creating the
Sample Database
To create (or re-create) the database books
on your own DMBS, visit www.fehily.com,

click the Downloads link for this book, and

then follow the onscreen instructions.

Creating books is a two-step process:

1. Use your DBMS’s built-in tools to create

a new, blank database named books.

2. Run an SQL script that creates tables

within books and populates them with

data.

Listing 2.1 shows a standard (ANSI) SQL

script that creates the sample-database

tables and inserts rows into them.

✔ Tip

■ If you’re using Microsoft

Access, you don’t two-step—

you simply open an .mdb file in Access.

57

The Relational Model

C
r

e
a

t
i
n

g
 t

h
e

 S
a

m
p

l
e

 D
a

t
a

b
a

s
e

Listing 2.1 This standard SQL script, books_standard.sql, creates the tables in the sample database books and
populates them with data. The file that you download at the companion website includes versions of this script
changed to run on specific DBMSs.

DROP TABLE authors;
CREATE TABLE authors

(
au_id CHAR(3) NOT NULL,
au_fname VARCHAR(15) NOT NULL,
au_lname VARCHAR(15) NOT NULL,
phone VARCHAR(12) ,
address VARCHAR(20) ,
city VARCHAR(15) ,
state CHAR(2) ,
zip CHAR(5) ,
CONSTRAINT pk_authors PRIMARY KEY (au_id)
);

INSERT INTO authors VALUES('A01','Sarah','Buchman','718-496-7223',
'75 West 205 St','Bronx','NY','10468');

INSERT INTO authors VALUES('A02','Wendy','Heydemark','303-986-7020',
'2922 Baseline Rd','Boulder','CO','80303');

INSERT INTO authors VALUES('A03','Hallie','Hull','415-549-4278',
'3800 Waldo Ave, #14F','San Francisco','CA','94123');

(listing continues on next page)

Listing

www.fehily.com

58

Chapter 2

C
r

e
a

t
i
n

g
 t

h
e

 S
a

m
p

l
e

 D
a

t
a

b
a

s
e

Listing 2.1 continued

INSERT INTO authors VALUES('A04','Klee','Hull','415-549-4278',
'3800 Waldo Ave, #14F','San Francisco','CA','94123');

INSERT INTO authors VALUES('A05','Christian','Kells','212-771-4680',
'114 Horatio St','New York','NY','10014');

INSERT INTO authors VALUES('A06','','Kellsey','650-836-7128',
'390 Serra Mall','Palo Alto','CA','94305');

INSERT INTO authors VALUES('A07','Paddy','O''Furniture','941-925-0752',
'1442 Main St','Sarasota','FL','34236');

DROP TABLE publishers;
CREATE TABLE publishers

(
pub_id CHAR(3) NOT NULL,
pub_name VARCHAR(20) NOT NULL,
city VARCHAR(15) NOT NULL,
state CHAR(2) ,
country VARCHAR(15) NOT NULL,
CONSTRAINT pk_publishers PRIMARY KEY (pub_id)
);

INSERT INTO publishers VALUES('P01','Abatis Publishers','New York','NY','USA');
INSERT INTO publishers VALUES('P02','Core Dump Books','San Francisco','CA','USA');
INSERT INTO publishers VALUES('P03','Schadenfreude Press','Hamburg',NULL,'Germany');
INSERT INTO publishers VALUES('P04','Tenterhooks Press','Berkeley','CA','USA');

DROP TABLE titles;
CREATE TABLE titles

(
title_id CHAR(3) NOT NULL,
title_name VARCHAR(40) NOT NULL,
type VARCHAR(10) ,
pub_id CHAR(3) NOT NULL,
pages INTEGER ,
price DECIMAL(5,2) ,
sales INTEGER ,
pubdate DATE ,
contract SMALLINT NOT NULL,
CONSTRAINT pk_titles PRIMARY KEY (title_id)
);

INSERT INTO titles VALUES('T01','1977!','history','P01',
107,21.99,566,DATE '2000-08-01',1);

INSERT INTO titles VALUES('T02','200 Years of German Humor','history','P03',
14,19.95,9566,DATE '1998-04-01',1);

INSERT INTO titles VALUES('T03','Ask Your System Administrator','computer','P02',
1226,39.95,25667,DATE '2000-09-01',1);

INSERT INTO titles VALUES('T04','But I Did It Unconsciously','psychology','P04',
510,12.99,13001,DATE '1999-05-31',1);

INSERT INTO titles VALUES('T05','Exchange of Platitudes','psychology','P04',
201,6.95,201440,DATE '2001-01-01',1);

INSERT INTO titles VALUES('T06','How About Never?','biography','P01',
473,19.95,11320,DATE '2000-07-31',1);

(listing continues on next page)

Listing

59

The Relational Model

C
r

e
a

t
i
n

g
 t

h
e

 S
a

m
p

l
e

 D
a

t
a

b
a

s
e

Listing 2.1 continued

INSERT INTO titles VALUES('T07','I Blame My Mother','biography','P03',
333,23.95,1500200,DATE '1999-10-01',1);

INSERT INTO titles VALUES('T08','Just Wait Until After School','children','P04',
86,10.00,4095,DATE '2001-06-01',1);

INSERT INTO titles VALUES('T09','Kiss My Boo-Boo','children','P04',
22,13.95,5000,DATE '2002-05-31',1);

INSERT INTO titles VALUES('T10','Not Without My Faberge Egg','biography','P01',
NULL,NULL,NULL,NULL,0);

INSERT INTO titles VALUES('T11','Perhaps It''s a Glandular Problem','psychology','P04',
826,7.99,94123,DATE '2000-11-30',1);

INSERT INTO titles VALUES('T12','Spontaneous, Not Annoying','biography','P01',
507,12.99,100001,DATE '2000-08-31',1);

INSERT INTO titles VALUES('T13','What Are The Civilian Applications?','history','P03',
802,29.99,10467,DATE '1999-05-31',1);

DROP TABLE title_authors;
CREATE TABLE title_authors

(
title_id CHAR(3) NOT NULL,
au_id CHAR(3) NOT NULL,
au_order SMALLINT NOT NULL,
royalty_share DECIMAL(5,2) NOT NULL,
CONSTRAINT pk_title_authors PRIMARY KEY (title_id, au_id)
);

INSERT INTO title_authors VALUES('T01','A01',1,1.0);
INSERT INTO title_authors VALUES('T02','A01',1,1.0);
INSERT INTO title_authors VALUES('T03','A05',1,1.0);
INSERT INTO title_authors VALUES('T04','A03',1,0.6);
INSERT INTO title_authors VALUES('T04','A04',2,0.4);
INSERT INTO title_authors VALUES('T05','A04',1,1.0);
INSERT INTO title_authors VALUES('T06','A02',1,1.0);
INSERT INTO title_authors VALUES('T07','A02',1,0.5);
INSERT INTO title_authors VALUES('T07','A04',2,0.5);
INSERT INTO title_authors VALUES('T08','A06',1,1.0);
INSERT INTO title_authors VALUES('T09','A06',1,1.0);
INSERT INTO title_authors VALUES('T10','A02',1,1.0);
INSERT INTO title_authors VALUES('T11','A03',2,0.3);
INSERT INTO title_authors VALUES('T11','A04',3,0.3);
INSERT INTO title_authors VALUES('T11','A06',1,0.4);
INSERT INTO title_authors VALUES('T12','A02',1,1.0);
INSERT INTO title_authors VALUES('T13','A01',1,1.0);

DROP TABLE royalties;
CREATE TABLE royalties

(
title_id CHAR(3) NOT NULL,
advance DECIMAL(9,2) ,
royalty_rate DECIMAL(5,2) ,
CONSTRAINT pk_royalties PRIMARY KEY (title_id)
);

(listing continues on next page)

Listing

60

Chapter 2

C
r

e
a

t
i
n

g
 t

h
e

 S
a

m
p

l
e

 D
a

t
a

b
a

s
e

Listing 2.1 continued

INSERT INTO royalties VALUES('T01',10000,0.05);
INSERT INTO royalties VALUES('T02',1000,0.06);
INSERT INTO royalties VALUES('T03',15000,0.07);
INSERT INTO royalties VALUES('T04',20000,0.08);
INSERT INTO royalties VALUES('T05',100000,0.09);
INSERT INTO royalties VALUES('T06',20000,0.08);
INSERT INTO royalties VALUES('T07',1000000,0.11);
INSERT INTO royalties VALUES('T08',0,0.04);
INSERT INTO royalties VALUES('T09',0,0.05);
INSERT INTO royalties VALUES('T10',NULL,NULL);
INSERT INTO royalties VALUES('T11',100000,0.07);
INSERT INTO royalties VALUES('T12',50000,0.09);
INSERT INTO royalties VALUES('T13',20000,0.06);

Listing

You might have noticed that I barely men-

tioned SQL in the preceding chapter.

Remember this equation:

SQL Relational model

SQL is based on the relational model but

doesn’t implement it faithfully. One depar-

ture from the model is that in SQL, primary

keys are optional rather than mandatory.

Consequently, tables without keys will

accept duplicate rows, rendering some data

inaccessible. A complete review of the many

disparities is beyond the scope of this book

(see the “Learning Database Design” sidebar

in “Primary Keys” in Chapter 2). The upshot

of these discrepancies is that DBMS users,

and not the DBMS itself, are responsible for

enforcing a relational structure. Another

result is that the Model and SQL terms in

Table 2.1 in Chapter 2 aren’t interchangeable.

With that warning, it’s time to learn SQL. An

SQL program is a sequence of SQL state-

ments executed in order. To write a program,

you must know the rules that govern SQL

syntax. This chapter explains how to write

valid SQL statements and also covers data

types and nulls.

61

SQL Basics
3

S
Q

L
B

a
s

i
c

s

SQL Syntax
Figure 3.1 shows an example SQL state-

ment. Be unconcerned about the meaning

(semantics) of the statement; I’m using it to

explain SQL syntax.

1. Comment. A comment is optional text

that explains your program. Comments

usually describe what a program does and

how, or why code was changed. Comments

are for humans—the compiler ignores

them. A comment is introduced by two

consecutive hyphens and continues until

the end of the line.

2. SQL statement. An SQL statement is a

valid combination of tokens introduced

by a keyword. Tokens are the basic indi-

visible particles of the SQL language;

they can’t be reduced grammatically.

Tokens include keywords, identifiers,

operators, literals (constants), and punc-

tuation symbols.

3. Clauses. An SQL statement has one or

more clauses. In general, a clause is a

fragment of an SQL statement that’s

introduced by a keyword, is required or

optional, and must be given in a particu-

lar order. SELECT, FROM, WHERE, and ORDER
BY introduce the four clauses in this

example.

4. Keywords. Keywords are words that

SQL reserves because they have special

meaning in the language. Using a key-

word outside its specific context (as

an identifier, for example) causes an

error. DBMSs use a mix of standard

and nonstandard keywords; search your

DBMS documentation for keywords or

reserved words.

5. Identifiers. Identifiers are words that

you (or the database designer) use to

name database objects such as tables,

columns, aliases, indexes, and views.

au_fname, au_lname, authors, and state
are the identifiers in this example. For

more information, see “Identifiers” later

in this chapter.

6. Terminating semicolon. An SQL state-

ment ends with a semicolon.

62

Chapter 3

S
Q

L
S

y
n

t
a

x

1 Comment

2 SQL statement 3 Clauses

4 Keywords
5 Identifiers

6 Terminating semicolon

--Retrieve authors from New York
SELECT au_fname, au_lname
 FROM authors
 WHERE state = 'NY'
 ORDER BY au_lname;

Figure 3.1 An SQL statement, with a comment.

SQL is a free-form language whose state-

ments can:

◆ Be in uppercase or lowercase. (SELECT,

select, and sElEcT are considered to be

identical keywords, for example.)

◆ Continue on the next line as long as you

don’t split words, tokens, or quoted

strings in two.

◆ Be on the same line as other statements.

◆ Start in any column.

Despite this flexibility, you should adopt a

consistent style (Figure 3.2). I use uppercase

keywords and lowercase identifiers and indent

each clause on its own line; see “Typographic

conventions” and “Syntax conventions” in

the introduction for information about my

style and syntax conventions.

63

SQL Basics

S
Q

L
S

y
n

t
a

x

Common Errors

Some common SQL programming errors are:

◆ Omitting the terminating semicolon

◆ Misspelling a keyword or identifier

◆ Mismatched or unmatched parentheses or quotes

◆ Listing clauses out of order

◆ Not surrounding a string or datetime literal with single quotes

◆ Surrounding a numeric literal or the keyword NULL with quotes

◆ Mismatching a table and column (typing SELECT royalty_share FROM authors instead of

SELECT royalty_share FROM title_authors, for example)

These errors usually are easy to catch and correct, even if your DBMS returns an obscure or

unhelpful error message. Remember that the real error actually can occur well before the

statement the DBMS flags as an error. For example, if you run

CREATE TABLE misspelled_name

your DBMS will go right ahead and create a table with the bad name. Your error won’t show

up until later, when you try to reference the table with, say,

SELECT * FROM correct_name

select au_fname

, AU_LNAME

FROM

authors WhErE state

= 'NY' order

bY

AU_lnamE

;

Figure 3.2 There aren’t many rules about how to format
an SQL statement. This statement is equivalent to the
one in Figure 3.1.

✔ Tips

■ The introductory keyword of an SQL

statement is called a verb because it

indicates an action to perform.

■ Distinguish between a SELECT statement,

which is the entire statement from SELECT
to semicolon, and a SELECT clause, which

is the part of the SELECT statement that

lists the output columns.

■ Some DBMSs support bracketed com-

ments, which start with /*, continue

over one or more lines, and end with */.

You can nest a bracketed comment

within another.

■ An expression is any legal combination

of symbols that evaluates to a single data

value. You can combine mathematical

or logical operators, identifiers, literals,

functions, column names, aliases, and

so on. Table 3.1 lists some common

expressions and examples. These expres-

sions are covered in more detail later.

64

Chapter 3

S
Q

L
S

y
n

t
a

x

Table 3.1

Types of Expressions
Ty p e E x a m p l e

Case CASE WHEN n <> 0 THEN x/n
ELSE 0 END

Cast CAST(pubdate AS CHARACTER)

Datetime value start_time + ‘01:30’

Interval value INTERVAL ‘7’ DAY * 2

Numeric value (sales*price)/12

String value ‘Dear ‘||au_fname||’,’

SQL Standards and
Conformance
SQL:2003 is the latest version of the official

standard that the SQL committee updates

every few years. (The previous versions

were released in 1986, 1989, 1992, and 1999.)

Each standard:

◆ Introduces new elements to the language

◆ Clarifies or updates the elements of

earlier standards

◆ Sometimes drops existing elements

(because new elements supercede them

or they never caught on among DBMS

vendors)

The standard is enormous—thousands of

pages of dense specifications—and no vendor

conforms (or ever will conform) to the entire

thing. Instead, vendors try to conform to a

subset of the standard called Core SQL. This

level of conformance is the minimal category

that vendors have to achieve to claim that

they conform to standard SQL. SQL-92 intro-

duced levels of conformance, and SQL:1999

has them too, so when you read a DBMS’s

conformance statement, note which SQL

standard it’s referring to and which level.

In fact, SQL-92 often is thought of as the stan-

dard because it defined many of the most

vital and unchanging parts of the language.

Except where noted, the SQL elements in this

book are part of SQL-92 as well as SQL:1999

and SQL:2003. The lowest level of SQL-92

conformance is called Entry (not Core).

Your programs should follow the SQL

standard as closely as possible. Ideally, you

should be able to write portable SQL pro-

grams without even knowing which DBMS

you’re programming for. Unfortunately, the

SQL committee is not made up of language

theorists and relational-model purists but is

top-heavy with commercial DBMS vendors,

all jockeying and maneuvering. The result is

that each DBMS vendor devotes resources to

approach minimal Entry or Core SQL con-

formance requirements and then scampers

off to add nonstandard features that differ-

entiate their products in the marketplace—

meaning that your SQL programs won’t be

portable. These vendor-specific lock-ins

often force you to modify or rewrite SQL

programs to run on different DBMSs.

✔ Tips

■ To test your SQL code against the stan-

dard, go to http://developer.mimer.se/
validator and click the validator link

for the SQL 1992, 1999, or 2003 standard.

You can type or paste SQL statements to

check whether they conform to the stan-

dard and are correct syntactically.

■ Of the DBMSs covered in this

book, PostgreSQL is the

“purest” with respect to the SQL stan-

dard. Your DBMS might offer settings

that make it better conform to the SQL

standard. MySQL has ansi mode, for

example, and Microsoft SQL Server

has SET ANSI_DEFAULTS ON.

65

SQL Basics

S
Q

L
S

t
a

n
d

a
r

d
s

 a
n

d
 C

o
n

f
o

r
m

a
n

c
e

http://developer.mimer.se/

Identifiers
An identifier is a name that lets you refer

to an object unambiguously within the

hierarchy of database objects (whether a

schema, database, column, key, index,

view, constraint, or anything created with a

CREATE statement). An identifier must be

unique within its scope, which defines where

and when it can be referenced. In general:

◆ Database names must be unique on a

specified instance of a database server.

◆ Table and view names must be unique

within a given schema (or database).

◆ Column, key, index, and constraint

names must be unique within a given

table or view.

This scheme lets you duplicate names for

objects whose scopes don’t overlap. You can

give the same name to columns in different

tables, for example, or to tables in different

databases.

✔ Tips

■ For information about addressing data-

base objects, see Table 2.2 in Chapter 2.

■ DBMS scopes vary in the extent

to which they require identifier

names to be unique. SQL Server requires

an index name to be unique for only its

table, for example, whereas Oracle and

DB2 require an index name to be unique

throughout the database. Search your

DBMS documentation for identifiers

or names.

Standard SQL has the following identifier

rules for names:

◆ Can be up to 128 characters long

◆ Must begin with a letter

◆ Can contain letters, digits, and

underscores (_)

◆ Can’t contain spaces or special charac-

ters (such as #, $, &, %, or punctuation)

◆ Can’t be reserved keywords (except for

quoted identifiers)

Standard SQL distinguishes between reserved

and non-reserved keywords. You can’t use

reserved keywords as identifiers because

they have special meaning in SQL. You can’t

name a table “select” or a column “sum,”

for example. Non-reserved keywords have

a special meaning in only some contexts

and can be used as identifiers in other con-

texts. Most non-reserved keywords actually

are the names of built-in tables and func-

tions, so it’s safest never to use them as

identifiers either.

You can use a quoted identifier, also called a

delimited identifier, to break some of SQL’s

identifier rules. A quoted identifier is a name

surrounded by double quotes. The name

can contain spaces and special characters,

is case sensitive, and can be a reserved key-

word. Quoted identifiers can annoy other

programmers and cause problems with

third-party and even a vendor’s own tools,

so using them usually is a bad idea.

66

Chapter 3

I
d

e
n

t
i
f
i
e

r
s

Here’s some more advice for choosing iden-

tifier names:

◆ Stick to the standard rules even if your

DBMS has less restrictive ones (Oracle

names can contain # and $ symbols,

for example).

◆ In some cases, your DBMS will be more

restrictive than the standard (MySQL

identifiers can be up to only 64 charac-

ters long, for example).

◆ Use lowercase letters.

◆ names_with_underscores are easier to

read than nameswithoutthem.

◆ Use consistent names and abbreviations

throughout the database—pick either

emp or employee and stick with it.

✔ Tips

■ Although you can’t use (unquoted)

reserved words as identifiers, you can

embed them in identifiers. group and

max are illegal identifiers, but groups and

max_price are valid, for example. If you’re

worried that your identifier might be a

reserved word in some other SQL dialect,

just add an underscore to the end of the

name (element_, for example); no reserved

keyword ends with an underscore.

■ You can surround SQL Server

quoted identifiers with double

quotes or brackets ([]); brackets are pre-

ferred. In DB2, you can use reserved

words as identifiers (but doing so isn’t a

good idea because your program won’t

be portable). MySQL ANSI_QUOTES mode

allows double-quoted identifiers. DBMSs

have their own nonstandard keywords;

search your DBMS documentation for

keywords or reserved words.

In MySQL, the case sensitivity of the

underlying operating system determines

the case sensitivity of database and table

names.

The SQL standard directs DBMSs to

convert identifier names to uppercase

internally. So in the guts of your SQL

compiler, the unquoted identifier myname
is equivalent to the quoted identifier

“MYNAME” (not “myname”). PostgreSQL

doesn’t conform to the standard and

converts to lowercase. To write portable

programs, always quote a particular name

or never quote it (don’t mix them). DBMSs

aren’t consistent when it comes to case

sensitivity, so the best practice is always to

respect case for user-defined identifiers.

67

SQL Basics

I
d

e
n

t
i
f
i
e

r
s

Data Types
Recall from “Tables, Columns, and Rows”

in Chapter 2 that a domain is the set of

valid values allowed in a column. To define

a domain, you use a column’s data type

(and constraints, described in Chapter 11).

A data type, or column type, has these

characteristics:

◆ Each column in a table has a single

data type.

◆ A data type falls into one of categories

listed in Table 3.2 (each covered in the

following sections).

◆ The data type determines a column’s

allowable values and the operations it

supports. An integer data type, for exam-

ple, can represent any whole number

between certain DBMS-defined limits

and supports the usual arithmetic opera-

tions: addition, subtraction, multiplication,

and division (among others). But an inte-

ger can’t represent a nonnumeric value

such as ‘jack’ and doesn’t support char-

acter operations such as capitalization

and concatenation.

◆ The data type affects the column’s sort

order. The integers 1, 2, and 10 are sorted

numerically, yielding 1, 2, 10. The character

strings ‘1’, ‘2’, and ‘10’ are sorted lexico-

graphically, yielding ‘1’, ‘10’, ‘2’.

Lexicographical ordering sorts strings by

examining the values of their characters

individually. Here, ‘10’ comes before ‘2’
because ‘1’ (the first character of ‘10’)

is less than ‘2’ lexicographically. For

information about sorting, see “Sorting

Rows with ORDER BY” in Chapter 4.

◆ Some data types, such as binary objects,

can’t be indexed (see Chapter 12).

68

Chapter 3

D
a

t
a

 T
y

p
e

s

Table 3.2

Categories of Data Types
C a t e g o r y S t o r e s Th e s e D a t a

Character string Strings of characters
Binary large object Binary data
Exact numeric Integers and decimal numbers
Approximate numeric Floating-point numbers
Boolean Truth values: true, false,

or unknown
Datetime Date and time values
Interval Date and time intervals

◆ You store literal values (constants) in

character, numeric, Boolean, datetime, and

interval columns. Table 3.3 shows some

examples; the following sections have

more examples. Be sure not to confuse

the string literal ‘2009’ with the numeric

literal 2009. The SQL standard defines a

literal as any constant that isn’t null.

✔ Tips

■ Use the statements CREATE TABLE and

ALTER TABLE to define or change a col-

umn’s data type; see Chapter 11.

■ Database designers choose data types

carefully. The consequences of a poor

data-type choice include the inability to

insert values into a column and data loss

if the existing data type must be changed.

■ SQL:2003 dropped SQL-92’s bit-string

data types (BIT and BIT VARYING) in

favor of binary large objects. Bit strings

held smaller binary-data items than

BLOBs do.

■ The SQL standard leaves many

data-type implementation details

up to the DBMS vendor. Consequently,

SQL data types don’t map directly to

specific DBMS data types, even if the

data types have identical names. I give

equivalent or similar DBMS data types

in the Tips of each of the following data-

type sections. Some DBMS data types

have synonyms that match the SQL

standard’s data-type names.

69

SQL Basics

D
a

t
a

 T
y

p
e

s

Table 3.3

Examples of Literals
L i t e r a l E x a m p l e s

Character string ‘42’, ‘ennui’, ‘don’’t’, N’Jack’
Numeric 42, 12.34, 2., .001, -123, +6.33333, 2.5E2, 5E-3
Boolean TRUE, FALSE, UNKNOWN
Datetime DATE ‘2005-06-22’, TIME ‘09:45:00’, TIMESTAMP ‘2006-10-19 10:23:54’
Interval INTERVAL ‘15-3’ YEAR TO MONTH, INTERVAL ‘22:06:5.5’ HOUR TO SECOND

Character String Types
Use character string data types to represent

text. A character string, or just string, has

these characteristics:

◆ It’s an ordered sequence of zero or more

characters.

◆ Its length can be fixed or varying.

◆ It’s case sensitive (‘A’ comes before ‘a’
when sorted).

◆ In SQL statements, a string is surrounded

by single quotes.

◆ It’s one of the types listed in Table 3.4.

70

Chapter 3

C
h

a
r

a
c

t
e

r
 S

t
r

i
n

g
 T

y
p

e
s

Table 3.4

Character String Types
Ty p e D e s c r i p t i o n

CHARACTER Represents a fixed number of characters. A string stored in a column defined as
CHARACTER(length) can have up to length characters, where length is an integer
greater than or equal to 1; the maximum length depends on the DBMS. When you
store a string with fewer than length characters in a CHARACTER(length) column,
the DBMS pads the end of the string with spaces to create a string that has exactly
length characters. A CHARACTER(6) string ‘Jack’ is stored as ‘Jack ‘, for
example. CHARACTER and CHAR are synonyms.

CHARACTER VARYING Represents a variable number of characters. A string stored in a column defined as
CHARACTER VARYING(length) can have up to length characters, where length is
an integer greater than or equal to 1; the maximum length depends on the DBMS.
Unlike CHARACTER, when you store a string with fewer than length characters in a
CHARACTER VARYING(length) column, the DBMS stores the string as is and doesn’t
pad it with spaces. A CHARACTER VARYING(6) string ‘Jack’ is stored as ‘Jack’, for
example. CHARACTER VARYING, CHAR VARYING, and VARCHAR are synonyms.

NATIONAL CHARACTER This data type is the same as CHARACTER except that it holds standardized multibyte
characters or Unicode characters (see the sidebar in this section). In SQL statements,
NATIONAL CHARACTER strings are written like CHARACTER strings but have an N in
front of the first quote: N’ß ’, for example. NATIONAL CHARACTER, NATIONAL
CHAR, and NCHAR are synonyms.

NATIONAL CHARACTER VARYING This data type is the same as CHARACTER VARYING except that it holds standardized
multibyte characters or Unicode characters (see NATIONAL CHARACTER). NATIONAL
CHARACTER VARYING, NATIONAL CHAR VARYING, and NCHAR VARYING are synonyms.

CLOB The character large object (CLOB) type is intended for use in library databases that
hold vast amounts of text. A single CLOB value might hold an entire web page, book,
or genetic sequence, for example. CLOBs can’t be used as keys or in indexes and sup-
port fewer functions and operations than do CHAR and VARCHAR. In host languages,
CLOBs are referenced with a unique locator (pointer) value, avoiding the overhead of
transferring entire CLOBs across a client/server network. CLOB and CHARACTER LARGE
OBJECT are synonyms.

NCLOB The national character large object (NCLOB) type is the same as CLOB except that
it holds standardized multibyte characters or Unicode characters (see NATIONAL
CHARACTER). NCLOB, NCHAR LARGE OBJECT, and NATIONAL CHARACTER LARGE
OBJECT are synonyms.

✔ Tips

■ Two consecutive single quotes represent

one single-quote character in a string.

Type ‘don’’t’ to represent don’t, for

example. A double-quote character (“)

is a separate character and doesn’t need

this special treatment.

■ The length of a string is an integer

between 0 and length, inclusive. A string

with no characters—’’ (two single

quotes with no intervening space)—is

called an empty string or a zero-length

string. An empty string is considered to

be a VARCHAR of length zero.

■ DBMSs often can sort and manipulate

fixed-length strings faster than variable-

length ones.

■ Keep character columns as short as

possible rather than giving them “room

to grow” in the future. Shorter columns

sort and group faster than longer ones.

■ SQL:1999 introduced CLOB and NCLOB to

the SQL language (but most DBMSs

already had similar data types by then).

■ Table 3.5 lists character-string

and similar types for the DBMSs.

See the DBMS documentation for size

limits and usage restrictions.

Oracle treats empty strings as nulls; see

“Nulls” later in this chapter.

In MySQL ANSI_QUOTES mode, string lit-

erals can be quoted only with single

quotes; a string quoted with double

quotes is interpreted as an identifier.

71

SQL Basics

C
h

a
r

a
c

t
e

r
 S

t
r

i
n

g
 T

y
p

e
s

Unicode

Computers store characters (letters,

digits, punctuation, control characters,

and other symbols) internally by assign-

ing them numeric values. An encoding

determines the mapping of characters

to numeric values; different languages

and computer operating systems use

many different native encodings. Standard

U.S.-English strings use ASCII encoding,

which assigns values to 128 (27) different

characters—not much, and not even

enough to hold all the Latin characters

used in modern European languages,

much less all the Chinese ideographs.

Unicode is a single character set that

represents the characters of almost all

the world’s written languages. Unicode

can encode up to about 4.3 billion (232)

characters (using UTF-32 encoding).

The Unicode Consortium develops and

maintains the Unicode standard. The

actual Unicode mappings are available

in the latest online or printed edition

of The Unicode Standard, available at

www.unicode.org.

Table 3.5

DBMS Character String Types
D B M S Ty p e s

Access text, memo
SQL Server char, varchar, text, nchar,

nvarchar, ntext
Oracle char, varchar2, nchar, nvarchar2,

clob, nclob, long
DB2 char, varchar, long varchar, clob,

dbclob, graphic, vargraphic,
long vargraphic

MySQL char, varchar, national char,
national varchar, tinytext, text,
mediumtext, longtext

PostgreSQL char, varchar, text

www.unicode.org

Binary Large Object Type
Use the binary large object (BLOB) data

type to store binary data. A BLOB has these

characteristics:

◆ The type name is BLOB or BINARY LARGE
OBJECT.

◆ Unlike a CLOB, which stores a long

character string, a BLOB stores a long

sequence of bytes. The two data types

are incompatible.

◆ BLOBs are used mainly to store large

amounts of multimedia data (graphics,

photos, audio, or video, for example), sci-

entific data (MRI images or climate maps),

or technical data (engineering drawings).

◆ BLOBs can’t be used as keys or in indexes

and support far fewer functions and opera-

tions than do other types. BLOBs can be

compared for only equality (=) or inequality

(<>) because it makes no sense for a BLOB

to be “less than” another BLOB. You also

can’t use BLOBs with DISTINCT, in GROUP BY
or ORDER BY clauses, or in column functions.

◆ In host languages, BLOBs are referenced

with a unique locator (pointer) value,

avoiding the overhead of transferring

entire BLOBs across a client/server

network.

✔ Tips

■ DBMSs don’t attempt to interpret BLOBs;

their meaning is up to the application.

■ A binary string literal is given in hexadec-

imal, or hex (base 16), format. The hexa-

decimal system uses the digits 0 through 9

and the letters A through F (uppercase or

lowercase). One hex character is equivalent

to 4 bits. In SQL statements, hex strings

have an X in front of the first quote, with

no intervening space. The hex string X’4B’
corresponds to the bits 01001011 or the

bit string B’01001011’, for example.

72

Chapter 3

B
i
n

a
r

y
 L

a
r

g
e

 O
b

j
e

c
t

 T
y

p
e

Table 3.6

DBMS BLOB Types
D B M S Ty p e s

Access ole object, attachment
SQL Server binary, varbinary, image
Oracle raw, long raw, blob, bfile
DB2 blob

MySQL binary, varbinary, tinyblob,
blob, mediumblob, longblob

PostgreSQL bit, bit varying, bytea, oid

■ SQL:1999 introduced BLOB to the SQL

language (but most DBMSs already had

similar data types by then).

■ Table 3.6 lists BLOB and simi-

lar types for the DBMSs. See the

DBMS documentation for size limits and

usage restrictions.

Exact Numeric Types
Use exact numeric data types to represent

exact numerical values. An exact numerical

value has these characteristics:

◆ It can be a negative, zero, or positive

number.

◆ It’s an integer or a decimal number.

An integer is a whole number expressed

without a decimal point: –42, 0, 62262.

A decimal number has digits to the

right of the decimal point: –22.06, 0.0,

0.0003, 12.34.

◆ It has a fixed precision and scale. The

precision is the number of significant

digits used to express the number; it’s

the total number of digits both to the

right and to the left of the decimal point.

The scale is the number of digits to the

right of the decimal point. Obviously, the

scale can’t exceed the precision. To rep-

resent a whole number, set the scale

equal to zero. See the Tips in this section

for some examples.

◆ It’s one of the types listed in Table 3.7.

73

SQL Basics

E
x

a
c

t
 N

u
m

e
r

i
c

 T
y

p
e

s

Table 3.7

Exact Numeric Types
Ty p e D e s c r i p t i o n

NUMERIC Represents a decimal number, stored in a column defined as NUMERIC(precision [,scale]). precision is
greater than or equal to 1; the maximum precision depends on the DBMS. scale is a value from 0 to precision.
If scale is omitted, it defaults to zero (which makes the number effectively an INTEGER).

DECIMAL This data type is similar to NUMERIC, and some DBMSs define them equivalently. The difference is that the
DBMS can choose a precision greater than that specified by DECIMAL(precision [,scale]), so precision
specifies the minimum precision, not an exact precision as in NUMERIC. DECIMAL and DEC are synonyms.

INTEGER Represents an integer. The minimum and maximum values that can be stored in an INTEGER column depend
on the DBMS. INTEGER takes no arguments. INTEGER and INT are synonyms.

SMALLINT This data type is the same as INTEGER except that it might hold a smaller range of values, depending on the
DBMS. SMALLINT takes no arguments.

BIGINT This data type is the same as INTEGER except that it might hold a larger range of values, depending on the
DBMS. BIGINT takes no arguments.

✔ Tips

■ Table 3.8 shows how the number 123.89

is stored for different precision and

scale values.

■ Don’t enclose a numeric literal in quotes.

■ Store numbers as strings if the numbers

are not involved in arithmetic calculations.

Store telephone numbers, zip codes, and

U.S. Social Security numbers as strings,

for example. This technique can save

space and prevent data loss: If you store

the zip code ‘02116’ as a number instead

of as a string, you’ll lose the leading zero.

■ Calculations involving only integers are

much faster than those involving decimal

and floating-point numbers.

■ Table 3.9 lists exact-numeric

and similar types for the DBMSs.

See the DBMS documentation for size

limits and usage restrictions. DBMSs

often accept type names that they don’t

implement, converting them to suitable,

supported types; Oracle converts INT to

NUMBER(32), for example.

DBMSs usually implement SMALLINT as

16-bit values (–32,768 through 32,767),

INTEGER as 32-bit values (–2,147,483,648

through 2,147,483,647), and BIGINT as

64-bit values (quintillions). SQL:2003

introduced BIGINT to the SQL language

(but most DBMSs already had a similar

data type by then).

74

Chapter 3

E
x

a
c

t
 N

u
m

e
r

i
c

 T
y

p
e

s

Table 3.8

Precision and Scale Examples for 123.89
S p e c i f i e d A s S t o r e d A s

NUMERIC(5) 124

NUMERIC(5,0) 124

NUMERIC(5,1) 123.9

NUMERIC(5,2) 123.89

NUMERIC(4,0) 124

NUMERIC(4,1) 123.9

NUMERIC(4,2) Exceeds precision
NUMERIC(2,0) Exceeds precision

Table 3.9

DBMS Exact Numeric Types
D B M S Ty p e s

Access byte, decimal, integer, long integer
SQL Server bigint, int, smallint, tinyint,

decimal, numeric
Oracle number, float
DB2 smallint, integer, bigint, decimal
MySQL tinyint, smallint, mediumint, int,

bigint, decimal
PostgreSQL smallint, integer, bigint, numeric

Approximate
Numeric Types
Use approximate numeric data types to

represent approximate numerical values.

An approximate numerical value has these

characteristics:

◆ It can be a negative, zero, or positive

number.

◆ It’s considered to be an approximation

of a floating-point (real) number.

◆ It typically is used to represent the very

small or very large quantities common

in technical, scientific, statistical, and

financial calculations.

◆ It’s expressed in scientific notation. A num-

ber in scientific notation is written as a

decimal number multiplied by an (integer)

power of 10. An uppercase E is the exponen-

tiation symbol: 2.5E2 = 2.5 ✕ 102 = 250, for

example. The mantissa is the portion that

expresses the significant digits (2.5 here),

and the exponent is the power of 10 (2 here).

The mantissa and exponent each can have

a sign: –2.5E–2 = –2.5 ✕ 10–2 = –0.025.

◆ It has a fixed precision but no explicit

scale. (The sign and magnitude of the

exponent determine the scale intrinsically.)

The precision is the number of (binary)

bits used to store the mantissa. To con-

vert from binary to decimal precision,

multiply the precision by 0.30103. To

convert from decimal to binary precision,

multiply the decimal precision by 3.32193.

For example, 24 bits yields 7 digits of

precision, and 53 bits yields 15 digits

of precision.

◆ It’s one of the types listed in Table 3.10.

✔ Tips

■ Don’t enclose a numeric literal in quotes.

■ Table 3.11 lists approximate

numeric and similar types for

the DBMSs. See the DBMS documenta-

tion for size limits and usage restrictions.

DBMSs often accept type names that

they don’t implement, converting them to

suitable, supported types; PostgreSQL

converts float to double precision,

for example.

75

SQL Basics

A
p

p
r

o
x

i
m

a
t

e
 N

u
m

e
r

i
c

 T
y

p
e

s

Table 3.10

Approximate Numeric Types
Ty p e D e s c r i p t i o n

FLOAT Represents a floating-point number, stored in a column defined as FLOAT(precision). precision is
greater than or equal to 1 and expressed as the number of bits (not the number of digits); the maximum
precision depends on the DBMS.

REAL This data type is the same as FLOAT except that the DBMS defines the precision. REAL numbers usually
are called single-precision numbers. REAL takes no arguments.

DOUBLE PRECISION This data type is the same as FLOAT except that the DBMS defines the precision, which must be greater
than that of REAL. DOUBLE PRECISION takes no arguments.

Table 3.11

DBMS Approximate Numeric Types
D B M S Ty p e s D B M S Ty p e s

Access single, double DB2 real, double
SQL Server float, real MySQL float, double
Oracle binary_float, binary_double PostgreSQL real, double precision

Boolean Type
Use the Boolean data type to store truth val-

ues. A Boolean value has these characteristics:

◆ The type name is BOOLEAN.

◆ The truth values are True, False, and

Unknown, represented by the Boolean

literals TRUE, FALSE, and UNKNOWN. Truth

values are described in “Combining and

Negating Conditions with AND, OR, and

NOT” in Chapter 4.

◆ A null is equivalent to the Unknown

truth value and, in practice, usually is

used instead of Unknown (most DBMS

Boolean types don’t accept the literal

UNKNOWN). See “Nulls” later in this chapter.

✔ Tips

■ Don’t enclose a Boolean literal in quotes.

■ SQL:1999 introduced BOOLEAN to the SQL

language.

■ Table 3.12 lists Boolean and

similar types for the DBMSs.

See the DBMS documentation for size

limits and usage restrictions. Where

no Boolean type is available, I give the

data type for storing single bits or small

integers. SQL programmers often use

these numeric values to represent truth

values, where zero means false, 1 (or any

nonzero number) means true, and null

means unknown.

76

Chapter 3

B
o

o
l
e

a
n

 T
y

p
e

Table 3.12

DBMS Boolean Types
D B M S Ty p e s

Access yes/no

SQL Server bit

Oracle number(1)

DB2 decimal(1)

MySQL boolean

PostgreSQL boolean

Datetime Types
Use datetime data types to represent the

date and time of day. Datetime values have

these characteristics:

◆ They’re specified with respect to UTC,

or Universal Coordinated Time (formerly

called Greenwich Mean Time or GMT).

The SQL standard requires that every

SQL session have a default offset from

UTC that is used for the duration of the

session; –8 hours is the time-zone offset

of San Francisco, California, for example.

◆ The rules of the Gregorian calendar

determine how date values are formed.

DBMSs reject values that they can’t

recognize as dates.

◆ Time values are based on a 24-hour

clock, also called military time (use 13:00,

not 1:00 p.m.).

◆ Hyphens (-) separate the parts of a date,

and colons (:) separate the parts of a

time. A space separates a date and time

when both are combined.

◆ It’s one of the types listed in Table 3.13.

77

SQL Basics

D
a

t
e

t
i
m

e
 T

y
p

e
s

Table 3.13

Datetime Types
Ty p e D e s c r i p t i o n

DATE Represents a date. A date stored in a column defined as DATE has three integer fields—
YEAR, MONTH, and DAY—and is formatted yyyy-mm-dd (length 10) (2006-03-17, for
example). Table 3.14 (on the next page) lists the valid values for the fields. DATE takes
no arguments.

TIME Represents a time of day. A time stored in a column defined as TIME has three fields—
HOUR, MINUTE, and SECOND—and is formatted hh:mm:ss (length 8) (22:06:57, for exam-
ple). You can specify fractional seconds with TIME(precision). precision is the number
of fractional digits and is greater than or equal to zero. The maximum precision, which
is at least 6, depends on the DBMS. HOUR and MINUTE are integers, and SECOND is a
decimal number. The format is hh:mm:ss.ssss... (length 9 plus the number fractional
digits) (‘22:06:57.1333’, for example). Table 3.14 (on the next page) lists the valid
values for the fields.

TIMESTAMP Represents a combination of DATE and TIME values separated by a space. The TIMESTAMP
format is yyyy-mm-dd hh:mm:ss (length 19) (2006-03-17 22:06:57, for example).
You can specify fractional seconds with TIMESTAMP(precision). The format is
yyyy-mm-dd hh:mm:ss.ssss... (length 20 plus the number fractional digits).

TIME WITH TIME ZONE This data type is the same as TIME except that it adds a field, TIME_ZONE_OFFSET, to
indicate the offset in hours from UTC. TIME_ZONE_OFFSET is formatted as INTERVAL
HOUR TO MINUTE (see the next section) and can contain the values listed in Table 3.14 (on
the next page). Append AT TIME ZONE time_zone_offset to the TIME to assign a value
to the time zone (22:06:57 AT TIME ZONE -08:00, for example). Alternatively, you can
append AT LOCAL to indicate that the time zone is the default for the session (22:06:57
AT LOCAL, for example). If the AT clause is omitted, all times default to AT LOCAL.

TIMESTAMP WITH TIME ZONE This data type is the same as TIMESTAMP except that it adds a field, TIME_ZONE_OFFSET,
to indicate the offset in hours from UTC. The syntax rules are the same as those of TIME
WITH TIME ZONE except that you must include a date (2006-03-17 22:06:57 AT TIME
ZONE -08:00, for example).

✔ Tips

■ To get your system time, see “Getting the

Current Date and Time” in Chapter 5.

■ You can compare two datetime values if

they have the same fields; see “Filtering

Rows with WHERE” in Chapter 4. See also

“Performing Datetime and Interval

Arithmetic” in Chapter 5.

■ The SECOND field can accept values up to

61.999... (instead of 59) to allow for the

(rare) insertion of leap seconds into a

particular minute to keep Earth’s clocks

synchronized with sidereal time.

■ A datetime literal is a datetime type

name, followed by a space, followed by

a datetime value surrounded by single

quotes—DATE ‘yyyy-mm-dd’, TIME
‘hh:mm:ss’, and TIMESTAMP ‘yyyy-mm-dd
hh:mm:ss’, for example.

■ Standard SQL can’t handle B.C.E./B.C.

(Before the Common Era/Before Christ)

dates, but your DBMS might be able to

do so.

■ Timestamps often are used to mark

events associated with the row in which

they appear. In MySQL, for example, a

timestamp column is useful for recording

the date and time of an UPDATE operation.

■ The data type TIME WITH TIME ZONE
doesn’t make sense, because real-world

time zones have no meaning unless they’re

associated with a date (because the time-

zone offset varies throughout the year).

Favor TIMESTAMP WITH TIME ZONE.

■ See also “Working with Dates” in

Chapter 15.

78

Chapter 3

D
a

t
e

t
i
m

e
 T

y
p

e
s

Table 3.14

Datetime Fields
F i e l d Va l i d Va l u e s

YEAR 0001 to 9999
MONTH 01 to 12
DAY 01 to 31
HOUR 00 to 23
MINUTE 00 to 59
SECOND 00 to 61.999... (see the Tips)
TIME_ZONE_OFFSET –12:59 to +13:00

■ Table 3.15 lists datetime and

similar types for the DBMSs. See

the DBMS documentation for size limits

and usage restrictions.

DBMSs allow you to enter date values

in month-day-year, day-month-year, and

other formats and time values based on

a 12-hour (a.m./p.m.) clock. The format

in which dates and times are displayed

can differ from the format in which

they’re entered.

In Microsoft Access, surround date-

time literals with # characters instead

of quotes and omit the data type name

prefix. The standard SQL date DATE
‘2006-03-17’ is equivalent to the Access

date #2006-03-17#, for example.

In Microsoft SQL Server, omit the data

type name prefix from datetime literals.

The standard SQL date DATE ‘2006-03-17’
is equivalent to the SQL Server date

‘2006-03-17’, for example.

In DB2, omit the data type name prefix

from datetime literals. The standard SQL

date DATE ‘2006-03-17’ is equivalent to

the DB2 date ‘2006-03-17’, for example.

79

SQL Basics

D
a

t
e

t
i
m

e
 T

y
p

e
s

Table 3.15

DBMS Datetime Types
D B M S Ty p e s

Access date/time

SQL Server datetime, smalldatetime
Oracle date, timestamp
DB2 date, time, timestamp
MySQL date, time, datetime,

timestamp, year
PostgreSQL date, time, timestamp

Interval Types
DBMS conformance to standard

SQL interval types is spotty or non-

existent, so you might not find this section

to be useful in practice. DBMSs have their

own extended data types and functions that

calculate intervals and perform date and

time arithmetic.

Use interval data types to represent sets of

time values or spans of time. An interval

value has these characteristics:

◆ It stores the quantity of time between

two datetime values. Between 09:00 and

13:30 is an interval of 04:30 (4 hours and

30 minutes), for example. If you subtract

two datetime values, you get an interval.

◆ It can be used to increment or decre-

ment a datetime value; see “Performing

Datetime and Interval Arithmetic” in

Chapter 5.

◆ It has the same fields as datetime values

(YEAR, HOUR, SECOND, and so on), but the

number can have a + (forward) or –

(backward) sign to indicate a direction

in time. The field separators are the

same as for datetime values.

◆ It comes in two categories: year-month

intervals and day-time intervals. A year-

month interval expresses an interval as

years and a whole number of months.

A day-time interval expresses an interval

as days, hours, minutes, and seconds.

◆ It has a single-field or multiple-field

qualifier. A single-field qualifier is speci-

fied as YEAR, MONTH, DAY, HOUR, MINUTE,

or SECOND. A multiple-field qualifier

is specified as:

start_field TO end_field

start_ field is YEAR, DAY, HOUR, or MINUTE,

and end_ field is YEAR, MONTH, DAY, HOUR,

MINUTE, or SECOND. end_ field must be a

smaller time period than start_ field.

A single-field column defined as INTERVAL
HOUR could store intervals such as “4 hours”

or “25 hours,” for example. A multiple-

field column defined as INTERVAL DAY TO
MINUTE could store intervals such as “2

days, 5 hours, 10 minutes,” for example.

80

Chapter 3

I
n

t
e

r
v

a
l
 T

y
p

e
s

Table 3.16

Interval Types
Ty p e D e s c r i p t i o n

Year-month These intervals contain only a year value, only a month value, or both. The valid column types
are INTERVAL YEAR, INTERVAL YEAR(precision), INTERVAL MONTH, INTERVAL MONTH(precision),
INTERVAL YEAR TO MONTH, or INTERVAL YEAR(precision) TO MONTH.

Day-time These intervals can contain a day value, hour value, minute value, second value, or some
combination thereof. Some examples of the valid column types are INTERVAL MINUTE,
INTERVAL DAY(precision), INTERVAL DAY TO HOUR, INTERVAL DAY(precision) TO SECOND,
and INTERVAL MINUTE(precision) TO SECOND(frac_precision).

◆ A single-field column can have a precision

that specifies the length (number of posi-

tions) of the field; INTERVAL HOUR(2), for

example. The precision defaults to 2 if

omitted. A SECOND field can have an addi-

tional fractional precision that specifies

the number of digits to the right of the

decimal point—INTERVAL SECOND(5,2),

for example. The fractional precision

defaults to 6 if omitted.

A multiple-field column can have a pre-

cision for start_ field but not end_ field

(unless end_ field is SECOND, in which case

it can have a fractional precision)—

INTERVAL DAY(3) TO MINUTE and INTERVAL
MINUTE(2) TO SECOND(4), for example.

◆ It’s one of the types listed in Table 3.16.

✔ Tips

■ An interval literal is the word INTERVAL
followed by a space, followed by an inter-

val value surrounded by single quotes—

INTERVAL ‘15-3’ (15 years and 3 months)

and INTERVAL ‘22:06:5.5’ (22 hours,

6 minutes, and 5.5 seconds), for example.

■ An interval literal is the word INTERVAL
followed by a space, followed by an interval

value surrounded by single quotes, fol-

lowed by the interval qualifier—INTERVAL
‘15-3’ YEAR TO MONTH (15 years and 3

months) and INTERVAL ‘22:06:5.5’ HOUR
TO SECOND (22 hours, 6 minutes, and 5.5

seconds), for example.

■ See also “Working with Dates” in

Chapter 15.

■ Table 3.17 lists interval and

similar types for the DBMSs. See

the DBMS documentation for size limits

and usage restrictions.

81

SQL Basics

I
n

t
e

r
v

a
l
 T

y
p

e
s

Table 3.17

DBMS Interval Types
D B M S Ty p e s

Access Not supported
SQL Server Not supported
Oracle interval year to month,

interval day to second

DB2 Not supported
MySQL Not supported
PostgreSQL interval

Unique Identifiers
Unique identifiers are used to generate

primary-key values to identify rows (see

“Primary Keys” in Chapter 2). An identifier

can be unique universally (large random

numbers unique in any context) or only

within a specific table (simple serial numbers

1, 2, 3, …). Table 3.18 lists unique-identifier

types and attributes for the DBMSs. See the

DBMS documentation for size limits and

usage restrictions. The SQL standard calls

columns with auto-incrementing values

identity columns. See also “Generating

Sequences” in Chapter 15.

82

Chapter 3

U
n

i
q

u
e

 I
d

e
n

t
i
f
i
e

r
s

Table 3.18

Unique Identifiers
P l a t f o r m Ty p e o r A t t r i b u t e

Standard SQL IDENTITY

Access autonumber, replication id
SQL Server uniqueidentifier, identity
Oracle rowid, urowid, sequences
DB2 Identity columns and sequences
MySQL auto_increment attribute
PostgreSQL serial, bigserial, uuid

UUIDs

A universally unique ID is called a Universally Unique Identifier (UUID) or a Globally Unique

Identifier (GUID). When you define a column to have a UUID data type, your DBMS will

generate a random UUID automatically in each new row, probably according to ISO/IEC

9834-8:2005 (www.itu.int/ITU-T/studygroups/com17/oid.html) or IETF RFC 4122 (http://
tools.ietf.org/html/rfc4122).

A UUID in standard form looks like:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

The letters actually are hexadecimal digits. Your DBMS might use an alternative form with

uppercase hex digits, surrounding braces, or omitted hyphens. UUIDs aren’t technically guar-

anteed to be unique, but the probability of generating a duplicate ID is so tiny that they

should be considered singular. For more information, see http://en.wikipedia.org/wiki/
Universally_Unique_Identifier.

www.itu.int/ITU-T/studygroups/com17/oid.html
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4122
http://en.wikipedia.org/wiki/Universally_Unique_Identifier
http://en.wikipedia.org/wiki/Universally_Unique_Identifier

Other Data Types
The SQL standard defines other data types

than the ones covered in the preceding

sections, but some of them rarely are imple-

mented or used in practice (ARRAY, MULTISET,

REF, and ROW, for example). More useful are

the extended (nonstandard) data types that

are available in various DBMSs. Depending

on your DBMS, you can find data types for:

◆ Network and internet addresses

◆ Links to files stored outside the database

◆ Monetary (currency) amounts

◆ Geographic (spatial) coordinates

◆ Arrays and other collections

◆ XML

◆ Full text searching

◆ Enumerated (enum) values from a

specified list

83

SQL Basics

O
t

h
e

r
 D

a
t
a

 T
y

p
e

s

User-Defined Types

Microsoft SQL Server, Oracle, DB2, and

PostgreSQL let you create user-defined

types (UDTs). The simplest UDT is a stan-

dard or built-in data type (CHARACTER,

INTEGER, and so on) with additional check

and other constraints. You can define the

data type marital_status, for example, as

a single-character CHARACTER data type

that allows only the values S, M, W, D, or NULL
(for single, married, widowed, divorced, or

unknown). More-complex UDTs are simi-

lar to classes in object-oriented program-

ming languages such as Java. You can

define a UDT once and use it in multiple

tables, rather than repeat its definition in

each table in which it’s used. Search your

DBMS documentation for user-defined

type. UDTs are created in standard SQL

with the statement CREATE TYPE.

◆ When you sort a column that contains

nulls, the nulls will be either greater than

or less than all the non-null values,

depending on the DBMS; see “Sorting

Rows with ORDER BY” in Chapter 4.

◆ Nulls propagate through computations.

The result of any arithmetic expression

or operation that involves a null is null:

(12*NULL)/4 is null; see Chapter 5.

◆ Most aggregate functions, such as SUM(),

AVG(), and MAX(), ignore nulls. COUNT(*)
is an exception. See Chapter 6.

◆ If the grouping column in a GROUP BY
clause contains nulls, all the nulls are

put in a single group; see “Grouping Rows

with GROUP BY” in Chapter 6.

◆ Nulls affect the results of joins; see

“Using Joins” in Chapter 7.

◆ Nulls can cause problems in subqueries;

see “Nulls in Subqueries” in Chapter 8.

✔ Tips

■ Use caution when interpreting results in

which nulls are involved. Nulls cause so

many problems and complications—I’ve

listed some of important ones here—that

some database experts urge users to mini-

mize their use or not use them at all (and

instead use default values or some other

missing-data scheme). Nevertheless, you

won’t become a competent SQL pro-

grammer without understanding nulls

completely.

■ See also “Checking for Nulls with

COALESCE” and “Comparing Expressions

with NULLIF” in Chapter 5.

■ Nullable means that a column is allowed

to contain nulls. Use the CREATE TABLE or

ALTER TABLE statement (Chapter 11) to

set a column’s nullability.

Nulls
When your data are incomplete, you can use

a null to represent a missing or unknown

value. A null has these characteristics:

◆ In SQL statements, the keyword NULL
represents a null.

◆ A null is used for a value that might never

be known, might be determined later, or

is inapplicable. (Think of a null as a

marker or flag for a missing value, rather

than as a value itself.)

◆ A null differs from zero, a string that con-

tains only spaces, or an empty string (‘’).

A null in the column price doesn’t mean

that an item has no price or that its price is

zero; it means that the price is unknown

or has not been set. (Oracle is a special

case with respect to empty strings; see

the DBMS Tip in this section.)

◆ Nulls can appear in columns of any data

type that are not restricted by NOT NULL
or PRIMARY KEY integrity constraints

(Chapter 11). You should not allow nulls

in alternate keys.

◆ To detect nulls, see “Testing for Nulls

with IS NULL” in Chapter 4.

◆ Nulls aren’t equal (or unequal) to each

other. You can’t determine whether a null

matches any other value, including another

null, so the expressions NULL = any_value,

NULL <> any_value, NULL = NULL, and

NULL <> NULL are neither true nor false

but unknown; see “Combining and

Negating Conditions with AND, OR, and

NOT” in Chapter 4.

◆ Although nulls are never equal to each

other, DISTINCT treats all the nulls in a

particular column as duplicates; see

“Eliminating Duplicate Rows with

DISTINCT” in Chapter 4.

84

Chapter 3

N
u

l
l
s

85

SQL Basics

N
u

l
l
s

■ The term null value is inaccurate—a null

indicates the lack of a value.

■ Don’t place the keyword NULL in quotes;

your DBMS will interpret it as the char-

acter string ‘NULL’ rather than as a null.

■ You can get a null from a column that

doesn’t allow nulls. The column au_id in

the table authors doesn’t allow nulls, but

the SELECT statement in Figure 3.3

returns a null for the maximum au_id.

■ If nulls appear in a column because actual

values are not meaningful (rather than

unknown), you can split the column off

into its own table with a one-to-one

relationship with the other table. In

Figure 3.4, the original table employees
has the column commission, which speci-

fies an employee’s sales commission.

commission contains mostly nulls because

most employees aren’t salespeople. To

avoid the proliferation of nulls, I’ve

moved commission to its own table.

■ The display of nulls in results

varies by DBMS. A null might

appear as NULL, (NULL), <NULL>, -, or

empty space, for example.

Oracle treats an empty string (‘’) as a

null. This treatment might not continue

to be true in future releases, however, and

Oracle recommends that you do not treat

empty strings the same as nulls in your

SQL code. This behavior can cause con-

version problems among DBMSs. In the

sample database, for example, the col-

umn au_fname in the table authors is

defined as NOT NULL. In Oracle, the first

name of the author Kellsey (author A06)

is a space (‘ ‘); in the other DBMSs, the

first name is an empty string (‘’). For

information about the sample database,

see “The Sample Database” in Chapter 2.

SELECT MAX(au_id)

FROM authors

WHERE au_lname = 'XXX';

MAX(au_id)

NULL

Figure 3.3 Getting a null from a column that isn’t
nullable.

emp_id emp_name commission

E01 Eli McLemore NULL

E02 Monty Wendt 0.25

E03 Damien Shaw NULL

E04 Russell Sager NULL

employees

NULLJill StallworthE05
0.08Pamela GantE06

emp_id emp_name

E01 Eli McLemore

E02 Monty Wendt

E03 Damien Shaw

E04 Russell Sager

employees

Jill StallworthE05
Pamela GantE06

emp_id commission

E02 0.25

E06 0.08

Russell Sager

commissions

Figure 3.4 Nulls are eliminated by splitting the original
table (top) into a one-to-one relationship (bottom).

This page intentionally left blank

This chapter introduces SQL’s workhorse—

the SELECT statement. Most SQL work involves

retrieving and manipulating data by using

this one (albeit complex) statement. SELECT
retrieves rows, columns, and derived values

from one or more tables in a database; its

syntax is:

SELECT columns

FROM tables

[JOIN joins]

[WHERE search_condition]

[GROUP BY grouping_columns]

[HAVING search_condition]

[ORDER BY sort_columns];

SELECT, FROM, ORDER BY, and WHERE are cov-

ered in this chapter, GROUP BY and HAVING in

Chapter 6, and JOIN in Chapter 7. By conven-

tion, I call only a SELECT statement a query

because it returns a result set. DBMS docu-

mentation and other books might refer to

any SQL statement as a query. Although

SELECT is powerful, it’s not dangerous: You

can’t use it to add, change, or delete data or

database objects. (The dangerous stuff starts

in Chapter 10.)

87

Retrieving
Data from a Table

4

R
e

t
r

i
e

v
i
n

g
 D

a
t
a

 f
r

o
m

 a
 T

a
b

l
e

✔ Tip

■ Recall that italic_type denotes a variable

in code that must be replaced with a value,

and brackets indicate an optional clause or

item; see “Typographic conventions” and

“Syntax conventions” in the introduction.

Retrieving Columns with
SELECT and FROM
In its simplest form, a SELECT statement

retrieves columns from a table; you can

retrieve one column, multiple columns, or all

columns. The SELECT clause lists the columns

to display, and the FROM clause specifies the

table from which to draw the columns.

To retrieve a column from a table:

◆ Type:

SELECT column

FROM table;

column is a column name, and table is

the name of the table that contains

column (Listing 4.1 and Figure 4.1).

To retrieve multiple columns from
a table:

◆ Type:

SELECT columns

FROM table;

columns is two or more comma-separated

column names, and table is the name

of the table that contains columns

(Listing 4.2 and Figure 4.2).

Columns are displayed in the same order

in which they’re listed in columns, not the

order in which they’re defined in table.

88

Chapter 4

R
e

t
r

i
e

v
i
n

g
 C

o
l
u

m
n

s
 w

i
t

h
 S

E
L

E
C

T
a

n
d

 F
R

O
M

Listing 4.1 List the cities in which the authors live.
See Figure 4.1 for the result.

SELECT city

FROM authors;

Listing

city

Bronx

Boulder

San Francisco

San Francisco

New York

Palo Alto

Sarasota

Figure 4.1 Result of Listing 4.1.

Listing 4.2 List each author’s first name, last name,
city, and state. See Figure 4.2 for the result.

SELECT au_fname, au_lname, city, state

FROM authors;

Listing

au_fname au_lname city state

--------- ----------- ------------- -----

Sarah Buchman Bronx NY

Wendy Heydemark Boulder CO

Hallie Hull San Francisco CA

Klee Hull San Francisco CA

Christian Kells New York NY

Kellsey Palo Alto CA

Paddy O'Furniture Sarasota FL

Figure 4.2 Result of Listing 4.2.

To retrieve all columns from a table:

◆ Type:

SELECT *

FROM table;

table is the name of a table (Listing 4.3

and Figure 4.3).

Columns are displayed in the order in

which they’re defined in table.

89

Retrieving Data from a Table

R
e

t
r

i
e

v
i
n

g
 C

o
l
u

m
n

s
 w

i
t

h
 S

E
L

E
C

T
a

n
d

 F
R

O
M

Listing 4.3 List all the columns in the table authors.
See Figure 4.3 for the result.

SELECT *

FROM authors;

Listing

au_id au_fname au_lname phone address city state zip

----- --------- ----------- ------------ -------------------- ------------- ----- -----

A01 Sarah Buchman 718-496-7223 75 West 205 St Bronx NY 10468

A02 Wendy Heydemark 303-986-7020 2922 Baseline Rd Boulder CO 80303

A03 Hallie Hull 415-549-4278 3800 Waldo Ave, #14F San Francisco CA 94123

A04 Klee Hull 415-549-4278 3800 Waldo Ave, #14F San Francisco CA 94123

A05 Christian Kells 212-771-4680 114 Horatio St New York NY 10014

A06 Kellsey 650-836-7128 390 Serra Mall Palo Alto CA 94305

A07 Paddy O'Furniture 941-925-0752 1442 Main St Sarasota FL 34236

Figure 4.3 Result of Listing 4.3.

✔ Tips

■ The SELECT and FROM clauses always are

required to retrieve columns from tables;

all other clauses are optional.

■ Closure guarantees that the result of

every SELECT statement is a table; see

the Tips in “Tables, Columns, and Rows”

in Chapter 2.

■ The result in Figure 4.1 contains dupli-

cate rows because two authors live in

San Francisco. To remove duplicates,

see “Eliminating Duplicate Rows with

DISTINCT” later in this chapter.

■ The rows in your results might be

ordered differently from the rows in

mine; see “Sorting Rows with ORDER BY”

later in this chapter.

■ I use NULL to indicate a null in a table

or result; see “Nulls” in Chapter 3

(Listing 4.4 and Figure 4.4).

■ Chapters 7, 8, and 9 describe how to

retrieve columns from multiple tables.

■ All results display raw, unformatted values.

Monetary amounts lack currency signs,

and numbers might have an inappropriate

number of decimal places, for example.

Reporting tools—not data-retrieval tools—

format data, although DBMSs have non-

standard functions that let you format

numbers and datetimes in query results.

See Microsoft SQL Server’s datename()
function or MySQL’s date_format()
function, for example.

■ SELECT * often is risky because the num-

ber or order of a table’s columns can

change and cause your program to fail.

Likewise, SELECT * won’t be understood

by people unfamiliar with the table’s

columns. In contrast to queries that

name specific columns in the SELECT
clause, SELECT * is a resource hog that

drags unneeded data across networks.

(To see how a table is defined, rather

than list its rows, see “Displaying Table

Definitions” in Chapter 10.)

■ An operation that selects certain columns

from a table is called a projection.

90

Chapter 4

R
e

t
r

i
e

v
i
n

g
 C

o
l
u

m
n

s
 w

i
t

h
 S

E
L

E
C

T
a

n
d

 F
R

O
M

city state country

------------- ----- -------

New York NY USA

San Francisco CA USA

Hamburg NULL Germany

Berkeley CA USA

Figure 4.4 Result of Listing 4.4. The column state doesn’t apply to Germany. NULL specifies a null, which is distinct
from an “invisible” value such as an empty string or a string of spaces.

Listing 4.4 List each publisher’s city, state, and country. See Figure 4.4 for the result.

SELECT city, state, country

FROM publishers;

Listing

Creating Column Aliases
with AS
In the query results so far, I’ve allowed the

DBMS to use default values for column

headings. (A column’s default heading in a

result is the source column’s name in the

table definition.) You can use the AS clause

to create a column alias. A column alias is

an alternative name (identifier) that you

specify to control how column headings are

displayed in a result. Use column aliases if

column names are cryptic, hard to type, too

long, or too short.

A column alias immediately follows a column

name in the SELECT clause of a SELECT state-

ment. Enclose the alias in single or double

quotes if it’s a reserved keyword or if it con-

tains spaces, punctuation, or special charac-

ters. You can omit the quotes if the alias is a

single non-reserved word that contains only

letters, digits, or underscores. If you want a

particular column to retain its default head-

ing, omit its AS clause.

To create column aliases:

◆ Type:

SELECT column1 [AS] alias1,

column2 [AS] alias2,

...

columnN [AS] aliasN

FROM table;

column1, column2, …, columnN are col-

umn names; alias1, alias2, …, aliasN are

their corresponding column aliases; and

table is the name of the table that con-

tains column1, column2, ….

Listing 4.5 shows the syntactic variations

of the AS clause. Figure 4.5 shows the result

of Listing 4.5.

91

Retrieving Data from a Table

C
r

e
a

t
i
n

g
 C

o
l
u

m
n

 A
l
i
a

s
e

s
 w

i
t

h
 A

S

Listing 4.5 The AS clause specifies a column alias to display in results. This statement shows alternative constructions
for AS syntax. In your programs, pick one construction and use it consistently. See Figure 4.5 for the result.

SELECT au_fname AS "First name",

au_lname AS 'Last name',

city AS City,

state,

zip 'Postal code'

FROM authors;

Listing

First name Last name City state Postal code

---------- ----------- ------------- ----- -----------

Sarah Buchman Bronx NY 10468

Wendy Heydemark Boulder CO 80303

Hallie Hull San Francisco CA 94123

Klee Hull San Francisco CA 94123

Christian Kells New York NY 10014

Kellsey Palo Alto CA 94305

Paddy O'Furniture Sarasota FL 34236

Figure 4.5 Result of Listing 4.5.

In standard SQL and most DBMSs, the key-

word AS is optional, but you should always

include it and surround aliases with double

quotes to make your SQL code more

portable and readable. With these syntactic

conventions, Listing 4.5 is equivalent to:

SELECT au_fname AS “First name”,

au_lname AS “Last name”,

city AS “City”,

state,

zip AS “Postal code”

FROM authors;

✔ Tips

■ A column alias doesn’t change the name

of a column in a table.

■ To determine a column’s name in a

table definition, see “Displaying Table

Definitions” in Chapter 10.

■ You can use a reserved keyword if

you quote the alias. The query SELECT
SUM(sales) AS “Sum” FROM titles; uses

the reserved word SUM as a column alias,

for example. For information about key-

words, see “SQL Syntax” and “Identifiers”

in Chapter 3.

■ AS also is used to name derived columns

(whose values are determined by expres-

sions other than simple column names);

see “Creating Derived Columns” in

Chapter 5.

■ You also can create table aliases with AS;

see “Creating Table Aliases with AS” in

Chapter 7.

■ Microsoft Access and

PostgreSQL require the AS
keyword for column references.

Oracle and DB2 display unquoted col-

umn names and aliases in uppercase.

SQL*Plus (Oracle’s command-line

processor) truncates column aliases to

the number of characters specified in the

table’s column definitions. The column

alias “Postal code” displays as Posta in

a CHAR(5) column, for example.

DBMSs have restrictions on embedded

spaces, punctuation, and special characters

in aliases; search your DBMS documen-

tation for SELECT or AS.

92

Chapter 4

C
r

e
a

t
i
n

g
 C

o
l
u

m
n

 A
l
i
a

s
e

s
 w

i
t

h
 A

S

Eliminating Duplicate
Rows with DISTINCT
Columns often contain duplicate values, and

it’s common to want a result that lists each

duplicate only once. If I type Listing 4.6 to

list the states where the authors live, the

result, Figure 4.6, contains unneeded dupli-

cates. The DISTINCT keyword eliminates

duplicate rows from a result. Note that the

columns of a DISTINCT result form a candi-

date key (unless they contain nulls).

To eliminate duplicate rows:

◆ Type:

SELECT DISTINCT columns

FROM table;

columns is one or more comma-separated

column names, and table is the name

of the table that contains columns

(Listing 4.7 and Figure 4.7).

93

Retrieving Data from a Table

E
l
i
m

i
n

a
t

i
n

g
 D

u
p

l
i
c

a
t

e
 R

o
w

s
 w

i
t

h
 D

I
S

T
I
N

C
T

Listing 4.6 List the states in which the authors live.
See Figure 4.6 for the result.

SELECT state

FROM authors;

Listing

state

NY

CO

CA

CA

NY

CA

FL

Figure 4.6 Result of Listing 4.6. This result contains
unneeded duplicates of CA and NY.

Listing 4.7 List the distinct states in which the authors
live. The keyword DISTINCT eliminates duplicate rows
in the result. See Figure 4.7 for the result.

SELECT DISTINCT state

FROM authors;

Listing

state

NY

CO

CA

FL

Figure 4.7 Result of Listing 4.7. This result has no CA
or NY duplicates.

✔ Tips

■ If the SELECT DISTINCT clause contains

more than one column, the values of

all the columns combined determine

the uniqueness of rows. The result of

Listing 4.8 is Figure 4.8, which contains

a duplicate row that has two columns.

The result of Listing 4.9 is Figure 4.9,

which eliminates the two-column duplicate.

■ Although nulls never equal each other

because their values are unknown,

DISTINCT considers all nulls to be dupli-

cates of each other. SELECT DISTINCT
returns only one null in a result, regard-

less of how many nulls it encounters; see

“Nulls” in Chapter 3.

■ The SELECT statement syntax includes

the optional ALL keyword. You rarely see

ALL in practice because it denotes the

default behavior: display all rows, includ-

ing duplicates.

SELECT columns FROM table;

is equivalent to:

SELECT ALL columns FROM table;

The syntax diagram is:

SELECT [ALL | DISTINCT] columns

FROM table;

■ If a table has a properly defined primary

key, SELECT DISTINCT * FROM table; and

SELECT * FROM table; return identical

results because all rows are unique.

■ See also “Aggregating Distinct Values

with DISTINCT” in Chapter 6 and

“Handling Duplicates” in Chapter 15.

■ For DISTINCT operations, the DBMS

performs an internal sort to identify

and remove duplicate rows. Sorting is

computationally expensive—don’t use

DISTINCT unless you have to do so.

94

Chapter 4

E
l
i
m

i
n

a
t

i
n

g
 D

u
p

l
i
c

a
t

e
 R

o
w

s
 w

i
t

h
 D

I
S

T
I
N

C
T

Listing 4.8 List the cities and states in which the
authors live. See Figure 4.8 for the result.

SELECT city, state

FROM authors;

Listing

city state

------------- -----

Bronx NY

Boulder CO

New York NY

Palo Alto CA

San Francisco CA

San Francisco CA

Sarasota FL

Figure 4.8 Result of Listing 4.8. This result contains a
duplicate row for San Francisco, California.

Listing 4.9 List the distinct cities and states in which
the authors live. See Figure 4.9 for the result.

SELECT DISTINCT city, state

FROM authors;

Listing

city state

------------- -----

Bronx NY

Boulder CO

New York NY

Palo Alto CA

San Francisco CA

Sarasota FL

Figure 4.9 Result of Listing 4.9. It’s the city–state
combination that’s considered to be unique, not the
value in any single column.

Sorting Rows with ORDER BY
Rows in a query result are unordered, so you

should view the order in which rows appear

as being arbitrary. This situation arises

because the relational model posits that row

order is irrelevant for table operations. You

can use the ORDER BY clause to sort rows by a

specified column or columns in ascending

(lowest to highest) or descending (highest to

lowest) order; see the “Sort Order” sidebar in

this section. The ORDER BY clause always is

the last clause in a SELECT statement.

To sort by a column:

◆ Type:

SELECT columns

FROM table

ORDER BY sort_column [ASC | DESC];

columns is one or more comma-separated

column names, sort_column is the name

of the column on which to sort the result,

and table is the name of the table that

contains columns and sort_column.

(sort_column doesn’t have to be in listed

in columns.) Specify ASC for an ascending

sort or DESC for a descending sort. If no

sort direction is specified, ASC is assumed

(Listings 4.10 and 4.11, Figures 4.10

and 4.11).

95

Retrieving Data from a Table

S
o

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 O

R
D

E
R

 B
Y

Listing 4.10 List the authors’ first names, last names,
cities, and states, sorted by ascending last name.
ORDER BY performs ascending sorts by default, so the
ASC keyword is optional. (In practice, ASC typically is
omitted.) See Figure 4.10 for the result.

SELECT au_fname, au_lname, city, state

FROM authors

ORDER BY au_lname ASC;

Listing

au_fname au_lname city state

--------- ----------- ------------- -----

Sarah Buchman Bronx NY

Wendy Heydemark Boulder CO

Hallie Hull San Francisco CA

Klee Hull San Francisco CA

Christian Kells New York NY

Kellsey Palo Alto CA

Paddy O'Furniture Sarasota FL

Figure 4.10 Result of Listing 4.10. This result is sorted
in ascending last-name order.

Listing 4.11 List the authors’ first names, last names,
cities, and states, sorted by descending first name. The
DESC keyword is required. See Figure 4.11 for the result.

SELECT au_fname, au_lname, city, state

FROM authors

ORDER BY au_fname DESC;

Listing

au_fname au_lname city state

--------- ----------- ------------- -----

Wendy Heydemark Boulder CO

Sarah Buchman Bronx NY

Paddy O'Furniture Sarasota FL

Klee Hull San Francisco CA

Hallie Hull San Francisco CA

Christian Kells New York NY

Kellsey Palo Alto CA

Figure 4.11 Result of Listing 4.11. This result is sorted
in descending first-name order. The first name of the
author Kellsey is an empty string ('') and sorts last (or
first in ascending order).

To sort by multiple columns:

◆ Type:

SELECT columns

FROM table

ORDER BY sort_column1 [ASC | DESC],

sort_column2 [ASC | DESC],

...

sort_columnN [ASC | DESC];

columns is one or more comma-

separated column names; sort_column1,

sort_column2, …, sort_columnN are the

names of the columns on which to sort

the result; and table is the name of the

table that contains columns and the sort

columns. (The sort columns don’t have to

be in listed in columns.) Rows are sorted

first by sort_column1; then rows that

have equal values in sort_column1 are

sorted by the values in sort_column2, and

so on. For each sort column, specify ASC
for an ascending sort or DESC for a

descending sort. If no sort direction is

specified, ASC is assumed (Listing 4.12

and Figure 4.12).

96

Chapter 4

S
o

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 O

R
D

E
R

 B
Y

Sort Order

Sorting numeric and datetime values is unambiguous; sorting character strings is complex.

A DBMS uses a collating sequence, or collation, to determine the order in which characters

are sorted. The collation defines the order of precedence for every character in your character

set. Your character set depends on the language that you’re using—European languages (a Latin

character set), Hebrew (the Hebrew alphabet), or Chinese (ideographs), for example. The collation

also determines case sensitivity (is ‘A’ < ‘a’?), accent sensitivity (is ‘A’ < ‘À’ ?), width sensitivity

(for multibyte or Unicode characters), and other factors such as linguistic practices. The SQL

standard doesn’t define particular collations and character sets, so each DBMS uses its own

sorting strategy and default collation. DBMSs provide commands or tools that display the

current collation and character set. Run the command exec sp_helpsort in Microsoft SQL

Server, for example. Search your DBMS documentation for collation or sort order.

Listing 4.12 List the authors’ first names, last names,
cities, and states, sorted by descending city within
ascending state. See Figure 4.12 for the result.

SELECT au_fname, au_lname, city, state

FROM authors

ORDER BY state ASC,

city DESC;

Listing

au_fname au_lname city state

--------- ----------- ------------- -----

Hallie Hull San Francisco CA

Klee Hull San Francisco CA

Kellsey Palo Alto CA

Wendy Heydemark Boulder CO

Paddy O'Furniture Sarasota FL

Christian Kells New York NY

Sarah Buchman Bronx NY

Figure 4.12 Result of Listing 4.12.

SQL lets you specify relative column-

position numbers instead of column names

in ORDER BY. The position numbers refer to

the columns in the result, not the original

table. Using column positions saves typing,

but the resulting code is unclear and invites

mistakes if you reorder the columns in the

SELECT clause.

To sort by relative column positions:

◆ Type:

SELECT columns

FROM table

ORDER BY sort_num1 [ASC | DESC],

sort_num2 [ASC | DESC],

...

sort_numN [ASC | DESC];

columns is one or more comma-

separated column names; and sort_num1,

sort_num2, …, sort_numN are integers

between 1 and the number of columns

in columns, inclusive. Each integer speci-

fies the relative position of a column in

columns. table is the name of the table

that contains columns. (The sort num-

bers can’t refer to a column that’s not

listed in columns.) The sort order is the

same order described in “To sort by

multiple columns” earlier in this section

(Listing 4.13 and Figure 4.13).

97

Retrieving Data from a Table

S
o

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 O

R
D

E
R

 B
Y

Listing 4.13 List each author’s first name, last name,
city, and state, sorted first by ascending state (column
4 in the SELECT clause) and then by descending last
name within each state (column 2). See Figure 4.13
for the result.

SELECT au_fname, au_lname, city, state

FROM authors

ORDER BY 4 ASC, 2 DESC;

Listing

au_fname au_lname city state

--------- ----------- ------------- -----

Kellsey Palo Alto CA

Hallie Hull San Francisco CA

Klee Hull San Francisco CA

Wendy Heydemark Boulder CO

Paddy O'Furniture Sarasota FL

Christian Kells New York NY

Sarah Buchman Bronx NY

Figure 4.13 Result of Listing 4.13.

Sorting by Substrings

To sort results by specific parts of a string,

use the functions described in “Extracting

a Substring with SUBSTRING()” in Chapter

5. For example, this query sorts by the last

four characters of phone:

SELECT au_id, phone
FROM authors
ORDER BY

substr(phone, length(phone)-3);

This query works for Oracle,

DB2, MySQL, and PostgreSQL.

In Microsoft SQL Server, use

substring(phone, len(phone)-3, 4).

In Microsoft Access, use

Mid(phone, len(phone)-3, 4).

98

Chapter 4

S
o

r
t

i
n

g
 a

n
d

 N
u

l
l
s

/
S

o
r

t
i
n

g
 S

p
e

e
d

Sorting and Nulls

Sorting is one of the situations where SQL

departs from the idea that a null isn’t equal

to any other value, including another null.

(The logical comparison NULL = NULL is

unknown, not true.) When nulls are sorted,

they all are considered to be equal to one

another. The SQL standard leaves it up to

the DBMS to decide whether nulls are either

greater than or less than all non-null values.

Microsoft Access, Microsoft SQL Server,

and MySQL treat nulls as the lowest possi-

ble values (Listing 4.14 and Figure 4.14).

Oracle, DB2, and PostgreSQL treat nulls

as the highest possible values. See also

“Nulls” in Chapter 3.

In Oracle, use NULLS FIRST or NULLS LAST
with ORDER BY to control null-sorting

behavior. For other DBMSs, create a derived

column (see Chapter 5) that flags nulls—

CASE WHEN column IS NULL THEN 0 ELSE 1
END AS is_null, for example—and add it as

the first column (with ASC or DESC) in the

ORDER BY clause.

Sorting Speed

The three factors that most affect sorting speed are, in order of importance:

◆ The number of rows selected

◆ The number of columns in the ORDER BY clause

◆ The length of columns in the ORDER BY clause

Always restrict a sort to the minimum number of rows needed. Running times of sorting

routines don’t scale linearly with the number of rows sorted—so sorting 10n rows takes

much more than 10 times longer than sorting n rows. Also try to reduce the number of sorted

columns and the columns’ data-type lengths in the table definition, if possible.

Listing 4.14 Nulls in a sort column are listed first or
last, depending on the DBMS. See Figure 4.14 for the
result.

SELECT pub_id, state, country

FROM publishers

ORDER BY state ASC;

Listing

pub_id state country

------ ----- -------

P03 NULL Germany

P04 CA USA

P02 CA USA

P01 NY USA

Figure 4.14 Result of Listing 4.14. This result is sorted
by ascending state. The DBMS in which I ran this
query treats nulls as the lowest possible values, so
the row with the null state is listed first. A DBMS that
treats nulls as the highest possible values would list
the same row last.

✔ Tips

■ You can sort by columns that aren’t listed

in the SELECT clause (Listing 4.15 and

Figure 4.15). This technique won’t work

for relative column positions.

■ You can specify column aliases instead of

column names in ORDER BY (Listing 4.16

and Figure 4.16). See “Creating Column

Aliases with AS” earlier in this chapter.

■ You can specify the same column multi-

ple times in ORDER BY (but that’s silly).

■ If the ORDER BY columns don’t identify

each row uniquely in the result, rows

with duplicate values will be listed in

arbitrary order. Although that’s the case

in some of my examples (refer to Fig-

ures 4.10, 4.12, and 4.13), you should

include enough ORDER BY columns to

identify rows uniquely, particularly if the

result is to be displayed to an end user.

■ According to the SQL standard, the

ORDER BY clause is part of a CURSOR decla-

ration and not the SELECT statement.

Cursors, which are objects defined inside

database applications, are beyond the

scope of this book. All SQL implementa-

tions let you to use ORDER BY in a SELECT
statement (because the DBMS builds a

cursor invisibly). Standard SQL also lets

ORDER BY appear in window functions (not

covered in this book).

■ To sort based on conditional logic, add a

CASE expression to the ORDER BY clause

(see “Evaluating Conditional Values with

CASE” in Chapter 5). For example, this

query sorts by price if type is “history”;

otherwise, it sorts by sales:

SELECT title_id, type, price, sales
FROM titles
ORDER BY CASE WHEN type = 'history'

THEN price ELSE sales END;

continues on next page

99

Retrieving Data from a Table

S
o

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 O

R
D

E
R

 B
Y

Listing 4.15 zip doesn’t appear in the list of columns
to retrieve. See Figure 4.15 for the result.

SELECT city, state

FROM authors

ORDER BY zip ASC;

Listing

city state

------------- -----

New York NY

Bronx NY

Sarasota FL

Boulder CO

San Francisco CA

San Francisco CA

Palo Alto CA

Figure 4.15 Result of Listing 4.15. This result is sorted
by ascending zip code. Rows might appear to be in
random order if you sort by an undisplayed column,
confusing your end user.

Listing 4.16 This query uses column aliases in the
ORDER BY clause. See Figure 4.16 for the result.

SELECT au_fname AS "First Name",

au_lname AS "Last Name",

state

FROM authors

ORDER BY state ASC,

"Last Name" ASC,

"First Name" ASC;

Listing

First Name Last Name state

---------- ----------- -----

Hallie Hull CA

Klee Hull CA

Kellsey CA

Wendy Heydemark CO

Paddy O'Furniture FL

Sarah Buchman NY

Christian Kells NY

Figure 4.16 Result of Listing 4.16.

■ You can sort by the results of expres-

sions; Chapter 5 describes how to create

expressions by using functions and oper-

ators (Listing 4.17 and Figure 4.17).

■ You can intermingle column names,

relative column positions, and expres-

sions in ORDER BY.

■ You should create indexes for columns

that you sort frequently (see Chapter 12).

■ The sequence in which unordered rows

appear actually is based on the physical

order of rows in the DBMS table. You

shouldn’t rely on physical order because

it changes often, such as when rows are

added, updated, or deleted or an index

is created.

■ Sorting by relative column position is

useful in UNION queries; see “Combining

Rows with UNION” in Chapter 9.

■ DBMSs restrict the columns that

can appear in an ORDER BY clause,

depending on data type. For example, in

Microsoft SQL Server, you can’t sort by

ntext, text, and image columns; and in

Oracle, you can’t sort by blob, clob,

nclob, and bfile columns. Search your

DBMS documentation for SELECT or

ORDER BY.

In Microsoft Access you can’t use an

expression’s column alias in ORDER BY.

To run Listing 4.17, either retype the

expression in the ORDER BY clause:

ORDER BY price * sales DESC

or use the relative column position:

ORDER BY 4 DESC

100

Chapter 4

S
o

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 O

R
D

E
R

 B
Y

Listing 4.17 This query sorts by an expression. See
Figure 4.17 for the result. I’ve created a column alias
for the expression because it would be cumbersome
to repeat the expression in the ORDER BY clause and
because it creates a more meaningful column label in
the result.

SELECT title_id,

price,

sales,

price * sales AS "Revenue"

FROM titles

ORDER BY "Revenue" DESC;

Listing

title_id price sales Revenue

-------- ----- ------- -----------

T07 23.95 1500200 35929790.00

T05 6.95 201440 1400008.00

T12 12.99 100001 1299012.99

T03 39.95 25667 1025396.65

T11 7.99 94123 752042.77

T13 29.99 10467 313905.33

T06 19.95 11320 225834.00

T02 19.95 9566 190841.70

T04 12.99 13001 168882.99

T09 13.95 5000 69750.00

T08 10.00 4095 40950.00

T01 21.99 566 12446.34

T10 NULL NULL NULL

Figure 4.17 Result of Listing 4.17. This result lists
titles by descending revenue (the product of price
and sales).

Filtering Rows with WHERE
The result of each SELECT statement so far

has included every row in the table (for the

specified columns). You can use the WHERE
clause to filter unwanted rows from the

result. This filtering capability gives the

SELECT statement its real power. In a WHERE
clause, you specify a search condition that

has one or more conditions that need to be

satisfied by the rows of a table. A condition,

or predicate, is a logical expression that

evaluates to true, false, or unknown. Rows

for which the condition is true are included

in the result; rows for which the condition

is false or unknown are excluded. (An

unknown result, which arises from nulls, is

described in the next section.) SQL provides

operators that express different types of con-

ditions (Table 4.1). Operators are symbols

or keywords that specify actions to perform

on values or other elements.

SQL’s comparison operators compare two

values and evaluate to true, false, or unknown

(Table 4.2). The data type determines how

values are compared:

◆ Character strings are compared lexico-

graphically. < means precedes, and >
means follows. See “Data Types” in

Chapter 3 and “Sorting Rows with ORDER
BY” earlier in this chapter.

◆ Numbers are compared arithmetically.

< means smaller, and > means larger.

◆ Datetimes are compared chronologically.

< means earlier, and > means later.

Datetimes must have the same fields

(year, month, day, hour, and so on) to be

compared meaningfully.

Compare only identical or similar data

types. If you try to compare values that have

different data types, your DBMS might:

◆ Return an error

or

◆ Compare the values unequally and

return a result with no rows

or

◆ Attempt to convert the values to a com-

mon type and compare them if successful

or return an error if unsuccessful

101

Retrieving Data from a Table

F
i
l
t

e
r

i
n

g
 R

o
w

s
 w

i
t

h
 W

H
E

R
E

Table 4.1

Types of Conditions
C o n d i t i o n S Q L O p e r a t o r s

Comparison =, <>, <, <=, >, >=
Pattern matching LIKE

Range filtering BETWEEN

List filtering IN

Null testing IS NULL

Table 4.2

Comparison Operators
O p e r a t o r D e s c r i p t i o n

= Equal to
<> Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

To filter rows by making a comparison:

◆ Type:

SELECT columns

FROM table

WHERE test_column op value;

columns is one or more comma-separated

column names, and table is the name of

the table that contains columns.

In the search condition, test_column

is the name of a column in table.

(test_column doesn’t have to be listed

in columns.) op is one of the comparison

operators listed in Table 4.2, and value

is a value that’s compared with the value

in test_column (Listings 4.18 through

4.20, Figures 4.18 through 4.20).

✔ Tips

■ Place the WHERE clause before the ORDER
BY clause in a SELECT statement in which

both appear.

■ A null represents the unknown and

won’t match anything, not even another

null. Rows in which nulls are involved in

comparisons won’t be in the result. To

compare nulls, use WHERE test_column
IS NULL (WHERE test_column = NULL is

incorrect); see “Testing for Nulls with

IS NULL” later in this chapter. See also

“Nulls” in Chapter 3.

102

Chapter 4

F
i
l
t

e
r

i
n

g
 R

o
w

s
 w

i
t

h
 W

H
E

R
E

Listing 4.18 List the authors whose last name is not
Hull. See Figure 4.18 for the result.

SELECT au_id, au_fname, au_lname

FROM authors

WHERE au_lname <> 'Hull';

Listing

au_id au_fname au_lname

----- --------- -----------

A01 Sarah Buchman

A02 Wendy Heydemark

A05 Christian Kells

A06 Kellsey

A07 Paddy O'Furniture

Figure 4.18 Result of Listing 4.18.

Listing 4.19 List the titles for which there is no signed
contract. See Figure 4.19 for the result.

SELECT title_name, contract

FROM titles

WHERE contract = 0;

Listing

title_name contract

-------------------------- --------

Not Without My Faberge Egg 0

Figure 4.19 Result of Listing 4.19.

■ The right and left sides of the comparison

can be more complex than I described.

The general form of a comparison is:

expr1 op expr2

expr1 and expr2 are expressions. An

expression is any valid combination of

column names, literals, functions, and

operators that resolves to a single value

(per row). Chapter 5 covers expressions

in more detail (Listing 4.21 and

Figure 4.21).

■ For speed, fold your constants into a

minimal number of expressions. For

example, change

WHERE col1 + 2 <= 10

to

WHERE col1 <= 8

The best practice is to put only simple

column references to the left of the = and

more-complex expressions to the right.

■ In general, the fastest comparison is for

equality (=), following by the inequalities

(<, <=, >, >=). The slowest is not-equal

(<>). If possible, express your conditions

by using faster comparisons.

■ You can’t use an aggregate function such

as SUM() or COUNT() in a WHERE clause; see

Chapter 6.

continues on next page

103

Retrieving Data from a Table

F
i
l
t

e
r

i
n

g
 R

o
w

s
 w

i
t

h
 W

H
E

R
E

Listing 4.20 List the titles published in 2001 and later.
See Figure 4.20 for the result.

SELECT title_name, pubdate

FROM titles

WHERE pubdate >= DATE '2001-01-01';

Listing

title_name pubdate

---------------------------- ----------

Exchange of Platitudes 2001-01-01

Just Wait Until After School 2001-06-01

Kiss My Boo-Boo 2002-05-31

Figure 4.20 Result of Listing 4.20.

Listing 4.21 List the titles that generated more than
$1 million in revenue. This search condition uses an
arithmetic expression. See Figure 4.21 for the result.

SELECT title_name,

price * sales AS "Revenue"

FROM titles

WHERE price * sales > 1000000;

Listing

title_name Revenue

----------------------------- -----------

Ask Your System Administrator 1025396.65

Exchange of Platitudes 1400008.00

I Blame My Mother 35929790.00

Spontaneous, Not Annoying 1299012.99

Figure 4.21 Result of Listing 4.21.

■ An operation that selects certain rows

from a table is called a restriction.

■ Your DBMS’s collation determines

whether string comparisons are

case insensitive (‘A’ = ‘a’) or case sensitive

(‘A’ ‘a’). Microsoft Access, Microsoft

SQL Server, DB2, and MySQL perform

case-insensitive comparisons by default.

Oracle and PostgreSQL perform case-

sensitive comparisons by default. In

general, case-sensitive comparisons are

slightly faster than case-insensitive ones.

See also “Changing String Case with

UPPER() and LOWER()” in Chapter 5.

Case sensitivity can vary by context.

MySQL comparisons are case insensitive

in WHERE comparisons but are case sensi-

tive in string-related functions, for

example.

In Microsoft Access date literals, omit

the DATE keyword and surround the literal

with # characters instead of quotes. To

run Listing 4.20, change the date in the

WHERE clause to #2001-01-01#.

In Microsoft SQL Server and DB2 date

literals, omit the DATE keyword. To run

Listing 4.20, change the date in the WHERE

clause to ‘2001-01-01’.

In older PostgreSQL versions, to com-

pare a value in a NUMERIC or DECIMAL

column with a real (floating-point) num-

ber, convert the real number to NUMERIC

or DECIMAL explicitly. See “Converting

Data Types with CAST()” in Chapter 5.

Some DBMSs support the comparison

operator != as a synonym for <> (not

equal). You should use <> to keep your

code portable.

104

Chapter 4

F
i
l
t

e
r

i
n

g
 R

o
w

s
 w

i
t

h
 W

H
E

R
E

Column Aliases and WHERE

If you alias a column in a SELECT clause

(see “Creating Column Aliases with AS”

earlier in this chapter), you can’t refer-

ence it in the WHERE clause. The following

query fails because the WHERE clause is

evaluated before the SELECT clause, so the

alias copies_sold doesn’t yet exist when

the WHERE clause is evaluated:

-- Wrong
SELECT sales AS copies_sold

FROM titles
WHERE copies_sold > 100000;

Instead, use a subquery (Chapter 8) in the

FROM clause, which is evaluated before the

WHERE clause:

-- Correct
SELECT *

FROM (SELECT sales AS copies_sold
FROM titles) ta

WHERE copies_sold > 100000;

This solution works not only for columns

aliases but also for aggregate functions,

scalar subqueries, and windowing func-

tions referenced in WHERE clauses. Note

that in the latter query, the subquery is

aliased ta (a table alias). All DBMSs

accept table aliases, but not all require

them. See also “Using Subqueries as

Column Expressions” in Chapter 8.

Combining and Negating
Conditions with AND, OR,
and NOT
You can specify multiple conditions in a

single WHERE clause to, say, retrieve rows

based on the values in multiple columns.

You can use the AND and OR operators to

combine two or more conditions into a

compound condition. AND, OR, and a third

operator, NOT, are logical operators. Logical

operators, or Boolean operators, are opera-

tors designed to work with truth values: true,

false, and unknown.

If you’ve programmed in other languages (or

studied propositional logic), you’re familiar

with the two-value logic (2VL) system. In

two-value logic, the result of a logical expres-

sion is either true or false. 2VL assumes per-

fect knowledge, in which all propositions are

known to be true or false. Databases model

real data, however, and our knowledge of the

world is imperfect—that’s why we use nulls

to represent unknown values (see “Nulls” in

Chapter 3).

2VL is insufficient to represent knowledge

gaps, so SQL uses three-value logic (3VL).

In three-value logic, the result of a logical

expression is true, false, or unknown. If the

result of a compound condition is false or

unknown, the row is excluded from the result.

(To retrieve rows with nulls, see “Testing for

Nulls with IS NULL” later in this chapter.)

105

Retrieving Data from a Table

C
o

m
b

i
n

i
n

g
 a

n
d

 N
e

g
a

t
i
n

g
 C

o
n

d
i
t

i
o

n
s

The AND operator
The AND operator’s important characteris-

tics are:

◆ AND connects two conditions and returns

true only if both conditions are true.

◆ Table 4.3 shows the possible outcomes

when you combine two conditions with

AND. The table’s left column shows the

truth values of the first condition, the

top row shows the truth values of the

second condition, and each intersection

shows the AND outcome. This type of

table is called a truth table.

◆ Any number of conditions can be con-

nected with ANDs. All the conditions

must be true for the row to be included

in the result.

◆ AND is commutative (independent of

order): WHERE condition1 AND condition2
is equivalent to WHERE condition2 AND
condition1.

◆ You can enclose one or both of the con-

ditions in parentheses. Some compound

conditions need parentheses to force the

order in which conditions are evaluated.

See Listings 4.22 and 4.23, and Figures

4.22 and 4.23, for some AND examples.

106

Chapter 4

C
o

m
b

i
n

i
n

g
 a

n
d

 N
e

g
a

t
i
n

g
 C

o
n

d
i
t

i
o

n
s

Table 4.3

AND True False Unknown
True True False Unknown
False False False False
Unknown Unknown False Unknown

Listing 4.22 List the biographies that sell for less than
$20. See Figure 4.22 for the result.

SELECT title_name, type, price

FROM titles

WHERE type = 'biography' AND price < 20;

Listing

title_name type price

------------------------- --------- -----

How About Never? biography 19.95

Spontaneous, Not Annoying biography 12.99

Figure 4.22 Result of Listing 4.22.

Listing 4.23 List the authors whose last names begin
with one of the letters H through Z and who don’t live
in California. See Figure 4.23 for the result.

SELECT au_fname, au_lname

FROM authors

WHERE au_lname >= 'H'

AND au_lname <= 'Zz'

AND state <> 'CA';

Listing

au_fname au_lname

--------- -----------

Wendy Heydemark

Christian Kells

Paddy O'Furniture

Figure 4.23 Result of Listing 4.23. Remember that the
results of string comparisons depend on the DBMS’s
collating sequence; see “Sorting Rows with ORDER BY”
earlier in this chapter.

The OR operator
The OR operator’s important characteristics are:

◆ OR connects two conditions and returns

true if either condition is true or if both

conditions are true.

◆ Table 4.4 shows the OR truth table.

◆ Any number of conditions can be con-

nected with ORs. OR will retrieve rows that

match any condition or all the conditions.

◆ Like AND, OR is commutative; the order

in which you list the conditions doesn’t

matter.

◆ You can enclose one or both of the con-

ditions in parentheses.

See Listings 4.24 and 4.25, and Figures

4.24 and 4.25, for some OR examples.

Listing 4.25 shows the effect of nulls in

conditions. You might expect the result,

Figure 4.25, to display all the rows in the

table publishers. But the row for publisher

P03 (located in Germany) is missing because

it contains a null in the column state. The

null causes the result of both of the OR con-

ditions to be unknown, so the row is exclud-

ed from the result. To test for nulls, see

“Testing for Nulls with IS NULL” later in this

chapter.

107

Retrieving Data from a Table

C
o

m
b

i
n

i
n

g
 a

n
d

 N
e

g
a

t
i
n

g
 C

o
n

d
i
t

i
o

n
s

Table 4.4

OR True False Unknown
True True True True
False True False Unknown
Unknown True Unknown Unknown

Listing 4.24 List the authors who live in New York
State, Colorado, or San Francisco. See Figure 4.24 for
the result.

SELECT au_fname, au_lname, city, state

FROM authors

WHERE (state = 'NY')

OR (state = 'CO')

OR (city = 'San Francisco');

Listing

au_fname au_lname city state

--------- --------- ------------- -----

Sarah Buchman Bronx NY

Wendy Heydemark Boulder CO

Hallie Hull San Francisco CA

Klee Hull San Francisco CA

Christian Kells New York NY

Figure 4.24 Result of Listing 4.24.

Listing 4.25 List the publishers that are located in
California or are not located in California. This example
is contrived to show the effect of nulls in conditions;
see Figure 4.25 for the result.

SELECT pub_id, pub_name, state, country

FROM publishers

WHERE (state = 'CA')

OR (state <> 'CA');

Listing

pub_id pub_name state country

------ ----------------- ----- -------

P01 Abatis Publishers NY USA

P02 Core Dump Books CA USA

P04 Tenterhooks Press CA USA

Figure 4.25 Result of Listing 4.25. Publisher P03 is
missing because its state is null.

The NOT operator
The NOT operator’s important characteristics are:

◆ Unlike AND and OR, NOT doesn’t connect

two conditions. Instead, it negates

(reverses) a single condition.

◆ Table 4.5 shows the NOT truth table.

◆ In comparisons, place NOT before the

column name or expression

WHERE NOT state = ‘CA’ --Correct

and not before the operator (even though

it sounds better when read):

WHERE state NOT = ‘CA’ --Illegal

◆ NOT acts on one condition. To negate two

or more conditions, repeat the NOT for

each condition. To list titles that are not

biographies and are not priced less than

$20, for example, type

SELECT title_id, type, price

FROM titles

WHERE NOT type = ‘biography’

AND NOT price < 20; --Correct

and not

SELECT title_id, type, price

FROM titles

WHERE NOT type = ‘biography’

AND price < 20; --Wrong

The latter clause is legal but returns the

wrong result. See the Tips in this section

to learn ways to express equivalent NOT
conditions.

◆ In comparisons, using NOT often is a

matter of style. The following two clauses

are equivalent:

WHERE NOT state = ‘CA’

and

WHERE state <> ‘CA’

◆ You can enclose the condition in

parentheses.

108

Chapter 4

C
o

m
b

i
n

i
n

g
 a

n
d

 N
e

g
a

t
i
n

g
 C

o
n

d
i
t

i
o

n
s

Table 4.5

Condition NOT Condition
True False
False True
Unknown Unknown

Listing 4.26 List the authors who don’t live in
California. See Figure 4.26 for the result.

SELECT au_fname, au_lname, state

FROM authors

WHERE NOT (state = 'CA');

Listing

au_fname au_lname state

--------- ----------- -----

Sarah Buchman NY

Wendy Heydemark CO

Christian Kells NY

Paddy O'Furniture FL

Figure 4.26 Result of Listing 4.26.

Listing 4.27 List the titles whose price is not less than
$20 and that have sold more than 15,000 copies. See
Figure 4.27 for the result.

SELECT title_name, sales, price

FROM titles

WHERE NOT (price < 20)

AND (sales > 15000);

Listing

title_name sales price

----------------------------- ------- -----

Ask Your System Administrator 25667 39.95

I Blame My Mother 1500200 23.95

Figure 4.27 Result of Listing 4.27.

Using AND, OR, and NOT together
You can combine the three logical operators

in a compound condition. Your DBMS uses

SQL’s precedence rules to determine which

operators to evaluate first. Precedence is

covered in “Determining the Order of

Evaluation” in Chapter 5, but for now you

need know only that when you use multiple

logical operators in a compound condition,

NOT is evaluated first, then AND, and finally OR.

You can override this order with parentheses:

Everything in parentheses is evaluated first.

When parenthesized conditions are nested,

the innermost condition is evaluated first.

Under the default precedence rules, the

condition x AND NOT y OR z is equivalent

to (x AND (NOT y)) OR z. It’s wise to use

parentheses, rather than rely on the default

evaluation order, to make the evaluation

order clear.

If I want to list history and biography titles

priced less than $20, for example, Listing

4.28 won’t work. AND is evaluated before OR,

so the query is evaluated as follows:

1. Find all the biography titles less than $20.

2. Find all the history titles (regardless

of price).

3. List both sets of titles in the result

(Figure 4.28).

To fix this query, I’ll add parentheses to

force evaluation of OR first. Listing 4.29 is

evaluated as follows:

1. Find all the biography and history titles.

2. Of the titles found in step 1, keep the

ones priced less than $20.

3. List the subset of titles in the result

(Figure 4.29).

109

Retrieving Data from a Table

C
o

m
b

i
n

i
n

g
 a

n
d

 N
e

g
a

t
i
n

g
 C

o
n

d
i
t

i
o

n
s

Listing 4.28 This query won’t work if I want to list
history and biography titles less than $20, because
AND has higher precedence than OR. See Figure 4.28
for the result.

SELECT title_id, type, price

FROM titles

WHERE type = 'history'

OR type = 'biography'

AND price < 20;

Listing

title_id type price

-------- --------- -----

T01 history 21.99

T02 history 19.95

T06 biography 19.95

T12 biography 12.99

T13 history 29.99

Figure 4.28 Result of Listing 4.28. This result contains
two history titles priced more than $20, which is not
what I wanted.

Listing 4.29 To fix Listing 4.28, I’ve added parentheses
to force OR to be evaluated before AND. See Figure 4.29
for the result.

SELECT title_id, type, price

FROM titles

WHERE (type = 'history'

OR type = 'biography')

AND price < 20;

Listing

title_id type price

-------- --------- -----

T02 history 19.95

T06 biography 19.95

T12 biography 12.99

Figure 4.29 Result of Listing 4.29. Fixed.

110

Chapter 4

D
i
s

s
e

c
t

i
n

g
 W

H
E

R
E

 C
l

a
u

s
e

s

Dissecting WHERE Clauses

If your WHERE clause isn’t working, you can debug it by displaying the result of each condition

individually. To see the result of each comparison in Listing 4.29, for example, put each com-

parison expression in the SELECT clause’s output column list, along with the values you’re

comparing:

SELECT type,

type = ‘history’ AS “Hist?”,

type = ‘biography’ AS “Bio?”,

price,

price < 20 AS “<20?”

FROM titles;

This query runs on Microsoft Access, MySQL, and PostgreSQL. If your DBMS interprets the =
symbol as an assignment operator rather than as a comparison operator, you must substitute

equivalent expressions for the logical comparisons. In Oracle, for example, you can replace

type = ’history’ with INSTR(type,’history’). The query’s result is:

type Hist? Bio? price <20?

————————— ————— ——— ————— ———

history 1 0 21.99 0

history 1 0 19.95 1

computer 0 0 39.95 0

psychology 0 0 12.99 1

psychology 0 0 6.95 1

biography 0 1 19.95 1

biography 0 1 23.95 0

children 0 0 10.00 1

children 0 0 13.95 1

biography 0 1 NULL NULL

psychology 0 0 7.99 1

biography 0 1 12.99 1

history 1 0 29.99 0

The comparison columns display zero if the comparison is false, nonzero if it’s true, or null if

it’s unknown.

✔ Tips

■ The examples in this section show the

AND, OR, and NOT operators used with com-

parison conditions, but these operators

can be used with any type of condition.

■ If your search condition contains only

AND operators, your query will run faster

if you put the conditions least likely to

be true first. If col1=’A’ is less likely than

col2=’B’ then

WHERE col1=’A’ AND col2=’B’

is faster than

WHERE col2=’B’ AND col1=’A’

because the DBMS won’t bother to evalu-

ate the second expression if the first is

false. For search conditions that contain

only OR operators, do the reverse: Put the

most likely conditions first. If the condi-

tions are equally likely, put the least com-

plex expression first.

This logic depends on your DBMS’s opti-

mizer reading WHERE clauses from left to

right, which most do. Oracle’s cost-based

optimizer (as opposed to its rule-based

optimizer), however, reads right to left.

■ It’s a common error to type

WHERE state = ‘NY’ OR ‘CA’ --Illegal

instead of

WHERE state = ‘NY’ OR state = ‘CA’

continues on next page

111

Retrieving Data from a Table

C
o

m
b

i
n

i
n

g
 a

n
d

 N
e

g
a

t
i
n

g
 C

o
n

d
i
t

i
o

n
s

■ It’s easy to translate a correctly phrased

spoken-language statement into an

incorrect SQL statement. If you say,

“List the books priced less than $10 and

more than $30,” the and suggests the use

of the AND operator:

SELECT title_name, price

FROM titles

WHERE price<10 AND price>30; --Wrong

This query returns no rows, however,

because it’s impossible for a book to be

priced less than $10 and more than $30

simultaneously, as AND logic commands.

The logical meaning of OR finds books

that meet any of the criteria, not all the

criteria at the same time:

WHERE price<10 OR price>30 --Correct

■ Table 4.6 demonstrates alternative ways

of expressing the same condition. The

first equivalency is double negation, the

second two are De Morgan’s Laws, and

the final two are the distributive laws.

■ Some DBMSs support the exclusive-or

(or xor) logical operator, which yields

true only if exactly one of its operands

is true. p XOR q is equivalent to (p AND
(NOT q)) OR ((NOT p) AND q).

■ In MySQL 4.0.4 and earlier,

false AND unknown evaluates

to unknown, not false.

112

Chapter 4

C
o

m
b

i
n

i
n

g
 a

n
d

 N
e

g
a

t
i
n

g
 C

o
n

d
i
t

i
o

n
s

Table 4.6

Equivalent Conditions
Th i s C o n d i t i o n I s E q u i v a l e n t To

NOT (NOT p) p

NOT (p AND q) (NOT p) OR (NOT q)

NOT (p OR q) (NOT p) AND (NOT q)

p AND (q OR r) (p AND q) OR (p AND r)

p OR (q AND r) (p OR q) AND (p OR r)

113

Retrieving Data from a Table

R
e

-
e

x
p

r
e

s
s

i
n

g
 C

o
n

d
i
t

i
o

n
s

Re-expressing Conditions

You must master the laws in Table 4.6 to become a competent programmer in SQL (or any

language). They’re especially useful when you want to re-express conditions to make queries

run faster. For example, the statement

SELECT * FROM mytable

WHERE col1 = 1

AND NOT (col1 = col2 OR col3 = 3);

is equivalent to

SELECT * FROM mytable

WHERE col1 = 1

AND col2 <> 1

AND col3 <> 3;

but the latter one will run faster if your DBMS’s optimizer isn’t smart enough to re-express

the former internally. (The condition col1 = col2 is more expensive computationally than

comparing col1 and col2 to literal values.)

You also can use the laws to change a condition into its opposite. For example, the reverse of

the condition

WHERE (col1=’A’) AND (col2=’B’)

is

WHERE (col1<>’A’) OR (col2<>’B’)

In this case, it would have easier just to negate the entire original expression with NOT:

WHERE NOT ((col1=’A’) AND (col2=’B’))

But this simple approach won’t work with complex conditions involving multiple ANDs, ORs,

and NOTs.

Here’s a problem to solve: Look at only the first code line below and see whether you can

repeatedly apply equivalency rules to push the NOT operators inward until they apply to only

the individual expressions p, q, and r:

NOT ((p AND q) OR (NOT p AND r))

= NOT (p AND q) AND NOT (NOT p AND r)

= (NOT p OR NOT q) AND (p OR NOT r)

Matching Patterns
with LIKE
The preceding examples retrieved rows

based on the exact value of a column or

columns. You can use LIKE to retrieve rows

based on partial information. LIKE is useful

if you don’t know an exact value (“The

author’s last name is Kel-something”) or you

want to retrieve rows with similar values

(“Which authors live in the San Francisco

Bay Area?”). The LIKE condition’s important

characteristics are:

◆ LIKE works with only character strings,

not numbers or datetimes.

◆ LIKE uses a pattern that values are

matched against. A pattern is a quoted

string that contains the literal characters to

match and any combination of wildcards.

Wildcards are special characters used to

match parts of a value. Table 4.7 lists

the wildcard operators, and Table 4.8

lists some example patterns.

◆ String comparisons are case insensitive

or case sensitive, depending on your

DBMS; see the DBMS Tip in “Filtering

Rows with WHERE” earlier in this chapter.

◆ You can negate a LIKE condition with

NOT LIKE.

◆ You can combine LIKE conditions and

other conditions with AND and OR.

114

Chapter 4

M
a

t
c

h
i
n

g
 P

a
t

t
e

r
n

s
 w

i
t

h
 L

I
K

E

Table 4.7

Wildcard Operators
O p e r a t o r M a t c h e s

% A percent sign matches any string of zero or
more characters.

_ An underscore matches any one character.

Table 4.8

Examples of % and _ Patterns
Pa t t e r n m a t c h e s

‘A%’ Matches a string of length ≥ 1 that begins
with A, including the single letter A. Matches
‘A’, ‘Anonymous’, and ‘AC/DC’.

‘%s’ Matches a string of length ≥ 1 that ends
with s, including the single letter s. A string
with trailing spaces (after the s) won’t
match. Matches ‘s’, ‘Victoria Falls’,
and ‘DBMSs’.

‘%in%’ Matches a string of length ≥ 2 that contains
in anywhere. Matches ‘in’, ‘inch’,
‘Pine’, ‘linchpin’, and ‘lynchpin’.

‘____’ Matches any four-character string. Matches
‘ABCD’, ‘I am’, and ‘Jack’.

‘Qua__’ Matches any five-character string that begins
with Qua. Matches ‘Quack’, ‘Quaff’, and
‘Quake’.

‘_re_’ Matches any four-character string that has re
as its second and third characters. Matches
‘Tree’, ‘area’, and ‘fret’.

‘_re%’ Matches a string of length ≥ 3 that begins
with any character and has re as its second
and third characters. Matches ‘Tree’,
‘area’, ‘fret’, ‘are’, and ‘fretful’.

‘%re_’ Matches a string of length ≥ 3 that has re
as the second and third characters from its
end and ends with any character. Matches
‘Tree’, ‘area’, ‘fret’, ‘red’, and
‘Blood red’.

To filter rows by matching a pattern:

◆ Type:

SELECT columns

FROM table

WHERE test_column [NOT] LIKE

‘pattern’;

columns is one or more comma-separated

column names, and table is the name of

the table that contains columns.

In the search condition, test_column is

the name of a column in table (test_col-

umn doesn’t have to be listed in columns),

and pattern is the pattern that’s compared

with the value in test_column. pattern is a

string like one of the examples listed in

Table 4.8. Specify NOT LIKE to retrieve rows

with values that don’t match pattern

(Listings 4.30 through 4.33, Figures

4.30 through 4.33).

continues on next page

115

Retrieving Data from a Table

M
a

t
c

h
i
n

g
 P

a
t

t
e

r
n

s
 w

i
t

h
 L

I
K

E

Listing 4.30 List the authors whose last names begin
with Kel. See Figure 4.30 for the result.

SELECT au_fname, au_lname

FROM authors

WHERE au_lname LIKE 'Kel%';

Listing

au_fname au_lname

--------- --------

Christian Kells

Kellsey

Figure 4.30 Result of Listing 4.30.

Listing 4.31 List the authors whose last names
have ll (el-el) as the third and fourth characters.
See Figure 4.31 for the result.

SELECT au_fname, au_lname

FROM authors

WHERE au_lname LIKE '__ll%';

Listing

au_fname au_lname

--------- --------

Hallie Hull

Klee Hull

Christian Kells

Kellsey

Figure 4.31 Result of Listing 4.31.

Listing 4.32 List the authors who live in the San
Francisco Bay Area. (Zip codes in that area begin
with 94.) See Figure 4.32 for the result.

SELECT au_fname, au_lname, city, state, zip

FROM authors

WHERE zip LIKE '94___';

Listing

au_fname au_lname city state zip

-------- -------- ------------- ----- -----

Hallie Hull San Francisco CA 94123

Klee Hull San Francisco CA 94123

Kellsey Palo Alto CA 94305

Figure 4.32 Result of Listing 4.32.

Listing 4.33 List the authors who live outside the 212,
415, and 303 area codes. This example shows three
alternative patterns for excluding telephone numbers.
You should favor the first alternative because single-
character matches (_) are faster than multiple-
character ones (%). See Figure 4.33 for the result.

SELECT au_fname, au_lname, phone

FROM authors

WHERE phone NOT LIKE '212-___-____'

AND phone NOT LIKE '415-___-%'

AND phone NOT LIKE '303-%';

Listing

au_fname au_lname phone

-------- ----------- ------------

Sarah Buchman 718-496-7223

Kellsey 650-836-7128

Paddy O'Furniture 941-925-0752

Figure 4.33 Result of Listing 4.33.

You can search for values that contain the

special wildcard characters. Use the ESCAPE
keyword to specify an escape character that

you can use to search for a percent sign or

underscore as a literal character. Immediately

precede a wildcard character with an escape

character to strip the wildcard of its special

meaning. If the escape character is !, for exam-

ple, !% in a pattern searches values for a literal

%. (Unescaped wildcards still have their special

meaning.) The escape character can’t be part of

the value that you’re trying to retrieve; if you’re

searching for ‘50% OFF!’, choose an escape

character other than !. Table 4.9 shows some

examples of escaped and unescaped patterns;

the designated escape character is !.

To match a wildcard character:

◆ Type:

SELECT columns

FROM table

WHERE test_column [NOT] LIKE

‘pattern’

ESCAPE ‘escape_char’;

The syntax is the same as the SELECT
statement in “To filter rows by matching

a pattern,” earlier in this chapter, except

for the ESCAPE clause. escape_char is a

single character. Any character in pattern

that follows escape_char is interpreted

literally; escape_char itself is not consid-

ered to be part of the search pattern

(Listing 4.34 and Figure 4.34).

✔ Tips

■ test_column can be an expression.

■ The NOT that can precede LIKE is inde-

pendent of the NOT that can precede

test_column (see “The NOT operator”

earlier in this chapter). This clause

WHERE phone NOT LIKE ‘212-%’

is equivalent to this one:

WHERE NOT phone LIKE ‘212-%’

116

Chapter 4

M
a

t
c

h
i
n

g
 P

a
t

t
e

r
n

s
 w

i
t

h
 L

I
K

E

Table 4.9

Escaped and Unescaped Patterns
Pa t t e r n M a t c h e s

‘100%’ Unescaped. Matches 100 followed by a string
of zero or more characters.

‘100!%’ Escaped. Matches ‘100%’.
‘_op’ Unescaped. Matches ‘top’, ‘hop’, ‘pop’,

and so on.
‘!_op’ Escaped. Matches ‘_op’.

Listing 4.34 List the titles that contain percent signs.
Only the % that follows the escape character ! has its
literal meaning; the other two percent signs still act
as wildcards. See Figure 4.34 for the result.

SELECT title_name

FROM titles

WHERE title_name LIKE '%!%%' ESCAPE '!';

Listing

title_name

--

Figure 4.34 Result of Listing 4.34. An empty result. No
title names contain a % character.

You even can write this silly double nega-

tion, which retrieves everyone with a 212

area code:

WHERE NOT phone NOT LIKE ‘212-%’

■ Wildcard searches are time-consuming—

particularly if you use % at the start of a

pattern. Don’t use wildcards if another

type of search will do.

■ In the simplest case in which a pattern

contains no wildcards, LIKE works like

an = comparison (and NOT LIKE works

like <>). In many cases

WHERE city LIKE ‘New York’

is equivalent to

WHERE city = ‘New York’

But these comparisons will differ if your

DBMS takes trailing spaces into account

for LIKE but not for =. If that’s not impor-

tant, the = form usually is faster than LIKE.

■ Microsoft Access doesn’t sup-

port the ESCAPE clause. Instead,

surround a wildcard character with

brackets to render it a literal character.

To run Listing 4.34, replace the WHERE
clause with:

WHERE title_name LIKE ‘%[%]%’

Some DBMSs let you use regular expres-

sions to match patterns. Microsoft SQL

Server, for example, supports a limited

variant of POSIX-style regular expressions.

The [] wildcard matches any single char-

acter within a range or set, and the [^]
wildcard matches any single character

not within a range or set. Table 4.10 lists

some examples. The SQL standard uses

the SIMILAR operator for regex matching.

Regex support varies by DBMS; search

your DBMS documentation for LIKE,

regular expressions, or pattern matching.

Some DBMSs let you use LIKE to search

numeric and datetime columns.

117

Retrieving Data from a Table

M
a

t
c

h
i
n

g
 P

a
t

t
e

r
n

s
 w

i
t

h
 L

I
K

E

Table 4.10

Examples of [] and [^] Patterns
Pa t t e r n M a t c h e s

‘[a-c]at’ Matches ‘bat’ and ‘cat’ but not ‘fat’.
‘[bcf]at’ Matches ‘bat’, ‘cat’, and ‘fat’ but

not ‘eat’.
‘[^c]at’ Matches ‘bat’ and ‘fat’ but not ‘cat’.
‘se[^n]%’ Matches strings of length ≥ 2 that begin with

se and whose third character isn’t n.

Range Filtering
with BETWEEN
Use BETWEEN to determine whether a

given value falls within a specified range.

The BETWEEN condition’s important charac-

teristics are:

◆ BETWEEN works with character strings,

numbers, and datetimes.

◆ The BETWEEN range contains a low value

and a high value, separated by AND. The

low value must be less than or equal to

the high value.

◆ BETWEEN is a convenient, shorthand clause

that you can replicate by using AND.

WHERE test_column BETWEEN

low_value AND high_value

is equivalent to:

WHERE (test_column >= low_value)

AND (test_column <= high_value)

◆ BETWEEN specifies an inclusive range, in

which the high value and low value are

included in the search. To specify an

exclusive range, which excludes end-

points, use > and < comparisons instead

of BETWEEN:

WHERE (test_column > low_value)

AND (test_column < high_value)

◆ String comparisons are case insensitive

or case sensitive, depending on your

DBMS; see the DBMS Tip in “Filtering

Rows with WHERE” earlier in this chapter.

◆ You can negate a BETWEEN condition with

NOT BETWEEN.

◆ You can combine BETWEEN conditions and

other conditions with AND and OR.

118

Chapter 4

R
a

n
g

e
 F

i
l
t

e
r

i
n

g
 w

i
t

h
 B

E
T

W
E

E
N

Listing 4.35 List the authors who live outside the zip
range 20000–89999. See Figure 4.35 for the result.

SELECT au_fname, au_lname, zip

FROM authors

WHERE zip NOT BETWEEN '20000' AND '89999';

Listing

au_fname au_lname zip

--------- -------- -----

Sarah Buchman 10468

Hallie Hull 94123

Klee Hull 94123

Christian Kells 10014

Kellsey 94305

Figure 4.35 Result of Listing 4.35.

Listing 4.36 List the titles priced between $10 and
$19.95, inclusive. See Figure 4.36 for the result.

SELECT title_id, price

FROM titles

WHERE price BETWEEN 10 AND 19.95;

Listing

title_id price

-------- -----

T02 19.95

T04 12.99

T06 19.95

T08 10.00

T09 13.95

T12 12.99

Figure 4.36 Result of Listing 4.36.

To filter rows by using a range:

◆ Type:

SELECT columns

FROM table

WHERE test_column [NOT] BETWEEN

low_value AND high_value;

columns is one or more comma-separated

column names, and table is the name of

the table that contains columns.

In the search condition, test_column

is the name of a column in table

(test_column doesn’t have to be listed in

columns), and low_value and high_value

specify the endpoints of the range that is

compared with the value in test_column.

low_value must be less than or equal to

high_value, and both values must be

the same as or comparable to the data

type of test_column. Specify NOT BETWEEN
to match values that lie outside the

range (Listings 4.35 through 4.37,

Figures 4.35 through 4.37).

119

Retrieving Data from a Table

R
a

n
g

e
 F

i
l
t

e
r

i
n

g
 w

i
t

h
 B

E
T

W
E

E
N

Listing 4.37 List the titles published in 2000. See
Figure 4.37 for the result.

SELECT title_id, pubdate

FROM titles

WHERE pubdate BETWEEN DATE '2000-01-01'

AND DATE '2000-12-31';

Listing

title_id pubdate

-------- ----------

T01 2000-08-01

T03 2000-09-01

T06 2000-07-31

T11 2000-11-30

T12 2000-08-31

Figure 4.37 Result of Listing 4.37.

✔ Tips

■ test_column can be an expression.

■ The NOT that can precede BETWEEN is

independent of the NOT that can precede

test_column; see the Tips in “Matching

Patterns with LIKE” earlier in this chapter.

■ Listing 4.38 shows how to rewrite

Listing 4.36 with an exclusive range,

which doesn’t include the $10 and $19.95

endpoints. See Figure 4.38 for the result.

■ Specifying a character range requires

some thought. Suppose you want to

search for last names that begin with the

letter F. The following clause won’t work

because it will retrieve someone whose

last name is the letter G (is the letter G,

not starts with the letter G):

WHERE last_name BETWEEN ‘F’ AND ‘G’

This next clause shows the correct way to

specify the ending point (in most cases):

WHERE last_name BETWEEN ‘F’ AND ‘Fz’

■ In older PostgreSQL versions,

convert the floating-point num-

bers in Listings 4.36 and 4.38 to DECIMAL;

see “Converting Data Types with CAST()”

in Chapter 5. To run Listings 4.36 and

4.38, change the floating-point literals to:

CAST(19.95 AS DECIMAL)

In Microsoft Access date literals, omit

the DATE keyword and surround the liter-

al with # characters instead of quotes.

To run Listing 4.37, change the dates in

the WHERE clause to #2000-01-01# and

#2000-12-31#.

In Microsoft SQL Server and DB2 date

literals, omit the DATE keyword. To run

Listing 4.37, change the dates in the WHERE
clause to ‘2000-01-01’ and ‘2000-12-31’.

In some DBMSs, low_value can exceed

high_value; search your DBMS documen-

tation for WHERE or BETWEEN.

120

Chapter 4

R
a

n
g

e
 F

i
l
t

e
r

i
n

g
 w

i
t

h
 B

E
T

W
E

E
N

Listing 4.38 List the titles priced between $10 and
$19.95, exclusive. See Figure 4.38 for the result.

SELECT title_id, price

FROM titles

WHERE (price > 10)

AND (price < 19.95);

Listing

title_id price

-------- -----

T04 12.99

T09 13.95

T12 12.99

Figure 4.38 Result of Listing 4.38.

List Filtering with IN
Use IN to determine whether a given value

matches any value in a specified list. The IN
condition’s important characteristics are:

◆ IN works with character strings, numbers,

and datetimes.

◆ The IN list is a parenthesized listing of

one or more comma-separated values.

The list items needn’t be in any particu-

lar order.

◆ IN is a convenient, shorthand clause that

you can replicate by using OR.

WHERE test_column IN

(value1, value2, value3)

is equivalent to:

WHERE (test_column = value1)

OR (test_column = value2)

OR (test_column = value3)

◆ String comparisons are case insensitive

or case sensitive, depending on your

DBMS; see the DBMS Tip in “Filtering

Rows with WHERE” earlier in this chapter.

◆ You can negate an IN condition with

NOT IN.

◆ You can combine IN conditions and

other conditions with AND and OR.

121

Retrieving Data from a Table

L
i
s

t
 F

i
l
t

e
r

i
n

g
 w

i
t

h
 I

N

To filter rows by using a list:

◆ Type:

SELECT columns

FROM table

WHERE test_column [NOT] IN

(value1, value2,...);

columns is one or more comma-separated

column names, and table is the name of

the table that contains columns.

In the search condition, test_column is the

name of a column in table (test_column

doesn’t have to be listed in columns), and

value1, value2, … are one or more comma-

separated values that are compared with

the value in test_column. The list values

can appear in any order and must be the

same as or comparable to the data type of

test_column. Specify NOT IN to match val-

ues that aren’t in the list (Listings 4.39

through 4.41, Figures 4.39 through 4.41).

✔ Tips

■ test_column can be an expression.

■ The NOT that can precede IN is inde-

pendent of the NOT that can precede

test_column; see the Tips in “Matching

Patterns with LIKE” earlier in this chapter.

■ If your list contains a large number of

values, your code will be easier to read

if you use one IN condition instead of

many OR conditions. (Also, one IN usually

runs faster than multiple ORs.)

■ For speed, list the most likely values first.

If you’re testing U.S. addresses, for exam-

ple, list the most populous states first:

WHERE state IN (‘CA’, ‘TX’, ‘NY’,
‘FL’,...,’VT’, ‘DC’, ‘WY’).

■ The search condition

WHERE col1 BETWEEN 1 AND 5

AND col1 <> 3

usually is faster than

WHERE col1 IN (1, 2, 4, 5)

122

Chapter 4

L
i
s

t
 F

i
l
t

e
r

i
n

g
 w

i
t

h
 I

N

Listing 4.39 List the authors who don’t live in New
York State, New Jersey, or California. See Figure 4.39
for the result.

SELECT au_fname, au_lname, state

FROM authors

WHERE state NOT IN ('NY', 'NJ', 'CA');

Listing

au_fname au_lname state

-------- ----------- -----

Wendy Heydemark CO

Paddy O'Furniture FL

Figure 4.39 Result of Listing 4.39.

Listing 4.40 List the titles for which advances of $0,
$1,000, or $5,000 were paid. See Figure 4.40 for the
result.

SELECT title_id, advance

FROM royalties

WHERE advance IN

(0.00, 1000.00, 5000.00);

Listing

title_id advance

-------- -------

T02 1000.00

T08 0.00

T09 0.00

Figure 4.40 Result of Listing 4.40.

■ A compound condition’s order of evalua-

tion is easier to read and manage if you use

IN instead of multiple ORs; see “Combining

and Negating Conditions with AND, OR,

and NOT” earlier in this chapter.

■ You also can use IN to determine whether

a given value matches any value in a sub-

query; see Chapter 8.

■ NOT IN is equivalent to combining tests

for inequality with AND. This statement is

equivalent to Listing 4.39:

SELECT au_fname, au_lname, state

FROM authors

WHERE state <> ‘NY’

AND state <> ‘NJ’

AND state <> ‘CA’;

■ In Microsoft Access date

literals, omit the DATE keyword

and surround the literal with # charac-

ters instead of quotes. To run Listing

4.41, change the WHERE clause to:

WHERE pubdate IN

(#1/1/2000#,

#1/1/2001#,

#1/1/2002#)

In Microsoft SQL Server and DB2 date

literals, omit the DATE keyword. To run

Listing 4.41, change the WHERE clause to:

WHERE pubdate IN

(‘2000-01-01’,

‘2001-01-01’,

‘2002-01-01’)

In older PostgreSQL versions, convert

the floating-point number in Listing 4.40

to DECIMAL; see “Converting Data Types

with CAST()” in Chapter 5. To run Listing

4.40, change the WHERE clause to:

WHERE advance IN

(CAST(0.00 AS DECIMAL),

CAST(1000.00 AS DECIMAL),

CAST(5000.00 AS DECIMAL))

123

Retrieving Data from a Table

L
i
s

t
 F

i
l
t

e
r

i
n

g
 w

i
t

h
 I

N

Listing 4.41 List the titles published on the first day of
the year 2000, 2001, or 2002. See Figure 4.41 for the
result.

SELECT title_id, pubdate

FROM titles

WHERE pubdate IN

(DATE '2000-01-01',

DATE '2001-01-01',

DATE '2002-01-01');

Listing

title_id pubdate

-------- ----------

T05 2001-01-01

Figure 4.41 Result of Listing 4.41.

Testing for Nulls
with IS NULL
Recall from “Nulls” in Chapter 3 that nulls

represent missing or unknown values. This

situation causes a problem: LIKE, BETWEEN,

IN, and other WHERE-clause conditions can’t

find nulls because unknown values don’t

satisfy specific conditions. A null matches

no value—not even other nulls. You can’t

use = or <> to test whether a value is null.

In the table publishers, for example, note

that publisher P03 has a null in the column

state because that column doesn’t apply to

Germany (Listing 4.42 and Figure 4.42).

I can’t use complementary comparisons to

select the null, because null is neither California

nor not-California; it’s undefined (Listings

4.43 and 4.44, Figures 4.43 and 4.44).

To avert disaster, SQL provides IS NULL to

determine whether a given value is null.

The IS NULL condition’s important character-

istics are:

◆ IS NULL works for columns of any

data type.

◆ You can negate an IS NULL condition

with IS NOT NULL.

◆ You can combine IS NULL conditions

and other conditions with AND and OR.

124

Chapter 4

T
e

s
t

i
n

g
 f

o
r

 N
u

l
l
s

 w
i
t

h
 I

S
 N

U
L

L

Listing 4.42 List the locations of all the publishers.
See Figure 4.42 for the result.

SELECT pub_id, city, state, country

FROM publishers;

Listing

pub_id city state country

------ ------------- ----- -------

P01 New York NY USA

P02 San Francisco CA USA

P03 Hamburg NULL Germany

P04 Berkeley CA USA

Figure 4.42 Result of Listing 4.42. The column state
doesn’t apply to the publisher located in Germany.

Listing 4.43 List the publishers located in California.
See Figure 4.43 for the result.

SELECT pub_id, city, state, country

FROM publishers

WHERE state = 'CA';

Listing

pub_id city state country

------ ------------- ----- -------

P02 San Francisco CA USA

P04 Berkeley CA USA

Figure 4.43 Result of Listing 4.43. This result doesn’t
include publisher P03.

To retrieve rows with nulls or
non-null values:

◆ Type:

SELECT columns

FROM table

WHERE test_column IS [NOT] NULL;

columns is one or more comma-separated

column names, and table is the name of

the table that contains columns.

In the search condition, test_column

is the name of a column in table.

(test_column doesn’t have to be listed

in columns.) Specify NOT NULL to match

non-null values (Listings 4.45 and 4.46,

Figures 4.45 and 4.46).

125

Retrieving Data from a Table

T
e

s
t

i
n

g
 f

o
r

 N
u

l
l
s

 w
i
t

h
 I

S
 N

U
L

L

Listing 4.44 List the publishers located outside
California (the wrong way—see Listing 4.45 for the
correct way). See Figure 4.44 for the result.

SELECT pub_id, city, state, country

FROM publishers

WHERE state <> 'CA';

Listing

pub_id city state country

------ -------- ----- -------

P01 New York NY USA

Figure 4.44 Result of Listing 4.44. This result doesn’t
include publisher P03 either. The conditions state =
‘CA’ and state <> ‘CA’ aren’t complementary after all;
nulls don’t match any value and so can’t be selected by
using the types of conditions I’ve covered so far.

Listing 4.45 List the publishers located outside
California (the correct way). See Figure 4.45 for the
result.

SELECT pub_id, city, state, country

FROM publishers

WHERE state <> 'CA'

OR state IS NULL;

Listing

pub_id city state country

------ -------- ----- -------

P01 New York NY USA

P03 Hamburg NULL Germany

Figure 4.45 Result of Listing 4.45. Now publisher P03
is in the result.

title_id type pubdate

-------- --------- ----------

T06 biography 2000-07-31

T07 biography 1999-10-01

T12 biography 2000-08-31

Figure 4.46 Result of Listing 4.46. Without the
IS NOT NULL condition, this result would have
included title T10.

Listing 4.46 List the biographies whose (past or
future) publication dates are known. See Figure 4.46
for the result.

SELECT title_id, type, pubdate

FROM titles

WHERE type = 'biography'

AND pubdate IS NOT NULL;

Listing

✔ Tips

■ test_column can be an expression.

■ The NOT that can precede NULL is inde-

pendent of the NOT that can precede

test_column; see the Tips in “Matching

Patterns with LIKE” earlier in this chapter.

■ Nulls cause rows to be excluded from

results only if a column containing nulls

is a test column in a WHERE condition.

The following query, for example, retrieves

all the rows in the table publishers (refer

to Figure 4.42) because the null in the col-

umn state isn’t compared with anything:

SELECT pub_id, city, state, country

FROM publishers

WHERE country <> ‘Canada’;

To forbid nulls in a column, see

“Forbidding Nulls with NOT NULL” in

Chapter 11.

■ It bears repeating that a null isn’t the

same as an empty string (‘’). In the

table authors, for example, the column

au_fname contains an empty string for

author A06 (last name of Kellsey). The

WHERE condition to find the first name is

WHERE au_fname = ‘’

and not

WHERE au_fname IS NULL

■ Oracle treats an empty string

(‘’) as a null; see the DBMS Tip

in “Nulls” in Chapter 3.

126

Chapter 4

T
e

s
t

i
n

g
 f

o
r

 N
u

l
l
s

 w
i
t

h
 I

S
 N

U
L

L

Operators and functions let you calculate

results derived from column values, system-

determined values, constants, and other

data. You can perform:

◆ Arithmetic operations—Cut everyone’s

salary by 10 percent.

◆ String operations—Concatenate personal

information into a mailing address.

◆ Datetime operations—Compute the time

interval between two dates.

◆ System operations—Find out what time

your DBMS thinks it is.

An operator is a symbol or keyword indicat-

ing an operation that acts on one or more

elements. The elements, called operands, are

SQL expressions. Recall from the “SQL

Syntax” Tips in Chapter 3 that an expression

is any legal combination of symbols and

tokens that evaluates to a single value (or

null). In price * 2, for example, * is the oper-

ator, and price and 2 are its operands.

A function is a built-in, named routine that

performs a specialized task. Most functions

take parenthesized arguments, which are values

you pass to the function that the function

then uses to perform its task. Arguments can

be column names, literals, nested functions, or

more-complex expressions. In UPPER(au_lname),

for example, UPPER is the function name, and

au_lname is the argument.

127

Operators
and Functions

5

O
p

e
r

a
t

o
r

s
 a

n
d

 F
u

n
c

t
i
o

n
s

Creating Derived Columns
You can use operators and functions to

create derived columns. A derived column

is the result of a calculation and is created

with a SELECT-clause expression that is

something other than a simple reference to

a column. Derived columns don’t become

permanent columns in a table; they’re for

display and reporting purposes.

The values in a derived column often are

computed from values in existing columns,

but you also can create a derived column by

using a constant expression (such as a string,

number, or date) or system value (such as

the system time). Listing 5.1 shows a

SELECT statement that yields a trivial arith-

metic calculation; it needs no FROM clause

because it doesn’t retrieve data from a table.

Figure 5.1 shows the result.

Recall from “Tables, Columns, and Rows” in

Chapter 2 that closure guarantees that every

result is a table, so even this simple result is

a table: a 1 ✕ 1 table that contains the value 5.

If I retrieve a column along with a constant,

the constant appears in every row of the

result (Listing 5.2 and Figure 5.2).

Your DBMS will assign the derived column a

default name, typically the expression itself as

a quoted identifier. You should name derived

columns explicitly with an AS clause because

system-assigned names can be long, unwieldy,

and inconvenient for database applications to

refer to; see “Creating Column Aliases with AS”

in Chapter 4 (Listing 5.3 and Figure 5.3).

128

Chapter 5

C
r

e
a

t
i
n

g
 D

e
r

i
v

e
d

 C
o

l
u

m
n

s

Listing 5.1 A constant expression in a SELECT clause.
No FROM clause is needed, because I’m not retrieving
data from a table. See Figure 5.1 for the result.

SELECT 2 + 3;

Listing

2 + 3

5

Figure 5.1 Result of Listing 5.1. This result is a table
with one row and one column.

Listing 5.2 Here, I’ve retrieved a column and a
constant expression. See Figure 5.2 for the result.

SELECT au_id, 2 + 3

FROM authors;

Listing

au_id 2 + 3

----- -----

A01 5

A02 5

A03 5

A04 5

A05 5

A06 5

A07 5

Figure 5.2 Result of Listing 5.2. The constant is
repeated in each row.

✔ Tip

■ Oracle requires a FROM clause

in a SELECT statement and so

creates the dummy table DUAL automati-

cally to be used for SELECTing a constant

expression; search Oracle documentation

for DUAL table. To run Listing 5.1, add a

FROM clause that selects the constant

value from DUAL:

SELECT 2 + 3

FROM DUAL;

DB2 requires a FROM clause in a SELECT
statement and so creates the dummy

table SYSIBM.SYSDUMMY1 automatically to

be used for SELECTing a constant expres-

sion; search DB2 documentation for

SYSIBM.SYSDUMMY1. To run Listing 5.1,

add a FROM clause that selects the con-

stant value from SYSIBM.SYSDUMMY1:

SELECT 2 + 3

FROM SYSIBM.SYSDUMMY1;

In older PostgreSQL versions, convert

the floating- point number in Listing 5.3

to DECIMAL; see “Converting Data Types

with CAST()” later in this chapter. To run

Listing 5.3, change the New price calcula-

tion in the SELECT clause to:

price * CAST((1 - 0.10) AS DECIMAL)

129

Operators and Functions

C
r

e
a

t
i
n

g
 D

e
r

i
v

e
d

 C
o

l
u

m
n

s

Listing 5.3 List the book prices discounted by 10
percent. The derived columns would have DBMS-
specific default names if the AS clauses were
removed. See Figure 5.3 for the result.

SELECT title_id,

price,

0.10 AS "Discount",

price * (1 - 0.10) AS "New price"

FROM titles;

Listing

title_id price Discount New price

-------- ----- -------- ---------

T01 21.99 0.10 19.79

T02 19.95 0.10 17.95

T03 39.95 0.10 35.96

T04 12.99 0.10 11.69

T05 6.95 0.10 6.25

T06 19.95 0.10 17.95

T07 23.95 0.10 21.56

T08 10.00 0.10 9.00

T09 13.95 0.10 12.56

T10 NULL 0.10 NULL

T11 7.99 0.10 7.19

T12 12.99 0.10 11.69

T13 29.99 0.10 26.99

Figure 5.3 Result of Listing 5.3.

Performing Arithmetic
Operations
A monadic (or unary) arithmetic operator

performs a mathematical operation on a

single numeric operand to produce a result.

The - (negation) operator changes the sign

of its operand, and the not-very-useful +
(identity) operator leaves its operand

unchanged. A dyadic (or binary) arithmetic

operator performs a mathematical operation

on two numeric operands to produce a result.

These operators include the usual ones: +
(addition), - (subtraction), * (multiplication),

and / (division). Table 5.1 lists SQL’s arith-

metic operators (expr is a numeric expression).

To change the sign of a number:

◆ Type -expr

expr is a numeric expression (Listing 5.4

and Figure 5.4).

130

Chapter 5

P
e

r
f
o

r
m

i
n

g
 A

r
i
t

h
m

e
t

i
c

 O
p

e
r

a
t

i
o

n
s

Table 5.1

Arithmetic Operators
O p e r a t o r W h a t I t D o e s

-expr Reverses the sign of expr
+expr Leaves expr unchanged
expr1 + expr2 Sums expr1 and expr2
expr1 – expr2 Subtracts expr2 from expr1
expr1 * expr2 Multiplies expr1 and expr2
expr1 / expr2 Divides expr1 by expr2

Listing 5.4 The negation operator changes the sign of
a number. See Figure 5.4 for the result.

SELECT title_id,

-advance AS "Advance"

FROM royalties;

Listing

title_id Advance

-------- -----------

T01 -10000.00

T02 -1000.00

T03 -15000.00

T04 -20000.00

T05 -100000.00

T06 -20000.00

T07 -1000000.00

T08 0.00

T09 0.00

T10 NULL

T11 -100000.00

T12 -50000.00

T13 -20000.00

Figure 5.4 Result of Listing 5.4. Note that zero has no
sign (is neither positive nor negative).

To add, subtract, multiply, or divide:

◆ Type expr1+expr2 to add, expr1-expr2 to

subtract, expr1*expr2 to multiply, or

expr1/expr2 to divide.

expr1 and expr2 are numeric expressions

(Listing 5.5 and Figure 5.5).

✔ Tips

■ The result of any arithmetic operation

that involves a null is null.

■ If you use multiple operators in a single

expression, you may need to use paren-

theses to control the calculation order; see

“Determining the Order of Evaluation”

later in this chapter.

■ If you mix numeric data types in an

arithmetic expression, your DBMS con-

verts, or coerces, all the numbers to the

data type of the expression’s most com-

plex operand and returns the result in

this type. This conversion process is

called promotion. If you add an INTEGER
and a FLOAT, for example, the DBMS con-

verts the integer to a float, adds the

numbers, and returns the sum as a float.

In some cases, you must convert a data

type to another data type explicitly; see

“Converting Data Types with CAST()”

later in this chapter.

continues on next page

131

Operators and Functions

P
e

r
f
o

r
m

i
n

g
 A

r
i
t

h
m

e
t

i
c

 O
p

e
r

a
t

i
o

n
s

Listing 5.5 List the biographies by descending
revenue (= price x sales). See Figure 5.5 for the result.

SELECT title_id,

price * sales AS "Revenue"

FROM titles

WHERE type = 'biography'

ORDER BY price * sales DESC;

Listing

title_id Revenue

-------- -----------

T07 35929790.00

T12 1299012.99

T06 225834.00

T10 NULL

Figure 5.5 Result of Listing 5.5.

Other Operators and Functions

All DBMSs provide plenty of operators

and functions in addition to those

defined in the SQL standard (or covered

in this book). In fact, the standard is play-

ing catch-up—many of the functions

introduced in the latest standard have

existed for years in DBMSs. The earlier

standards were so anemic that they left

SQL weaker than a desktop calculator. If

you search your DBMS documentation

for operators and functions, you’ll find

mathematical, statistical, financial, scien-

tific, trigonometric, conversion, string,

datetime, bitwise, system, metadata,

security, and other entries.

■ If you’re writing a database application or

UPDATEing rows, note that data types aren’t

closed for some arithmetic operations.

If you multiply or add two SMALLINTs, for

example, the result might be greater than

a SMALLINT column can hold. Similarly,

dividing two INTEGERs doesn’t necessarily

yield an INTEGER.

■ Sometimes DBMSs force mathe-

matical closure, so be careful

when dividing integers by integers. If an

integer dividend is divided by an integer

divisor, the result may be an integer that

has any fractional part of the result trun-

cated. You might expect the two derived

columns in Listing 5.6 to contain the

same values, because the column pages
(an INTEGER) is divided by two equal

constants: 10 (an integer) and 10.0 (a

float). Microsoft Access, Oracle, and

MySQL return the result you’d expect

(Figure 5.6a), but Microsoft SQL Server,

DB2, and PostgreSQL truncate the result

of an integer division (Figure 5.6b).

132

Chapter 5

P
e

r
f
o

r
m

i
n

g
 A

r
i
t

h
m

e
t

i
c

 O
p

e
r

a
t

i
o

n
s

Listing 5.6 This query’s first derived column
divides pages by the integer constant 10, and the
second derived column divides pages by the
floating-point constant 10.0. In the result, you’d
expect identical values to be in both derived
columns. See Figures 5.6a and 5.6b for the results.

SELECT title_id,

pages,

pages/10 AS "pages/10",

pages/10.0 AS "pages/10.0"

FROM titles;

Listing

title_id pages pages/10 pages/10.0

-------- ----- -------- ----------

T01 107 10.7 10.7

T02 14 1.4 1.4

T03 1226 122.6 122.6

T04 510 51.0 51.0

T05 201 20.1 20.1

T06 473 47.3 47.3

T07 333 33.3 33.3

T08 86 8.6 8.6

T09 22 2.2 2.2

T10 NULL NULL NULL

T11 826 82.6 82.6

T12 507 50.7 50.7

T13 802 80.2 80.2

Figure 5.6a Result of Listing 5.6 for Microsoft Access,
Oracle, and MySQL. Dividing two integers yields a
floating-point number (as you’d expect).

title_id pages pages/10 pages/10.0

-------- ----- -------- ----------

T01 107 10 10.7

T02 14 1 1.4

T03 1226 122 122.6

T04 510 51 51.0

T05 201 20 20.1

T06 473 47 47.3

T07 333 33 33.3

T08 86 8 8.6

T09 22 2 2.2

T10 NULL NULL NULL

T11 826 82 82.6

T12 507 50 50.7

T13 802 80 80.2

Figure 5.6b Result of Listing 5.6 for Microsoft SQL
Server, DB2, and PostgreSQL. Dividing two integers
yields an integer; the fractional part of the result is
discarded (not as you’d expect).

Determining the Order
of Evaluation
Precedence determines the priority of vari-

ous operators when more than one operator

is used in an expression. Operators with

higher precedence are evaluated first.

Arithmetic operators (+, -, *, and so on) have

higher precedence than comparison opera-

tors (<, = , >, and so on), which have higher

precedence than logical operators (NOT, AND,

OR), so the expression

a or b * c >= d

is equivalent to

a or ((b * c) >= d)

Operators with lower precedence are less

binding than those with higher precedence.

Table 5.2 lists operator precedences from

most to least binding. Operators in the same

row have equal precedence.

Associativity determines the order of

evaluation in an expression when adjacent

operators have equal precedence. SQL uses

left-to-right associativity.

You don’t need to memorize all this

information. You can use parentheses to

override precedence and associativity rules

(Listing 5.7 and Figure 5.7).

✔ Tips

■ Table 5.2 is incomplete; it omits

some standard (such as IN and

EXISTS) and nonstandard (DBMS-specific)

operators. To determine the complete

order of evaluation that your DBMS uses,

search your DBMS documentation for

precedence.

To run Listing 5.7 in Oracle, add the

clause FROM DUAL. To run it in DB2, add

the clause FROM SYSIBM.SYSDUMMY1. See

the DBMS Tip in “Creating Derived

Columns” earlier in this chapter.

133

Operators and Functions

D
e

t
e

r
m

i
n

i
n

g
 t

h
e

 O
r

d
e

r
 o

f
 E

v
a

l
u

a
t

i
o

n

Table 5.2

Order of Evaluation (Highest to Lowest)
O p e r a t o r D e s c r i p t i o n

+, - Monadic identity, monadic negation
*, / Multiplication, division
+, - Addition, subtraction
=, <>, <, <=, >, >= Comparison operators
NOT Logical NOT
AND Logical AND
OR Logical OR

Listing 5.7 The first and second columns show how
to use parentheses to override precedence rules.
The third and fourth columns show how to use
parentheses to override associativity rules. See
Figure 5.7 for the result.

SELECT 2 + 3 * 4 AS "2+3*4",

(2 + 3) * 4 AS "(2+3)*4",

6 / 2 * 3 AS "6/2*3",

6 / (2 * 3) AS "6/(2*3)";

Listing

2+3*4 (2+3)*4 6/2*3 6/(2*3)

----- ------- ----- -------

14 20 9 1

Figure 5.7 Result of Listing 5.7.

■ It’s good programming style to add

parentheses (even when they’re unneces-

sary) to complex expressions to ensure

your intended evaluation order and make

code more portable and easier to read.

Concatenating Strings
with ||
Use the operator || to combine, or concate-

nate, strings. The operator’s important char-

acteristics are:

◆ The operator || is two consecutive

vertical-bar, or pipe, characters.

◆ Concatenation doesn’t add a space

between strings.

◆ ||, a dyadic operator, combines two

strings into a single string: ‘formal’
|| ‘dehyde’ is ‘formaldehyde’.

◆ You can chain concatenations to com-

bine multiple strings into a single string:

‘a’ || ‘b’ || ‘c’ || ‘d’ is ‘abcd’.

◆ Concatenation with an empty string (‘’)

leaves a string unchanged: ‘a’ || ‘’ ||
‘b’ is ‘ab’.

◆ The result of any concatenation opera-

tion that involves a null is null: ‘a’ ||
NULL || ‘b’ is NULL. (But see the

Oracle exception in the DBMS Tip in

this section.)

◆ To concatenate a string and a nonstring

(such as a numeric or datetime value),

you must convert the nonstring to a

string if your DBMS doesn’t convert it

implicitly; see “Converting Data Types

with CAST()” later in this chapter.

134

Chapter 5

C
o

n
c

a
t

e
n

a
t

i
n

g
 S

t
r

i
n

g
s

 w
i
t

h
 |

|

Listing 5.8 List the authors’ first and last names,
concatenated into a single column and sorted by last
name/first name. See Figure 5.8 for the result.

SELECT au_fname || ' ' || au_lname

AS "Author name"

FROM authors

ORDER BY au_lname ASC, au_fname ASC;

Listing

Author name

Sarah Buchman

Wendy Heydemark

Hallie Hull

Klee Hull

Christian Kells

Kellsey

Paddy O'Furniture

Figure 5.8 Result of Listing 5.8.

Listing 5.9 List biography sales by descending sales
order. Here, I need to convert sales from an integer to
a string. See Figure 5.9 for the result.

SELECT CAST(sales AS CHAR(7))

|| ' copies sold of title '

|| title_id

AS "Biography sales"

FROM titles

WHERE type = 'biography'

AND sales IS NOT NULL

ORDER BY sales DESC;

Listing

Biography sales

1500200 copies sold of title T07

100001 copies sold of title T12

11320 copies sold of title T06

Figure 5.9 Result of Listing 5.9.

To concatenate strings:

◆ Type:

string1 || string2

string1 and string2 are the strings to be

combined. Each operand is a string

expression such as a column that con-

tains character strings, a string literal,

or the result of an operation or function

that returns a string (Listings 5.8 through

5.11, Figures 5.8 through 5.11).

✔ Tips

■ You can use || in SELECT, WHERE, and

ORDER BY clauses or anywhere an expres-

sion is allowed.

■ You can concatenate hex and bit strings:

B’0100’ || B’1011’ is B’01001011’.

■ Listing 5.11 shows how to use || in a

WHERE clause, but it’s actually bad SQL.

The efficient way to express the clause is:

WHERE au_fname = ‘Klee’

AND au_lname = ‘Hull’

■ You can use the TRIM() function to

remove unwanted spaces from concate-

nated strings. Recall from “Character

String Types” in Chapter 3 that CHAR
values are padded with trailing spaces,

sometimes creating long, ugly stretches

of spaces in concatenated strings. TRIM()
will remove the extra space in front of

the name Kellsey in Figure 5.8, for exam-

ple; see “Trimming Characters with

TRIM()” later in this chapter.

continues on next page

135

Operators and Functions

C
o

n
c

a
t

e
n

a
t

i
n

g
 S

t
r

i
n

g
s

 w
i
t

h
 ||

Listing 5.10 List biographies by descending publication
date. Here, I need to convert pubdate from a datetime
to a string. See Figure 5.10 for the result.

SELECT 'Title '

|| title_id

|| ' published on '

|| CAST(pubdate AS CHAR(10))

AS "Biography publication dates"

FROM titles

WHERE type = 'biography'

AND pubdate IS NOT NULL

ORDER BY pubdate DESC;

Listing

Biography publication dates

Title T12 published on 2000-08-31

Title T06 published on 2000-07-31

Title T07 published on 1999-10-01

Figure 5.10 Result of Listing 5.10.

Listing 5.11 List all the authors named Klee Hull. See
Figure 5.11 for the result.

SELECT au_id, au_fname, au_lname

FROM authors

WHERE au_fname || ' ' || au_lname

= 'Klee Hull';

Listing

au_id au_fname au_lname

----- -------- --------

A04 Klee Hull

Figure 5.11 Result of Listing 5.11.

■ In Microsoft Access, the con-

catenation operator is +, and the

conversion function is Format(string).

To run Listings 5.8 through 5.11, change

the concatenation and conversion

expressions to (Listing 5.8):

au_fname + ‘ ‘ + au_lname

and (Listing 5.9):

Format(sales)

➝ + ‘ copies sold of title ‘

➝ + title_id

and (Listing 5.10):

‘Title ‘

➝ + title_id

➝ + ‘ published on ‘

➝ + Format(pubdate)

and (Listing 5.11):

au_fname + ‘ ‘ + au_lname

➝ = ‘Klee Hull’;

In Microsoft SQL Server, the concate-

nation operator is +. To run Listings 5.8

through 5.11, change the concatenation

expressions to (Listing 5.8):

au_fname + ‘ ‘ + au_lname

and (Listing 5.9):

CAST(sales AS CHAR(7))

➝ + ‘ copies sold of title ‘

➝ + title_id

and (Listing 5.10):

‘Title ‘

➝ + title_id

➝ + ‘ published on ‘

➝ + CAST(pubdate AS CHAR(10))

and (Listing 5.11):

au_fname + ‘ ‘ + au_lname

➝ = ‘Klee Hull’;

In MySQL, the concatenation function is

CONCAT(). The || operator is legal, but it

means logical OR in MySQL by default. (Use

PIPES_AS_CONCAT mode to treat || as a

string-concatenation operator rather than

as a synonym for OR.) CONCAT() takes any

number of arguments and converts non-

strings to strings as necessary (so CAST()
isn’t needed). To run Listings 5.8 through

5.11, change the concatenation expressions

to (Listing 5.8):

CONCAT(au_fname, ‘ ‘, au_lname)

and (Listing 5.9):

CONCAT(sales,

➝ ’ copies sold of title ‘,

➝ title_id)

and (Listing 5.10):

CONCAT(‘Title ‘,

➝ title_id,

➝ ’ published on ‘,

➝ pubdate)

and (Listing 5.11):

CONCAT(au_fname, ‘ ‘, au_lname)

➝ = ‘Klee Hull’;

Oracle treats an empty string as null: ‘a’
|| NULL || ‘b’ returns ‘ab’. See the DBMS

Tip in “Nulls” in Chapter 3.

Oracle, MySQL, and PostgreSQL convert

nonstrings to strings implicitly in concat-

enations; Listings 5.9 and 5.10 still will run

on these DBMSs if you omit CAST(). Search

your DBMS documentation for concatenation

or conversion.

Oracle and DB2 also support the CONCAT()
function.

136

Chapter 5

C
o

n
c

a
t

e
n

a
t

i
n

g
 S

t
r

i
n

g
s

 w
i
t

h
 |

|

Extracting a Substring
with SUBSTRING()
Use the function SUBSTRING() to extract part

of a string. The function’s important charac-

teristics are:

◆ A substring is any sequence of contigu-

ous characters from the source string,

including an empty string or the entire

source string itself.

◆ SUBSTRING() extracts part of a string

starting at a specified position and

continuing for a specified number of

characters.

◆ A substring of an empty string is an

empty string.

◆ If any argument is null, SUBSTRING()
returns null. (But see the Oracle excep-

tion in the DBMS Tip in this section.)

To extract a substring:

◆ Type:

SUBSTRING(string FROM start [FOR
length])

string is the source string from which to

extract the substring. string is a string

expression such as a column that con-

tains character strings, a string literal, or

the result of an operation or function that

returns a string. start is an integer that

specifies where the substring begins, and

length is an integer that specifies the

length of the substring (the number of

characters to return). start starts counting

at 1. If FOR length is omitted, SUBSTRING()
returns all the characters from start to

the end of string (Listings 5.12 through

5.14, Figures 5.12 through 5.14).

137

Operators and Functions

E
x

t
r

a
c

t
i
n

g
 a

 S
u

b
s

t
r

i
n

g
 w

i
t

h
 S

U
B

S
T

R
I
N

G
(

)

Listing 5.12 Split the publisher IDs into alphabetic
and numeric parts. The alphabetic part of a publisher
ID is the first character, and the remaining characters
are the numeric part. See Figure 5.12 for the result.

SELECT pub_id,

SUBSTRING(pub_id FROM 1 FOR 1)

AS "Alpha part",

SUBSTRING(pub_id FROM 2)

AS "Num part"

FROM publishers;

Listing

pub_id Alpha part Num part

------ ---------- --------

P01 P 01

P02 P 02

P03 P 03

P04 P 04

Figure 5.12 Result of Listing 5.12.

Listing 5.13 List the first initial and last name of the
authors from New York State and Colorado. See
Figure 5.13 for the result.

SELECT SUBSTRING(au_fname FROM 1 FOR 1)

|| '. '

|| au_lname

AS "Author name",

state

FROM authors

WHERE state IN ('NY', 'CO');

Listing

Author name state

------------ -----

S. Buchman NY

W. Heydemark CO

C. Kells NY

Figure 5.13 Result of Listing 5.13.

✔ Tips

■ You can use SUBSTRING() in SELECT,

WHERE, and ORDER BY clauses or anywhere

an expression is allowed.

■ You can extract substrings from hex and

bit strings: SUBSTRING(B’01001011’ FROM
5 FOR 4) returns B’1011’.

■ In Microsoft Access, the sub-

string function is Mid(string,
start [,length]). Use + to concatenate

strings. To run Listings 5.12 through 5.14,

change the substring expressions to

(Listing 5.12):

Mid(pub_id, 1, 1)

Mid(pub_id, 2)

and (Listing 5.13):

Mid(au_fname, 1, 1) + ‘. ‘ + au_lname

and (Listing 5.14):

Mid(phone, 1, 3)=’415’

In Microsoft SQL Server, the substring

function is SUBSTRING(string, start,
length). Use + to concatenate strings. To

run Listings 5.12 through 5.14, change the

substring expressions to (Listing 5.12):

SUBSTRING(pub_id, 1, 1)

SUBSTRING(pub_id, 2, LEN(pub_id)-1)

and (Listing 5.13):

SUBSTRING(au_fname, 1, 1)

➝ + ‘. ‘

➝ + au_lname

and (Listing 5.14):

SUBSTRING(phone, 1, 3)=’415’

138

Chapter 5

E
x

t
r

a
c

t
i
n

g
 a

 S
u

b
s

t
r

i
n

g
 w

i
t

h
 S

U
B

S
T

R
I
N

G
(

)

Listing 5.14 List the authors whose area code is 415.
See Figure 5.14 for the result.

SELECT au_fname, au_lname, phone

FROM authors

WHERE SUBSTRING(phone FROM 1 FOR 3)='415';

Listing

au_fname au_lname phone

-------- -------- ------------

Hallie Hull 415-549-4278

Klee Hull 415-549-4278

Figure 5.14 Result of Listing 5.14.

In Oracle and DB2, the substring function

is SUBSTR(string, start [,length]). To run

Listings 5.12 through 5.14, change the sub-

string expressions to (Listing 5.12):

SUBSTR(pub_id, 1, 1)

SUBSTR(pub_id, 2)

and (Listing 5.13):

SUBSTR(au_fname, 1, 1)

➝ || ‘. ‘

➝ || au_lname

and (Listing 5.14):

SUBSTR(phone, 1, 3)=’415’

In MySQL, use CONCAT() to run Listing 5.13

(see “Concatenating Strings with ||” earlier

in this chapter). Change the concatenation

expression to:

CONCAT(

➝ SUBSTRING(au_fname FROM 1 FOR 1),

➝ ’. ‘,

➝ au_lname)

Oracle treats an empty string as null:

SUBSTR(NULL, 1, 2) returns ‘’. See the

DBMS Tip in “Nulls” in Chapter 3.

Your DBMS implicitly might constrain start

and length arguments that are too small or

too large to sensible values. The substring

function silently may replace a negative start

with 1 or a too-long length with the length of

string, for example. Search your DBMS docu-

mentation for substring or substr.

MySQL and PostgreSQL also support the

SUBSTR(string, start, length) form of the

substring function.

139

Operators and Functions

E
x

t
r

a
c

t
i
n

g
 a

 S
u

b
s

t
r

i
n

g
 w

i
t

h
 S

U
B

S
T

R
I
N

G
(

)

Changing String Case
with UPPER() and LOWER()
Use the function UPPER() to return a string

with lowercase letters converted to upper-

case, and use the function LOWER() to return

a string with uppercase letters converted to

lowercase. The functions’ important charac-

teristics are:

◆ A cased character is a letter that can be

lowercase (a) or uppercase (A).

◆ Case changes affect only letters. Digits,

punctuation, and whitespace are left

unchanged.

◆ Case changes have no effect on empty

strings (‘’).

◆ If its argument is null, UPPER() and

LOWER() return null. (But see the Oracle

exception in the DBMS Tip in this section.)

140

Chapter 5

C
h

a
n

g
i
n

g
 S

t
r

i
n

g
 C

a
s

e

Case-Insensitive Comparisons

In DBMSs that perform case-sensitive

WHERE-clause comparisons by default,

UPPER() or LOWER() often is used to make

case-insensitive comparisons:

WHERE UPPER(au_fname) = ‘JOHN’

If you’re sure that your data are clean, it’s

faster to look for only reasonable letter

combinations than to use case functions:

WHERE au_fname = ‘JOHN’

OR au_fname = ‘John’

UPPER() and LOWER() affect characters

with diacritical marks (such as accents

and umlauts): UPPER(‘ö’) is ‘Ö’, for exam-

ple. If your data contain such characters

and you’re making case-insensitive com-

parisons such as

WHERE UPPER(au_fname) = ‘JOSÉ’

make sure that your DBMS doesn’t lose

the marks on conversion. UPPER(‘José’)
should be ‘JOSÉ’, not ‘JOSE’. See also

“Filtering Rows with WHERE” in Chapter 4.

To convert a string to uppercase
or lowercase:

◆ To convert a string to uppercase, type:

UPPER(string)

or

To convert a string to lowercase, type:

LOWER(string)

string is a string expression such as a

column that contains character strings,

a string literal, or the result of an opera-

tion or function that returns a string

(Listings 5.15 and 5.16, Figures 5.15

and 5.16).

✔ Tips

■ You can use UPPER() and LOWER() in

SELECT, WHERE, and ORDER BY clauses or

anywhere an expression is allowed.

■ UPPER() and LOWER() don’t affect charac-

ter sets with no concept of case (such

as Hebrew and Chinese).

■ In Microsoft Access, the

upper- and lowercase functions

are UCase(string) and LCase(string).

To run Listings 5.15 and 5.16, change the

case expressions to (Listing 5.15):

LCase(au_fname)

UCase(au_lname)

and (Listing 5.16):

UCase(title_name) LIKE ‘%MO%’

Oracle treats an empty string as null:

UPPER(NULL) and LOWER(NULL) return ‘’.

See the DBMS Tip in “Nulls” in Chapter 3.

Your DBMS might provide other string-

casing functions to, say, invert case or

convert strings to sentence or title case.

Search your DBMS documentation for

character functions or string functions.

141

Operators and Functions

C
h

a
n

g
i
n

g
 S

t
r

i
n

g
 C

a
s

e

Listing 5.15 List the authors’ first names in lowercase
and last names in uppercase. See Figure 5.15 for
the result.

SELECT LOWER(au_fname) AS "Lower",

UPPER(au_lname) AS "Upper"

FROM authors;

Listing

Lower Upper

--------- -----------

sarah BUCHMAN

wendy HEYDEMARK

hallie HULL

klee HULL

christian KELLS

KELLSEY

paddy O'FURNITURE

Figure 5.15 Result of Listing 5.15.

Listing 5.16 List the titles that contain the characters
MO, regardless of case. All the letters in the LIKE
pattern must be uppercase for this query to work. See
Figure 5.16 for the result.

SELECT title_name

FROM titles

WHERE UPPER(title_name) LIKE '%MO%';

Listing

title_name

200 Years of German Humor

I Blame My Mother

Figure 5.16 Result of Listing 5.16.

Trimming Characters
with TRIM()
Use the function TRIM() to remove unwanted

characters from the ends of a string. The

function’s important characteristics are:

◆ You can trim leading characters, trailing

characters, or both. (You can’t use TRIM()
to remove characters from within a

string.)

◆ By default, TRIM() trims spaces, but you

can strip off any unwanted characters,

such as leading and trailing zeros or

asterisks.

◆ TRIM() typically is used to format results

and make comparisons in a WHERE clause.

◆ TRIM() is useful for trimming trailing

spaces from CHAR values. Recall from

“Character String Types” in Chapter 3

that DBMSs add spaces automatically to

the end of CHAR values to create strings of

exactly a specified length.

◆ Trimming has no effect on empty

strings (‘’).

◆ If any argument is null, TRIM() returns

null. (But see the Oracle exception in

the DBMS Tip in this section.)

142

Chapter 5

T
r

i
m

m
i
n

g
 C

h
a

r
a

c
t

e
r

s
 w

i
t

h
 T

R
I
M

(
)

To trim spaces from a string:

◆ Type:

TRIM([[LEADING | TRAILING | BOTH]
FROM] string)

string is a string expression such as a

column that contains character strings,

a string literal, or the result of an opera-

tion or function that returns a string.

Specify LEADING to remove leading

spaces, TRAILING to remove trailing

spaces, or BOTH to remove leading and

trailing spaces. If this specifier is omit-

ted, BOTH is assumed (Listing 5.17 and

Figure 5.17).

143

Operators and Functions

T
r

i
m

m
i
n

g
 C

h
a

r
a

c
t

e
r

s
 w

i
t

h
 T

R
I
M

(
)

Listing 5.17 This query strips leading, trailing, and
both leading and trailing spaces from the string
‘ AAA ‘. The < and > characters show the extent of
the trimmed strings. See Figure 5.17 for the result.

SELECT

'<' || ' AAA ' || '>'

AS "Untrimmed",

'<' || TRIM(LEADING FROM ' AAA ') || '>'

AS "Leading",

'<' || TRIM(TRAILING FROM ' AAA ') || '>'

AS "Trailing",

'<' || TRIM(' AAA ') || '>'

AS "Both";

Listing

Untrimmed Leading Trailing Both

--------- --------- --------- -----

< AAA > <AAA > < AAA> <AAA>

Figure 5.17 Result of Listing 5.17.

To trim characters from a string:

◆ Type:

TRIM([LEADING | TRAILING | BOTH]
‘trim_chars’ FROM string)

string is the string to trim, and trim_chars

is one or more characters to remove

from string. Each argument is a string

expression such as a column that con-

tains character strings, a string literal,

or the result of an operation or function

that returns a string. Specify LEADING
to remove leading characters, TRAILING to

remove trailing characters, or BOTH to

remove leading and trailing characters.

If this specifier is omitted, BOTH is assumed

(Listings 5.18 and 5.19, Figures 5.18

and 5.19).

144

Chapter 5

T
r

i
m

m
i
n

g
 C

h
a

r
a

c
t

e
r

s
 w

i
t

h
 T

R
I
M

(
)

Listing 5.19 List the three-character title IDs that start
with T1, ignoring leading and trailing spaces. See
Figure 5.19 for the result.

SELECT title_id

FROM titles

WHERE TRIM(title_id) LIKE 'T1_';

Listing

title_id

T10

T11

T12

T13

Figure 5.19 Result of Listing 5.19.

Listing 5.18 Strip the leading H from the authors’ last
names that begin with H. See Figure 5.18 for the result.

SELECT au_lname,

TRIM(LEADING 'H' FROM au_lname)

AS "Trimmed name"

FROM authors;

Listing

au_lname Trimmed name

----------- ------------

Buchman Buchman

Heydemark eydemark

Hull ull

Hull ull

Kells Kells

Kellsey Kellsey

O'Furniture O'Furniture

Figure 5.18 Result of Listing 5.18.

✔ Tips

■ You can use TRIM() in SELECT, WHERE, and

ORDER BY clauses or anywhere an expres-

sion is allowed.

■ In Listing 5.8 earlier in this chapter,

I concatenated authors’ first and last

names into a single column. The result,

Figure 5.8, contains a single extra space

before the author named Kellsey. This

space—which separates the first and

last names in the other rows—appears

because Kellsey has no first name. You

can use TRIM() to remove this leading

space. Change the concatenation expres-

sion in Listing 5.8 to:

TRIM(au_fname || ‘ ‘ || au_lname)

■ In Microsoft Access, the

trimming functions are

LTrim(string) to trim leading spaces,

RTrim(string) to trailing spaces, and

Trim(string) to trim both leading and

trailing spaces. Use the Replace(string,
find, replacement [, start[, count[,
compare]]]) function to trim nonspace

characters (actually, to replace nonspaces

with empty strings). Use + to concate-

nate strings. To run Listings 5.17 and

5.18, change the trim expressions to

(Listing 5.17):

‘<’ + ‘ AAA ‘ + ‘>’

‘<’ + LTRIM(‘ AAA ‘) + ‘>’

‘<’ + RTRIM(‘ AAA ‘) + ‘>’

‘<’ + TRIM(‘ AAA ‘) + ‘>’

and (Listing 5.18):

Replace(au_lname, ‘H’, ‘’, 1, 1)

145

Operators and Functions

T
r

i
m

m
i
n

g
 C

h
a

r
a

c
t

e
r

s
 w

i
t

h
 T

R
I
M

(
)

In Microsoft SQL Server, the trimming

functions are LTRIM(string) to trim leading

spaces and RTRIM(string) to trim trailing

spaces. Use + to concatenate strings. To run

Listing 5.17, change the trim expressions to:

‘<’ + ‘ AAA ‘ + ‘>’

‘<’ + LTRIM(‘ AAA ‘) + ‘>’

‘<’ + RTRIM(‘ AAA ‘) + ‘>’

‘<’ + LTRIM(RTRIM(‘ AAA ‘)) + ‘>’

SQL Server’s LTRIM() and RTRIM() functions

remove spaces but not arbitrary trim_chars

characters. You can nest and chain SQL

Server’s CHARINDEX(), LEN(), PATINDEX(),

REPLACE(), STUFF(), SUBSTRING(), and other

character functions to replicate arbitrary-

character trimming. To run Listing 5.18,

change the trim expression to:

REPLACE(

➝ SUBSTRING(au_lname, 1, 1),’H’,’’)

➝ + SUBSTRING(au_lname, 2,

➝ LEN(au_lname))

To run Listing 5.19, change the trim expres-

sion to:

LTRIM(RTRIM(title_id)) LIKE ‘T1_’

In Oracle, add the clause FROM DUAL to run

Listing 5.17; see the DBMS Tip in “Creating

Derived Columns” earlier in this chapter.

Oracle forbids multiple characters in

trim_chars.

In DB2, the trimming functions are

LTRIM(string) to trim leading spaces and

RTRIM(string) to trim trailing spaces. To run

Listing 5.17, change the trim expressions:

‘<’ || ‘ AAA ‘ || ‘>’

‘<’ || LTRIM(‘ AAA ‘) || ‘>’

‘<’ || RTRIM(‘ AAA ‘) || ‘>’

‘<’ || LTRIM(RTRIM(‘ AAA ‘)) || ‘>’

You also must add the clause FROM
SYSIBM.SYSDUMMY1 to Listing 5.17; see

the DBMS Tip in “Creating Derived

Columns” earlier in this chapter.

You can nest and chain DB2’s LENGTH(),

LOCATE(), POSSTR(), REPLACE(), SUBSTR(),

and other character functions to replicate

arbitrary-character trimming. To run

Listing 5.18, change the trim expression to:

REPLACE(

➝ SUBSTR(au_lname, 1, 1),’H’,’’)

➝ || SUBSTR(au_lname, 2,

➝ LENGTH(au_lname))

To run Listing 5.19, change the trim

expression to:

LTRIM(RTRIM(title_id)) LIKE ‘T1_’

In MySQL, use CONCAT() to run Listing 5.17

(see “Concatenating Strings with ||” earlier

in this chapter). Change the concatenation

expressions to:

CONCAT(‘<’,’ AAA ‘,’>’)

CONCAT(‘<’,

➝ TRIM(LEADING FROM ‘ AAA ‘),

➝ ’>’)

CONCAT(‘<’,

➝ TRIM(TRAILING FROM ‘ AAA ‘),

➝ ’>’)

CONCAT(‘<’,TRIM(‘ AAA ‘),’>’)

Oracle treats an empty string as null:

TRIM(NULL) returns ‘’. See the DBMS Tip

in “Nulls” in Chapter 3.

Your DBMS might provide padding func-

tions to add spaces or other characters to

strings. The Oracle and PostgreSQL

padding functions are LPAD() and RPAD(), for

example. Search your DBMS documentation

for character functions or string functions.

146

Chapter 5

T
r

i
m

m
i
n

g
 C

h
a

r
a

c
t

e
r

s
 w

i
t

h
 T

R
I
M

(
)

Finding the Length
of a String with
CHARACTER_LENGTH()
Use the function CHARACTER_LENGTH() to

return the number of characters in a string.

The function’s important characteristics are:

◆ CHARACTER_LENGTH() returns an integer

greater than or equal to zero.

◆ CHARACTER_LENGTH() counts characters,

not bytes. A multibyte or Unicode char-

acter represents one character. (To count

bytes, see the Tips in this section.)

◆ The length of an empty string (‘’)

is zero.

◆ If its argument is null, CHARACTER_LENGTH()
returns null. (But see the Oracle excep-

tion in the DBMS Tip in this section.)

To find the length of a string:

◆ Type:

CHARACTER_LENGTH(string)

string is a string expression such as a

column that contains character strings,

a string literal, or the result of an opera-

tion or function that returns a string

(Listings 5.20 and 5.21, Figures 5.20

and 5.21).

147

Operators and Functions

F
i
n

d
i
n

g
 t

h
e

 L
e

n
g

t
h

 o
f
 a

 S
t

r
i
n

g

Listing 5.20 List the lengths of the authors’ first
names. See Figure 5.20 for the result.

SELECT au_fname,

CHARACTER_LENGTH(au_fname) AS "Len"

FROM authors;

Listing

au_fname Len

--------- ---

Sarah 5

Wendy 5

Hallie 6

Klee 4

Christian 9

0

Paddy 5

Figure 5.20 Result of Listing 5.20.

Listing 5.21 List the books whose titles contain fewer
than 30 characters, sorted by ascending title length.
See Figure 5.21 for the result.

SELECT title_name,

CHARACTER_LENGTH(title_name) AS "Len"

FROM titles

WHERE CHARACTER_LENGTH(title_name) < 30

ORDER BY CHARACTER_LENGTH(title_name) ASC;

Listing

title_name Len

----------------------------- ---

1977! 5

Kiss My Boo-Boo 15

How About Never? 16

I Blame My Mother 17

Exchange of Platitudes 22

200 Years of German Humor 25

Spontaneous, Not Annoying 25

But I Did It Unconsciously 26

Not Without My Faberge Egg 26

Just Wait Until After School 28

Ask Your System Administrator 29

Figure 5.21 Result of Listing 5.21.

✔ Tips

■ You can use CHARACTER_LENGTH() in

SELECT, WHERE, and ORDER BY clauses or

anywhere an expression is allowed.

■ CHARACTER_LENGTH and CHAR_LENGTH are

synonyms.

■ SQL also defines the BIT_LENGTH() and

OCTET_LENGTH() functions.

BIT_LENGTH(expr) returns the number

of bits in an expression;

BIT_LENGTH(B’01001011’) returns 8.

OCTET_LENGTH(expr) returns the number

of bytes in an expression;

OCTET_LENGTH(B’01001011’) returns 1,

and OCTET_LENGTH(‘ABC’) returns 3.

Octet length equals bit-length/8

(rounded up to the nearest integer, if

necessary). See the DBMS Tip in this

section for information about DBMS

bit- and byte-length functions.

■ In Microsoft Access and

Microsoft SQL Server, the

string-length function is LEN(string).

To run Listings 5.20 and 5.21, change the

length expressions to (Listing 5.20):

LEN(au_fname)

and (Listing 5.21):

LEN(title_name)

In Oracle and DB2, the string-length

function is LENGTH(string). To run

Listings 5.20 and 5.21, change the length

expressions to (Listing 5.20):

LENGTH(au_fname)

and (Listing 5.21):

LENGTH(title_name)

Bit- and byte-count functions vary by

DBMS. Microsoft Access has Len().

Microsoft SQL Server has DATALENGTH().

Oracle has LENGTHB(). DB2 has LENGTH().

MySQL has BIT_COUNT() and OCTET_
LENGTH(). PostgreSQL has BIT_LENGTH()
and OCTET_LENGTH().

Oracle treats an empty string as null:

LENGTH(‘’) returns NULL. Figure 5.20 will

show 1 (not 0) in the next-to-last row

because the author’s first name is ‘ ‘
(a space) in the Oracle database. For

more information, see the DBMS Tip in

“Nulls” in Chapter 3.

148

Chapter 5

F
i
n

d
i
n

g
 t

h
e

 L
e

n
g

t
h

 o
f
 a

 S
t

r
i
n

g

Finding Substrings
with POSITION()
Use the function POSITION() to locate a par-

ticular substring within a given string. The

function’s important characteristics are:

◆ POSITION() returns an integer (0) that

indicates the starting position of a sub-

string’s first occurrence within a string.

◆ If the string doesn’t contain the sub-

string, POSITION() returns zero.

◆ String comparisons are case insensitive

or case sensitive, depending on your

DBMS; see the DBMS Tip in “Filtering

Rows with WHERE” in Chapter 4.

◆ The position of any substring within an

empty string (‘’) is zero. (But see the

Oracle exception in the DBMS Tip in

this section.)

◆ If any argument is null, POSITION()
returns null.

149

Operators and Functions

F
i
n

d
i
n

g
 S

u
b

s
t

r
i
n

g
s

 w
i
t

h
 P

O
S

I
T

I
O

N
(

)

To find a substring:

◆ Type:

POSITION(substring IN string)

substring is the string to search for, and

string is the string to search. Each argu-

ment is a string expression such as a

column that contains character strings,

a string literal, or the result of an opera-

tion or function that returns a string.

POSITION() returns the lowest (integer)

position in string in which substring

occurs, or zero if substring isn’t found

(Listings 5.22 and 5.23, Figures 5.22

and 5.23).

150

Chapter 5

F
i
n

d
i
n

g
 S

u
b

s
t

r
i
n

g
s

 w
i
t

h
 P

O
S

I
T

I
O

N
(

)

Listing 5.23 List the books whose titles contain the
letter u somewhere within the first 10 characters,
sorted by descending position of the u. See Figure
5.23 for the result.

SELECT title_name,

POSITION('u' IN title_name) AS "Pos"

FROM titles

WHERE POSITION('u' IN title_name)

BETWEEN 1 AND 10

ORDER BY POSITION('u' IN title_name) DESC;

Listing

title_name Pos

----------------------------- ---

Not Without My Faberge Egg 10

Spontaneous, Not Annoying 10

How About Never? 8

Ask Your System Administrator 7

But I Did It Unconsciously 2

Just Wait Until After School 2

Figure 5.23 Result of Listing 5.23.

Listing 5.22 List the position of the substring e in the
authors’ first names and the position of the substring
ma in the authors’ last names. See Figure 5.22 for
the result.

SELECT

au_fname,

POSITION('e' IN au_fname) AS "Pos e",

au_lname,

POSITION('ma' IN au_lname) AS "Pos ma"

FROM authors;

Listing

au_fname Pos e au_lname Pos ma

--------- ----- ----------- ------

Sarah 0 Buchman 5

Wendy 2 Heydemark 6

Hallie 6 Hull 0

Klee 3 Hull 0

Christian 0 Kells 0

0 Kellsey 0

Paddy 0 O'Furniture 0

Figure 5.22 Result of Listing 5.22.

✔ Tips

■ You can use POSITION() in SELECT, WHERE,

and ORDER BY clauses or anywhere an

expression is allowed.

■ The SQL standard also defines the func-

tion OVERLAY() to replace substrings. The

syntax is:

OVERLAY(string PLACING substring
FROM start_position [FOR length])

For example, OVERLAY(‘Txxxxas’ PLACING
‘hom’ FROM 2 FOR 4) is ‘Thomas’. The

equivalent functions in the DBMSs are

REPLACE() (Microsoft Access,

Microsoft SQL Server, DB2, and

MySQL), REGEXP_REPLACE() (Oracle),

and OVERLAY() (PostgreSQL).

■ In Microsoft Access, the

position function is

InStr(start_position, string,
substring). To run Listings 5.22 and

5.23, change the position expressions

to (Listing 5.22):

InStr(1, au_fname, ‘e’)

InStr(1, au_lname, ‘ma’)

and (Listing 5.23):

InStr(1, title_name, ‘u’)

In Microsoft SQL Server, the position

function is CHARINDEX(substring,
string). To run Listings 5.22 and 5.23,

change the position expressions to

(Listing 5.22):

CHARINDEX(‘e’, au_fname)

CHARINDEX(‘ma’, au_lname)

and (Listing 5.23):

CHARINDEX(‘u’, title_name)

In Oracle, the position function is

INSTR(string, substring). To run

Listings 5.22 and 5.23, change the posi-

tion expressions to (Listing 5.22):

INSTR(au_fname, ‘e’)

INSTR(au_lname, ‘ma’)

and (Listing 5.23):

INSTR(title_name, ‘u’)

In DB2, the position function is

POSSTR(string, substring). To run

Listings 5.22 and 5.23, change the posi-

tion expressions to (Listing 5.22):

POSSTR(au_fname, ‘e’)

POSSTR(au_lname, ‘ma’)

and (Listing 5.23):

POSSTR(title_name, ‘u’)

Oracle treats an empty string as null:

INSTR(‘’, substring) returns null

(not 0). See the DBMS Tip in “Nulls” in

Chapter 3.

You can nest and chain substring and

position functions to find substring

occurrences beyond the first occurrence,

but DBMSs provide enhanced position

functions to do that. Microsoft Access

has InStr(). Microsoft SQL Server has

CHARINDEX(). Oracle has INSTR(). DB2

has LOCATE(). MySQL has LOCATE().

151

Operators and Functions

F
i
n

d
i
n

g
 S

u
b

s
t

r
i
n

g
s

 w
i
t

h
 P

O
S

I
T

I
O

N
(

)

Performing Datetime and
Interval Arithmetic

DBMS compliance with standard

SQL datetime and interval opera-

tors and functions is spotty because DBMSs

usually provide their own extended (nonstan-

dard) operators and functions that perform

date and time arithmetic. For information

about datetime and interval data types, see

“Datetime Types” and “Interval Types” in

Chapter 3.

Use the same operators introduced in

“Performing Arithmetic Operations” earlier

in this chapter to perform datetime and

interval arithmetic. The common temporal

operations are:

◆ Subtracting two dates to calculate the

interval between them

◆ Adding or subtracting an interval and a

date to calculate a future or past date

◆ Adding or subtracting two intervals to

get a new interval

◆ Multiplying or dividing an interval by a

number to get a new interval

Some operations are undefined; adding

two dates makes no sense, for example.

Table 5.3 lists the valid SQL operators

involving datetimes and intervals. The

“Operator Overloading” sidebar in this sec-

tion explains why you can use the same

operator to perform different operations.

The function EXTRACT() isolates a single field

of a datetime or interval and returns it as a

number. EXTRACT() typically is used in com-

parison expressions or for formatting results.

152

Chapter 5

D
a

t
e

t
i
m

e
 a

n
d

 I
n

t
e

r
v

a
l
 A

r
i
t

h
m

e
t

i
c

Table 5.3

Datetime and Interval Operations
O p e r a t i o n R e s u lt

Datetime – Datetime Interval
Datetime + Interval Datetime
Datetime – Interval Datetime
Interval + Datetime Datetime
Interval + Interval Interval
Interval – Interval Interval
Interval * Numeric Interval
Interval / Numeric Interval
Numeric * Interval Interval

Operator Overloading

Recall that the +, –, *, and / operators

also are used for numeric operations and

that Microsoft DBMSs use + for string

concatenation as well. Operator overloading

is the assignment of more than one func-

tion to a particular operator. The operation

performed depends on the data types of

the operands involved. Here, the +, –, *,

and / operators behave differently with

numbers than they do with datetimes and

intervals (as well as strings, in Microsoft’s

case). Your DBMS might overload other

operators and functions as well. Function

overloading is the assignment of more than

one behavior to a particular function,

depending on the data types of the argu-

ments involved. The MySQL CONCAT()
function (see the DBMS Tip in “Concaten-

ating Strings with ||” earlier in this chapter),

for example, takes nonstring as well as

string arguments. Nonstrings cause

CONCAT() to perform additional conver-

sions that it doesn’t need to perform

on strings.

To extract part of a datetime or interval:

◆ Type:

EXTRACT(field FROM datetime_or_
interval)

field is the part of datetime_or_interval

to return. field is YEAR, MONTH, DAY, HOUR,

MINUTE, SECOND, TIMEZONE_HOUR, or

TIMEZONE_MINUTE (refer to Table 3.14 in

Chapter 3). datetime_or_interval is a

datetime or interval expression such as

a column that contains datetime or

interval values, a datetime or interval

literal, or the result of an operation or

function that returns a datetime or

interval. If field is SECOND, EXTRACT()
returns a NUMERIC value; otherwise, it

returns an INTEGER (Listing 5.24 and

Figure 5.24).

✔ Tips

■ You can use temporal operators and

functions in SELECT, WHERE, and ORDER BY
clauses or anywhere an expression is

allowed.

■ If any operand or argument is null, an

expression returns null.

■ See also “Working with Dates” in

Chapter 15.

■ In Microsoft Access and

Microsoft SQL Server, the

extraction function is DATEPART(datepart,
date). To run Listing 5.24, change the

extraction expressions to:

DATEPART(“yyyy”, pubdate)

DATEPART(“m”, pubdate)

Oracle, MySQL, and PostgreSQL

accept different or additional values for

the field argument of EXTRACT().

Instead of EXTRACT(), DB2 extracts parts

by using individual functions such as

DAY(), HOUR(), and SECOND(). To run

Listing 5.24, change the extraction

expressions to:

YEAR(pubdate)

MONTH(pubdate)

In addition to (or instead of) the standard

arithmetic operators, DBMSs provide

functions that add intervals to dates.

Some examples: DATEDIFF() in Microsoft

Access and Microsoft SQL Server,

ADD_MONTHS() in Oracle, and DATE_ADD()
and DATE_SUB() in MySQL.

Complex date and time arithmetic is so

common in SQL programming that all

DBMSs provide lots of temporal exten-

sions. Search your DBMS documentation

for date and time functions or datetime

functions.

153

Operators and Functions

D
a

t
e

t
i
m

e
 a

n
d

 I
n

t
e

r
v

a
l
 A

r
i
t

h
m

e
t

i
c

Listing 5.24 List the books published in the first half
of the years 2001 and 2002, sorted by descending
publication date. See Figure 5.24 for the result.

SELECT

title_id,

pubdate

FROM titles

WHERE EXTRACT(YEAR FROM pubdate)

BETWEEN 2001 AND 2002

AND EXTRACT(MONTH FROM pubdate)

BETWEEN 1 AND 6

ORDER BY pubdate DESC;

Listing

title_id pubdate

-------- ----------

T09 2002-05-31

T08 2001-06-01

T05 2001-01-01

Figure 5.24 Result of Listing 5.24.

Getting the Current Date
and Time
Use the functions CURRENT_DATE,

CURRENT_TIME, and CURRENT_TIMESTAMP
to get the current date and time from

the system clock of the particular com-

puter where the DBMS is running.

To get the current date and time:

◆ To get the current date, type:

CURRENT_DATE

or

To get the current time, type:

CURRENT_TIME

or

To get the current timestamp, type:

CURRENT_TIMESTAMP

CURRENT_DATE returns a DATE,

CURRENT_TIME returns a TIME, and

CURRENT_TIMESTAMP returns a TIMESTAMP;

see “Datetime Types” in Chapter 3

(Listings 5.25 and 5.26, Figures 5.25

and 5.26).

154

Chapter 5

G
e

t
t

i
n

g
 t

h
e

 C
u

r
r

e
n

t
 D

a
t

e
 a

n
d

 T
i
m

e

Listing 5.25 Print the current date, time, and
timestamp. See Figure 5.25 for the result.

SELECT

CURRENT_DATE AS "Date",

CURRENT_TIME AS "Time",

CURRENT_TIMESTAMP AS "Timestamp";

Listing

Date Time Timestamp

---------- -------- -------------------

2002-03-10 10:09:24 2002-03-10 10:09:24

Figure 5.25 Result of Listing 5.25.

Listing 5.26 List the books whose publication date
falls within 90 days of the current date or is unknown,
sorted by descending publication date (refer to
Figure 5.25 for the “current” date of this query). See
Figure 5.26 for the result.

SELECT title_id, pubdate

FROM titles

WHERE pubdate

BETWEEN CURRENT_TIMESTAMP

- INTERVAL 90 DAY

AND CURRENT_TIMESTAMP

+ INTERVAL 90 DAY

OR pubdate IS NULL

ORDER BY pubdate DESC;

Listing

title_id pubdate

-------- ----------

T09 2002-05-31

T10 NULL

Figure 5.26 Result of Listing 5.26.

✔ Tips

■ You can use datetime functions in

SELECT, WHERE, and ORDER BY clauses or

anywhere an expression is allowed.

■ CURRENT_TIME and CURRENT_TIMESTAMP
each take a precision argument that

specifies the decimal fractions of a

second to be included in the time.

CURRENT_TIME(6), for example, returns

the current time with six digits of preci-

sion in the SECOND field. For information

about precision, see “Datetime Types”

in Chapter 3.

■ See also “Working with Dates” in

Chapter 15.

■ In Microsoft Access, the date-

time system functions are

Date(), Time(), and Now(). To run Listing

5.25, change the datetime expressions to:

Date() AS “Date”

Time() AS “Time”

Now() AS “Timestamp”

To run Listing 5.26, change the BETWEEN
clause to:

BETWEEN NOW() - 90

AND NOW() + 90

In Microsoft SQL Server, the datetime

system function is CURRENT_TIMESTAMP
(or its synonym, GETDATE()).

CURRENT_DATE and CURRENT_TIME aren’t

supported. To run Listing 5.25, omit the

CURRENT_DATE and CURRENT_TIME expres-

sions. To run Listing 5.26, change the

BETWEEN clause to:

BETWEEN CURRENT_TIMESTAMP - 90

AND CURRENT_TIMESTAMP + 90

In Oracle, the datetime system func-

tion is SYSDATE. Oracle 9i and later

versions support CURRENT_DATE and

CURRENT_TIMESTAMP (but not CURRENT_TIME).

Listing 5.25 also requires the clause FROM
DUAL; see the DBMS Tip in “Creating

Derived Columns” earlier in this chapter.

To run Listing 5.25, change the state-

ment to:

SELECT SYSDATE AS “Date”

FROM DUAL;

SYSDATE returns the system date and

time but doesn’t display the time unless

formatted to do so with the function

TO_CHAR():

SELECT TO_CHAR(SYSDATE,

➝ ’YYYY-MM-DD HH24:MI:SS’)

FROM DUAL;

To run Listing 5.26, change the BETWEEN
clause to:

BETWEEN SYSDATE - 90

AND SYSDATE + 90

To run Listing 5.25 in DB2, add the

clause FROM SYSIBM.SYSDUMMY1; see

the DBMS Tip in “Creating Derived

Columns” earlier in this chapter. To run

Listing 5.26, change the WHERE clause to:

BETWEEN CURRENT_DATE - 90 DAYS

AND CURRENT_DATE + 90 DAYS

To run Listing 5.26 in PostgreSQL,

change the WHERE clause to:

BETWEEN CURRENT_TIMESTAMP - 90

AND CURRENT_TIMESTAMP + 90

For information about datetime system

functions, search your DBMS documen-

tation for date and time functions or

system functions.

155

Operators and Functions

G
e

t
t

i
n

g
 t

h
e

 C
u

r
r

e
n

t
 D

a
t

e
 a

n
d

 T
i
m

e

Getting User Information
Use the function CURRENT_USER to identify

the active user within the database server.

To get the current user:

◆ Type:

CURRENT_USER

(Listing 5.27 and Figure 5.27).

✔ Tips

■ You can use user functions in SELECT,

WHERE, and ORDER BY clauses or anywhere

an expression is allowed.

■ SQL also defines the SESSION_USER and

SYSTEM_USER functions. The current user

indicates the authorization identifier

under whose privileges SQL statements

currently are run. (The current user may

have permission to run, say, only SELECT
statements.) The session user indicates

the authorization ID associated with the

current session. The system user is the

user as identified by the host operating

system. The DBMS determines user val-

ues, and these three values may or may

not be identical. For information about

users, sessions, and privileges, search

your DBMS documentation for authori-

zation, session, user, or role.

■ See also “Retrieving Metadata” in

Chapter 15.

■ To run Listing 5.27 in

Microsoft Access, change

the statement to:

SELECT CurrentUser AS “User”;

To run Listing 5.27 in Oracle, change

the statement to:

SELECT USER AS “User” FROM DUAL;

To run Listing 5.27 in DB2, change

the statement to:

SELECT CURRENT_USER AS “User”

FROM SYSIBM.SYSDUMMY1;

To run Listing 5.27 in MySQL, change

the statement to:

SELECT USER() AS “User”;

Microsoft SQL Server supports

SESSION_USER and SYSTEM_USER.

MySQL supports SESSION_USER() and

SYSTEM_USER(). Oracle’s SYS_CONTEXT()
returns a session’s user attributes. DB2

supports SESSION_USER and SYSTEM_USER.

PostgreSQL supports SESSION_USER.

For information about user system func-

tions, search your DBMS documentation

for user or system functions.

156

Chapter 5

G
e

t
t

i
n

g
 U

s
e

r
 I

n
f
o

r
m

a
t

i
o

n

Listing 5.27 Print the current user. See Figure 5.27 for
the result.

SELECT CURRENT_USER AS "User";

Listing

User

cfehily

Figure 5.27 Result of Listing 5.27.

Converting Data Types
with CAST()
In many situations, your DBMS will convert,

or cast, data types automatically. It may

allow you to use numbers and dates in char-

acter expressions such as concatenation, for

example, or it will promote numbers auto-

matically in mixed arithmetic expressions

(see the Tips in “Performing Arithmetic

Operations” earlier in this chapter). Use the

function CAST() to convert an expression of

one data type to another data type when

your DBMS doesn’t perform the conversion

automatically. For information about data

types, see “Data Types” in Chapter 3. The

function’s important characteristics are:

◆ Implicit conversions (or coercions) are

those conversions that occur without

specifying CAST(). Explicit conversions

are those conversions that require CAST()
to be specified. In some cases, conver-

sion isn’t allowed; you can’t convert a

FLOAT to a TIMESTAMP, for example.

◆ The data type being converted is the

source data type, and the result data type

is the target data type.

◆ You can convert any numeric or datetime

data type to any character data type.

◆ You can convert any character data

type to any other data type if the char-

acter string represents a valid literal

value of the target data type. (DBMSs

remove leading and trailing spaces when

converting strings to numeric or date-

time values.)

◆ Some numeric conversions, such as

DECIMAL-to-INTEGER, round or truncate

values. (Whether the value is rounded

or truncated depends on the DBMS.)

◆ A VARCHAR-to-CHAR conversion can trun-

cate strings.

◆ Some conversions can cause an error if

the new data type doesn’t have enough

room to display the converted value.

A FLOAT-to-SMALLINT conversion will

fail if the floating-point number falls

outside the range your DBMS allows for

SMALLINT values.

◆ A NUMERIC-to-DECIMAL conversion can

require an explicit cast to prevent the

loss of precision or scale that might

occur in an implicit conversion.

◆ In a DATE-to-TIMESTAMP conversion, the

time part of the result will be 00:00:00

(midnight).

◆ If any argument is null, CAST() returns

null. (But see the Oracle exception in

the DBMS Tip in this section.)

157

Operators and Functions

C
o

n
v

e
r

t
i
n

g
 D

a
t
a

 T
y

p
e

s
 w

i
t

h
 C

A
S

T
(

)

To convert one data type to another:

◆ Type:

CAST(expr AS data_type)

expr is the expression to convert, and

data_type is the target data type.

data_type is one of the data types

described in Chapter 3 and can include

length, precision, or scale arguments

where applicable. Acceptable data_type

values include CHAR(10), VARCHAR(25),

NUMERIC(5,2), INTEGER, FLOAT, and DATE,

for example. An error occurs if the data

type or value of expr is incompatible with

data_type (Listings 5.28 and 5.29,

Figures 5.28a, 5.28b, and 5.29).

158

Chapter 5

C
o

n
v

e
r

t
i
n

g
 D

a
t
a

 T
y

p
e

s
 w

i
t

h
 C

A
S

T
(

)

Listing 5.28 Convert the book prices from the DECIMAL
data type to INTEGER and CHAR(8) data types. The <
and > characters show the extent of the CHAR(8)
strings. Your result will be either Figure 5.28a or
5.28b, depending on whether your DBMS truncates or
rounds integers.

SELECT

price

AS "price(DECIMAL)",

CAST(price AS INTEGER)

AS "price(INTEGER)",

'<' || CAST(price AS CHAR(8)) || '>'

AS "price(CHAR(8))"

FROM titles;

Listing

price(DECIMAL) price(INTEGER) price(CHAR(8))

-------------- -------------- --------------

21.99 21 <21.99 >

19.95 19 <19.95 >

39.95 39 <39.95 >

12.99 12 <12.99 >

6.95 6 <6.95 >

19.95 19 <19.95 >

23.95 23 <23.95 >

10.00 10 <10.00 >

13.95 13 <13.95 >

NULL NULL NULL

7.99 7 <7.99 >

12.99 12 <12.99 >

29.99 29 <29.99 >

Figure 5.28a Result of Listing 5.28. You’ll get this
result if your DBMS truncates decimal numbers to
convert them to integers.

price(DECIMAL) price(INTEGER) price(CHAR(8))

-------------- -------------- --------------

21.99 22 <21.99 >

19.95 20 <19.95 >

39.95 40 <39.95 >

12.99 13 <12.99 >

6.95 7 <6.95 >

19.95 20 <19.95 >

23.95 24 <23.95 >

10.00 10 <10.00 >

13.95 14 <13.95 >

NULL NULL NULL

7.99 8 <7.99 >

12.99 13 <12.99 >

29.99 30 <29.99 >

Figure 5.28b Result of Listing 5.28. You’ll get this
result if your DBMS rounds decimal numbers to
convert them to integers.

✔ Tips

■ You can use CAST() in SELECT, WHERE, and

ORDER BY clauses or anywhere an expres-

sion is allowed.

■ Widening conversions are those conver-

sions in which there is no possibility of

data loss or incorrect results. SMALLINT-

to-INTEGER, for example, is a widening

conversion because the INTEGER data

type can accommodate every possible

value of the SMALLINT data type. The

reverse operation, called a narrowing

conversion, can cause data loss because

extreme INTEGER values can’t be repre-

sented by a SMALLINT. Widening conver-

sions always are allowed, but narrowing

conversions can cause your DBMS to

issue a warning or error.

■ Microsoft Access has a family

of type-conversion functions

rather than a single CAST() function:

CStr(expr), CInt(expr), and CDec(expr)
convert expr to a string, integer, and dec-

imal number, for example. You can use

Space(number) to add spaces to strings

and Left(string, length) to truncate

strings. Use + to concatenate strings. To

run Listings 5.28 and 5.29, change the

cast expressions to (Listing 5.28):

CInt(price)

‘<’ + CStr(price) + ‘>’

and (Listing 5.29):

CStr(sales)

➝ + Space(8 - Len(CStr(sales)))

➝ + ‘ copies sold of ‘

➝ + Left(title_name, 20)

159

Operators and Functions

C
o

n
v

e
r

t
i
n

g
 D

a
t
a

 T
y

p
e

s
 w

i
t

h
 C

A
S

T
(

)

History and biography sales

--

1500200 copies sold of I Blame My Mother

100001 copies sold of Spontaneous, Not Ann

11320 copies sold of How About Never?

10467 copies sold of What Are The Civilia

9566 copies sold of 200 Years of German

566 copies sold of 1977!

Figure 5.29 Result of Listing 5.29.

Listing 5.29 List history and biography book sales
with a portion of the book title, sorted by descending
sales. The CHAR(20) conversion shortens the title to
make the result more readable. See Figure 5.29 for
the result.

SELECT

CAST(sales AS CHAR(8))

|| ' copies sold of '

|| CAST(title_name AS CHAR(20))

AS "History and biography sales"

FROM titles

WHERE sales IS NOT NULL

AND type IN ('history', 'biography')

ORDER BY sales DESC;

Listing

In Microsoft SQL Server, use + to concate-

nate strings (Listing 5.28):

‘<’ + CAST(price AS CHAR(8)) + ‘>’

and (Listing 5.29):

CAST(sales AS CHAR(8))

➝ + ‘ copies sold of ‘

➝ + CAST(title_name AS CHAR(20))

Oracle doesn’t allow character conversions

to CHAR(length) if length is shorter than the

source string. Instead, use SUBSTR() to trun-

cate strings; see the DBMS Tip in “Extracting

a Substring with SUBSTRING()” earlier in this

chapter. To run Listing 5.29, change the CAST()
expression to:

CAST(sales AS CHAR(8))

➝ || ‘ copies sold of ‘

➝ || SUBSTR(title_name, 1, 20)

In MySQL, use SIGNED instead of INTEGER for

data_type, and use CONCAT() to concatenate

strings. To run Listings 5.28 and 5.29, change

the CAST() expressions to (Listing 5.28):

CAST(price AS SIGNED)

CONCAT(‘<’, CAST(price AS CHAR(8)),

➝ ’>’)

and (Listing 5.29):

CONCAT(

➝ CAST(sales AS CHAR(8)),

➝ ’ copies sold of ‘,

➝ CAST(title_name AS CHAR(20)))

Oracle treats an empty string as null:

CAST(‘’ AS CHAR) returns null. See the

DBMS Tip in “Nulls” in Chapter 3.

In older PostgreSQL versions, to compare a

value in a NUMERIC or DECIMAL column with

a real (floating-point) number, you must

convert the real number to NUMERIC or

DECIMAL explicitly. The following statement,

for example, fails in older PostgreSQL ver-

sions, because the data type of the column

price is DECIMAL(5,2):

SELECT price

FROM titles

WHERE price < 20.00;

This statement fixes the problem:

SELECT price

FROM titles

WHERE price < CAST(20.00 AS

DECIMAL);

DBMSs have additional conversion and

formatting functions. Some examples:

CONVERT() in Microsoft SQL Server

and MySQL; TO_CHAR(), TO_DATE(),

TO_TIMESTAMP(), and TO_NUMBER() in

Oracle and PostgreSQL; and TO_CHAR()
and TO_DATE() in DB2. Search your DBMS

documentation for conversion, cast, or

formatting functions.

160

Chapter 5

C
o

n
v

e
r

t
i
n

g
 D

a
t
a

 T
y

p
e

s
 w

i
t

h
 C

A
S

T
(

)

Evaluating Conditional
Values with CASE
The CASE expression and its shorthand equiv-

alents, COALESCE() and NULLIF(), let you take

actions based on a condition’s truth value

(true, false, or unknown). The CASE expres-

sion’s important characteristics are:

◆ If you’ve programmed before, you’ll

recognize that CASE provides SQL the

equivalent of the if-then-else, case, or

switch statements used in procedural

languages, except that CASE is an expres-

sion, not a statement.

◆ CASE is used to evaluate several condi-

tions and return a single value for the

first true condition.

◆ CASE allows you to display an alternative

value to the actual value in a column.

CASE makes no changes to the underly-

ing data.

◆ A common use of CASE is to replace codes

or abbreviations with more-readable

values. If the column marital_status
contains the integer codes 1, 2, 3, or 4—

meaning single, married, divorced, or

widowed—your human readers will pre-

fer to see explanatory text rather than

cryptic codes. (Some database designers

prefer to use codes, because it’s more effi-

cient to store and manage abbreviated

codes than explanatory text.)

◆ CASE has two formats: simple and

searched. The simple CASE expression

compares an expression to a set of sim-

ple expressions to determine the result.

The searched CASE expression evaluates

a set of logical (Boolean) expressions to

determine the result.

◆ CASE returns an optional ELSE result as the

default value if no test condition is true.

161

Operators and Functions

E
v

a
l
u

a
t

i
n

g
 C

o
n

d
i
t

i
o

n
a

l
 V

a
l
u

e
s

 w
i
t

h
 C

A
S

E

To use a simple CASE expression:

◆ Type:

CASE comparison_value

WHEN value1 THEN result1

WHEN value2 THEN result2

...

WHEN valueN THEN resultN

[ELSE default_result]

END

value1, value2, ..., valueN are expressions.

result1, result2, ..., resultN are expressions

returned when the corresponding value

matches the expression

comparison_value. All expressions must

be of the same type or must be implicitly

convertible to the same type.

Each value is compared to comparison_

value in order. First, value1 is compared.

If it matches comparison_value, then

result1 is returned; otherwise, value2 is

compared to comparison_value. If value2

matches comparison_value, then result2

is returned, and so on. If no matches

occur, default_ result is returned. If ELSE
default_result is omitted, ELSE NULL is

assumed (Listing 5.30 and Figure 5.30).

162

Chapter 5

E
v

a
l
u

a
t

i
n

g
 C

o
n

d
i
t

i
o

n
a

l
 V

a
l
u

e
s

 w
i
t

h
 C

A
S

E

Listing 5.30 Raise the price of history books by 10
percent and psychology books by 20 percent, and
leave the prices of other books unchanged. See
Figure 5.30 for the result.

SELECT

title_id,

type,

price,

CASE type

WHEN 'history'

THEN price * 1.10

WHEN 'psychology'

THEN price * 1.20

ELSE price

END

AS "New price"

FROM titles

ORDER BY type ASC, title_id ASC;

Listing

title_id type price New price

-------- ---------- ----- ---------

T06 biography 19.95 19.95

T07 biography 23.95 23.95

T10 biography NULL NULL

T12 biography 12.99 12.99

T08 children 10.00 10.00

T09 children 13.95 13.95

T03 computer 39.95 39.95

T01 history 21.99 24.19

T02 history 19.95 21.95

T13 history 29.99 32.99

T04 psychology 12.99 15.59

T05 psychology 6.95 8.34

T11 psychology 7.99 9.59

Figure 5.30 Result of Listing 5.30.

To use a searched CASE expression:

◆ Type:

CASE

WHEN condition1 THEN result1

WHEN condition2 THEN result2

...

WHEN conditionN THEN resultN

[ELSE default_result]

END

condition1, condition2, ..., conditionN are

search conditions. (Search conditions

have one or more logical expressions,

with multiple expressions linked by AND
or OR; see “Filtering Rows with WHERE” in

Chapter 4.) result1, result2, ..., resultN are

expressions returned when the corre-

sponding condition evaluates to true.

All expressions must be of the same type

or must be implicitly convertible to the

same type.

Each condition is evaluated in order.

First, condition1 is evaluated. If it’s true,

result1 is returned; otherwise, condition2

is evaluated. If condition2 is true, result2

is returned, and so on. If no conditions

are true, default_result is returned. If

ELSE default_result is omitted, ELSE
NULL is assumed (Listing 5.31 and

Figure 5.31).

✔ Tips

■ You can use CASE in SELECT, WHERE, and

ORDER BY clauses or anywhere an expres-

sion is allowed.

■ When a result is returned, CASE may or

may not evaluate the expressions in any

remaining WHEN clauses, depending on

the DBMS. For this reason, you should

watch for undesirable side effects, such

as the evaluation of any expression

resulting in a division-by-zero error.

continues on next page

163

Operators and Functions

E
v

a
l
u

a
t

i
n

g
 C

o
n

d
i
t

i
o

n
a

l
 V

a
l
u

e
s

 w
i
t

h
 C

A
S

E

Listing 5.31 List the books categorized by different
sales ranges, sorted by ascending sales. See
Figure 5.31 for the result.

SELECT

title_id,

CASE

WHEN sales IS NULL

THEN 'Unknown'

WHEN sales <= 1000

THEN 'Not more than 1,000'

WHEN sales <= 10000

THEN 'Between 1,001 and 10,000'

WHEN sales <= 100000

THEN 'Between 10,001 and 100,000'

WHEN sales <= 1000000

THEN 'Between 100,001 and 1,000,000'

ELSE 'Over 1,000,000'

END

AS "Sales category"

FROM titles

ORDER BY sales ASC;

Listing

title_id Sales category

-------- -----------------------------

T10 Unknown

T01 Not more than 1,000

T08 Between 1,001 and 10,000

T09 Between 1,001 and 10,000

T02 Between 1,001 and 10,000

T13 Between 10,001 and 100,000

T06 Between 10,001 and 100,000

T04 Between 10,001 and 100,000

T03 Between 10,001 and 100,000

T11 Between 10,001 and 100,000

T12 Between 100,001 and 1,000,000

T05 Between 100,001 and 1,000,000

T07 Over 1,000,000

Figure 5.31 Result of Listing 5.31.

■ This CASE expression can help you pre-

vent division-by-zero errors:

CASE

WHEN n <> 0 THEN expr/n

ELSE NULL

END

■ You can use CASE to omit identical func-

tion calls.

WHERE some_function(col1) = 10

OR some_function(col1) = 20

is equivalent to

WHERE 1 =

CASE some_function(col1)

WHEN 10 THEN 1

WHEN 20 THEN 1

END

Some DBMS optimizers will run the

CASE form faster.

■ The simple CASE expression is just short-

hand for this searched CASE expression:

CASE

WHEN comparison_value = value1

THEN result1

WHEN comparison_value = value2

THEN result2

...

WHEN comparison_value = valueN

THEN resultN

[ELSE default_result]

END

■ Microsoft Access doesn’t

support CASE; instead, use the

function Switch(condition1, result1,
condition2, result2,...). To run

Listings 5.30 and 5.31, change the CASE
expressions to (Listing 5.30):

Switch(

➝ type IS NULL, NULL,

➝ type = ‘history’, price * 1.10,

➝ type = ‘psychology’, price *1.20,

➝ type IN (‘biography’,

➝ ’children’, ‘computer’), price)

and (Listing 5.31):

Switch(

➝ sales IS NULL,

➝ ’Unknown’,

➝ sales <= 1000,

➝ ’Not more than 1,000’,

➝ sales <= 10000,

➝ ’Between 1,001 and 10,000’,

➝ sales <= 100000,

➝ ’Between 10,001 and 100,000’,

➝ sales <= 1000000,

➝ ’Between 100,001 and 1,000,000’,

➝ sales > 1000000,

➝ ’Over 1,000,000’)

Oracle 9i and later will run Listings 5.30

and 5.31. To run Listing 5.30 in Oracle 8i,

translate the simple CASE expression to

a searched CASE expression, or use the

function DECODE(comparison_value,
value1, result1, value2, result2,...,
default_result):

DECODE(type,

➝ NULL, NULL,

➝ ’history’, price * 1.10,

➝ ’psychology’, price * 1.20,

➝ price)

In older PostgreSQL versions, convert the

floating-point numbers in Listing 5.30

to DECIMAL; see “Converting Data Types

with CAST()” earlier in this chapter. To run

Listing 5.30, change new-price calcula-

tions in the CASE expression to:

price * CAST((1.10) AS DECIMAL)

price * CAST((1.20) AS DECIMAL)

164

Chapter 5

E
v

a
l
u

a
t

i
n

g
 C

o
n

d
i
t

i
o

n
a

l
 V

a
l
u

e
s

 w
i
t

h
 C

A
S

E

Checking for Nulls
with COALESCE()
The function COALESCE() returns the first

non-null expression among its arguments.

COALESCE() often is used to display a specif-

ic value instead of a null in a result, which is

helpful if your users find nulls confusing.

COALESCE() is just shorthand for a common

form of the searched CASE expression.

COALESCE(expr1, expr2, expr3)

is equivalent to:

CASE

WHEN expr1 IS NOT NULL THEN expr1

WHEN expr2 IS NOT NULL THEN expr2

ELSE expr3

END

To return the first non-null value:

◆ Type:

COALESCE(expr1, expr2,...)

expr1, expr2, ..., represent one or more

comma-separated expressions. All

expressions must be of the same type or

must be implicitly convertible to the

same type. Each expression is evaluated

in order (left to right) until one evaluates

to non-null and is returned. If all the

expressions are null, COALESCE() returns

null (Listing 5.32 and Figure 5.32).

✔ Tips

■ You can use COALESCE() in SELECT, WHERE,

and ORDER BY clauses or anywhere an

expression is allowed.

■ Be aware that you can get a null from a

column that doesn’t allow nulls; see

Figure 3.3 in Chapter 3, for example.

■ Microsoft Access doesn’t

support COALESCE(); instead,

use the function Switch(). To run

Listing 5.32, change the COALESCE()
expression to:

Switch(state IS NOT NULL, state,

➝ state IS NULL, ‘N/A’)

Oracle 9i and later will run Listing 5.32.

Oracle 8i doesn’t support COALESCE();

instead, use the function NVL(expr1,
expr2). NVL() takes only two expressions;

use CASE for three or more expressions.

To run Listing 5.32 in Oracle 8i, change

the COALESCE() expression to:

NVL(state, ‘N/A’)

165

Operators and Functions

C
h

e
c

k
i
n

g
 f

o
r

 N
u

l
l
s

 w
i
t

h
 C

O
A

L
E

S
C

E
(

)

Listing 5.32 List the publishers’ locations. If the state
is null, print N/A. See Figure 5.32 for the result.

SELECT

pub_id,

city,

COALESCE(state, 'N/A') AS "state",

country

FROM publishers;

Listing

pub_id city state country

------ ------------- ----- -------

P01 New York NY USA

P02 San Francisco CA USA

P03 Hamburg N/A Germany

P04 Berkeley CA USA

Figure 5.32 Result of Listing 5.32.

Comparing Expressions
with NULLIF()
The function NULLIF() compares two

expressions and returns null if they are

equal or the first expression otherwise.

NULLIF() typically is used to convert a user-

defined missing, unknown, or inapplicable

value to null.

Rather than use a null, some people prefer to

represent a missing value with, say, the num-

ber –1 or –99, or the string ‘N/A’, ‘Unknown’,

or ‘Missing’. DBMSs have clear rules for

operations that involve nulls, so it’s some-

times desirable to convert user-defined

missing values to nulls. If you want to calcu-

late the average of the values in a column, for

example, you’d get the wrong answer if you had

–1 values intermingled with the real, non-

missing values. Instead, you can use NULLIF()
to convert the –1 values to nulls, which your

DBMS will ignore during calculations.

NULLIF() is just shorthand for a common

form of the searched CASE expression.

NULLIF(expr1, expr2)

is equivalent to:

CASE

WHEN expr1 = expr2 THEN NULL

ELSE expr1

END

166

Chapter 5

C
o

m
p

a
r

i
n

g
 E

x
p

r
e

s
s

i
o

n
s

 w
i
t

h
 N

U
L

L
I
F

(
)

Avoiding Division by Zero

Suppose you want to calculate the

male–female ratios for various school

clubs, but you discover that the following

query fails and issues a divide-by-zero

error when it tries to calculate ratio for

the Lord of the Rings Club, which has

no women:

SELECT club_id, males, females,
males/females AS ratio

FROM school_clubs;

You can use NULLIF to avoid division by

zero. Rewrite the query as:

SELECT club_id, males, females,
males/NULLIF(females,0)

AS ratio
FROM school_clubs;

Any number divided by NULL gives NULL,

and no error is generated.

To return a null if two expressions
are equivalent:

◆ Type:

NULLIF(expr1, expr2)

expr1 and expr2 are expressions.

NULLIF() compares expr1 and expr2.

If they are equal, the function returns

null. If they’re unequal, the function

returns expr1. You can’t specify the

literal NULL for expr1 (Listing 5.33 and

Figure 5.33).

✔ Tips

■ You can use NULLIF() in SELECT, WHERE,

and ORDER BY clauses or anywhere an

expression is allowed.

■ Microsoft Access doesn’t sup-

port NULLIF(); instead, use the

expression IIf(expr1 = expr2, NULL,
expr1). To run Listing 5.33, change the

NULLIF() expression to:

IIf(contract = 0, NULL, contract)

Oracle 9i and later will run Listing 5.33.

Oracle 8i doesn’t support NULLIF();

instead, use CASE. To run Listing 5.33

in Oracle 8i, change the NULLIF()
expression to:

CASE

WHEN contract = 0 THEN NULL

ELSE contract

END

167

Operators and Functions

C
o

m
p

a
r

i
n

g
 E

x
p

r
e

s
s

i
o

n
s

 w
i
t

h
 N

U
L

L
I
F

(
)

Listing 5.33 In the table titles, the column contract
contains zero if no book contract exists. This query
changes the value zero to null. Nonzero values aren’t
affected. See Figure 5.33 for the result.

SELECT

title_id,

contract,

NULLIF(contract, 0) AS "Null contract"

FROM titles;

Listing

title_id contract Null contract

-------- -------- -------------

T01 1 1

T02 1 1

T03 1 1

T04 1 1

T05 1 1

T06 1 1

T07 1 1

T08 1 1

T09 1 1

T10 0 NULL

T11 1 1

T12 1 1

T13 1 1

Figure 5.33 Result of Listing 5.33.

This page intentionally left blank

The preceding chapter described scalar

functions, which operate on individual row

values. This chapter introduces SQL’s aggre-

gate functions, or set functions, which oper-

ate on a group of values to produce a single,

summarizing value. You apply an aggregate

to a set of rows, which can be:

◆ All the rows in a table

◆ Only those rows specified by a WHERE
clause

◆ Those rows created by a GROUP BY clause

A GROUP BY clause, which groups rows, often

is used with a HAVING clause, which filters

groups. No matter how many rows the input

set contains, an aggregate function returns a

single statistic: a sum, minimum, or average,

for example.

The main difference between queries with and

without aggregate functions is that nonaggre-

gate queries process the rows one by one.

Each row is processed independently and

put into the result. (ORDER BY and DISTINCT
make the DBMS look at all the rows, but

they’re essentially postprocessing operations.)

Aggregate queries do something completely

different: They take a table as a whole and

construct new rows from it.

169

Summarizing
and Grouping Data

6

S
u

m
m

a
r

i
z

i
n

g
 a

n
d

 G
r

o
u

p
i
n

g
 D

a
t
a

Using Aggregate
Functions
Table 6.1 lists SQL’s standard aggregate

functions.

The important characteristics of the aggre-

gate functions are:

◆ In Table 6.1, the expression expr often

is a column name, but it also can be a

literal, function, or any combination of

chained or nested column names, literals,

and functions.

◆ SUM() and AVG() work with only numeric

data types. MIN() and MAX() work with

character, numeric, and datetime data

types. COUNT(expr) and COUNT(*) work

with all data types.

◆ All aggregate functions except COUNT(*)
ignore nulls. (You can use COALESCE() in

an aggregate function argument to sub-

stitute a value for a null; see “Checking

for Nulls with COALESCE()” in Chapter 5.)

◆ COUNT(expr) and COUNT(*) never return

null but return either a positive integer

or zero. The other aggregate functions

return null if the set contains no rows

or contains rows with only nulls.

◆ Default column headings for aggregate

expressions vary by DBMS; use AS to

name the result column. See “Creating

Column Aliases with AS” in Chapter 4.

✔ Tip

■ DBMSs provide additional

aggregate functions to calculate

other statistics, such as the standard

deviation; search your DBMS documen-

tation for aggregate functions or group

functions.

170

Chapter 6

U
s

i
n

g
 A

g
g

r
e

g
a

t
e

 F
u

n
c

t
i
o

n
s

Table 6.1

Aggregate Functions
F u n c t i o n R e t u r n s

MIN(expr) Minimum value in expr
MAX(expr) Maximum value in expr
SUM(expr) Sum of the values in expr
AVG(expr) Average (arithmetic mean) of the

values in expr
COUNT(expr) The number of non-null values in expr
COUNT(*) The number of rows in a table or set

Creating Aggregate
Expressions
Aggregate functions can be tricky to use.

This section explains what’s legal and

what’s not.

◆ An aggregate expression can’t appear in

a WHERE clause. If you want to find the

title of the book with the highest sales,

you can’t use:

SELECT title_id --Illegal

FROM titles

WHERE sales = MAX(sales);

◆ You can’t mix nonaggregate (row-by-row)

and aggregate expressions in a SELECT
clause. A SELECT clause must contain

either all nonaggregate expressions or

all aggregate expressions. If you want to

find the title of the book with the high-

est sales, you can’t use:

SELECT title_id, MAX(sales)

FROM titles; --Illegal

The one exception to this rule is that

you can mix nonaggregate and aggregate

expressions for grouping columns (see

“Grouping Rows with GROUP BY” later in

this chapter):

SELECT type, SUM(sales)

FROM titles

GROUP BY type; --Legal

◆ You can use more than one aggregate

expression in a SELECT clause:

SELECT MIN(sales), MAX(sales)

FROM titles; --Legal

◆ You can’t nest aggregate functions:

SELECT SUM(AVG(sales))

FROM titles; --Illegal

◆ You can use aggregate expressions in

subqueries. This statement finds the title

of the book with the highest sales:

SELECT title_id, price --Legal

FROM titles

WHERE sales =

(SELECT MAX(sales) FROM titles);

◆ You can’t use subqueries (see Chapter 8)

in aggregate expressions: AVG(SELECT
price FROM titles) is illegal.

✔ Tip

■ Oracle lets you nest aggregate

expressions in GROUP BY queries.

The following example calculates the

average of the maximum sales of all

book types. Oracle evaluates the inner

aggregate MAX(sales) for the grouping

column type and then aggregates the

results again:

SELECT AVG(MAX(sales))

FROM titles

GROUP BY type; --Legal in Oracle

To replicate this query in standard SQL,

use a subquery (see Chapter 8) in the

FROM clause:

SELECT AVG(s.max_sales)

FROM (SELECT MAX(sales) AS max_sales

FROM titles

GROUP BY type) s;

171

Summarizing and Grouping Data

C
r

e
a

t
i
n

g
 A

g
g

r
e

g
a

t
e

 E
x

p
r

e
s

s
i
o

n
s

Finding a Minimum
with MIN()
Use the aggregate function MIN() to find the

minimum of a set of values.

To find the minimum of a set of values:

◆ Type:

MIN(expr)

expr is a column name, literal, or

expression. The result has the same

data type as expr.

Listing 6.1 and Figure 6.1 show some

queries that involve MIN(). The first query

returns the price of the lowest-priced book.

The second query returns the earliest publi-

cation date. The third query returns the

number of pages in the shortest history book.

✔ Tips

■ MIN() works with character, numeric,

and datetime data types.

■ With character data columns, MIN()
finds the value that is lowest in the sort

sequence; see “Sorting Rows with ORDER
BY” in Chapter 4.

■ DISTINCT isn’t meaningful with MIN();

see “Aggregating Distinct Values with

DISTINCT” later in this chapter.

■ String comparisons are case

insensitive or case sensitive,

depending on your DBMS; see the DBMS

Tip in “Filtering Rows with WHERE” in

Chapter 4.

When comparing two VARCHAR strings for

equality, your DBMS might right-pad the

shorter string with spaces and compare

the strings position by position. In this

case, the strings ‘Jack’ and ‘Jack ‘ are

equal. Refer to your DBMS documenta-

tion (or experiment) to determine which

string MIN() returns.

172

Chapter 6

F
i
n

d
i
n

g
 a

 M
i
n

i
m

u
m

 w
i
t

h
 M

I
N

(
)

Listing 6.1 Some MIN() queries. See Figure 6.1 for the
results.

SELECT MIN(price) AS "Min price"

FROM titles;

SELECT MIN(pubdate) AS "Earliest pubdate"

FROM titles;

SELECT MIN(pages) AS "Min history pages"

FROM titles

WHERE type = 'history';

Listing

Min price

6.95

Earliest pubdate

1998-04-01

Min history pages

14

Figure 6.1 Results of Listing 6.1.

Finding a Maximum
with MAX()
Use the aggregate function MAX() to find the

maximum of a set of values.

To find the maximum of a set of values:

◆ Type:

MAX(expr)

expr is a column name, literal, or expression.

The result has the same data type as expr.

Listing 6.2 and Figure 6.2 show some

queries that involve MAX(). The first query

returns the author’s last name that is last

alphabetically. The second query returns the

prices of the cheapest and most expensive

books, as well as the price range. The third

query returns the highest revenue (= price x
sales) among the history books.

✔ Tips

■ MAX() works with character, numeric,

and datetime data types.

■ With character data columns, MAX()
finds the value that is highest in the

sort sequence; see “Sorting Rows with

ORDER BY” in Chapter 4.

■ DISTINCT isn’t meaningful with MAX();

see “Aggregating Distinct Values with

DISTINCT” later in this chapter.

■ String comparisons are case

insensitive or case sensitive,

depending on your DBMS; see the DBMS

Tip in “Filtering Rows with WHERE” in

Chapter 4.

When comparing two VARCHAR strings for

equality, your DBMS might right-pad the

shorter string with spaces and compare

the strings position by position. In this

case, the strings ‘Jack’ and ‘Jack ‘ are

equal. Refer to your DBMS documenta-

tion (or experiment) to determine which

string MAX() returns.

173

Summarizing and Grouping Data

F
i
n

d
i
n

g
 a

 M
a

x
i
m

u
m

 w
i
t

h
 M

A
X

(
)

Listing 6.2 Some MAX() queries. See Figure 6.2 for the
results.

SELECT MAX(au_lname) AS "Max last name"

FROM authors;

SELECT

MIN(price) AS "Min price",

MAX(price) AS "Max price",

MAX(price) - MIN(price) AS "Range"

FROM titles;

SELECT MAX(price * sales)

AS "Max history revenue"

FROM titles

WHERE type = 'history';

Listing

Max last name

O'Furniture

Min price Max price Range

--------- --------- -----

6.95 39.95 33.00

Max history revenue

313905.33

Figure 6.2 Results of Listing 6.2.

Calculating a Sum
with SUM()
Use the aggregate function SUM() to find the

sum (total) of a set of values.

To calculate the sum of a set of values:

◆ Type:

SUM(expr)

expr is a column name, literal, or numeric

expression. The result’s data type is at

least as precise as the most precise data

type used in expr.

Listing 6.3 and Figure 6.3 show some

queries that involve SUM(). The first query

returns the total advances paid to all

authors. The second query returns the total

sales of books published in 2000. The third

query returns the total price, sales, and rev-

enue (= price ✕ sales) of all books. Note a

mathematical chestnut in action here: “The

sum of the products doesn’t (necessarily)

equal the product of the sums.”

✔ Tips

■ SUM() works with only numeric

data types.

■ The sum of no rows is null—not zero,

as you might expect.

■ In Microsoft Access date liter-

als, omit the DATE keyword and

surround the literal with # characters

instead of quotes. To run Listing 6.3,

change the date literals in the second

query to #2000-01-01# and #2000-12-31#.

In Microsoft SQL Server and DB2 date

literals, omit the DATE keyword. To run

Listing 6.3, change the date literals to

‘2000-01-01’ and ‘2000-12-31’.

174

Chapter 6

C
a

l
c

u
l

a
t

i
n

g
 a

 S
u

m
 w

i
t

h
 S

U
M

(
)

Listing 6.3 Some SUM() queries. See Figure 6.3 for the
results.

SELECT SUM(advance) AS "Total advances"

FROM royalties;

SELECT SUM(sales)

AS "Total sales (2000 books)"

FROM titles

WHERE pubdate

BETWEEN DATE '2000-01-01'

AND DATE '2000-12-31';

SELECT

SUM(price) AS "Total price",

SUM(sales) AS "Total sales",

SUM(price * sales) AS "Total revenue"

FROM titles;

Listing

Total advances

1336000.00

Total sales (2000 books)

231677

Total price Total sales Total revenue

----------- ----------- -------------

220.65 1975446 41428860.77

Figure 6.3 Results of Listing 6.3.

Calculating an Average
with AVG()
Use the aggregate function AVG() to find

the average, or arithmetic mean, of a set of

values. The arithmetic mean is the sum of a

set of quantities divided by the number of

quantities in the set.

To calculate the average of a set
of values:

◆ Type:

AVG(expr)

expr is a column name, literal, or numeric

expression. The result’s data type is at

least as precise as the most precise data

type used in expr.

Listing 6.4 and Figure 6.4 shows some

queries that involve AVG(). The first query

returns the average price of all books if prices

were doubled. The second query returns the

average and total sales for business books;

both calculations are null (not zero), because

the table contains no business books. The

third query uses a subquery (see Chapter 8)

to list the books with above-average sales.

175

Summarizing and Grouping Data

C
a

l
c

u
l

a
t

i
n

g
 a

n
 A

v
e

r
a

g
e

 w
i
t

h
 A

V
G

(
)

Listing 6.4 Some AVG() queries. See Figure 6.4 for the
results.

SELECT AVG(price * 2) AS "AVG(price * 2)"

FROM titles;

SELECT AVG(sales) AS "AVG(sales)",

SUM(sales) AS "SUM(sales)"

FROM titles

WHERE type = 'business';

SELECT title_id, sales

FROM titles

WHERE sales >

(SELECT AVG(sales) FROM titles)

ORDER BY sales DESC;

Listing

AVG(price * 2)

36.775000

AVG(sales) SUM(sales)

---------- ----------

NULL NULL

title_id sales

-------- -------

T07 1500200

T05 201440

Figure 6.4 Results of Listing 6.4.

✔ Tips

■ AVG() works with only numeric data types.

■ The average of no rows is null—not zero,

as you might expect.

■ If you’ve used, say, 0 or –1 instead of null

to represent missing values, the inclusion

of those numbers in AVG() calculations

yields an incorrect result. Use NULLIF()
to convert the missing-value numbers to

nulls so they’ll be excluded from calcula-

tions; see “Comparing Expressions with

NULLIF()” in Chapter 5.

■ MySQL 4.0 and earlier lack sub-

query support and won’t run

the third query in Listing 6.4.

176

Chapter 6

C
a

l
c

u
l

a
t

i
n

g
 a

n
 A

v
e

r
a

g
e

 w
i
t

h
 A

V
G

(
)

Aggregating and Nulls

Aggregate functions (except COUNT(*))

ignore nulls. If an aggregation requires

that you account for nulls, you can

replace each null with a specified value by

using COALESCE() (see “Checking for Nulls

with COALESCE()” in Chapter 5). For exam-

ple, the following query returns the aver-

age sales of biographies by including nulls

(replaced by zeroes) in the calculation:

SELECT AVG(COALESCE(sales,0))
AS AvgSales

FROM titles
WHERE type = 'biography';

177

Summarizing and Grouping Data

S
t
a

t
i
s

t
i
c

s
 i

n
 S

Q
L

Statistics in SQL

SQL isn’t a statistical programming language, but you can use built-in functions and a few

tricks to calculate simple descriptive statistics such as the sum, mean, and standard devia-

tion. For more-sophisticated analyses you should use your DBMS’s OLAP (online analytical

processing) component or export your data to a dedicated statistical environment such as

Excel, R, SAS, or SPSS.

What you should not do is write statistical routines yourself in SQL or a host language.

Implementing statistical algorithms correctly—even simple ones—means understanding

trade-offs in efficiency (the space needed for arithmetic operations), stability (cancellation

of significant digits), and accuracy (handling pathologic sets of values). See, for example,

Ronald Thisted’s Elements of Statistical Computing (Chapman & Hall/CRC) or John

Monahan’s Numerical Methods of Statistics (Cambridge University Press).

You can get away with using small combinations of built-in SQL functions, such as

STDEV()/(SQRT(COUNT()) for the standard error of the mean, but don’t use complex SQL

expressions for correlations, regression, ANOVA (analysis of variance), or matrix arithmetic,

for example. Check your DBMS’s SQL and OLAP documentation to see which functions it

offers. Built-in functions aren’t portable, but they run far faster and more accurately than

equivalent query expressions.

The functions MIN() and MAX() calculate order statistics, which are values derived from a

dataset that’s been sorted (ordered) by size. Well-known order statistics include the trimmed

mean, rank, range, mode, and median. Chapter 15 covers the trimmed mean, rank, and median.

The range is the difference between the largest and smallest values: MAX(expr)-MIN(expr). The

mode is the value that appears most frequently. A dataset can have more than one mode. The

mode is a weak descriptive statistic because it’s not robust, meaning that it can be affected by

adding a small number or unusual or incorrect values to the dataset. This query finds the

mode of book prices in the sample database:

SELECT price, COUNT(*) AS frequency

FROM titles

GROUP BY price

HAVING COUNT(*) >= ALL(SELECT COUNT(*) FROM titles GROUP BY price);

price has two modes:

price frequency

————— —————————

12.99 2

19.95 2

Counting Rows with COUNT()
Use the aggregate function COUNT() to count

the number of rows in a set of values.

COUNT() has two forms:

◆ COUNT(expr) returns the number of rows

in which expr is not null.

◆ COUNT(*) returns the count of all rows in

a set, including nulls and duplicates.

To count non-null rows:

◆ Type:

COUNT(expr)

expr is a column name, literal, or expres-

sion. The result is an integer greater than

or equal to zero.

To count all rows, including nulls:

◆ Type:

COUNT(*)

The result is an integer greater than or

equal to zero.

Listing 6.5 and Figure 6.5 show some

queries that involve COUNT(expr) and COUNT(*).

The three queries count rows in the table

titles and are identical except for the WHERE
clause. The row counts in the first query dif-

fer because the column price contains a null.

In the second query, the row counts are iden-

tical because the WHERE clause eliminates the

row with the null price before the count. The

third query shows the row-count differences

between the results of the first two queries.

✔ Tips

■ COUNT(expr) and COUNT(*) work with all

data types and never return null.

■ DISTINCT isn’t meaningful with COUNT(*);

see “Aggregating Distinct Values with

DISTINCT” later in this chapter.

■ COUNT(*) - COUNT(expr) returns the

number of nulls, and ((COUNT(*) -
COUNT(expr))*100)/COUNT(*) returns

the percentage of nulls.

178

Chapter 6

C
o

u
n

t
i
n

g
 R

o
w

s
 w

i
t

h
 C

O
U

N
T

(
)

Listing 6.5 Some COUNT() queries. See Figure 6.5 for
the results.

SELECT

COUNT(title_id) AS "COUNT(title_id)",

COUNT(price) AS "COUNT(price)",

COUNT(*) AS "COUNT(*)"

FROM titles;

SELECT

COUNT(title_id) AS "COUNT(title_id)",

COUNT(price) AS "COUNT(price)",

COUNT(*) AS "COUNT(*)"

FROM titles

WHERE price IS NOT NULL;

SELECT

COUNT(title_id) AS "COUNT(title_id)",

COUNT(price) AS "COUNT(price)",

COUNT(*) AS "COUNT(*)"

FROM titles

WHERE price IS NULL;

Listing

COUNT(title_id) COUNT(price) COUNT(*)

--------------- ------------ --------

13 12 13

COUNT(title_id) COUNT(price) COUNT(*)

--------------- ------------ --------

12 12 12

COUNT(title_id) COUNT(price) COUNT(*)

--------------- ------------ --------

1 0 1

Figure 6.5 Results of Listing 6.5.

Aggregating Distinct
Values with DISTINCT
You can use DISTINCT to eliminate duplicate

values in aggregate function calculations;

see “Eliminating Duplicate Rows with

DISTINCT” in Chapter 4. The general syntax

of an aggregate function is:

agg_func([ALL | DISTINCT] expr)

agg_func is MIN, MAX, SUM, AVG, or COUNT. expr

is a column name, literal, or expression.

ALL applies the aggregate function to all

values, and DISTINCT specifies that each

unique value is considered. ALL is the default

and rarely is seen in practice.

With SUM(), AVG(), and COUNT(expr), DISTINCT
eliminates duplicate values before the sum,

average, or count is calculated. DISTINCT isn’t

meaningful with MIN() and MAX(); you can

use it, but it won’t change the result. You

can’t use DISTINCT with COUNT(*).

To calculate the sum of a set of
distinct values:

◆ Type:

SUM(DISTINCT expr)

expr is a column name, literal, or numeric

expression. The result’s data type is at

least as precise as the most precise data

type used in expr.

179

Summarizing and Grouping Data

A
g

g
r

e
g

a
t

i
n

g
 D

i
s

t
i
n

c
t

 V
a

l
u

e
s

 w
i
t

h
 D

I
S

T
I
N

C
T

To calculate the average of a set of
distinct values:

◆ Type:

AVG(DISTINCT expr)

expr is a column name, literal, or numeric

expression. The result’s data type is at

least as precise as the most precise data

type used in expr.

To count distinct non-null rows:

◆ Type:

COUNT(DISTINCT expr)

expr is a column name, literal, or expres-

sion. The result is an integer greater than

or equal to zero.

The queries in Listing 6.6 return the count,

sum, and average of book prices. The non-

DISTINCT and DISTINCT results in Figure 6.6

differ because the DISTINCT results eliminate

the duplicates of prices $12.99 and $19.95

from calculations.

✔ Tips

■ The ratio COUNT(DISTINCT)/COUNT()
tells you how repetitive a set of values is.

A ratio of one or close to it means that

the set contains many unique values.

The closer the ratio is to zero, the more

repeats the set has.

■ DISTINCT in a SELECT clause and DISTINCT
in an aggregate function don’t return the

same result.

The three queries in Listing 6.7 count

the author IDs in the table title_authors.

Figure 6.7 shows the results. The first

query counts all the author IDs in the

table. The second query returns the same

result as the first query because COUNT()
already has done its work and returned

a value in a single row before DISTINCT is

applied. In the third query, DISTINCT is

applied to the author IDs before COUNT()
starts counting.

180

Chapter 6

A
g

g
r

e
g

a
t

i
n

g
 D

i
s

t
i
n

c
t

 V
a

l
u

e
s

 w
i
t

h
 D

I
S

T
I
N

C
T

Listing 6.6 Some DISTINCT aggregate queries. See
Figure 6.6 for the results.

SELECT

COUNT(*) AS "COUNT(*)"

FROM titles;

SELECT

COUNT(price) AS "COUNT(price)",

SUM(price) AS "SUM(price)",

AVG(price) AS "AVG(price)"

FROM titles;

SELECT

COUNT(DISTINCT price)

AS "COUNT(DISTINCT)",

SUM(DISTINCT price)

AS "SUM(DISTINCT)",

AVG(DISTINCT price)

AS "AVG(DISTINCT)"

FROM titles;

Listing

COUNT(*)

13

COUNT(price) SUM(price) AVG(price)

------------ ---------- ----------

12 220.65 18.3875

COUNT(DISTINCT) SUM(DISTINCT) AVG(DISTINCT)

--------------- ------------- -------------

10 187.71 18.7710

Figure 6.6 Results of Listing 6.6.

■ Mixing non-DISTINCT and DISTINCT
aggregates in the same SELECT clause

can produce misleading results.

The four queries in Listing 6.8 show the

four combinations of non-DISTINCT and

DISTINCT sums and counts. Of the four

results in Figure 6.8, only the first result

(no DISTINCTs) and final result (all

DISTINCTs) are consistent mathematically,

which you can verify with AVG(price)
and AVG(DISTINCT price). In the second

and third queries (mixed non-DISTINCTs

and DISTINCTs), you can’t calculate a

valid average by dividing the sum by

the count.

■ Microsoft Access doesn’t

support DISTINCT aggregate

functions. This statement, for example,

is illegal in Access:

SELECT SUM(DISTINCT price)

FROM titles; --Illegal in Access

But you can replicate it with this sub-

query (see the Tips in “Using Subqueries

as Column Expressions” in Chapter 8):

SELECT SUM(price)

FROM (SELECT DISTINCT price

FROM titles);

This Access workaround won’t let you

mix non-DISTINCT and DISTINCT aggre-

gates, however, as in the second and

third queries in Listing 6.8.

MySQL 4.1 and earlier support COUNT
(DISTINCT expr) but not SUM(DISTINCT
expr) and AVG(DISTINCT expr) and so

won’t run Listings 6.6 and 6.8. MySQL 5.0

and later support all DISTINCT aggregates.

181

Summarizing and Grouping Data

A
g

g
r

e
g

a
t

i
n

g
 D

i
s

t
i
n

c
t

 V
a

l
u

e
s

 w
i
t

h
 D

I
S

T
I
N

C
T

Listing 6.7 DISTINCT in a SELECT clause and DISTINCT
in an aggregate function differ in meaning. See
Figure 6.7 for the results.

SELECT COUNT(au_id)

AS "COUNT(au_id)"

FROM title_authors;

SELECT DISTINCT COUNT(au_id)

AS "DISTINCT COUNT(au_id)"

FROM title_authors;

SELECT COUNT(DISTINCT au_id)

AS "COUNT(DISTINCT au_id)"

FROM title_authors;

Listing

COUNT(au_id)

17

DISTINCT COUNT(au_id)

17

COUNT(DISTINCT au_id)

6

Figure 6.7 Results of Listing 6.7.

182

Chapter 6

A
g

g
r

e
g

a
t

i
n

g
 D

i
s

t
i
n

c
t

 V
a

l
u

e
s

 w
i
t

h
 D

I
S

T
I
N

C
T

Listing 6.8 Combining non-DISTINCT and DISTINCT
aggregates gives inconsistent results. See Figure 6.8
for the results.

SELECT

COUNT(price)

AS "COUNT(price)",

SUM(price)

AS "SUM(price)"

FROM titles;

SELECT

COUNT(price)

AS "COUNT(price)",

SUM(DISTINCT price)

AS "SUM(DISTINCT price)"

FROM titles;

SELECT

COUNT(DISTINCT price)

AS "COUNT(DISTINCT price)",

SUM(price)

AS "SUM(price)"

FROM titles;

SELECT

COUNT(DISTINCT price)

AS "COUNT(DISTINCT price)",

SUM(DISTINCT price)

AS "SUM(DISTINCT price)"

FROM titles;

Listing

COUNT(price) SUM(price)

------------ ----------

12 220.65

COUNT(price) SUM(DISTINCT price)

------------ -------------------

12 187.71

COUNT(DISTINCT price) SUM(price)

--------------------- ----------

10 220.65

COUNT(DISTINCT price) SUM(DISTINCT price)

--------------------- -------------------

10 187.71

Figure 6.8 Results of Listing 6.8. The differences in
the counts and sums indicate duplicate prices.
Averages (sum/count) obtained from the second
(187.71/12) or third query (220.65/10) are incorrect.
The first (220.65/12) and fourth (187.71/10) queries
produce consistent averages.

Grouping Rows with
GROUP BY
To this point, I’ve used aggregate functions to

summarize all the values in a column or just

those values that matched a WHERE search con-

dition. You can use the GROUP BY clause to divide

a table into logical groups (categories) and

calculate aggregate statistics for each group.

An example will clarify the concept.

Listing 6.9 uses GROUP BY to count the

number of books that each author wrote

(or cowrote). In the SELECT clause, the col-

umn au_id identifies each author, and the

derived column num_books counts each

author’s books. The GROUP BY clause causes

num_books to be calculated for every unique

au_id instead of only once for the entire

table. Figure 6.9 shows the result. In this

example, au_id is called the grouping column.

The GROUP BY clause’s important characteris-

tics are:

◆ The GROUP BY clause comes after the WHERE
clause and before the ORDER BY clause.

◆ Grouping columns can be column names

or derived columns.

◆ No columns from the input table can

appear in an aggregate query’s SELECT
clause unless they’re also included in the

GROUP BY clause. A column has (or can

have) different values in different rows, so

there’s no way to decide which of these

values to include in the result if you’re

generating a single new row from the table

as a whole. The following statement is

illegal because GROUP BY returns only one

row for each value of type; the query can’t

return the multiple values of pub_id that

are associated with each value of type:

SELECT type, pub_id, COUNT(*)

FROM titles

GROUP BY type; --Illegal

183

Summarizing and Grouping Data

G
r

o
u

p
i
n

g
 R

o
w

s
 w

i
t

h
 G

R
O

U
P

B
Y

Listing 6.9 List the number of books each author
wrote (or cowrote). See Figure 6.9 for the result.

SELECT

au_id,

COUNT(*) AS "num_books"

FROM title_authors

GROUP BY au_id;

Listing

au_id num_books

----- ---------

A01 3

A02 4

A03 2

A04 4

A05 1

A06 3

Figure 6.9 Result of Listing 6.9.

◆ If the SELECT clause contains a complex

nonaggregate expression (more than just

a simple column name), the GROUP BY
expression must match the SELECT
expression exactly.

◆ Specify multiple grouping columns

in the GROUP BY clause to nest groups.

Data is summarized at the final speci-

fied group.

◆ If a grouping column contains a null,

that row becomes a group in the result.

If a grouping column contains more than

one null, the nulls are put into a single

group. A group that contains multiple

nulls doesn’t imply that the nulls equal

one another.

◆ Use a WHERE clause in a query containing

a GROUP BY clause to eliminate rows

before grouping occurs.

◆ You can’t use a column alias in the GROUP
BY clause, though table aliases are

allowed as qualifiers; see “Creating Table

Aliases with AS” in Chapter 7.

◆ Without an ORDER BY clause, groups

returned by GROUP BY aren’t in any partic-

ular order. To sort the result of Listing 6.9

by the descending number of books,

for example, add the clause ORDER BY
“num_books” DESC.

To group rows:

◆ Type:

SELECT columns

FROM table

[WHERE search_condition]

GROUP BY grouping_columns

[HAVING search_condition]

[ORDER BY sort_columns];

columns and grouping_columns are one

or more comma-separated column names,

and table is the name of the table that

contains columns and grouping_columns.

The nonaggregate columns that

appear in columns also must appear

in grouping_columns. The order of the

column names in grouping_columns

determines the grouping levels, from the

highest to the lowest level of grouping.

The GROUP BY clause restricts the rows of

the result; only one row appears for each

distinct value in the grouping column or

columns. Each row in the result contains

summary data related to the specific

value in its grouping columns.

If the statement includes a WHERE clause,

the DBMS groups values after it applies

search_condition to the rows in table.

If the statement includes an ORDER BY
clause, the columns in sort_columns

must be drawn from those in columns.

The WHERE and ORDER BY clauses are

covered in “Filtering Rows with WHERE”

and “Sorting Rows with ORDER BY” in

Chapter 4. HAVING, which filters grouped

rows, is covered in the next section.

184

Chapter 6

G
r

o
u

p
i
n

g
 R

o
w

s
 w

i
t

h
 G

R
O

U
P

B
Y

Listing 6.10 and Figure 6.10 show the dif-

ference between COUNT(expr) and COUNT(*)
in a query that contains GROUP BY. The table

publishers contains one null in the column

state (for publisher P03 in Germany). Recall

from “Counting Rows with COUNT()” earlier

in this chapter that COUNT(expr) counts

non-null values and COUNT(*) counts all val-

ues, including nulls. In the result, GROUP BY
recognizes the null and creates a null group

for it. COUNT(*) finds (and counts) the one

null in the column state. But COUNT(state)
contains a zero for the null group because

COUNT(state) finds only a null in the null

group, which it excludes from the count—

that’s why you have the zero.

If a nonaggregate column contains nulls,

using COUNT(*) rather than COUNT(expr) can

produce misleading results. Listing 6.11 and

Figure 6.11 show summary sales statistics

for each type of book. The sales value for one

of the biographies is null, so COUNT(sales)
and COUNT(*) differ by 1. The average calcula-

tion in the fifth column, SUM/COUNT(sales),

is consistent mathematically, whereas the

sixth-column average, SUM/COUNT(*), is not.

I’ve verified the inconsistency with AVG(sales)
in the final column. (Recall a similar situation

in Listing 6.8 in “Aggregating Distinct Values

with DISTINCT” earlier in this chapter.)

185

Summarizing and Grouping Data

G
r

o
u

p
i
n

g
 R

o
w

s
 w

i
t

h
 G

R
O

U
P

B
Y

Listing 6.10 This query illustrates the difference
between COUNT(expr) and COUNT(*) in a GROUP BY
query. See Figure 6.10 for the result.

SELECT

state,

COUNT(state) AS "COUNT(state)",

COUNT(*) AS "COUNT(*)"

FROM publishers

GROUP BY state;

Listing

state COUNT(state) COUNT(*)

----- ------------ --------

NULL 0 1

CA 2 2

NY 1 1

Figure 6.10 Result of Listing 6.10.

Listing 6.11 For mathematically consistent results,
use COUNT(expr), rather than COUNT(*), if expr
contains nulls. See Figure 6.11 for the result.

SELECT

type,

SUM(sales) AS "SUM(sales)",

COUNT(sales) AS "COUNT(sales)",

COUNT(*) AS "COUNT(*)",

SUM(sales)/COUNT(sales)

AS "SUM/COUNT(sales)",

SUM(sales)/COUNT(*)

AS "SUM/COUNT(*)",

AVG(sales) AS "AVG(sales)"

FROM titles

GROUP BY type;

Listing

type SUM(sales) COUNT(sales) COUNT(*) SUM/COUNT(sales) SUM/COUNT(*) AVG(sales)

---------- ---------- ------------ -------- ---------------- ------------ ----------

biography 1611521 3 4 537173.67 402880.25 537173.67

children 9095 2 2 4547.50 4547.50 4547.50

computer 25667 1 1 25667.00 25667.00 25667.00

history 20599 3 3 6866.33 6866.33 6866.33

psychology 308564 3 3 102854.67 102854.67 102854.67

Figure 6.11 Result of Listing 6.11.

Listing 6.12 and Figure 6.12 show a simple

GROUP BY query that calculates the total

sales, average sales, and number of titles for

each type of book. In Listing 6.13 and

Figure 6.13, I’ve added a WHERE clause to

eliminate books priced less than $13 before

grouping. I’ve also added an ORDER BY clause

to sort the result by descending total sales

of each book type.

Listing 6.14 and Figure 6.14 use multiple

grouping columns to count the number

of titles of each type that each publisher

publishes.

In Listing 6.15 and Figure 6.15, I revisit

Listing 5.31 in “Evaluating Conditional

Values with CASE” in Chapter 5. But instead

of listing each book categorized by its sales

range, I use GROUP BY to list the number of

books in each sales range.

186

Chapter 6

G
r

o
u

p
i
n

g
 R

o
w

s
 w

i
t

h
 G

R
O

U
P

B
Y

Listing 6.12 This simple GROUP BY query calculates a
few summary statistics for each type of book. See
Figure 6.12 for the result.

SELECT

type,

SUM(sales) AS "SUM(sales)",

AVG(sales) AS "AVG(sales)",

COUNT(sales) AS "COUNT(sales)"

FROM titles

GROUP BY type;

Listing

TYPE SUM(sales) AVG(sales) COUNT(sales)

---------- ---------- ---------- ------------

biography 1611521 537173.67 3

children 9095 4547.50 2

computer 25667 25667.00 1

history 20599 6866.33 3

psychology 308564 102854.67 3

Figure 6.12 Result of Listing 6.12.

Listing 6.13 Here, I’ve added WHERE and ORDER BY
clauses to Listing 6.12 to cull books priced less than
$13 and sort the result by descending total sales. See
Figure 6.13 for the result.

SELECT

type,

SUM(sales) AS "SUM(sales)",

AVG(sales) AS "AVG(sales)",

COUNT(sales) AS "COUNT(sales)"

FROM titles

WHERE price >= 13

GROUP BY type

ORDER BY "SUM(sales)" DESC;

Listing

type SUM(sales) AVG(sales) COUNT(sales)

---------- ---------- ---------- ------------

biography 1511520 755760.00 2

computer 25667 25667.00 1

history 20599 6866.33 3

children 5000 5000.00 1

Figure 6.13 Result of Listing 6.13.

187

Summarizing and Grouping Data

G
r

o
u

p
i
n

g
 R

o
w

s
 w

i
t

h
 G

R
O

U
P

B
Y

Listing 6.14 List the number of books of each type for
each publisher, sorted by descending count within
ascending publisher ID. See Figure 6.14 for the result.

SELECT

pub_id,

type,

COUNT(*) AS "COUNT(*)"

FROM titles

GROUP BY pub_id, type

ORDER BY pub_id ASC, "COUNT(*)" DESC;

Listing

pub_id type COUNT(*)

------ ---------- --------

P01 biography 3

P01 history 1

P02 computer 1

P03 history 2

P03 biography 1

P04 psychology 3

P04 children 2

Figure 6.14 Result of Listing 6.14.

Listing 6.15 List the number of books in each
calculated sales range, sorted by ascending sales.
See Figure 6.15 for the result.

SELECT

CASE

WHEN sales IS NULL

THEN 'Unknown'

WHEN sales <= 1000

THEN 'Not more than 1,000'

WHEN sales <= 10000

THEN 'Between 1,001 and 10,000'

WHEN sales <= 100000

THEN 'Between 10,001 and 100,000'

WHEN sales <= 1000000

THEN 'Between 100,001 and 1,000,000'

ELSE 'Over 1,000,000'

END

AS "Sales category",

COUNT(*) AS "Num titles"

FROM titles

GROUP BY

CASE

WHEN sales IS NULL

THEN 'Unknown'

WHEN sales <= 1000

THEN 'Not more than 1,000'

WHEN sales <= 10000

THEN 'Between 1,001 and 10,000'

WHEN sales <= 100000

THEN 'Between 10,001 and 100,000'

WHEN sales <= 1000000

THEN 'Between 100,001 and 1,000,000'

ELSE 'Over 1,000,000'

END

ORDER BY MIN(sales) ASC;

Listing

Sales category Num titles

----------------------------- ----------

Unknown 1

Not more than 1,000 1

Between 1,001 and 10,000 3

Between 10,001 and 100,000 5

Between 100,001 and 1,000,000 2

Over 1,000,000 1

Figure 6.15 Result of Listing 6.15.

✔ Tips

■ Use the WHERE clause to exclude rows

that you don’t want grouped and use

the HAVING clause to filter rows after they

have been grouped. The next section

covers HAVING.

■ If used without an aggregate function,

GROUP BY acts like DISTINCT (Listing 6.16

and Figure 6.16). For information about

DISTINCT, see “Eliminating Duplicate

Rows with DISTINCT” in Chapter 4.

■ You can use GROUP BY to look for pat-

terns in your data. In Listing 6.17 and

Figure 6.17, I’m looking for a relation-

ship between price categories and

average sales.

■ Don’t rely on GROUP BY to sort your

result. Include ORDER BY whenever you

use GROUP BY (even though I’ve omitted

ORDER BY in some examples). In some

DBMSs, a GROUP BY implies an ORDER BY.

■ The multiple values returned by an

aggregate function in a GROUP BY query

are called vector aggregates. In a query

that lacks a GROUP BY clause, the single

value returned by an aggregate function

is a scalar aggregate.

■ You should create indexes for columns

that you group frequently (see Chapter 12).

188

Chapter 6

G
r

o
u

p
i
n

g
 R

o
w

s
 w

i
t

h
 G

R
O

U
P

B
Y

Listing 6.16 Both of these queries return the same
result. The bottom form is preferred. See Figure 6.16
for the result.

SELECT type

FROM titles

GROUP BY type;

SELECT DISTINCT type

FROM titles;

Listing

type

biography

children

computer

history

psychology

Figure 6.16 Either statement in Listing 6.16 returns
this result.

■ You can use the function FLOOR(x) to

categorize numeric values. FLOOR(x)
returns the greatest integer that is lower

than x. This query groups books in $10

price intervals:

SELECT

FLOOR(price/10)*10 AS “Category”,

COUNT(*) AS “Count”

FROM titles

GROUP BY FLOOR(price/10)*10;

The result is:

Category Count

———————— —————

0 2

10 6

20 3

30 1

NULL 1

Category 0 counts prices between $0.00

and $9.99; category 10 counts prices

between $10.00 and $19.99; and so on.

(The analogous function CEILING(x)
returns the smallest integer that is

higher than x.)

■ In Microsoft Access, use the

Switch() function instead of

the CASE expression in Listing 6.15. See

the DBMS Tip in “Evaluating Conditional

Values with CASE” in Chapter 5.

MySQL 4.1 and earlier don’t allow CASE
in a GROUP BY clause and so won’t run

Listing 6.15. MySQL 5.0 and later will

run it.

189

Summarizing and Grouping Data

G
r

o
u

p
i
n

g
 R

o
w

s
 w

i
t

h
 G

R
O

U
P

B
Y

Listing 6.17 List the average sales for each price,
sorted by ascending price. See Figure 6.17 for the
result.

SELECT price, AVG(sales) AS "AVG(sales)"

FROM titles

WHERE price IS NOT NULL

GROUP BY price

ORDER BY price ASC;

Listing

price AVG(sales)

------- ----------

6.95 201440.0

7.99 94123.0

10.00 4095.0

12.99 56501.0

13.95 5000.0

19.95 10443.0

21.99 566.0

23.95 1500200.0

29.99 10467.0

39.95 25667.0

Figure 6.17 Result of Listing 6.17. Ignoring the
statistical outlier at $23.95, a weak inverse
relationship between price and sales is apparent.

Filtering Groups
with HAVING
The HAVING clause sets conditions on the

GROUP BY clause similar to the way that WHERE
interacts with SELECT. The HAVING clause’s

important characteristics are:

◆ The HAVING clause comes after the GROUP
BY clause and before the ORDER BY clause.

◆ Just as WHERE limits the number of rows

displayed by SELECT, HAVING limits the

number of groups displayed by GROUP BY.

◆ The WHERE search condition is applied

before grouping occurs, and the HAVING
search condition is applied after.

◆ HAVING syntax is similar to the WHERE
syntax, except that HAVING can contain

aggregate functions.

◆ A HAVING clause can reference any of the

items that appear in the SELECT list.

The sequence in which the WHERE, GROUP BY,

and HAVING clauses are applied is:

1. The WHERE clause filters the rows that

result from the operations specified in

the FROM and JOIN clauses.

2. The GROUP BY clause groups the output of

the WHERE clause.

3. The HAVING clause filters rows from the

grouped result.

190

Chapter 6

F
i
l
t

e
r

i
n

g
 G

r
o

u
p

s
 w

i
t

h
 H

A
V

I
N

G

Listing 6.18 List the number of books written (or
cowritten) by each author who has written three
or more books. See Figure 6.18 for the result.

SELECT

au_id,

COUNT(*) AS "num_books"

FROM title_authors

GROUP BY au_id

HAVING COUNT(*) >= 3;

Listing

au_id num_books

----- ---------

A01 3

A02 4

A04 4

A06 3

Figure 6.18 Result of Listing 6.18.

Listing 6.19 List the number of titles and average
revenue for the types with average revenue more
than $1 million. See Figure 6.19 for the result.

SELECT

type,

COUNT(price) AS "COUNT(price)",

AVG(price * sales) AS "AVG revenue"

FROM titles

GROUP BY type

HAVING AVG(price * sales) > 1000000;

Listing

type COUNT(price) AVG revenue

---------- ------------ -----------

biography 3 12484878.00

computer 1 1025396.65

Figure 6.19 Result of Listing 6.19.

To filter groups:

◆ Following the GROUP BY clause, type:

HAVING search_condition

search_condition is a search condition

used to filter groups. search_condition

can contain aggregate functions but

otherwise is identical to the WHERE search

condition, described in “Filtering Rows

with WHERE” and subsequent sections in

Chapter 4. You can combine and negate

multiple HAVING conditions with the logi-

cal operators AND, OR, and NOT.

The HAVING search condition is applied

to the rows in the output produced by

grouping. Only the groups that meet the

search condition appear in the result.

You can apply a HAVING clause only to

columns that appear in the GROUP BY
clause or in an aggregate function.

In Listing 6.18 and Figure 6.18, I revisit

Listing 6.9 earlier in this chapter, but instead

of listing the number of books that each

author wrote (or cowrote), I use HAVING to

list only the authors who have written three

or more books.

In Listing 6.19 and Figure 6.19, the HAVING
condition also is an aggregate expression in

the SELECT clause. This query still works if

you remove the AVG() expression from the

SELECT list (Listing 6.20 and Figure 6.20).

191

Summarizing and Grouping Data

F
i
l
t

e
r

i
n

g
 G

r
o

u
p

s
 w

i
t

h
 H

A
V

I
N

G

Listing 6.20 Listing 6.19 still works without AVG(price
* sales) in the SELECT list. See Figure 6.20 for the
result.

SELECT

type,

COUNT(price) AS "COUNT(price)"

FROM titles

GROUP BY type

HAVING AVG(price * sales) > 1000000;

Listing

type COUNT(price)

---------- ------------

biography 3

computer 1

Figure 6.20 Result of Listing 6.20.

In Listing 6.21 and Figure 6.21, multiple

grouping columns count the number of titles

of each type that each publisher publishes.

The HAVING condition removes groups in

which the publisher has one or fewer titles

of a particular type. This query retrieves a

subset of the result of Listing 6.14 earlier in

this chapter.

In Listing 6.22 and Figure 6.22, the WHERE
clause first removes all rows except for books

from publishers P03 and P04. Then the

GROUP BY clause groups the output of the

WHERE clause by type. Finally, the HAVING
clause filters rows from the grouped result.

✔ Tip

■ Generally, a HAVING clause should involve

only aggregates. The only conditions that

you specify in the HAVING clause are those

conditions that must be applied after the

grouping operation has been performed.

It’s more efficient to specify conditions

that can be applied before the grouping

operation in the WHERE clause. The follow-

ing statements, for example, are equivalent,

but the first statement is preferable

because it reduces the number of rows

that have to be grouped:

SELECT pub_id, SUM(sales) --Faster

FROM titles

WHERE pub_id IN (‘P03’, ‘P04’)

GROUP BY pub_id

HAVING SUM(sales) > 10000;

SELECT pub_id, SUM(sales) --Slower

FROM titles

GROUP BY pub_id

HAVING SUM(sales) > 10000

AND pub_id IN (‘P03’, ‘P04’);

192

Chapter 6

F
i
l
t

e
r

i
n

g
 G

r
o

u
p

s
 w

i
t

h
 H

A
V

I
N

G

Listing 6.21 List the number of books of each type for
each publisher, for publishers with more than one
title of a type. See Figure 6.21 for the result.

SELECT

pub_id,

type,

COUNT(*) AS "COUNT(*)"

FROM titles

GROUP BY pub_id, type

HAVING COUNT(*) > 1

ORDER BY pub_id ASC, "COUNT(*)" DESC;

Listing

pub_id type COUNT(*)

------ ---------- --------

P01 biography 3

P03 history 2

P04 psychology 3

P04 children 2

Figure 6.21 Result of Listing 6.21.

Listing 6.22 For books from publishers P03 and P04,
list the total sales and average price by type, for types
with more than $10,000 total sales and less than $20
average price. See Figure 6.22 for the result.

SELECT

type,

SUM(sales) AS "SUM(sales)",

AVG(price) AS "AVG(price)"

FROM titles

WHERE pub_id IN ('P03', 'P04')

GROUP BY type

HAVING SUM(sales) > 10000

AND AVG(price) < 20;

Listing

type SUM(sales) AVG(price)

---------- ---------- ----------

psychology 308564 9.31

Figure 6.22 Result of Listing 6.22.

All the queries so far have retrieved rows from

a single table. This chapter explains how to

use joins to retrieve rows from multiple tables

simultaneously. Recall from “Relationships”

in Chapter 2 that a relationship is an associ-

ation established between common columns

in two tables. A join is a table operation that

uses related columns to combine rows from

two input tables into one result table. You

can chain joins to retrieve rows from an

unlimited number of tables.

Why do joins matter? The most important

database information isn’t so much stored in

the rows of individual tables; rather, it’s the

implied relationships between sets of related

rows. In the sample database, for example,

the individual rows of the tables authors,

publishers, and titles contain important

values, of course, but it’s the implied relation-

ships that let you understand and analyze

your data in its entirety: Who wrote what?

Who published what? To whom do we send

royalty checks? For how much? And so on.

This chapter explains the different types of

joins, why they’re used, and how to create a

SELECT statement that uses them.

193

Joins
7

J
o

i
n

s

Qualifying Column Names
Recall from “Tables, Columns, and Rows” in

Chapter 2 that column names must be unique

within a table but can be reused in other

tables. The tables authors and publishers in

the sample database both contain a column

named city, for example.

To identify an otherwise-ambiguous column

uniquely in a query that involves multiple

tables, use its qualified name. A qualified

name is a table name followed by a dot and

the name of the column in the table. Because

tables must have different names within a

database, a qualified name identifies a single

column uniquely within the entire database.

To qualify a column name:

◆ Type:

table.column

column is a column name, and table is

name of the table that contains column

(Listing 7.1 and Figure 7.1).

✔ Tips

■ You can mix qualified and unqualified

names within the same statement.

■ Qualified names aren’t required if there’s

no chance of ambiguity—that is, if the

query’s tables have no column names in

common. To improve system perform-

ance, however, qualify all columns in a

query with joins.

■ Another good reason to use qualified

names is to ensure that changes to a

table’s structure don’t introduce ambigui-

ties. If someone adds the column zip
to the table publishers, any unqualified

references to zip in a query that selects

from the tables authors (which already

contains a column zip) and publishers
would be ambiguous.

194

Chapter 7

Q
u

a
l
i
f
y

i
n

g
 C

o
l
u

m
n

 N
a

m
e

s

Listing 7.1 Here, the qualified names resolve
otherwise-ambiguous references to the column
city in the tables authors and publishers. See
Figure 7.1 for the result.

SELECT au_id, authors.city

FROM authors

INNER JOIN publishers

ON authors.city = publishers.city;

Listing

au_id city

----- -------------

A03 San Francisco

A04 San Francisco

A05 New York

Figure 7.1 Result of Listing 7.1. This result lists
authors who live in the same city as some publisher;
the join syntax is explained later in this chapter.

■ Qualification still works in queries that

involve a single table. In fact, every column

has an implicit qualifier. The following

two statements are equivalent:

SELECT

au_fname,

au_lname

FROM authors;

and

SELECT

authors.au_fname,

authors.au_lname

FROM authors;

■ Your query might require still

more qualifiers, depending on

where it resides in the DBMS hierarchy.

You might need to qualify a table with a

server, database, or schema name, for

example (see Table 2.2 in Chapter 2).

Table aliases, described in the next sec-

tion, are useful in SQL statements that

require lengthy qualified names. A fully

qualified table name in Microsoft SQL

Server, for example, is:

server.database.owner.table

Oracle 8i requires WHERE join syntax; see

“Creating Joins with JOIN or WHERE” later

in this chapter. To run Listing 7.1, type:

SELECT au_id, authors.city

FROM authors, publishers

WHERE authors.city =

publishers.city;

195

Joins

Q
u

a
l
i
f
y

i
n

g
 C

o
l
u

m
n

 N
a

m
e

s

Creating Table Aliases
with AS
You can create table aliases by using AS
just as you can create column aliases; see

“Creating Column Aliases with AS” in

Chapter 4. Table aliases:

◆ Save typing

◆ Reduce statement clutter

◆ Exist only for the duration of a statement

◆ Don’t appear in the result (unlike

column aliases)

◆ Don’t change the name of a table in

the database

◆ Also are called correlation names in the

context of subqueries (see Chapter 8)

To create a table alias:

◆ In a FROM clause or JOIN clause, type:

table [AS] alias

table is a table name, and alias is its alias

name. alias is a single, unquoted word

that contains only letters, digits, or under-

scores; don’t use spaces, punctuation, or

special characters. The AS keyword is

optional (Listing 7.2 and Figure 7.2).

✔ Tips

■ In this book, I omit the keyword AS for

DBMS portability (see the DBMS Tip in

this section).

■ In practice, table aliases are short (typi-

cally, one or two characters), but long

names are valid.

196

Chapter 7

C
r

e
a

t
i
n

g
 T

a
b

l
e

 A
l
i
a

s
e

s
 w

i
t

h
 A

S

Listing 7.2 Tables aliases make queries shorter and
easier to read. Note that you can use an alias in the
SELECT clause before it’s actually defined later in the
statement. See Figure 7.2 for the result.

SELECT au_fname, au_lname, a.city

FROM authors a

INNER JOIN publishers p

ON a.city = p.city;

Listing

au_fname au_lname city

--------- -------- -------------

Hallie Hull San Francisco

Klee Hull San Francisco

Christian Kells New York

Figure 7.2 Result of Listing 7.2.

■ If you want to use the actual name of any

particular table, omit its alias.

■ An alias name hides a table name. If you

alias a table, you must use its alias in

all qualified references. The following

statement is illegal because the alias a
occludes the table name authors:

SELECT authors.au_id

FROM authors a; --Illegal

■ PostgreSQL implicitly adds

table name(s) that appear in the

SELECT clause to the FROM clause, which

can cause unexpected cross joins. The

query SELECT titles.title_id FROM
titles t;, for example, cross-joins the

table titles, returning 169 (132) rows

instead of an error. To turn off this

behavior, use SET ADD_MISSING_FROM TO
FALSE;.

■ Each table’s alias must be unique within

the same SQL statement.

■ Table aliases are required to refer to

the same table more than once in a self-

join; see “Creating a Self-Join” later in

this chapter.

■ You also can use AS to assign aliases to

views; see Chapter 13.

■ You can’t use keywords as table aliases;

see “SQL Syntax” in Chapter 3.

■ In Oracle, you must omit the

keyword AS when you create a

table alias.

Oracle 8i requires WHERE join syntax; see

“Creating Joins with JOIN or WHERE” later

in this chapter. To run Listing 7.2, type:

SELECT a.au_fname, a.au_lname,

a.city

FROM authors a, publishers p

WHERE a.city = p.city;

197

Joins

C
r

e
a

t
i
n

g
 T

a
b

l
e

 A
l
i
a

s
e

s
 w

i
t

h
 A

S

Using Joins
You can use a join to extract data from

more than one table. The rest of this

chapter explains the different types of joins

(Table 7.1), why they’re used, and how to

create SELECT statements that use them.

The important characteristics of joins are:

◆ The two join operands (input tables)

usually are called the first table and the

second table, but they are called the left

table and the right table in outer joins,

in which table order matters.

◆ Tables are joined row by row and side by

side by satisfying whatever join condi-

tion(s) you specify in the query.

◆ Rows that don’t match are included or

excluded, depending on the type of join.

◆ A theta join uses a comparison operator

(=, <>, <, <=, >, or >=) to compare values in

joined columns. An equijoin, the most

common type of join, is a theta join that

compares values for equality.

◆ A join’s connecting columns often are

associated key columns, but you can join

any columns with compatible data types

(except for cross joins, which require no

specific join columns).

◆ To ensure that a join is meaningful,

compare values in columns defined

over the same domain. It’s possible to

join the columns titles.price and

royalties.advance, for example, but the

result will be meaningless. A typical join

condition specifies a foreign key in one

table and the associated primary key in

the other table (see “Primary Keys” and

“Foreign Keys” in Chapter 2).

◆ If a key is composite (has multiple

columns), you can (and normally

should) join all the key’s columns.

198

Chapter 7

U
s

i
n

g
 J

o
i
n

s

Table 7.1

Types of Joins

J o i n D e s c r i p t i o n

Cross join Returns all rows from the first table in
which each row from the first table is
combined with all rows from the sec-
ond table.

Natural join A join that compares, for equality, all
the columns in the first table with cor-
responding columns that have the
same name in the second table.

Inner join A join that uses a comparison opera-
tor to match rows from two tables
based on the values in common
columns from each table. Inner joins
are the most common type of join.

Left outer join Returns all the rows from the left
table, not just the ones in which the
joined columns match. If a row in the
left table has no matching rows in the
right table, the associated result row
contains nulls for all SELECT-clause
columns coming from the right table.

Right outer join The reverse of a left outer join. All
rows from the right table are
returned. Nulls are returned for the
left table if a right-table row has no
matching left-table row.

Full outer join Returns all rows in both the left and
right tables. If a row has no match in
the other table, the SELECT-clause
columns from the other table contain
nulls. If there is a match between the
tables, the entire result row contains
values from both tables.

Self- join A join of a table to itself.

◆ Joined columns needn’t have the same

column name (except for natural joins).

◆ You can nest and chain joins to join more

than two tables, but understand that the

DBMS works its way through your query

by executing joins on exactly two tables

at a time. The two tables in each join can

be two base tables from the database, a

base table and a table that is the result of

a previous join, or two tables that are the

results of previous joins.

◆ The SQL standard doesn’t limit the num-

ber of tables (or joins) that can appear in

a query, but your DBMS will have built-in

limits, or your database administrator

might set limits that are lower than the

built-in limits. Routine queries need no

more than five or six joined tables.

◆ If a join’s connecting columns contain

nulls, the nulls never join. Nulls represent

unknown values that aren’t considered

to be equal (or unequal) to one another.

Nulls in a column from one of the joined

tables can be returned only by using a

cross join or an outer join (unless a WHERE
clause excludes null values explicitly).

For information about nulls, see “Nulls”

in Chapter 3.

◆ Joins exist only for the duration of a

query and aren’t part of the database

or DBMS.

◆ The data types of the join columns must

be compatible, meaning that the DBMS

can convert values to a common type

for comparisons. For most DBMSs,

numeric data types (INTEGER, FLOAT, and

NUMERIC, for example), character data

types (CHAR, VARCHAR), and datetime data

types (DATE, TIMESTAMP) are compatible.

You can’t join binary objects.

Conversions require computational

overhead. For the best performance, the

join columns should have identical data

types, including whether nulls are allowed.

For information about data types, see

“Data Types” in Chapter 3.

◆ For faster queries, index the join

columns (see Chapter 12).

◆ You can join views to tables or to other

views (see Chapter 13).

◆ You can use either JOIN syntax or WHERE
syntax to create a join; see the next section.

199

Joins

U
s

i
n

g
 J

o
i
n

s

Domains and Comparisons

The values that you compare in joins and WHERE clauses must be meaningfully comparable—

that is, have the same data type and the same meaning. The sample-database columns au_id
and pub_id, for example, have the same data type—both are CHAR(3), a letter followed by two

digits—but mean different things, so they can’t be compared sensibly.

Recall from “Tables, Columns, and Rows” in Chapter 2 that a domain is the set of permissible

values for a column. To prevent meaningless comparisons, the relational model requires that

comparable columns draw from domains that have the same meaning. Unfortunately, SQL

and DBMSs stray from the model and have no intrinsic mechanism that prevents users from

comparing, say, IQ and shoe size. If you’re building a database application, it’s up to you to

stop (or warn) users from making meaningless comparisons that waste processing time or,

worse, yield results that might be interpreted as valid.

Creating Joins with
JOIN or WHERE
You have two alternative ways of specifying

a join: by using JOIN syntax or WHERE syntax.

SQL-92 and later standards prescribe JOIN
syntax, but older standards prescribe WHERE;

hence, both JOIN and WHERE are used widely

and are legal in most DBMSs.

This section explains the general syntax for

JOIN and WHERE joins that involve two tables.

The actual syntax that you’ll use in real

queries will vary by the join type, the num-

ber of columns joined, the number of tables

joined, and the syntax requirements of your

DBMS. The syntax diagrams and examples

in the following sections show you how to

create specific joins.

To create a join by using JOIN:

◆ Type:

SELECT columns

FROM table1 join_type table2

ON join_conditions

[WHERE search_condition]

[GROUP BY grouping_columns]

[HAVING search_condition]

[ORDER BY sort_columns];

columns is one or more comma-separated

expressions or column names from table1

or table2. If table1 and table2 have a col-

umn name in common, you must qualify

all references to these columns through-

out the query to prevent ambiguity; see

“Qualifying Column Names” earlier in

this chapter.

table1 and table2 are the names of the

joined tables. You can alias the table

names; see “Creating Table Aliases with

AS” earlier in this chapter.

join_type specifies what kind of join is

performed: CROSS JOIN, NATURAL JOIN,

INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER
JOIN, or FULL OUTER JOIN.

join_conditions specifies one or more

join conditions to be evaluated for each

pair of joined rows. (The ON clause isn’t

allowed in cross joins and natural joins.)

A join condition takes this form:

[table1.]column op [table2.]column

op usually is = but can be any compari-

son operator: =, <>, <, <=, >, or >= (refer

to Table 4.2 in Chapter 4). You can com-

bine multiple join conditions with AND
or OR; see “Combining and Negating

Conditions with AND, OR, and NOT” in

Chapter 4.

The WHERE and ORDER BY clauses are

covered in Chapter 4; GROUP BY and

HAVING are covered in Chapter 6.

200

Chapter 7

C
r

e
a

t
i
n

g
 J

o
i
n

s
 w

i
t

h
 J

O
I
N

 o
r

 W
H

E
R

E

To create a join by using WHERE:

◆ Type:

SELECT columns

FROM table1, table2

WHERE join_conditions

[GROUP BY grouping_columns]

[HAVING search_condition]

[ORDER BY sort_columns];

columns, table1, and table2 have the

same meaning as in “To create a join by

using JOIN” earlier in this section.

join_conditions also has the same mean-

ing as in “To create a join by using JOIN”

earlier in this chapter, except that op can

be a special symbol that indicates the

join type. The WHERE clause also can

include (nonjoin) search conditions to

filter rows; see “Filtering Rows with

WHERE” in Chapter 4.

The ORDER BY clause is covered in

Chapter 4; GROUP BY and HAVING are

covered in Chapter 6.

Listings 7.3a and 7.3b show equivalent

queries that use JOIN and WHERE syntax.

See Figure 7.3 for the result.

201

Joins

C
r

e
a

t
i
n

g
 J

o
i
n

s
 w

i
t

h
 J

O
I
N

 o
r

 W
H

E
R

E

Listing 7.3a A join that uses JOIN syntax. See
Figure 7.3 for the result.

SELECT au_fname, au_lname, a.city

FROM authors a

INNER JOIN publishers p

ON a.city = p.city;

Listing

Listing 7.3b The same join, using WHERE syntax. See
Figure 7.3 for the result.

SELECT au_fname, au_lname, a.city

FROM authors a, publishers p

WHERE a.city = p.city;

Listing

au_fname au_lname city

--------- -------- -------------

Hallie Hull San Francisco

Klee Hull San Francisco

Christian Kells New York

Figure 7.3 Result of Listings 7.3a and 7.3b.

Query Execution Sequence

When your DBMS processes joins, it uses a logical sequence to execute the entire query.

The DBMS:

1. Applies the join conditions in the JOIN clause.

2. Applies the join conditions and search conditions in the WHERE clause.

3. Groups rows according to the GROUP BY clause.

4. Applies the search conditions in the HAVING clause to the groups.

5. Sorts the result according to the ORDER BY clause.

✔ Tips

■ It might seem odd to use a WHERE clause

to specify join conditions, but the join

condition does act as a filter. When you

join two tables, the DBMS internally pairs

every row in the left table with every row

in the right table, forming a cross join

(see the next section). The DBMS then

uses the join condition to filter rows

from the cross join (conceptually, any-

way; DBMS optimizers don’t actually

create enormous cross-joined tables for

every join).

■ The compelling reason to prefer JOIN
to WHERE syntax is that JOIN makes the

join type explicit. A LEFT OUTER JOIN B is

clearer than, say, A *= B. For the most

common type of joins—simple inner

joins—I think that WHERE syntax is easier

to understand, however. Both JOIN and

WHERE syntax are popular, so you’ll have

to learn both to read queries created by

other people.

■ In a three-table join, only one table can

be used to bridge from one of the other

tables to the third table.

■ The SELECT-clause list for a join can ref-

erence all the columns in the joined tables

or any subset of the columns. The list

isn’t required to contain columns from

every table in the join. In a three-table

join, for example, none of the columns

from the middle table needs to be in

the list.

■ Joined columns don’t need to have the

same data type. If the data types aren’t

identical, they must be compatible or

must be data types that your DBMS can

convert implicitly to a common type. If

the data types can’t be converted implic-

itly, the join condition must convert the

data type explicitly by using the CAST()
function. For information about implicit

and explicit conversions, see “Converting

Data Types with CAST()” in Chapter 5.

■ If you’re using WHERE syntax with two or

more join conditions, you’ll almost always

want to combine all the join conditions

with AND. Combining join conditions with

OR is legal, but the result is hard to inter-

pret. For more information about AND
and OR, see “Combining and Negating

Conditions with AND, OR, and NOT” in

Chapter 4.

■ Most queries that use joins can be

rewritten by using a subquery (a query

nested within another query), and most

subqueries can be rewritten as joins.

For information about subqueries, see

Chapter 8.

■ Oracle 8i and earlier don’t

support JOIN syntax; use WHERE
joins instead. Oracle 9i and later support

JOIN syntax.

Your DBMS might prohibit joins on

columns with particular data types

(especially binary and long-text data

types). Microsoft SQL Server prohibits

joins on ntext, text, and image columns,

and Oracle prohibits joins on LOB

columns, for example. Search your

DBMS documentation for joins.

202

Chapter 7

C
r

e
a

t
i
n

g
 J

o
i
n

s
 w

i
t

h
 J

O
I
N

 o
r

 W
H

E
R

E

203

Joins

T
h

e
 U

S
I
N

G
 C

l
a

u
s

e

The USING Clause

For JOIN syntax, the SQL standard also defines a USING clause that can be used instead of the

ON clause if the joined columns have the same name and are compared for equality:

FROM table1 join_type table2

USING (columns)

columns is a comma-separated list of one or more column names. The parentheses are

required. The query performs an equijoin on the named pair(s) of columns. The type of join

is called a named columns join. Rewriting Listing 7.3a with USING:

SELECT au_fname, au_lname, city

FROM authors

INNER JOIN publishers

USING (city);

The USING clause acts like a natural join, except that you can use it if you don’t want to join

all pairs of columns with the same name in both tables. Note that the preceding USING exam-

ple joins only on the column city in both tables, whereas a natural join would join on both

the columns city and state common to the tables. See “Creating a Natural Join with NATURAL
JOIN” later in this chapter.

USING is a syntactic convenience that doesn’t add extra functionality to SQL. A USING clause

always can be replicated with an ON clause in JOIN syntax or with a WHERE clause in WHERE syntax.

Microsoft Access, Microsoft SQL Server, and DB2 don’t support USING. MySQL

requires the SELECT clause’s common column names to be qualified in USING queries.

To run the preceding example, change city to authors.city in the SELECT clause.

Creating a Cross Join
with CROSS JOIN
A cross join:

◆ Returns all possible combinations of

rows of two tables. The result contains

all rows from the first table; each row

from the first table is combined with all

rows from the second table.

◆ Doesn’t use a join condition. To create

a cross join, omit the ON clause if you’re

using JOIN syntax, or omit the WHERE
clause if you’re using WHERE syntax.

◆ Seldom is used alone because the result

is cumbersome and hard to interpret but

does appear in some types of queries as

an intermediate result (see “Calculating

Running Statistics” and “Generating

Sequences” in Chapter 15, for example).

◆ Can produce a huge result, even with

small tables. If one table has m rows and

the other has n rows, the result contains

m ✕ n rows.

◆ Is a computationally expensive and time-

consuming query.

◆ Also is called a Cartesian product or

cross product.

To create a cross join:

◆ Type:

SELECT columns

FROM table1

CROSS JOIN table2

columns is one or more comma-separated

expressions or column names from table1

or table2. table1 and table2 are the names

of the joined tables. If the tables have

some column names in common, qualify

those column names with the names of

the tables (Listing 7.4 and Figure 7.4).

204

Chapter 7

C
r

e
a

t
i
n

g
 a

 C
r

o
s

s
 J

o
i
n

 w
i
t

h
 C

R
O

S
S

 J
O

I
N

Listing 7.4 A cross join displays all possible
combinations of rows from two tables. See
Figure 7.4 for the result.

SELECT

au_id,

pub_id,

a.state AS "au_state",

p.state AS "pub_state"

FROM authors a

CROSS JOIN publishers p;

Listing

au_id pub_id au_state pub_state

----- ------ -------- ---------

A01 P01 NY NY

A02 P01 CO NY

A03 P01 CA NY

A04 P01 CA NY

A05 P01 NY NY

A06 P01 CA NY

A07 P01 FL NY

A01 P02 NY CA

A02 P02 CO CA

A03 P02 CA CA

A04 P02 CA CA

A05 P02 NY CA

A06 P02 CA CA

A07 P02 FL CA

A01 P03 NY NULL

A02 P03 CO NULL

A03 P03 CA NULL

A04 P03 CA NULL

A05 P03 NY NULL

A06 P03 CA NULL

A07 P03 FL NULL

A01 P04 NY CA

A02 P04 CO CA

A03 P04 CA CA

A04 P04 CA CA

A05 P04 NY CA

A06 P04 CA CA

A07 P04 FL CA

Figure 7.4 Result of Listing 7.4.

✔ Tips

■ Using WHERE syntax, Listing 7.4 is equiva-

lent to:

SELECT au_id, pub_id,

a.state AS “au_state”,

p.state AS “pub_state”

FROM authors a, publishers p;

■ Use SELECT * to retrieve all columns

from both tables. This query retrieves

all columns from the tables authors
and publishers:

SELECT *

FROM authors

CROSS JOIN publishers;

Equivalently, using WHERE syntax:

SELECT *

FROM authors, publishers;

■ Use SELECT table.* to retrieve all columns

from just one of the tables. The following

query retrieves all columns from the table

authors and only the column pub_id
from the table publishers:

SELECT authors.*, p.pub_id

FROM authors

CROSS JOIN publishers p;

Equivalently, using WHERE syntax:

SELECT authors.*, p.pub_id

FROM authors, publishers p;

■ To find the cross product of n tables by

using JOIN syntax, type:

SELECT columns

FROM table1

CROSS JOIN table2

...

CROSS JOIN tableN

Equivalently, using WHERE syntax:

SELECT columns

FROM table1, table2,..., tableN

■ Cross products often are produced

mistakenly. If your result contains an

unexpectedly large number of rows, you

might have omitted a join condition

from your query accidentally.

■ Although a cross product rarely is the

result you want in practice, your DBMS

(theoretically) generates a cross product

internally as the first step in processing

every join. After the DBMS has the cross

product, it uses the SELECT-clause list to

delete columns and the join and search

conditions to delete rows.

■ The join

t1 CROSS JOIN t2

is equivalent to any of the following

joins:

t1 INNER JOIN t2 ON 1 = 1

t1 LEFT OUTER JOIN t2 ON 1 = 1

t1 RIGHT OUTER JOIN t2 ON 1 = 1

t1 FULL OUTER JOIN t2 ON 1 = 1

t1 and t2 are tables, and 1 = 1 represents

any condition that always is true. Inner

and outer joins are covered later in

this chapter.

■ One practical use of cross joins is to pro-

duce datasets for testing software. Suppose

that you have a function that takes n argu-

ments, and each argument assumes m

representative test values. You can gen-

erate all m ✕ n test cases by finding the

cross product of n tables (one table for

each argument), in which each table has

one column and m rows (one row that

contains each test value). This method

still works if m differs for each argument.

■ Microsoft Access and DB2

supports only WHERE syntax for

cross joins. To run Listing 7.4, use the state-

ment given in the first Tip in this section.

Oracle 8i doesn’t support JOIN syntax;

use WHERE joins instead.

205

Joins

C
r

e
a

t
i
n

g
 a

 C
r

o
s

s
 J

o
i
n

 w
i
t

h
 C

R
O

S
S

 J
O

I
N

Creating a Natural Join
with NATURAL JOIN
A natural join:

◆ Is a special case of an equijoin; it com-

pares all the columns in one table with

corresponding columns that have the

same name in the other table for equali-

ty.

◆ Works only if the input tables have one

or more pairs of meaningfully comparable,

identically named columns.

◆ Performs joins implicitly. Don’t specify an

ON or USING clause in a natural join.

◆ Is a syntactic convenience that can be

replicated explicitly with an ON clause

in JOIN syntax or a WHERE clause in

WHERE syntax.

To create a natural join:

◆ Type:

SELECT columns

FROM table1

NATURAL JOIN table2

columns is one or more comma-separated

expressions or column names from table1

or table2. Your DBMS might require iden-

tical column names to be qualified with

the names of the tables (see the DBMS

Tip in this section). table1 and table2 are

the names of the joined tables.

The columns in table1 are joined with the

identically named columns in table2 and

compared for equality. NATURAL JOIN cre-

ates natural inner joins; to create natural

outer joins, see the Tips in this section.

206

Chapter 7

C
r

e
a

t
i
n

g
 a

 N
a

t
u

r
a

l
 J

o
i
n

 w
i
t

h
 N

A
T

U
R

A
L

J
O

I
N

Listing 7.5 List each book’s publisher. See Figure 7.5
for the result.

SELECT

title_id,

pub_id,

pub_name

FROM publishers

NATURAL JOIN titles;

Listing

title_id pub_id pub_name

-------- ------ -------------------

T01 P01 Abatis Publishers

T02 P03 Schadenfreude Press

T03 P02 Core Dump Books

T04 P04 Tenterhooks Press

T05 P04 Tenterhooks Press

T06 P01 Abatis Publishers

T07 P03 Schadenfreude Press

T08 P04 Tenterhooks Press

T09 P04 Tenterhooks Press

T10 P01 Abatis Publishers

T11 P04 Tenterhooks Press

T12 P01 Abatis Publishers

T13 P03 Schadenfreude Press

Figure 7.5 Result of Listing 7.5.

When your DBMS runs Listing 7.5, it will

join rows in the table publishers with rows

in the table titles that have equal values

in the columns publishers.pub_id and

titles.pub_id—the two columns that have

the same name in both tables. See Figure 7.5

for the result.

In Listing 7.6, I’ve added another join to

Listing 7.5 to retrieve the advance for each

book. The WHERE condition retrieves books

with advances less than $20,000. When your

DBMS runs Listing 7.6, it will join the pub_id
columns in the tables publishers and

titles, and it will join the title_id columns

in the tables titles and royalties. See

Figure 7.6 for the result.

✔ Tips

■ To replicate a natural join by using WHERE
syntax, use an equijoin with a WHERE
clause that uses AND operators to com-

bine join conditions. Each join condition

equates each pair of columns with the

same name in the input tables. The

equivalent WHERE queries are (Listing 7.5):

SELECT t.title_id, t.pub_id,

p.pub_name

FROM publishers p, titles t

WHERE p.pub_id = t.pub_id;

and (Listing 7.6):

SELECT t.title_id, t.pub_id,

p.pub_name, r.advance

FROM publishers p, titles t,

royalties r

WHERE p.pub_id = t.pub_id

AND t.title_id = r.title_id

AND r.advance < 20000;

continues on next page

207

Joins

C
r

e
a

t
i
n

g
 a

 N
a

t
u

r
a

l
 J

o
i
n

 w
i
t

h
 N

A
T

U
R

A
L

J
O

I
N

Listing 7.6 List each book’s publisher and advance
for books with advances less than $20,000. See
Figure 7.6 for the result.

SELECT

title_id,

pub_id,

pub_name,

advance

FROM publishers

NATURAL JOIN titles

NATURAL JOIN royalties

WHERE advance < 20000;

Listing

title_id pub_id pub_name advance

-------- ------ ------------------- -------

T01 P01 Abatis Publishers 10000

T02 P03 Schadenfreude Press 1000

T03 P02 Core Dump Books 15000

T08 P04 Tenterhooks Press 0

T09 P04 Tenterhooks Press 0

Figure 7.6 Result of Listing 7.6.

■ To replicate a natural join by using inner

or outer JOIN syntax, use an equijoin

with an ON clause that uses AND operators

to combine join conditions. Each join

condition equates each pair of columns

with the same name in both input

tables. The equivalent JOIN queries are

(Listing 7.5):

SELECT t.title_id, t.pub_id,

p.pub_name

FROM publishers p

INNER JOIN titles t

ON p.pub_id = t.pub_id;

and (Listing 7.6):

SELECT t.title_id, t.pub_id,

p.pub_name, r.advance

FROM publishers p

INNER JOIN titles t

ON p.pub_id = t.pub_id

INNER JOIN royalties r

ON t.title_id = r.title_id

WHERE r.advance < 20000;

■ You also can replicate a natural join by

using JOIN syntax with a USING clause

(see the sidebar in “Creating Joins with

JOIN or WHERE” earlier in this chapter).

NATURAL JOIN is a shorthand form of

USING; it forms a USING list consisting of

exactly those column names that appear

in both tables. The equivalent USING
queries are (Listing 7.5):

SELECT title_id, pub_id,

pub_name

FROM publishers

INNER JOIN titles

USING (pub_id);

and (Listing 7.6):

SELECT title_id, pub_id,

pub_name, advance

FROM publishers

INNER JOIN titles

USING (pub_id)

INNER JOIN royalties

USING (title_id)

WHERE advance < 20000;

■ The syntax NATURAL JOIN actually creates

an inner join: NATURAL JOIN is equivalent

to NATURAL INNER JOIN. You can create

natural outer joins with:

NATURAL LEFT [OUTER] JOIN

NATURAL RIGHT [OUTER] JOIN

NATURAL FULL [OUTER] JOIN

Inner and outer joins are described later

in this chapter.

208

Chapter 7

C
r

e
a

t
i
n

g
 a

 N
a

t
u

r
a

l
 J

o
i
n

 w
i
t

h
 N

A
T

U
R

A
L

J
O

I
N

■ If you use a natural join, be certain that

all related (joinable) columns have the

same name in both tables and that all

unrelated columns have unique names.

■ Natural joins make some queries shorter

and easier to understand, but be wary of

them. They will return different results

unexpectedly if the columns involved in

the join are added, deleted, or renamed

without your knowledge.

■ The meaning of natural join differs

slightly in the relational model (Chapter 2)

and the SQL standard. In the model,

a natural join always is a join from a

foreign key to its parent key. In SQL,

a natural join is a join of two tables over

all columns that have the same name (not

just key columns). See Listing 7.9 later in

this chapter for an example of a natural

join that doesn’t involve key columns.

To make the model and the SQL defini-

tions of a natural join agree, a database

designer will ensure that all the foreign

keys have the same names as their par-

ent keys and that all other columns have

unique names.

■ Microsoft Access, Microsoft

SQL Server, and DB2 don’t

support NATURAL JOIN syntax. To run

Listings 7.5 and 7.6, use either WHERE syn-

tax (given in the first Tip in this section)

or equivalent JOIN syntax (given in the

second Tip in this section).

Oracle 8i doesn’t support JOIN syntax;

use WHERE joins instead.

MySQL 4.1 and earlier require common

column names to be qualified in natural

joins. To run Listings 7.5 and 7.6, add

qualifiers (Listing 7.5):

SELECT

t.title_id,

t.pub_id,

p.pub_name

FROM publishers p

NATURAL JOIN titles t;

and (Listing 7.6):

SELECT

t.title_id,

t.pub_id,

p.pub_name,

r.advance

FROM publishers p

NATURAL JOIN titles t

NATURAL JOIN royalties r

WHERE r.advance < 20000;

209

Joins

C
r

e
a

t
i
n

g
 a

 N
a

t
u

r
a

l
 J

o
i
n

 w
i
t

h
 N

A
T

U
R

A
L

J
O

I
N

Creating an Inner Join
with INNER JOIN
An inner join:

◆ Uses a comparison operator (=, <>, <, <=,

>, or >=) to match rows from two tables

based on the values in common columns

from each table. You can retrieve all rows

in which the author identifier (the column

au_id) is the same in both the tables

authors and title_authors, for example.

◆ Returns a result that contains only joined

rows that satisfy the join condition(s).

◆ Is the most common type of join.

To create an inner join:

◆ Type:

SELECT columns

FROM table1

INNER JOIN table2

ON join_conditions

columns is one or more comma-separated

expressions or column names from table1

or table2. table1 and table2 are the names

of the joined tables. If the tables have

some column names in common, qualify

those column names with the names of

the tables.

join_conditions specifies one or more

join conditions to be evaluated for each

pair of joined rows. A join condition

takes this form:

[table1.]column op [table2.]column

op usually is = but can be any compari-

son operator: =, <>, <, <=, >, or >= (refer

to Table 4.2 in Chapter 4). You can com-

bine multiple join conditions with AND
or OR; see “Combining and Negating

Conditions with AND, OR, and NOT” in

Chapter 4.

✔ Tips

■ To create an inner join of three or more

tables by using JOIN syntax, type:

SELECT columns

FROM table1

INNER JOIN table2

ON join_condition1

INNER JOIN table3

ON join_condition2

...

Using WHERE syntax, type:

SELECT columns

FROM table1, table2,...

WHERE join_condition1

AND join_condition2

...

■ If you’re using WHERE syntax and you

omit a join condition accidentally, you’ll

create a cross join. If the affected tables

are large production tables, you’ll have a

“runaway query” that you might have to

ask your database administrator to kill.

■ By default, JOIN (without CROSS, NATURAL,

OUTER, or any other modifiers) is equiva-

lent to INNER JOIN.

210

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

■ You can use WHERE syntax or

JOIN syntax in Microsoft

Access, but if you use JOIN syntax in

joins that involve three or more tables,

Access requires you to nest joins by

using the following general syntax:

SELECT columns

FROM table1

INNER JOIN (table2

INNER JOIN (table3

INNER JOIN (table4

INNER JOIN ...)

ON table3.column3 op table4.column4)

ON table2.column2 op table3.column3)

ON table1.column1 op table2.column2;

(Other DBMSs also let you nest joins by

using parentheses, but Access requires it.)

Oracle 8i doesn’t support JOIN syntax;

use WHERE joins instead. Oracle 9i and

later support JOIN syntax.

Listing 7.7 joins two tables on the column

au_id to list the books that each author

wrote (or cowrote). Each author’s au_id in

the table authors matches zero or more rows

in the table title_authors. See Figure 7.7

for the result. Note that author A07 (Paddy

O’Furniture) is omitted from the result

because he has written no books and so has

no matching rows in title_authors.

✔ Tip

■ Using WHERE syntax, Listing 7.7 is equiva-

lent to:

SELECT a.au_id, a.au_fname,

a.au_lname, ta.title_id

FROM authors a, title_authors ta

WHERE a.au_id = ta.au_id

ORDER BY a.au_id ASC,

ta.title_id ASC;

211

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.7 List the books that each author wrote (or
cowrote). See Figure 7.7 for the result.

SELECT

a.au_id,

a.au_fname,

a.au_lname,

ta.title_id

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

ORDER BY a.au_id ASC, ta.title_id ASC;

Listing

au_id au_fname au_lname title_id

----- --------- --------- --------

A01 Sarah Buchman T01

A01 Sarah Buchman T02

A01 Sarah Buchman T13

A02 Wendy Heydemark T06

A02 Wendy Heydemark T07

A02 Wendy Heydemark T10

A02 Wendy Heydemark T12

A03 Hallie Hull T04

A03 Hallie Hull T11

A04 Klee Hull T04

A04 Klee Hull T05

A04 Klee Hull T07

A04 Klee Hull T11

A05 Christian Kells T03

A06 Kellsey T08

A06 Kellsey T09

A06 Kellsey T11

Figure 7.7 Result of Listing 7.7.

Listing 7.8 joins two tables on the column

pub_id to list each book’s title name and ID,

and each book’s publisher name and ID.

Note that the join is necessary to retrieve

only the publisher name (the fourth column

in the result); all the other three columns are

available in the table titles. See Figure 7.8

for the result.

✔ Tip

■ Using WHERE syntax, Listing 7.8 is equiva-

lent to:

SELECT t.title_id, t.title_name,

t.pub_id, p.pub_name

FROM titles t, publishers p

WHERE p.pub_id = t.pub_id

ORDER BY t.title_name ASC;

212

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.8 List each book’s title name and ID and
each book’s publisher name and ID. See Figure 7.8 for
the result.

SELECT

t.title_id,

t.title_name,

t.pub_id,

p.pub_name

FROM titles t

INNER JOIN publishers p

ON p.pub_id = t.pub_id

ORDER BY t.title_name ASC;

Listing

title_id title_name pub_id pub_name

-------- ----------------------------------- ------ -------------------

T01 1977! P01 Abatis Publishers

T02 200 Years of German Humor P03 Schadenfreude Press

T03 Ask Your System Administrator P02 Core Dump Books

T04 But I Did It Unconsciously P04 Tenterhooks Press

T05 Exchange of Platitudes P04 Tenterhooks Press

T06 How About Never? P01 Abatis Publishers

T07 I Blame My Mother P03 Schadenfreude Press

T08 Just Wait Until After School P04 Tenterhooks Press

T09 Kiss My Boo-Boo P04 Tenterhooks Press

T10 Not Without My Faberge Egg P01 Abatis Publishers

T11 Perhaps It's a Glandular Problem P04 Tenterhooks Press

T12 Spontaneous, Not Annoying P01 Abatis Publishers

T13 What Are The Civilian Applications? P03 Schadenfreude Press

Figure 7.8 Result of Listing 7.8.

Listing 7.9 uses two join conditions to list

the authors who live in the same city and

state as some publisher (any publisher). See

Figure 7.9 for the result. Note that this

query is a natural join on the identically

named, nonkey columns city and state in

the two tables (see “Creating a Natural Join

with NATURAL JOIN” earlier in this chapter).

An equivalent query is:

SELECT a.au_id, a.au_fname,

a.au_lname, a.city, a.state

FROM authors a

NATURAL JOIN publishers p

ORDER BY a.au_id ASC;

✔ Tip

■ Using WHERE syntax, Listing 7.9 is equiva-

lent to:

SELECT a.au_id, a.au_fname,

a.au_lname, a.city, a.state

FROM authors a, publishers p

WHERE a.city = p.city

AND a.state = p.state

ORDER BY a.au_id ASC;

213

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.9 List the authors who live in the same
city and state in which a publisher is located. See
Figure 7.9 for the result.

SELECT

a.au_id,

a.au_fname,

a.au_lname,

a.city,

a.state

FROM authors a

INNER JOIN publishers p

ON a.city = p.city

AND a.state = p.state

ORDER BY a.au_id;

Listing

au_id au_fname au_lname city state

----- --------- -------- ------------- -----

A03 Hallie Hull San Francisco CA

A04 Klee Hull San Francisco CA

A05 Christian Kells New York NY

Figure 7.9 Result of Listing 7.9.

Listing 7.10 combines an inner join with

WHERE conditions to list books published in

California or outside the large North American

countries; see “Filtering Rows with WHERE” in

Chapter 4. See Figure 7.10 for the result.

✔ Tip

■ Using WHERE syntax, Listing 7.10 is equiv-

alent to:

SELECT t.title_id, t.title_name,

p.state, p.country

FROM titles t, publishers p

WHERE t.pub_id = p.pub_id

AND (p.state = ‘CA’

OR p.country NOT IN

(‘USA’, ‘Canada’, ‘Mexico’))

ORDER BY t.title_id ASC;

214

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.10 List the books published in California or
outside the large North American countries. See
Figure 7.10 for the result.

SELECT

t.title_id,

t.title_name,

p.state,

p.country

FROM titles t

INNER JOIN publishers p

ON t.pub_id = p.pub_id

WHERE p.state = 'CA'

OR p.country NOT IN ('USA', 'Canada',
'Mexico')

ORDER BY t.title_id ASC;

Listing

title_id title_name state country

-------- ----------------------------------- ----- -------

T02 200 Years of German Humor NULL Germany

T03 Ask Your System Administrator CA USA

T04 But I Did It Unconsciously CA USA

T05 Exchange of Platitudes CA USA

T07 I Blame My Mother NULL Germany

T08 Just Wait Until After School CA USA

T09 Kiss My Boo-Boo CA USA

T11 Perhaps It's a Glandular Problem CA USA

T13 What Are The Civilian Applications? NULL Germany

Figure 7.10 Result of Listing 7.10.

Listing 7.11 combines an inner join with

the aggregate function COUNT() and a GROUP
BY clause to list the number of books that

each author wrote (or cowrote). For infor-

mation about aggregate functions and GROUP
BY, see Chapter 6. See Figure 7.11 for the

result. Note that, as in Figure 7.7, author A07

(Paddy O’Furniture) is omitted from the

result because he has written no books and

so has no matching rows in title_authors.

See Listing 7.30 in “Creating Outer Joins

with OUTER JOIN” later in this chapter for an

example that lists authors who have written

no books.

✔ Tip

■ Using WHERE syntax, Listing 7.11 is equiv-

alent to:

SELECT a.au_id,

COUNT(ta.title_id)

AS “Num books”

FROM authors a, title_authors ta

WHERE a.au_id = ta.au_id

GROUP BY a.au_id

ORDER BY a.au_id ASC;

215

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.11 List the number of books that each author
wrote (or cowrote). See Figure 7.11 for the result.

SELECT

a.au_id,

COUNT(ta.title_id) AS "Num books"

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

GROUP BY a.au_id

ORDER BY a.au_id ASC;

Listing

au_id Num books

----- ---------

A01 3

A02 4

A03 2

A04 4

A05 1

A06 3

Figure 7.11 Result of Listing 7.11.

Listing 7.12 uses WHERE conditions to list

the advance paid for each biography. See

Figure 7.12 for the result.

✔ Tip

■ Using WHERE syntax, Listing 7.12 is equiv-

alent to:

SELECT t.title_id, t.title_name,

r.advance

FROM royalties r, titles t

WHERE r.title_id = t.title_id

AND t.type = ‘biography’

AND r.advance IS NOT NULL

ORDER BY r.advance DESC;

216

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.12 List the advance paid for each biography.
See Figure 7.12 for the result.

SELECT

t.title_id,

t.title_name,

r.advance

FROM royalties r

INNER JOIN titles t

ON r.title_id = t.title_id

WHERE t.type = 'biography'

AND r.advance IS NOT NULL

ORDER BY r.advance DESC;

Listing

title_id title_name advance

-------- ------------------------- -----------

T07 I Blame My Mother 1000000.00

T12 Spontaneous, Not Annoying 50000.00

T06 How About Never? 20000.00

Figure 7.12 Result of Listing 7.12.

Listing 7.13 uses aggregate functions and a

GROUP BY clause to list the count and total

advance paid for each type of book. See

Figure 7.13 for the result.

✔ Tip

■ Using WHERE syntax, Listing 7.13 is equiv-

alent to:

SELECT t.type,

COUNT(r.advance)

AS “COUNT(r.advance)”,

SUM(r.advance)

AS “SUM(r.advance)”

FROM royalties r, titles t

WHERE r.title_id = t.title_id

AND r.advance IS NOT NULL

GROUP BY t.type

ORDER BY t.type ASC;

217

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.13 List the count and total advance paid for
each type of book. See Figure 7.13 for the result.

SELECT

t.type,

COUNT(r.advance)

AS "COUNT(r.advance)",

SUM(r.advance)

AS "SUM(r.advance)"

FROM royalties r

INNER JOIN titles t

ON r.title_id = t.title_id

WHERE r.advance IS NOT NULL

GROUP BY t.type

ORDER BY t.type ASC;

Listing

type COUNT(r.advance) SUM(r.advance)

---------- ---------------- --------------

biography 3 1070000.00

children 2 0.00

computer 1 15000.00

history 3 31000.00

psychology 3 220000.00

Figure 7.13 Result of Listing 7.13.

Listing 7.14 is similar to Listing 7.13,

except that it uses an additional grouping

column to list the count and total advance

paid for each type of book by publisher. See

Figure 7.14 for the result.

✔ Tip

■ Using WHERE syntax, Listing 7.14 is equiv-

alent to:

SELECT t.type, t.pub_id,

COUNT(r.advance)

AS “COUNT(r.advance)”,

SUM(r.advance)

AS “SUM(r.advance)”

FROM royalties r, titles t

WHERE r.title_id = t.title_id

AND r.advance IS NOT NULL

GROUP BY t.type, t.pub_id

ORDER BY t.type ASC, t.pub_id ASC;

218

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.14 List the count and total advance paid for
each type of book, by publisher. See Figure 7.14 for
the result.

SELECT

t.type,

t.pub_id,

COUNT(r.advance) AS "COUNT(r.advance)",

SUM(r.advance) AS "SUM(r.advance)"

FROM royalties r

INNER JOIN titles t

ON r.title_id = t.title_id

WHERE r.advance IS NOT NULL

GROUP BY t.type, t.pub_id

ORDER BY t.type ASC, t.pub_id ASC;

Listing

type pub_id COUNT(r.advance) SUM(r.advance)

---------- ------ ---------------- --------------

biography P01 2 70000.00

biography P03 1 1000000.00

children P04 2 0.00

computer P02 1 15000.00

history P01 1 10000.00

history P03 2 21000.00

psychology P04 3 220000.00

Figure 7.14 Result of Listing 7.14.

Listing 7.15 uses a HAVING clause to list the

number of coauthors of each book written

by two or more authors. For information

about HAVING, see “Filtering Groups with

HAVING” in Chapter 6. See Figure 7.15 for

the result.

✔ Tip

■ Using WHERE syntax, Listing 7.15 is equiv-

alent to:

SELECT ta.title_id,

COUNT(ta.au_id) AS “Num authors”

FROM authors a, title_authors ta

WHERE a.au_id = ta.au_id

GROUP BY ta.title_id

HAVING COUNT(ta.au_id) > 1

ORDER BY ta.title_id ASC;

219

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.15 List the number of coauthors of each
book written by two or more authors. See Figure 7.15
for the result.

SELECT

ta.title_id,

COUNT(ta.au_id) AS "Num authors"

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

GROUP BY ta.title_id

HAVING COUNT(ta.au_id) > 1

ORDER BY ta.title_id ASC;

Listing

title_id Num authors

-------- -----------

T04 2

T07 2

T11 3

Figure 7.15 Result of Listing 7.15.

You also can join values in two columns that

aren’t equal. Listing 7.16 uses greater-than

(>) join to find each book whose revenue

(= price ✕ sales) is at least 10 times greater

than the advance paid to the author(s). See

Figure 7.16 for the result. The use of <, <=,

>, and >= joins is common, but not-equal

joins (<>) are used rarely. Generally, not-

equal joins make sense only when used with

a self-join; see “Creating a Self-Join” later in

this chapter.

✔ Tip

■ Using WHERE syntax, Listing 7.16 is equiv-

alent to:

SELECT t.title_id, t.title_name,

r.advance,

t.price * t.sales AS “Revenue”

FROM titles t, royalties r

WHERE t.price * t.sales >

r.advance * 10

AND t.title_id = r.title_id

ORDER BY t.price * t.sales DESC;

220

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.16 List each book whose revenue (= price ✕
sales) is at least 10 times greater than its advance.
See Figure 7.16 for the result.

SELECT

t.title_id,

t.title_name,

r.advance,

t.price * t.sales AS "Revenue"

FROM titles t

INNER JOIN royalties r

ON t.price * t.sales > r.advance * 10

AND t.title_id = r.title_id

ORDER BY t.price * t.sales DESC;

Listing

title_id title_name advance Revenue

-------- ----------------------------------- ---------- -----------

T07 I Blame My Mother 1000000.00 35929790.00

T05 Exchange of Platitudes 100000.00 1400008.00

T12 Spontaneous, Not Annoying 50000.00 1299012.99

T03 Ask Your System Administrator 15000.00 1025396.65

T13 What Are The Civilian Applications? 20000.00 313905.33

T06 How About Never? 20000.00 225834.00

T02 200 Years of German Humor 1000.00 190841.70

T09 Kiss My Boo-Boo .00 69750.00

T08 Just Wait Until After School .00 40950.00

Figure 7.16 Result of Listing 7.16.

Complicated queries can arise from simple

questions. In Listing 7.17, I must join three

tables to list the author names and the

names of the books that each author wrote

(or cowrote). See Figure 7.17 for the result.

221

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.17 List the author names and the names of
the books that each author wrote (or cowrote). See
Figure 7.17 for the result.

SELECT

a.au_fname,

a.au_lname,

t.title_name

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

INNER JOIN titles t

ON t.title_id = ta.title_id

ORDER BY a.au_lname ASC, a.au_fname ASC,
t.title_name ASC;

Listing

au_fname au_lname title_name

--------- --------- -----------------------------------

Sarah Buchman 1977!

Sarah Buchman 200 Years of German Humor

Sarah Buchman What Are The Civilian Applications?

Wendy Heydemark How About Never?

Wendy Heydemark I Blame My Mother

Wendy Heydemark Not Without My Faberge Egg

Wendy Heydemark Spontaneous, Not Annoying

Hallie Hull But I Did It Unconsciously

Hallie Hull Perhaps It's a Glandular Problem

Klee Hull But I Did It Unconsciously

Klee Hull Exchange of Platitudes

Klee Hull I Blame My Mother

Klee Hull Perhaps It's a Glandular Problem

Christian Kells Ask Your System Administrator

Kellsey Just Wait Until After School

Kellsey Kiss My Boo-Boo

Kellsey Perhaps It's a Glandular Problem

Figure 7.17 Result of Listing 7.17.

✔ Tips

■ Using WHERE syntax, Listing 7.17 is equiv-

alent to:

SELECT a.au_fname, a.au_lname,

t.title_name

FROM authors a, title_authors ta,

titles t

WHERE a.au_id = ta.au_id

AND t.title_id = ta.title_id

ORDER BY a.au_lname ASC,

a.au_fname ASC,

t.title_name ASC;

■ To run Listing 7.17 in

Microsoft Access, type:

SELECT a.au_fname, a.au_lname,

t.title_name

FROM titles AS t

INNER JOIN (authors AS a

INNER JOIN title_authors AS ta

ON a.au_id = ta.au_id)

ON t.title_id = ta.title_id

ORDER BY a.au_lname ASC,

a.au_fname ASC,

t.title_name ASC;

222

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Expanding on Listing 7.17, Listing 7.18

requires a four-table join to list the pub-

lisher names along with the names of the

authors and books. See Figure 7.18 for

the result.

223

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.18 List the author names, the names of the
books that each author wrote (or cowrote), and the
publisher names. See Figure 7.18 for the result.

SELECT

a.au_fname,

a.au_lname,

t.title_name,

p.pub_name

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

INNER JOIN titles t

ON t.title_id = ta.title_id

INNER JOIN publishers p

ON p.pub_id = t.pub_id

ORDER BY a.au_lname ASC, a.au_fname ASC,
t.title_name ASC;

Listing

au_fname au_lname title_name pub_name

--------- --------- ----------------------------------- -------------------

Sarah Buchman 1977! Abatis Publishers

Sarah Buchman 200 Years of German Humor Schadenfreude Press

Sarah Buchman What Are The Civilian Applications? Schadenfreude Press

Wendy Heydemark How About Never? Abatis Publishers

Wendy Heydemark I Blame My Mother Schadenfreude Press

Wendy Heydemark Not Without My Faberge Egg Abatis Publishers

Wendy Heydemark Spontaneous, Not Annoying Abatis Publishers

Hallie Hull But I Did It Unconsciously Tenterhooks Press

Hallie Hull Perhaps It's a Glandular Problem Tenterhooks Press

Klee Hull But I Did It Unconsciously Tenterhooks Press

Klee Hull Exchange of Platitudes Tenterhooks Press

Klee Hull I Blame My Mother Schadenfreude Press

Klee Hull Perhaps It's a Glandular Problem Tenterhooks Press

Christian Kells Ask Your System Administrator Core Dump Books

Kellsey Just Wait Until After School Tenterhooks Press

Kellsey Kiss My Boo-Boo Tenterhooks Press

Kellsey Perhaps It's a Glandular Problem Tenterhooks Press

Figure 7.18 Result of Listing 7.18.

✔ Tips

■ Using WHERE syntax, Listing 7.18 is equiv-

alent to:

SELECT a.au_fname, a.au_lname,

t.title_name, p.pub_name

FROM authors a, title_authors ta,

titles t, publishers p

WHERE a.au_id = ta.au_id

AND t.title_id = ta.title_id

AND p.pub_id = t.pub_id

ORDER BY a.au_lname ASC,

a.au_fname ASC,

t.title_name ASC;

■ To run Listing 7.18 in

Microsoft Access, type:

SELECT a.au_fname, a.au_lname,

t.title_name, p.pub_name

FROM (publishers AS p

INNER JOIN titles AS t

ON p.pub_id = t.pub_id)

INNER JOIN (authors AS a

INNER JOIN title_authors AS ta

ON a.au_id = ta.au_id)

ON t.title_id = ta.title_id

ORDER BY a.au_lname ASC,

a.au_fname ASC,

t.title_name ASC;

224

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.19 calculates the total royalties

for all books. The gross royalty of a book is

the book’s revenue (= sales ✕ price) times

the royalty rate (the fraction of revenue paid

to the author). In most cases, the author

receives an initial advance against royalties.

The publisher deducts the advance from

the gross royalty to get the net royalty. If the

net royalty is positive, the publisher must

pay the author; if the net royalty is negative

or zero, the author gets nothing, because he

or she still hasn’t “earned out” the advance.

See Figure 7.19 for the result. Gross royal-

ties are labeled “Total royalties,” gross

advances are labeled “Total advances,”

and net royalties are labeled “Total due

to authors.”

Listing 7.19 calculates total royalties for

all books; the subsequent examples in this

section will show you how to break down

royalties by author, book, publisher, and

other groups.

✔ Tip

■ Using WHERE syntax, Listing 17.19 is

equivalent to:

SELECT

SUM(t.sales * t.price *

r.royalty_rate)

AS “Total royalties”,

SUM(r.advance)

AS “Total advances”,

SUM((t.sales * t.price *

r.royalty_rate) - r.advance)

AS “Total due to authors”

FROM titles t, royalties r

WHERE r.title_id = t.title_id

AND t.sales IS NOT NULL;

225

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.19 Calculate the total royalties for all books. See Figure 7.19 for the result.

SELECT

SUM(t.sales * t.price * r.royalty_rate) AS "Total royalties",

SUM(r.advance) AS "Total advances",

SUM((t.sales * t.price * r.royalty_rate) - r.advance) AS "Total due to authors"

FROM titles t

INNER JOIN royalties r

ON r.title_id = t.title_id

WHERE t.sales IS NOT NULL;

Listing

Total royalties Total advances Total due to authors

--------------- -------------- --------------------

4387219.55 1336000.00 3051219.55

Figure 7.19 Result of Listing 7.19.

Listing 7.20 uses a three-table join to calcu-

late the royalty earned by each author for each

book that the author wrote (or cowrote).

Because a book can have multiple authors,

per-author royalty calculations involve

each author’s share of a book’s royalty (and

advance). The author’s royalty share for each

book is given in the table title_authors in

the column royalty_share. For a book with

a sole author, royalty_share is 1.0 (100 per-

cent). For a book with multiple authors,

the royalty_share of each author is a frac-

tional amount between 0 and 1 (inclusive);

all the royalty_share values for a particular

book must sum to 1.0 (100 percent). See

Figure 7.20 for the result. The sum of the

values in each of the last three columns in

the result equals the corresponding total in

Figure 7.19.

✔ Tips

■ Using WHERE syntax, Listing 17.20 is

equivalent to:

SELECT ta.au_id, t.title_id,

t.pub_id,

t.sales * t.price *

r.royalty_rate *

ta.royalty_share

AS “Royalty share”,

r.advance * ta.royalty_share

AS “Advance share”,

(t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance *

ta.royalty_share)

AS “Due to author”

FROM title_authors ta,

titles t, royalties r

WHERE t.title_id = ta.title_id

AND r.title_id = t.title_id

AND t.sales IS NOT NULL

ORDER BY ta.au_id ASC,

t.title_id ASC;

■ To run Listing 7.20 in

Microsoft Access, type:

SELECT ta.au_id, t.title_id,

t.pub_id,

t.sales * t.price *

r.royalty_rate *

ta.royalty_share

AS “Royalty share”,

r.advance * ta.royalty_share

AS “Advance share”,

(t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance * ta.royalty_share)

AS “Due to author”

FROM (titles AS t

INNER JOIN royalties AS r

ON t.title_id = r.title_id)

INNER JOIN title_authors AS ta

ON t.title_id = ta.title_id

WHERE t.sales IS NOT NULL

ORDER BY ta.au_id ASC,

t.title_id ASC;

226

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

227

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.20 Calculate the royalty earned by each author for each book that the author wrote (or cowrote). See
Figure 7.20 for the result.

SELECT

ta.au_id,

t.title_id,

t.pub_id,

t.sales * t.price * r.royalty_rate * ta.royalty_share AS "Royalty share",

r.advance * ta.royalty_share AS "Advance share",

(t.sales * t.price * r.royalty_rate * ta.royalty_share) -

(r.advance * ta.royalty_share) AS "Due to author"

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

INNER JOIN royalties r

ON r.title_id = t.title_id

WHERE t.sales IS NOT NULL

ORDER BY ta.au_id ASC, t.title_id ASC;

Listing

au_id title_id pub_id Royalty share Advance share Due to author

----- -------- ------ ------------- ------------- -------------

A01 T01 P01 622.32 10000.00 -9377.68

A01 T02 P03 11450.50 1000.00 10450.50

A01 T13 P03 18834.32 20000.00 -1165.68

A02 T06 P01 18066.72 20000.00 -1933.28

A02 T07 P03 1976138.45 500000.00 1476138.45

A02 T12 P01 116911.17 50000.00 66911.17

A03 T04 P04 8106.38 12000.00 -3893.62

A03 T11 P04 15792.90 30000.00 -14207.10

A04 T04 P04 5404.26 8000.00 -2595.74

A04 T05 P04 126000.72 100000.00 26000.72

A04 T07 P03 1976138.45 500000.00 1476138.45

A04 T11 P04 15792.90 30000.00 -14207.10

A05 T03 P02 71777.77 15000.00 56777.77

A06 T08 P04 1638.00 .00 1638.00

A06 T09 P04 3487.50 .00 3487.50

A06 T11 P04 21057.20 40000.00 -18942.80

Figure 7.20 Result of Listing 7.20.

Listing 7.21 is similar to Listing 7.20 except

that it adds a join to the table authors to

print the author names and includes a WHERE
condition to retrieve rows with only positive

royalties. See Figure 7.21 for the result.

✔ Tips

■ Using WHERE syntax, Listing 7.21 is equiv-

alent to:

SELECT a.au_id, a.au_fname,

a.au_lname, t.title_name,

(t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance * ta.royalty_share)

AS “Due to author”

FROM authors a, title_authors ta,

titles t, royalties r

WHERE a.au_id = ta.au_id

AND t.title_id = ta.title_id

AND r.title_id = t.title_id

AND t.sales IS NOT NULL

AND (t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance *

ta.royalty_share) > 0

ORDER BY a.au_id ASC,

t.title_id ASC;

228

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.21 List only positive royalties earned by each author for each book that the author wrote (or cowrote). See
Figure 7.21 for the result.

SELECT

a.au_id,

a.au_fname,

a.au_lname,

t.title_name,

(t.sales * t.price * r.royalty_rate * ta.royalty_share) -

(r.advance * ta.royalty_share) AS "Due to author"

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

INNER JOIN titles t

ON t.title_id = ta.title_id

INNER JOIN royalties r

ON r.title_id = t.title_id

WHERE t.sales IS NOT NULL

AND (t.sales * t.price * r.royalty_rate * ta.royalty_share) -

(r.advance * ta.royalty_share) > 0

ORDER BY a.au_id ASC, t.title_id ASC;

Listing

■ To run Listing 7.21 in

Microsoft Access, type:

SELECT a.au_id, a.au_fname,

a.au_lname, t.title_name,

(t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance * ta.royalty_share)

AS “Due to author”

FROM (titles AS t

INNER JOIN royalties AS r

ON t.title_id = r.title_id)

INNER JOIN (authors AS a

INNER JOIN title_authors AS ta

ON a.au_id = ta.au_id)

ON t.title_id = ta.title_id

WHERE t.sales IS NOT NULL

AND (t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance * ta.royalty_share)

> 0

ORDER BY a.au_id ASC,

t.title_id ASC;

229

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
Nau_id au_fname au_lname title_name Due to author

----- --------- --------- ----------------------------- -------------

A01 Sarah Buchman 200 Years of German Humor 10450.50

A02 Wendy Heydemark I Blame My Mother 1476138.45

A02 Wendy Heydemark Spontaneous, Not Annoying 66911.17

A04 Klee Hull Exchange of Platitudes 26000.72

A04 Klee Hull I Blame My Mother 1476138.45

A05 Christian Kells Ask Your System Administrator 56777.77

A06 Kellsey Just Wait Until After School 1638.00

A06 Kellsey Kiss My Boo-Boo 3487.50

Figure 7.21 Result of Listing 7.21.

Listing 7.22 uses a GROUP BY clause to calcu-

late the total royalties paid by each publisher.

The aggregate function COUNT() computes

the total number of books for which each

publisher pays royalties. Note that each

author’s royalty share is unnecessary here,

because no per-author calculations are

involved. See Figure 7.22 for the result. The

sum of the values in each of the last three

columns in the result equals the correspon-

ding total in Figure 7.19.

✔ Tip

■ Using WHERE syntax, Listing 7.22 is equiv-

alent to :

SELECT t.pub_id,

COUNT(t.sales) AS “Num books”,

SUM(t.sales * t.price *

r.royalty_rate)

AS “Total royalties”,

SUM(r.advance)

AS “Total advances”,

SUM((t.sales * t.price *

r.royalty_rate) -

r.advance)

AS “Total due to authors”

FROM titles t, royalties r

WHERE r.title_id = t.title_id

AND t.sales IS NOT NULL

GROUP BY t.pub_id

ORDER BY t.pub_id ASC;

230

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.22 Calculate the total royalties paid by each publisher. See Figure 7.22 for the result.

SELECT

t.pub_id,

COUNT(t.sales) AS "Num books",

SUM(t.sales * t.price * r.royalty_rate) AS "Total royalties",

SUM(r.advance) AS "Total advances",

SUM((t.sales * t.price * r.royalty_rate) - r.advance) AS "Total due to authors"

FROM titles t

INNER JOIN royalties r

ON r.title_id = t.title_id

WHERE t.sales IS NOT NULL

GROUP BY t.pub_id

ORDER BY t.pub_id ASC;

Listing

pub_id Num books Total royalties Total advances Total due to authors

------ --------- --------------- -------------- --------------------

P01 3 135600.21 80000.00 55600.21

P02 1 71777.77 15000.00 56777.77

P03 3 3982561.72 1021000.00 2961561.72

P04 5 197279.85 220000.00 -22720.15

Figure 7.22 Result of Listing 7.22.

Listing 7.23 is similar to Listing 7.22

except that it calculates the total royalties

earned by each author for all books written

(or cowritten). See Figure 7.23 for the

result. The sum of the values in each of the

last three columns in the result equals the

corresponding total in Figure 7.19.

231

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.23 Calculate the total royalties earned by each author for all books written (or cowritten). See Figure 7.23
for the result.

SELECT

ta.au_id,

COUNT(sales) AS "Num books",

SUM(t.sales * t.price * r.royalty_rate * ta.royalty_share) AS "Total royalties share",

SUM(r.advance * ta.royalty_share) AS "Total advances share",

SUM((t.sales * t.price * r.royalty_rate * ta.royalty_share) -

(r.advance * ta.royalty_share)) AS "Total due to author"

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

INNER JOIN royalties r

ON r.title_id = t.title_id

WHERE t.sales IS NOT NULL

GROUP BY ta.au_id

ORDER BY ta.au_id ASC;

Listing

au_id Num books Total royalties share Total advances share Total due to author

----- ----------- --------------------- -------------------- -------------------

A01 3 30907.14 31000.00 -92.86

A02 3 2111116.34 570000.00 1541116.34

A03 2 23899.28 42000.00 -18100.72

A04 4 2123336.32 638000.00 1485336.32

A05 1 71777.77 15000.00 56777.77

A06 3 26182.70 40000.00 -13817.30

Figure 7.23 Result of Listing 7.23.

✔ Tips

■ Using WHERE syntax, Listing 7.23 is equiv-

alent to:

SELECT

ta.au_id,

COUNT(sales) AS “Num books”,

SUM(t.sales * t.price *

r.royalty_rate *

ta.royalty_share)

AS “Total royalties share”,

SUM(r.advance *

ta.royalty_share)

AS “Total advances share”,

SUM((t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance *

ta.royalty_share))

AS “Total due to author”

FROM title_authors ta, titles t,

royalties r

WHERE t.title_id = ta.title_id

AND r.title_id = t.title_id

AND t.sales IS NOT NULL

GROUP BY ta.au_id

ORDER BY ta.au_id ASC;

■ To run Listing 7.23 in

Microsoft Access, type:

SELECT ta.au_id,

COUNT(sales) AS “Num books”,

SUM(t.sales * t.price *

r.royalty_rate *

ta.royalty_share)

AS “Total royalties share”,

SUM(r.advance *

ta.royalty_share)

AS “Total advances share”,

SUM((t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance *

ta.royalty_share))

AS “Total due to author”

FROM (title_authors AS ta

INNER JOIN titles AS t

ON t.title_id = ta.title_id)

INNER JOIN royalties AS r

ON r.title_id = t.title_id

WHERE t.sales IS NOT NULL

GROUP BY ta.au_id

ORDER BY ta.au_id ASC;

232

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.24 uses two grouping columns to

calculate the total royalties to be paid by

each U.S. publisher to each author for all

books written (or cowritten) by the author.

The HAVING condition returns retrieve rows

with only positive net royalties, and the WHERE
condition retrieves only U.S. publishers. See

Figure 7.24 for the result.

233

Joins

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Listing 7.24 Calculate the positive net royalties to be paid by each U.S. publisher to each author for all books written
(or cowritten) by the author. See Figure 7.24 for the result.

SELECT

t.pub_id,

ta.au_id,

COUNT(*) AS "Num books",

SUM(t.sales * t.price * r.royalty_rate * ta.royalty_share) AS "Total royalties share",

SUM(r.advance * ta.royalty_share) AS "Total advances share",

SUM((t.sales * t.price * r.royalty_rate * ta.royalty_share) -

(r.advance * ta.royalty_share)) AS "Total due to author"

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

INNER JOIN royalties r

ON r.title_id = t.title_id

INNER JOIN publishers p

ON p.pub_id = t.pub_id

WHERE t.sales IS NOT NULL

AND p.country IN ('USA')

GROUP BY t.pub_id, ta.au_id

HAVING SUM((t.sales * t.price * r.royalty_rate * ta.royalty_share) -

(r.advance * ta.royalty_share)) > 0

ORDER BY t.pub_id ASC, ta.au_id ASC;

Listing

pub_id au_id Num books Total royalties share Total advances share Total due to author

------ ----- ----------- --------------------- -------------------- -------------------

P01 A02 2 134977.89 70000.00 64977.89

P02 A05 1 71777.77 15000.00 56777.77

P04 A04 3 147197.87 138000.00 9197.87

Figure 7.24 Result of Listing 7.24.

✔ Tips

■ Using WHERE syntax, Listing 7.24 is equiv-

alent to:

SELECT t.pub_id, ta.au_id,

COUNT(*) AS “Num books”,

SUM(t.sales * t.price *

r.royalty_rate *

ta.royalty_share)

AS “Total royalties share”,

SUM(r.advance *

ta.royalty_share)

AS “Total advances share”,

SUM((t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance *

ta.royalty_share))

AS “Total due to author”

FROM title_authors ta, titles t,

royalties r, publishers p

WHERE t.title_id = ta.title_id

AND r.title_id = t.title_id

AND p.pub_id = t.pub_id

AND t.sales IS NOT NULL

AND p.country IN (‘USA’)

GROUP BY t.pub_id, ta.au_id

HAVING SUM((t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance * ta.royalty_share))

> 0

ORDER BY t.pub_id ASC,

ta.au_id ASC;

■ To run Listing 7.24 in

Microsoft Access, type:

SELECT t.pub_id,

ta.au_id,

COUNT(*) AS “Num books”,

SUM(t.sales * t.price *

r.royalty_rate *

ta.royalty_share)

AS “Total royalties share”,

SUM(r.advance *

ta.royalty_share)

AS “Total advances share”,

SUM((t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance *

ta.royalty_share))

AS “Total due to author”

FROM ((publishers AS p

INNER JOIN titles AS t

ON p.pub_id = t.pub_id)

INNER JOIN royalties AS r

ON t.title_id =

r.title_id)

INNER JOIN title_authors AS ta

ON t.title_id = ta.title_id

WHERE t.sales IS NOT NULL

AND p.country IN (‘USA’)

GROUP BY t.pub_id, ta.au_id

HAVING SUM((t.sales * t.price *

r.royalty_rate *

ta.royalty_share) -

(r.advance * ta.royalty_share))

> 0

ORDER BY t.pub_id ASC,

ta.au_id ASC;

234

Chapter 7

C
r

e
a

t
i
n

g
 a

n
 I

n
n

e
r

 J
o

i
n

 w
i
t

h
 I

N
N

E
R

 J
O

I
N

Creating Outer Joins
with OUTER JOIN
In the preceding section, you learned that

inner joins return rows only if at least one

row from both tables satisfies the join con-

dition(s). An inner join eliminates the rows

that don’t match with a row from the other

table, whereas an outer join returns all rows

from at least one of the tables (provided

that those rows meet any WHERE or HAVING
search conditions).

Outer joins are useful for answering questions

that involve missing quantities: authors who

have written no books or classes with no

enrolled students, for example. Outer joins

also are helpful for creating reports in which

you want to list all the rows of one table

along with matching rows from another

table: all authors and any books that sold

more than a given number of copies or all

products with order quantities, including

products no one ordered, for example.

Unlike other joins, the order in which you

specify the tables in outer joins is important,

so the two join operands are called the left

table and the right table. Outer joins come

in three flavors:

◆ Left outer join. The result of a left outer

join includes all the rows from the left

table specified in the LEFT OUTER JOIN
clause, not just the rows in which the

joined columns match. If a row in the left

table has no matching rows in the right

table, the associated row in the result

contains nulls for all SELECT-clause

columns coming from the right table.

◆ Right outer join. A right outer join is the

reverse of a left outer join. All rows from

the right table are returned. Nulls are

returned for the left table if a right-table

row has no matching row in the left table.

◆ Full outer join. A full outer join, which is

a combination of left and right outer

joins, returns all rows in both the left

and right tables. If a row has no match

in the other table, the SELECT-clause

columns from the other table contain

nulls. If a match occurs between the

tables, the entire row in the result con-

tains data values from both tables.

To summarize, all rows are retrieved from

the left table referenced in a left outer join,

all rows are retrieved from the right table

referenced in a right outer join, and all rows

from both tables are retrieved in a full outer

join. In all cases, unmatched rows are padded

with nulls. In the result, you can’t distinguish

the nulls (if any) that were in the input tables

originally from the nulls inserted by the outer-

join operation. Remember that the conditions

NULL = NULL and NULL = any_value are

unknown and not matches; see “Nulls” in

Chapter 3.

235

Joins

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

To create a left outer join:

◆ Type:

SELECT columns

FROM left_table

LEFT [OUTER] JOIN right_table

ON join_conditions

columns is one or more comma-separated

expressions or column names from

left_table or right_table. left_table and

right_table are the names of the joined

tables. If the tables have some column

names in common, qualify those column

names with the names of the tables.

join_conditions specifies one or more

join conditions to be evaluated for each

pair of joined rows. A join condition

takes this form:

[left_table.]column op

➝ [right_table.]column

op usually is = but can be any compari-

son operator: =, <>, <, <=, >, or >= (refer

to Table 4.2 in Chapter 4). You can com-

bine multiple join conditions with AND
or OR; see “Combining and Negating

Conditions with AND, OR, and NOT” in

Chapter 4.

The keyword OUTER is optional.

To create a right outer join:

◆ Type:

SELECT columns

FROM left_table

RIGHT [OUTER] JOIN right_table

ON join_conditions

columns, left_table, right_table, and

join_conditions have the same meanings

as in “To create a left outer join” earlier

in this chapter.

The keyword OUTER is optional.

To create a full outer join:

◆ Type:

SELECT columns

FROM left_table

FULL [OUTER] JOIN right_table

ON join_conditions

columns, left_table, right_table, and

join_conditions have the same meanings

as in “To create a left outer join” earlier

in this chapter.

The keyword OUTER is optional.

✔ Tips

■ For outer joins, you should use JOIN syn-

tax instead of WHERE syntax when possi-

ble, because JOIN syntax is more precise.

SQL lacks standardized WHERE syntax for

outer joins, so syntax varies by DBMS.

A DBMS also might place restrictions

on WHERE outer joins that don’t exist for

JOIN outer joins. See the DBMS Tip later

in this section for specific information.

236

Chapter 7

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

■ Be wary of the order in which tables

appear in outer joins. Unlike other joins,

outer joins aren’t associative—that is, the

result of a query that involves an outer

join depends on the order in which the

tables are grouped and joined (associated).

The following two three-table inner joins

are equivalent (except for the column

order in the result):

SELECT * FROM table1

INNER JOIN table2

INNER JOIN table3

and:

SELECT * FROM table2

INNER JOIN table3

INNER JOIN table1

But the following three-table outer joins

yield different results:

SELECT * FROM table1

LEFT OUTER JOIN table2

LEFT OUTER JOIN table3

and:

SELECT * FROM table2

LEFT OUTER JOIN table3

LEFT OUTER JOIN table1

■ Prior to the SQL:2003 standard, SQL

had a union join, which doesn’t actually

match rows from two tables but returns

a full outer join with matching rows

removed. Every row in a union join has

the columns of one table joined with

nulls for the columns of the other table.

The result of the statement t1 UNION
JOIN t2 looks like this table:

A UNION JOIN has few practical uses, and

not many DBMSs support it. You can

simulate a union join by using a full

outer join.

t1 UNION JOIN t2

is equivalent to:

t1 FULL OUTER JOIN t2 ON 1 = 2

t1 and t2 are tables, and 1 = 2 represents

any condition that always is false. Note

that UNION JOIN differs from UNION,

which is a set operation and not a join;

see “Combining Rows with UNION” in

Chapter 9.

■ Microsoft SQL Server sup-

ports the standard OUTER JOIN
syntax but also uses the (nonstandard)

outer join operator * in WHERE syntax to

create outer joins. Attach * to the left or

right of the comparison operator to create

a left or right outer join. For outer joins,

WHERE syntax is less precise than OUTER
JOIN syntax and can yield an ambiguous

query. Future versions of SQL Server might

not support the *= and =* operators.

Oracle 8i and earlier don’t support JOIN
syntax; use WHERE joins instead. Oracle 9i

and later support the standard OUTER
JOIN syntax. In WHERE syntax, Oracle uses

the (nonstandard) outer join operator

(+) to create outer joins. Add (+) after

the table that must be expanded (filled

with nulls). See the examples later in

this section.

All rows of t1 Nulls

Nulls All rows of t2

237

Joins

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

For reference in the following four examples,

Listing 7.25 and Figure 7.25 show the city

for each author and publisher.

Listing 7.26 performs an inner join of

the tables authors and publishers on their

city columns. The result, Figure 7.26, lists

only the authors who live in cities in which

a publisher is located. You can compare

the result of this inner join with the results

of the outer joins in the following three

examples.

✔ Tip

■ Using WHERE syntax, Listing 7.26 is equiv-

alent to:

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city = p.city;

238

Chapter 7

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Listing 7.25 List the cities of the authors and the
cities of the publishers. See Figure 7.25 for the result.

SELECT a.au_fname, a.au_lname, a.city

FROM authors a;

SELECT p.pub_name, p.city

FROM publishers p;

Listing

au_fname au_lname city

--------- ----------- -------------

Sarah Buchman Bronx

Wendy Heydemark Boulder

Hallie Hull San Francisco

Klee Hull San Francisco

Christian Kells New York

Kellsey Palo Alto

Paddy O'Furniture Sarasota

pub_name city

------------------- -------------

Abatis Publishers New York

Core Dump Books San Francisco

Schadenfreude Press Hamburg

Tenterhooks Press Berkeley

Figure 7.25 Result of Listing 7.25.

Listing 7.26 List the authors who live in cities in which
a publisher is located. See Figure 7.26 for the result.

SELECT a.au_fname, a.au_lname, p.pub_name

FROM authors a

INNER JOIN publishers p

ON a.city = p.city;

Listing

au_fname au_lname pub_name

--------- -------- -----------------

Hallie Hull Core Dump Books

Klee Hull Core Dump Books

Christian Kells Abatis Publishers

Figure 7.26 Result of Listing 7.26.

Listing 7.27 uses a left outer join to include

all authors in the result, regardless of whether

a publisher is located in the same city. See

Figure 7.27 for the result.

✔ Tip

■ To run Listing 7.27 in

Microsoft SQL Server by

using WHERE syntax, type:

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city *= p.city

ORDER BY p.pub_name ASC,

a.au_lname ASC, a.au_fname ASC;

To run Listing 7.27 in Oracle 8i, type:

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city = p.city (+)

ORDER BY p.pub_name ASC,

a.au_lname ASC, a.au_fname ASC;

239

Joins

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Listing 7.27 This left outer join includes all rows in the
table authors in the result, whether or not there’s a
match in the column city in the table publishers. See
Figure 7.27 for the result.

SELECT a.au_fname, a.au_lname, p.pub_name

FROM authors a

LEFT OUTER JOIN publishers p

ON a.city = p.city

ORDER BY p.pub_name ASC,

a.au_lname ASC, a.au_fname ASC;

Listing

au_fname au_lname pub_name

--------- ----------- -----------------

Sarah Buchman NULL

Wendy Heydemark NULL

Kellsey NULL

Paddy O'Furniture NULL

Christian Kells Abatis Publishers

Hallie Hull Core Dump Books

Klee Hull Core Dump Books

Figure 7.27 Result of Listing 7.27. Note that there’s no
matching data for four of the listed authors, so these
rows contain null in the column pub_name.

Listing 7.28 uses a right outer join to

include all publishers in the result, regardless

of whether an author lives in the publisher’s

city. See Figure 7.28 for the result.

✔ Tip

■ To run Listing 7.28 in

Microsoft SQL Server by

using WHERE syntax, type:

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city =* p.city

ORDER BY p.pub_name ASC,

a.au_lname ASC, a.au_fname ASC;

To run Listing 7.28 in Oracle 8i, type:

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city (+) = p.city

ORDER BY p.pub_name ASC,

a.au_lname ASC, a.au_fname ASC;

240

Chapter 7

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Listing 7.28 This right outer join includes all rows in
the table publishers in the result, whether or not
there’s a match in the column city in the table
authors. See Figure 7.28 for the result.

SELECT a.au_fname, a.au_lname, p.pub_name

FROM authors a

RIGHT OUTER JOIN publishers p

ON a.city = p.city

ORDER BY p.pub_name ASC,

a.au_lname ASC, a.au_fname ASC;

Listing

au_fname au_lname pub_name

--------- -------- -------------------

Christian Kells Abatis Publishers

Hallie Hull Core Dump Books

Klee Hull Core Dump Books

NULL NULL Schadenfreude Press

NULL NULL Tenterhooks Press

Figure 7.28 Result of Listing 7.28. Note that there’s
no matching data for two of the listed publishers,
so these rows contain nulls in the columns au_fname
and au_lname.

Listing 7.29 uses a full outer join to include

all publishers and all authors in the result,

regardless of whether a publisher and author

are located in the same city. See Figure 7.29

for the result.

✔ Tip

■ In Microsoft SQL Server, you

can’t place the * operator on both

sides of the comparison operator to form a

full outer join. Instead, form the union of

a left and right outer join; see “Combining

Rows with UNION” in Chapter 9. To run

Listing 7.29 by using WHERE syntax, type:

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city *= p.city

UNION ALL

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city =* p.city

AND a.city IS NULL;

continues on next page

241

Joins

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Listing 7.29 This full outer join includes all rows in
the tables authors and publishers in the result,
whether or not there’s a match in the city columns.
See Figure 7.29 for the result.

SELECT a.au_fname, a.au_lname, p.pub_name

FROM authors a

FULL OUTER JOIN publishers p

ON a.city = p.city

ORDER BY p.pub_name ASC,

a.au_lname ASC, a.au_fname ASC;

Listing

au_fname au_lname pub_name

--------- ----------- -------------------

Sarah Buchman NULL

Wendy Heydemark NULL

Kellsey NULL

Paddy O'Furniture NULL

Christian Kells Abatis Publishers

Hallie Hull Core Dump Books

Klee Hull Core Dump Books

NULL NULL Schadenfreude Press

NULL NULL Tenterhooks Press

Figure 7.29 Result of Listing 7.29. This result contains
nine rows: four rows for authors who have no matching
rows in the table publishers, three rows in which the
author and publisher coexist in the same city, and two
rows for publishers who have no matching city in the
table authors.

In Oracle, you can’t place the (+) operator

on both sides of the comparison operator

to form a full outer join. Instead, form the

union of a left and right outer join; see

“Combining Rows with UNION” in Chapter 9.

To run Listing 7.29 in Oracle 8i, type:

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city = p.city (+)

UNION ALL

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a, publishers p

WHERE a.city (+) = p.city

AND a.city IS NULL;

Microsoft Access and MySQL don’t sup-

port full outer joins, but you can replicate

one by taking the union of left and right

outer joins; see “Combining Rows with

UNION” in Chapter 9. In the following exam-

ple, the first UNION table is a left outer join

restricted to return all the rows in authors
as well as the matched rows in publishers
based on city. The second UNION table is a

right outer join restricted to return only the

unmatched rows in publishers. To run

Listing 7.29, type:

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a

LEFT OUTER JOIN publishers p

ON a.city = p.city

UNION ALL

SELECT a.au_fname, a.au_lname,

p.pub_name

FROM authors a

RIGHT OUTER JOIN publishers p

ON a.city = p.city

WHERE a.city IS NULL;

242

Chapter 7

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Listing 7.30 uses a left outer join to list the

number of books that each author wrote

(or cowrote). See Figure 7.30 for the result.

Note that in contrast to Listing 7.11 in

“Creating an Inner Join with INNER JOIN”

earlier in this chapter, the author A07 (Paddy

O’Furniture) appears in the result even

though he has written no books.

✔ Tip

■ To run Listing 7.30 in Oracle 8i,

type:

SELECT a.au_id,

COUNT(ta.title_id)

AS “Num books”

FROM authors a, title_authors ta

WHERE a.au_id = ta.au_id (+)

GROUP BY a.au_id

ORDER BY a.au_id ASC;

243

Joins

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Listing 7.30 List the number of books that each
author wrote (or cowrote), including authors who
have written no books. See Figure 7.30 for the result.

SELECT

a.au_id,

COUNT(ta.title_id) AS "Num books"

FROM authors a

LEFT OUTER JOIN title_authors ta

ON a.au_id = ta.au_id

GROUP BY a.au_id

ORDER BY a.au_id ASC;

Listing

au_id Num books

----- ---------

A01 3

A02 4

A03 2

A04 4

A05 1

A06 3

A07 0

Figure 7.30 Result of Listing 7.30.

Listing 7.31 uses a WHERE condition to

test for null and list only the authors who

haven’t written a book. See Figure 7.31 for

the result.

✔ Tip

■ To run Listing 7.31 in Oracle

8i, type:

SELECT a.au_id, a.au_fname,

a.au_lname

FROM authors a, title_authors ta

WHERE a.au_id = ta.au_id (+)

AND ta.au_id IS NULL;

244

Chapter 7

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Listing 7.31 List the authors who haven’t written (or
cowritten) a book. See Figure 7.31 for the result.

SELECT a.au_id, a.au_fname, a.au_lname

FROM authors a

LEFT OUTER JOIN title_authors ta

ON a.au_id = ta.au_id

WHERE ta.au_id IS NULL;

Listing

au_id au_fname au_lname

----- -------- -----------

A07 Paddy O'Furniture

Figure 7.31 Result of Listing 7.31.

Listing 7.32 combines an inner join and a

left outer join to list all authors and any

books they wrote (or cowrote) that sold

more than 100,000 copies. In this example,

first I created a filtered INNER JOIN result

and then OUTER JOINed it with the table

authors, from which I wanted all rows. See

Figure 7.32 for the result.

245

Joins

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Listing 7.32 List all authors and any books written (or
cowritten) that sold more than 100,000 copies. See
Figure 7.32 for the result.

SELECT a.au_id, a.au_fname, a.au_lname,

tta.title_id, tta.title_name, tta.sales

FROM authors a

LEFT OUTER JOIN

(SELECT ta.au_id, t.title_id,

t.title_name, t.sales

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE sales > 100000) tta

ON a.au_id = tta.au_id

ORDER BY a.au_id ASC, tta.title_id ASC;

Listing

au_id au_fname au_lname title_id title_name sales

----- --------- ----------- -------- ------------------------- -------

A01 Sarah Buchman NULL NULL NULL

A02 Wendy Heydemark T07 I Blame My Mother 1500200

A02 Wendy Heydemark T12 Spontaneous, Not Annoying 100001

A03 Hallie Hull NULL NULL NULL

A04 Klee Hull T05 Exchange of Platitudes 201440

A04 Klee Hull T07 I Blame My Mother 1500200

A05 Christian Kells NULL NULL NULL

A06 Kellsey NULL NULL NULL

A07 Paddy O'Furniture NULL NULL NULL

Figure 7.32 Result of Listing 7.32.

✔ Tip

■ To run Listing 7.32 in Oracle

8i, type:

SELECT a.au_id, a.au_fname,

a.au_lname,

tta.title_id, tta.title_name,

tta.sales

FROM authors a,

(SELECT ta.au_id, t.title_id,

t.title_name, t.sales

FROM title_authors ta,

titles t

WHERE t.title_id =

ta.title_id

AND sales > 100000) tta

WHERE a.au_id = tta.au_id (+)

ORDER BY a.au_id ASC,

tta.title_id ASC;

MySQL 4.1 and later will run Listing 7.32,

but earlier versions don’t support subqueries;

see the DBMS Tip in “Understanding

Subqueries” in Chapter 8. For complicated

queries, you often can create a temporary

table to hold the subquery; see “Creating

a Temporary Table with CREATE TEMPORARY
TABLE” in Chapter 11. To run Listing 7.32

in MySQL 4.0 and earlier, type:

CREATE TEMPORARY TABLE tta

SELECT ta.au_id, t.title_id,

t.title_name, t.sales

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE sales > 100000;

SELECT a.au_id, a.au_fname,

a.au_lname, tta.title_id,

tta.title_name, tta.sales

FROM authors a

LEFT OUTER JOIN tta

ON a.au_id = tta.au_id

ORDER BY a.au_id ASC,

tta.title_id ASC;

DROP TABLE tta;

246

Chapter 7

C
r

e
a

t
i
n

g
 O

u
t

e
r

 J
o

i
n

s
 w

i
t

h
 O

U
T

E
R

 J
O

I
N

Creating a Self-Join
A self-join is a normal SQL join that joins a

table to itself and retrieves rows from a table

by comparing values in one or more columns

in the same table. Self-joins often are used

in tables with a reflexive relationship, which

is a primary-key/foreign-key relationship

from a column or combination of columns in

a table to other columns in that same table.

For information about keys, see “Primary

Keys” and “Foreign Keys” in Chapter 2.

Suppose that you have the following table,

named employees:

emp_id emp_name boss_id

———––– ———————–––––––––– ————–––

E01 Lord Copper NULL

E02 Jocelyn Hitchcock E01

E03 Mr. Salter E01

E04 William Boot E03

E05 Mr. Corker E03

emp_id is a primary key that uniquely identi-

fies the employee, and boss_id is an employee

ID that identifies the employee’s manager. Each

manager also is an employee, so to ensure

that each manager ID that is added to the

table matches an existing employee ID,

boss_id is defined as a foreign key of emp_id.

Listing 7.33 uses this reflexive relationship

to compare rows within the table and retrieve

the name of the manager of each employee.

(You wouldn’t need a join at all to get just the

manager’s ID.) See Figure 7.33 for the result.

The same table (employees) appears twice

in Listing 7.33 with two different aliases

(e1 and e2) that are used to qualify column

names in the join condition:

e1.boss_id = e2.emp_id

As with any join, a self-join requires two

tables, but instead of adding a second table

to the join, you add a second instance of the

same table. That way, you can compare a col-

umn in the first instance of the table to a

column in the second instance. As with all

joins, your DBMS combines and returns rows

of the table that satisfy the join condition.

You really aren’t creating another copy of

the table—you’re joining the table to itself—

but the effect might be easier to understand

if you think about it as being two tables.

247

Joins

C
r

e
a

t
i
n

g
 a

 S
e

l
f
-
J
o

i
n

Listing 7.33 List the name of each employee and the
name of his or her manager. See Figure 7.33 for the
result.

SELECT

e1.emp_name AS "Employee name",

e2.emp_name AS "Boss name"

FROM employees e1

INNER JOIN employees e2

ON e1.boss_id = e2.emp_id;

Listing

Employee name Boss name

----------------- -----------

Jocelyn Hitchcock Lord Copper

Mr. Salter Lord Copper

William Boot Mr. Salter

Mr. Corker Mr. Salter

Figure 7.33 Result of Listing 7.33. Note that Lord
Copper, who has no boss, is excluded from the result
because his null boss_id doesn’t satisfy the join
condition.

To create a self-join:

◆ Type:

SELECT columns

FROM table [AS] alias1

INNER JOIN table [AS] alias2

ON join_conditions

columns is one or more comma-separated

expressions or column names from table.

alias1 and alias2 are different alias

names that are used to refer to table in

join_conditions. See “Creating Table

Aliases with AS” earlier in this chapter.

join_conditions specifies one or more

join conditions to be evaluated for each

pair of joined rows. A join condition

takes this form:

alias1.column op alias2.column

op can be any comparison operator: =, <>,

<, <=, >, or >= (refer to Table 4.2 in

Chapter 4). You can combine multiple

join conditions with AND or OR; see

“Combining and Negating Conditions

with AND, OR, and NOT” in Chapter 4.

✔ Tips

■ You can join a table to itself even if no

reflexive relationship exists. A common

type of self-join compares a column in

the first instance of the table to the same

column in the second instance. This join

condition lets you compare the values in

a column to one another, as shown in the

subsequent examples in this section.

■ See also “Working with Hierarchies” in

Chapter 15.

■ Oracle 8i and earlier don’t

support JOIN syntax; use WHERE
joins instead. Oracle 9i and later support

JOIN syntax.

248

Chapter 7

C
r

e
a

t
i
n

g
 a

 S
e

l
f
-
J
o

i
n

Listing 7.34 uses a WHERE search condition

and self-join from the column state to itself

to find all authors who live in the same state

as author A04 (Klee Hull). See Figure 7.34

for the result.

✔ Tips

■ Using WHERE syntax, Listing 7.34 is equiv-

alent to:

SELECT a1.au_id, a1.au_fname,

a1.au_lname, a1.state

FROM authors a1, authors a2

WHERE a1.state = a2.state

AND a2.au_id = ‘A04’;

■ Self-joins often can be restated as sub-

queries (see Chapter 8). Using a subquery,

Listing 7.34 is equivalent to:

SELECT au_id, au_fname,

au_lname, state

FROM authors

WHERE state IN

(SELECT state

FROM authors

WHERE au_id = ‘A04’);

249

Joins

C
r

e
a

t
i
n

g
 a

 S
e

l
f
-
J
o

i
n

Listing 7.34 List the authors who live in the same
state as author A04 (Klee Hull). See Figure 7.34 for
the result.

SELECT a1.au_id, a1.au_fname,

a1.au_lname, a1.state

FROM authors a1

INNER JOIN authors a2

ON a1.state = a2.state

WHERE a2.au_id = 'A04';

Listing

au_id au_fname au_lname state

----- -------- -------- -----

A03 Hallie Hull CA

A04 Klee Hull CA

A06 Kellsey CA

Figure 7.34 Result of Listing 7.34.

For every biography, Listing 7.35 lists the

other biographies that outsold it. Note that

the WHERE search condition requires type =
‘biography’ for both tables t1 and t2
because the join condition considers the

column type to be two separate columns.

See Figure 7.35 for the result.

✔ Tip

■ Using WHERE syntax, Listing 7.35 is equiv-

alent to:

SELECT t1.title_id, t1.sales,

t2.title_id AS “Better seller”,

t2.sales AS “Higher sales”

FROM titles t1, titles t2

WHERE t1.sales < t2.sales

AND t1.type = ‘biography’

AND t2.type = ‘biography’

ORDER BY t1.title_id ASC,

t2.sales ASC;

250

Chapter 7

C
r

e
a

t
i
n

g
 a

 S
e

l
f
-
J
o

i
n

Listing 7.35 For every biography, list the title ID and
sales of the other biographies that outsold it. See
Figure 7.35 for the result.

SELECT t1.title_id, t1.sales,

t2.title_id AS "Better seller",

t2.sales AS "Higher sales"

FROM titles t1

INNER JOIN titles t2

ON t1.sales < t2.sales

WHERE t1.type = 'biography'

AND t2.type = 'biography'

ORDER BY t1.title_id ASC, t2.sales ASC;

Listing

title_id sales Better seller Higher sales

-------- ------ ------------- ------------

T06 11320 T12 100001

T06 11320 T07 1500200

T12 100001 T07 1500200

Figure 7.35 Result of Listing 7.35.

Listing 7.36 is a self-join to find all pairs

of authors within New York state. See

Figure 7.36 for the result.

✔ Tip

■ Using WHERE syntax, Listing 7.36 is

equivalent to:

SELECT

a1.au_fname, a1.au_lname,

a2.au_fname, a2.au_lname

FROM authors a1, authors a2

WHERE a1.state = a2.state

AND a1.state = ‘NY’

ORDER BY a1.au_id ASC,

a2.au_id ASC;

251

Joins

C
r

e
a

t
i
n

g
 a

 S
e

l
f
-
J
o

i
n

Listing 7.36 List all pairs of authors who live in New
York state. See Figure 7.36 for the result.

SELECT

a1.au_fname, a1.au_lname,

a2.au_fname, a2.au_lname

FROM authors a1

INNER JOIN authors a2

ON a1.state = a2.state

WHERE a1.state = 'NY'

ORDER BY a1.au_id ASC, a2.au_id ASC;

Listing

au_fname au_lname au_fname au_lname

--------- -------- --------- --------

Sarah Buchman Sarah Buchman

Sarah Buchman Christian Kells

Christian Kells Sarah Buchman

Christian Kells Christian Kells

Figure 7.36 Result of Listing 7.36.

Figure 7.37 still isn’t quite what I want,

because the two result rows are redundant.

The first row states that Sarah Buchman

lives in the same state as Christian Kells,

and the second row gives the same informa-

tion. To eliminate this redundancy, I’ll change

the second join condition’s comparison oper-

ator from not-equal to less-than (Listing

7.38 and Figure 7.38).

✔ Tip

■ Using WHERE syntax, Listing 7.38 is equiv-

alent to:

SELECT

a1.au_fname, a1.au_lname,

a2.au_fname, a2.au_lname

FROM authors a1, authors a2

WHERE a1.state = a2.state

AND a1.au_id < a2.au_id

AND a1.state = ‘NY’

ORDER BY a1.au_id ASC,

a2.au_id ASC;

The first and fourth rows of Figure 7.36

are unnecessary because they indicate that

Sarah Buchman lives in the same state as Sarah

Buchman, and likewise for Christian Kells.

Adding a join condition retains only those

rows in which the two authors differ

(Listing 7.37 and Figure 7.37).

✔ Tip

■ Using WHERE syntax, Listing 7.37 is equiv-

alent to:

SELECT

a1.au_fname, a1.au_lname,

a2.au_fname, a2.au_lname

FROM authors a1, authors a2

WHERE a1.state = a2.state

AND a1.au_id <> a2.au_id

AND a1.state = ‘NY’

ORDER BY a1.au_id ASC,

a2.au_id ASC;

252

Chapter 7

C
r

e
a

t
i
n

g
 a

 S
e

l
f
-
J
o

i
n

Listing 7.37 List all different pairs of authors who live
in New York state. See Figure 7.37 for the result.

SELECT

a1.au_fname, a1.au_lname,

a2.au_fname, a2.au_lname

FROM authors a1

INNER JOIN authors a2

ON a1.state = a2.state

AND a1.au_id <> a2.au_id

WHERE a1.state = 'NY'

ORDER BY a1.au_id ASC, a2.au_id ASC;

Listing

au_fname au_lname au_fname au_lname

--------- -------- --------- --------

Sarah Buchman Christian Kells

Christian Kells Sarah Buchman

Figure 7.37 Result of Listing 7.37.

Listing 7.38 List all different pairs of authors who
live in New York state, with no redundancies. See
Figure 7.38 for the result.

SELECT

a1.au_fname, a1.au_lname,

a2.au_fname, a2.au_lname

FROM authors a1

INNER JOIN authors a2

ON a1.state = a2.state

AND a1.au_id < a2.au_id

WHERE a1.state = 'NY'

ORDER BY a1.au_id ASC, a2.au_id ASC;

Listing

au_fname au_lname au_fname au_lname

-------- -------- --------- --------

Sarah Buchman Christian Kells

Figure 7.38 Result of Listing 7.38.

To this point, I’ve used a single SELECT state-

ment to retrieve data from one or more tables.

This chapter describes nested queries, which

let you retrieve or modify data based on

another query’s result.

A subquery, or subselect, is a SELECT state-

ment embedded in another SQL statement.

You can nest a subquery in:

◆ The SELECT, FROM, WHERE, or HAVING clause

of a SELECT statement

◆ Another subquery

◆ An INSERT, UPDATE, or DELETE statement

In general, you can use a subquery anywhere

an expression is allowed, but your DBMS

might restrict where they can appear. This

chapter covers subqueries nested in a SELECT
statement or another subquery; Chapter 10

covers subqueries embedded in INSERT,

UPDATE, and DELETE statements.

253

Subqueries
8

S
u

b
q

u
e

r
i
e

s

Understanding
Subqueries
This section defines some terms and intro-

duces subqueries by giving an example of a

SELECT statement that contains a simple sub-

query. Subsequent sections explain the types

of subqueries and their syntax and semantics.

Suppose that you want to list the names of

the publishers of biographies. The naive

approach is to write two queries: one query

to retrieve the IDs of all the biography pub-

lishers (Listing 8.1 and Figure 8.1) and a

second query that uses the first query’s result

to list the publisher names (Listing 8.2 and

Figure 8.2).

A better way is to use an inner join

(Listing 8.3 and Figure 8.3); see “Creating

an Inner Join with INNER JOIN” in Chapter 7.

Another alternative is to use a subquery

(Listing 8.4 and Figure 8.4). The subquery

in Listing 8.4 is shown in red. A subquery

also is called an inner query, and the state-

ment containing a subquery is called an

outer query. In other words, an enclosed sub-

query is an inner query of an outer query.

Remember that a subquery can be nested

in another subquery, so inner and outer are

relative terms in statements with multiple

nested subqueries.

254

Chapter 8

U
n

d
e

r
s

t
a

n
d

i
n

g
 S

u
b

q
u

e
r

i
e

s

Listing 8.1 List the biography publishers. See
Figure 8.1 for the result.

SELECT pub_id

FROM titles

WHERE type = 'biography';

Listing

pub_id

P01

P03

P01

P01

Figure 8.1 Result of Listing 8.1. You can add DISTINCT
to the SELECT clause of Listing 8.1 to list the
publishers only once; see “Eliminating Duplicate
Rows with DISTINCT” in Chapter 4.

Listing 8.2 This query uses the result of Listing 8.1
to list the names of the biography publishers. See
Figure 8.2 for the result.

SELECT pub_name

FROM publishers

WHERE pub_id IN ('P01', 'P03');

Listing

pub_name

Abatis Publishers

Schadenfreude Press

Figure 8.2 Result of Listing 8.2.

I’ll explain how a DBMS executes subqueries

in “Simple and Correlated Subqueries” later

in this chapter, but for now, all that you need

to know is that in Listing 8.4, the DBMS

processes the inner query (in red) first and

then uses its interim result to run the outer

query (in black) and get the final result. The

IN keyword that introduces the subquery

tests for list membership and works like IN
in “List Filtering with IN” in Chapter 4. Note

that the inner query in Listing 8.4 is the

same query as Listing 8.1, and the outer

query is the same query as Listing 8.2.

✔ Tips

■ Sometimes you’ll see the term subquery

used to refer to an entire SQL statement

that contains one or more subqueries.

To prevent confusion, I don’t use that

terminology in this book.

■ MySQL 4.1 and later support

subqueries, but earlier versions

don’t. You can’t run the examples in this

chapter if you’re using MySQL 4.0 or

earlier, but you have a few choices, in

order of preference:

◆ Upgrade to the latest version of

MySQL (www.mysql.com).

◆ Recast the subquery as a join (see

“Subqueries vs. Joins” later in this

chapter).

◆ Create a temporary table to hold the

result of a subquery (see “Creating a

Temporary Table with CREATE TEMPORARY
TABLE” in Chapter 11 and the temporary-

table example in the DBMS Tip in

“Creating Outer Joins with OUTER JOIN”

in Chapter 7, Listing 7.32).

◆ Simulate the subquery in a procedural

host language such as PHP or Java

(not covered in this book).

255

Subqueries

U
n

d
e

r
s

t
a

n
d

i
n

g
 S

u
b

q
u

e
r

i
e

s

Listing 8.3 List the names of the biography publishers
by using an inner join. See Figure 8.3 for the result.

SELECT DISTINCT pub_name

FROM publishers p

INNER JOIN titles t

ON p.pub_id = t.pub_id

WHERE t.type = 'biography';

Listing

pub_name

Abatis Publishers

Schadenfreude Press

Figure 8.3 Result of Listing 8.3.

Listing 8.4 List the names of the biography publishers
by using a subquery. See Figure 8.4 for the result.

SELECT pub_name

FROM publishers

WHERE pub_id IN

(SELECT pub_id

FROM titles

WHERE type = 'biography');

Listing

pub_name

Abatis Publishers

Schadenfreude Press

Figure 8.4 Result of Listing 8.4.

www.mysql.com

Subquery Syntax
The syntax of a subquery is the same as

that of a normal SELECT statement (see

Chapters 4 through 7) except for the follow-

ing differences:

◆ You can nest a subquery in a SELECT,

FROM, WHERE, or HAVING clause or in

another subquery.

◆ Always enclose a subquery in parentheses.

◆ Don’t terminate a subquery with a semi-

colon. (You still must terminate the

statement that contains the subquery

with a semicolon.)

◆ Don’t put an ORDER BY clause in a subquery.

(A subquery returns an intermediate result

that you never see, so sorting a subquery

makes no sense.)

◆ A subquery is a single SELECT statement.

(You can’t use, say, a UNION of multiple

SELECT statements as a subquery.)

◆ A subquery can use columns in the

tables listed in its own FROM clause or in

the outer query’s FROM clause.

◆ If a table appears in an inner query but

not in the outer query, you can’t include

that table’s columns in the final result

(that is, in the outer query’s SELECT clause).

◆ Depending on the context in which it’s

used, a subquery might be required to

return a limited number of rows or

columns. The SQL standard categorizes

a subquery by the number of rows and

columns it returns (Table 8.1). In all

cases, the subquery also can return an

empty table (zero rows).

In practice, a subquery usually appears in a

WHERE clause that takes one of these forms:

◆ WHERE test_expr op (subquery)

◆ WHERE test_expr [NOT] IN (subquery)

◆ WHERE test_expr op ALL (subquery)

◆ WHERE test_expr op ANY (subquery)

◆ WHERE [NOT] EXISTS (subquery)

test_expr is a literal value, a column name,

an expression, or a scalar subquery; op is a

comparison operator (=, <>, <, <=, >, or >=);

and subquery is a simple or correlated sub-

query. I’ll cover each of these forms later in

this chapter. You can use these subquery

forms in a HAVING clause, too.

✔ Tip

■ The SQL standard doesn’t

specify a maximum number

of subquery nesting levels, so your

DBMS will set its own upper limit.

This built-in limit typically exceeds

the limit of human comprehension.

Microsoft SQL Server, for example,

allows 32 levels of nesting.

256

Chapter 8

S
u

b
q

u
e

r
y

 S
y

n
t
a

x

Table 8.1

Size of Subquery Results
S u b q u e r y R o w s C o l u m n s

Scalar subquery 1 1
Row subquery 1 ≥1
Table subquery ≥1 ≥1

Subqueries vs. Joins
In “Understanding Subqueries” earlier in

this chapter, Listings 8.3 and 8.4 showed two

equivalent queries: one used a join, and the

other used a subquery. Many subqueries can

be formulated alternatively as joins. In fact,

a subquery is a way to relate one table to

another without actually doing a join.

Because subqueries can be hard to use and

debug, you might prefer to use joins, but you

can pose some questions only as subqueries.

In cases where you can use subqueries and

joins interchangeably, you should test queries

on your DBMS to see whether a perform-

ance difference exists between a statement

that uses a subquery and a semantically

equivalent version that uses a join. For

example, the query

SELECT MAX(table1.col1)

FROM table1

WHERE table1.col1 IN

(SELECT table2.col1

FROM table2);

usually will run faster than

SELECT MAX(table1.col1)

FROM table1

INNER JOIN table2

ON table1.col1 = table2.col1;

For more information, see “Comparing

Equivalent Queries” later in this chapter.

257

Subqueries

S
u

b
q

u
e

r
i
e

s
 v

s
. J

o
i
n

s

The following syntax diagrams show some

equivalent statements that use subqueries

and joins. These two statements are equiva-

lent (IN subquery):

SELECT *

FROM table1

WHERE id IN

(SELECT id FROM table2);

and (inner join):

SELECT DISTINCT table1.*

FROM table1

INNER JOIN table2

ON table1.id = table2.id;

See Listings 8.5a and 8.5b and Figure 8.5

for an example.

258

Chapter 8

S
u

b
q

u
e

r
i
e

s
 v

s
.

J
o

i
n

s

Listing 8.5a This statement uses a subquery to list
the authors who live in the same city in which a
publisher is located. See Figure 8.5 for the result.

SELECT au_id, city

FROM authors

WHERE city IN

(SELECT city FROM publishers);

Listing

Listing 8.5b This statement is equivalent to
Listing 8.5a but uses an inner join instead of a
subquery. See Figure 8.5 for the result.

SELECT DISTINCT a.au_id, a.city

FROM authors a

INNER JOIN publishers p

ON a.city = p.city;

Listing

au_id city

----- -------------

A03 San Francisco

A04 San Francisco

A05 New York

Figure 8.5 Result of Listings 8.5a and 8.5b.

These three statements are equivalent

(NOT IN subquery):

SELECT *

FROM table1

WHERE id NOT IN

(SELECT id FROM table2);

and (NOT EXISTS subquery):

SELECT *

FROM table1

WHERE NOT EXISTS

(SELECT *

FROM table2

WHERE table1.id = table2.id);

and (left outer join):

SELECT table1.*

FROM table1

LEFT OUTER JOIN table2

ON table1.id = table2.id

WHERE table2.id IS NULL;

See Listings 8.6a, 8.6b, and 8.6c and

Figure 8.6 for an example. IN and EXISTS
subqueries are covered later in this chapter.

259

Subqueries

S
u

b
q

u
e

r
i
e

s
 v

s
. J

o
i
n

s

Listing 8.6a This statement uses an IN subquery to
list the authors who haven’t written (or cowritten) a
book. See Figure 8.6 for the result.

SELECT au_id, au_fname, au_lname

FROM authors

WHERE au_id NOT IN

(SELECT au_id FROM title_authors);

Listing

Listing 8.6b This statement is equivalent to
Listing 8.6a but uses an EXISTS subquery instead
of an IN subquery. See Figure 8.6 for the result.

SELECT au_id, au_fname, au_lname

FROM authors a

WHERE NOT EXISTS

(SELECT *

FROM title_authors ta

WHERE a.au_id = ta.au_id);

Listing

Listing 8.6c This statement is equivalent to
Listings 8.6a and 8.6b but uses a left outer join
instead of a subquery. See Figure 8.6 for the result.

SELECT a.au_id, a.au_fname, a.au_lname

FROM authors a

LEFT OUTER JOIN title_authors ta

ON a.au_id = ta.au_id

WHERE ta.au_id IS NULL;

Listing

au_id au_fname au_lname

----- -------- -----------

A07 Paddy O'Furniture

Figure 8.6 Result of Listings 8.6a, 8.6b, and 8.6c.

✔ Tips

■ You also can write a self-join as a sub-

query (Listings 8.7a and 8.7b and

Figure 8.7). For information about

self-joins, see “Creating a Self-Join” in

Chapter 7.

■ You always can express an inner join as

a subquery, but not vice versa. This

asymmetry occurs because inner joins

are commutative; you can join tables

A to B in either order and get the same

answer. Subqueries lack this property.

(You always can express an outer join as

a subquery, too, even though outer joins

aren’t commutative.)

260

Chapter 8

S
u

b
q

u
e

r
i
e

s
 v

s
.

J
o

i
n

s

Listing 8.7a This statement uses a subquery to list
the authors who live in the same state as author A04
(Klee Hull). See Figure 8.7 for the result.

SELECT au_id, au_fname, au_lname, state

FROM authors

WHERE state IN

(SELECT state

FROM authors

WHERE au_id = 'A04');

Listing

Listing 8.7b This statement is equivalent to
Listing 8.7a but uses an inner join instead of a
subquery. See Figure 8.7 for the result.

SELECT a1.au_id, a1.au_fname,

a1.au_lname, a1.state

FROM authors a1

INNER JOIN authors a2

ON a1.state = a2.state

WHERE a2.au_id = 'A04';

Listing

au_id au_fname au_lname state

----- -------- -------- -----

A03 Hallie Hull CA

A04 Klee Hull CA

A06 Kellsey CA

Figure 8.7 Result of Listings 8.7a and 8.7b.

■ Favor subqueries if you’re comparing

an aggregate value to other values

(Listing 8.8 and Figure 8.8). Without a

subquery, you’d need two SELECT statements

to list all the books with the highest price:

one query to find the highest price and

a second query to list all the books sell-

ing for that price. For information about

aggregate functions, see Chapter 6.

■ Use joins when you include columns from

multiple tables in the result. Listing 8.5b

uses a join to retrieve authors who live

in the same city in which a publisher is

located. To include the publisher ID in

the result, simply add the column pub_id
to the SELECT-clause list (Listing 8.9 and

Figure 8.9).

You can’t accomplish this same task with

a subquery, because it’s illegal to include

a column in the outer query’s SELECT-

clause list from a table that appears in

only the inner query:

SELECT a.au_id, a.city, p.pub_id

FROM authors a

WHERE a.city IN

(SELECT p.city

FROM publishers p); --Illegal

■ MySQL 4.0 and earlier don’t

support subqueries; see the

DBMS Tip in “Understanding Subqueries”

earlier in this chapter.

261

Subqueries

S
u

b
q

u
e

r
i
e

s
 v

s
. J

o
i
n

s

Listing 8.8 List all books whose price equals the
highest book price. See Figure 8.8 for the result.

SELECT title_id, price

FROM titles

WHERE price =

(SELECT MAX(price)

FROM titles);

Listing

title_id price

-------- -----

T03 39.95

Figure 8.8 Result of Listing 8.8.

Listing 8.9 List the authors who live in the same city
in which a publisher is located, and include the
publisher in the result. See Figure 8.9 for the result.

SELECT a.au_id, a.city, p.pub_id

FROM authors a

INNER JOIN publishers p

ON a.city = p.city;

Listing

au_id city pub_id

----- ------------- ------

A03 San Francisco P02

A04 San Francisco P02

A05 New York P01

Figure 8.9 Result of Listing 8.9.

Simple and Correlated
Subqueries
You can use two types of subqueries:

◆ Simple subqueries

◆ Correlated subqueries

A simple subquery, or noncorrelated subquery,

is a subquery that can be evaluated independ-

ently of its outer query and is processed only

once for the entire statement. All the sub-

queries in this chapter’s examples so far have

been simple subqueries (except Listing 8.6b).

A correlated subquery can’t be evaluated

independently of its outer query; it’s an

inner query that depends on data from the

outer query. A correlated subquery is used if

a statement needs to process a table in the

inner query for each row in the outer query.

Correlated subqueries have more-complicated

syntax and a knottier execution sequence

than simple subqueries, but you can use

them to solve problems that you can’t solve

with simple subqueries or joins. This section

gives an example of a simple subquery and a

correlated subquery and then describes how

a DBMS executes each one. Subsequent sec-

tions in this chapter contain more examples

of each type of subquery.

Simple subqueries
A DBMS evaluates a simple subquery by

evaluating the inner query once and substi-

tuting its result into the outer query. A simple

subquery executes prior to, and independent

of, its outer query.

Let’s revisit Listing 8.5a from earlier in this

chapter. Listing 8.10 (which is identical to

Listing 8.5a) uses a simple subquery to list the

authors who live in the same city in which

a publisher is located; see Figure 8.10 for

the result. Conceptually, a DBMS processes

262

Chapter 8

S
i
m

p
l
e

 a
n

d
 C

o
r

r
e

l
a

t
e

d
 S

u
b

q
u

e
r

i
e

s

Listing 8.10 List the authors who live in the same city
in which a publisher is located. See Figure 8.10 for the
result.

SELECT au_id, city

FROM authors

WHERE city IN

(SELECT city

FROM publishers);

Listing

au_id city

----- -------------

A03 San Francisco

A04 San Francisco

A05 New York

Figure 8.10 Result of Listing 8.10.

this query in two steps as two separate

SELECT statements:

1. The inner query (a simple subquery)

returns the cities of all the publishers

(Listing 8.11 and Figure 8.11).

2. The DBMS substitutes the values

returned by the inner query in step 1

into the outer query, which finds the

author IDs corresponding to the publish-

ers’ cities (Listing 8.12 and Figure

8.12).

Correlated subqueries
Correlated subqueries offer a more powerful

data-retrieval mechanism than simple sub-

queries do. A correlated subquery’s important

characteristics are:

◆ It differs from a simple query in its order

of execution and in the number of times

that it’s executed.

◆ It can’t be executed independently of

its outer query, because it depends on

the outer query for its values.

◆ It’s executed repeatedly—once for each

candidate row selected by the outer query.

◆ It always refers to the table mentioned in

the FROM clause of the outer query.

◆ It uses qualified column names to refer

to values specified in the outer query. In

the context of correlated subqueries, these

qualified named are called correlation

variables. For information about qualified

names and table aliases, see “Qualifying

Column Names” and “Creating Table

Aliases with AS” in Chapter 7.

263

Subqueries

S
i
m

p
l
e

 a
n

d
 C

o
r

r
e

l
a

t
e

d
 S

u
b

q
u

e
r

i
e

s

Listing 8.11 List the cities in which the publishers are
located. See Figure 8.11 for the result.

SELECT city

FROM publishers;

Listing

city

New York

San Francisco

Hamburg

Berkeley

Figure 8.11 Result of Listing 8.11.

Listing 8.12 List the authors who live in one of the
cities returned by Listing 8.11. See Figure 8.12 for the
result.

SELECT au_id, city

FROM authors

WHERE city IN

('New York', 'San Francisco',

'Hamburg', 'Berkeley');

Listing

au_id city

----- -------------

A03 San Francisco

A04 San Francisco

A05 New York

Figure 8.12 Result of Listing 8.12.

◆ The basic syntax of a query that contains

a correlated subquery is:

SELECT outer_columns

FROM outer_table

WHERE outer_column_value IN

(SELECT inner_column

FROM inner_table

WHERE inner_column = outer_column)

Execution always starts with the outer

query (in black). The outer query selects

each individual row of outer_table as a

candidate row. For each candidate row, the

DBMS executes the correlated inner query

(in red) once and flags the inner_table

rows that satisfy the inner WHERE condi-

tion for the value outer_column_value.

The DBMS tests the outer WHERE condi-

tion against the flagged inner_table rows

and displays the flagged rows that satisfy

this condition. This process continues until

all the candidate rows have been processed.

Listing 8.13 uses a correlated subquery

to list the books that have sales better than

the average sales of books of its type; see

Figure 8.13 for the result. candidate (follow-

ing titles in the outer query) and average
(following titles in the inner query) are

alias table names for the table titles, so

that the information can be evaluated as

though it comes from two different tables

(see “Creating a Self-Join” in Chapter 7).

264

Chapter 8

S
i
m

p
l
e

 a
n

d
 C

o
r

r
e

l
a

t
e

d
 S

u
b

q
u

e
r

i
e

s

Listing 8.13 List the books that have sales greater
than or equal to the average sales of books of its
type. The correlation variable candidate.type defines
the initial condition to be met by the rows of the inner
table average. The outer WHERE condition (sales >=)
defines the final test that the rows of the inner table
average must satisfy. See Figure 8.13 for the result.

SELECT

candidate.title_id,

candidate.type,

candidate.sales

FROM titles candidate

WHERE sales >=

(SELECT AVG(sales)

FROM titles average

WHERE average.type = candidate.type);

Listing

title_id type sales

-------- ---------- -------

T02 history 9566

T03 computer 25667

T05 psychology 201440

T07 biography 1500200

T09 children 5000

T13 history 10467

Figure 8.13 Result of Listing 8.13.

In Listing 8.13, the subquery can’t be

resolved independently of the outer query.

It needs a value for candidate.type, but this

value is a correlation variable that changes

as the DBMS examines different rows in the

table candidate. The column average.type
is said to correlate with candidate.type in

the outer query. The average sales for a book

type are calculated in the subquery by using

the type of each book from the table in the

outer query (candidate). The subquery com-

putes the average sales for this type and then

compares it with a row in the table candidate.

If the sales in the table candidate are greater

than or equal to average sales for the type,

that book is displayed in the result. A DBMS

processes this query as follows:

1. The book type in the first row of candidate
is used in the subquery to compute

average sales.

Take the row for book T01, whose type is

history, so the value in the column type
in the first row of the table candidate is

history. In effect, the subquery becomes:

SELECT AVG(sales)

FROM titles average

WHERE average.type = ‘history’;

This pass through the subquery yields

a value of 6,866—the average sales of

history books. In the outer query, book

T01’s sales of 566 are compared to the

average sales of history books. T01’s sales

are lower than average, so T01 isn’t dis-

played in the result.

2. Next, book T02’s row in candidate is

evaluated.

T02 also is a history book, so the evaluat-

ed subquery is the same as in step 1:

SELECT AVG(sales)

FROM titles average

WHERE average.type = ‘history’;

This pass through the subquery again

yields 6,866 for the average sales of

history books. Book T02’s sales of 9,566

are higher than average, so T02 is dis-

played in the result.

3. Next, book T03’s row in candidate is

evaluated.

T03 is a computer book, so this time, the

evaluated subquery is:

SELECT AVG(sales)

FROM titles average

WHERE average.type = ‘computer’;

The result of this pass through the

subquery is average sales of 25,667 for

computer books. Because book T03’s

sales of 25,667 equals the average (it’s

the only computer book), T03 is dis-

played in the result.

4. The DBMS repeats this process until

every row in the outer table candidate
has been tested.

265

Subqueries

S
i
m

p
l
e

 a
n

d
 C

o
r

r
e

l
a

t
e

d
 S

u
b

q
u

e
r

i
e

s

✔ Tips

■ If you can get the same result by using

a simple subquery or a correlated sub-

query, use the simple subquery, because

it probably will run faster. Listings 8.14a

and 8.14b show two equivalent queries

that list all authors who earn 100 percent

(1.0) of the royalty share on a book.

Listing 8.14a, which uses a simple sub-

query, is more efficient than Listing 8.14b,

which uses a correlated subquery. In the

simple subquery, the DBMS reads the

inner table title_authors once. In the

correlated subquery, the DBMS must

loop through title_authors five times—

once for each qualifying row in the

outer table authors. See Figure 8.14 for

the result.

Why do I say that a statement that uses

a simple subquery probably will run faster

than an equivalent statement that uses a

correlated subquery when a correlated

subquery clearly requires more work?

Because your DBMS’s optimizer might be

clever enough to recognize and reformu-

late a correlated subquery as a semantically

equivalent simple subquery internally

before executing the statement. For more

information, see “Comparing Equivalent

Queries” later in this chapter.

■ MySQL 4.0 and earlier don’t

support subqueries; see the

DBMS Tip in “Understanding Subqueries”

earlier in this chapter.

In older PostgreSQL versions, convert

the floating-point numbers in Listings 8.14a

and 8.14b to DECIMAL; see “Converting

Data Types with CAST()” in Chapter 5.

To run Listings 8.14a and 8.14b, change

the floating-point literal in each listing to:

CAST(1.0 AS DECIMAL)

266

Chapter 8

S
i
m

p
l
e

 a
n

d
 C

o
r

r
e

l
a

t
e

d
 S

u
b

q
u

e
r

i
e

s

Listing 8.14a This statement uses a simple subquery
to list all authors who earn 100 percent (1.0) royalty
on a book. See Figure 8.14 for the result.

SELECT au_id, au_fname, au_lname

FROM authors

WHERE au_id IN

(SELECT au_id

FROM title_authors

WHERE royalty_share = 1.0);

Listing

Listing 8.14b This statement is equivalent to Listing
8.14a but uses a correlated subquery instead of a
simple subquery. This query probably will run slower
than Listing 8.14a. See Figure 8.14 for the result.

SELECT au_id, au_fname, au_lname

FROM authors

WHERE 1.0 IN

(SELECT royalty_share

FROM title_authors

WHERE title_authors.au_id =

authors.au_id);

Listing

au_id au_fname au_lname

----- --------- ---------

A01 Sarah Buchman

A02 Wendy Heydemark

A04 Klee Hull

A05 Christian Kells

A06 Kellsey

Figure 8.14 Result of Listings 8.14a and 8.14b.

Qualifying Column Names
in Subqueries
Recall from “Qualifying Column Names” in

Chapter 7 that you can qualify a column

name explicitly with a table name to identify

the column unambiguously. In statements

that contain subqueries, column names are

qualified implicitly by the table referenced in

the FROM clause at the same nesting level.

In Listing 8.15a, which lists the names of

biography publishers, the column names are

qualified implicitly, meaning:

◆ The column pub_id in the outer query’s

WHERE clause is qualified implicitly by the

table publishers in the outer query’s

FROM clause.

◆ The column pub_id in the subquery’s

SELECT clause is qualified implicitly by the

table titles in the subquery’s FROM clause.

Listing 8.15b shows Listing 8.15a with

explicit qualifiers. See Figure 8.15 for the

result.

✔ Tips

■ It’s never wrong to state a table name

explicitly.

■ You can use explicit qualifiers to override

SQL’s default assumptions about table

names and specify that a column is to

match a table at a nesting level outside

the column’s own level.

■ If a column name can match more than

one table at the same nesting level, the

column name is ambiguous, and you

must qualify it with a table name (or

table alias).

■ MySQL 4.0 and earlier don’t

support subqueries; see the

DBMS Tip in “Understanding Subqueries”

earlier in this chapter.

267

Subqueries

Q
u

a
l
i
f
y

i
n

g
 C

o
l
u

m
n

 N
a

m
e

s
 i

n
 S

u
b

q
u

e
r

i
e

s

Listing 8.15a The tables publishers and titles both
contain a column named pub_id, but you don’t have
to qualify pub_id in this query because of the implicit
assumptions about table names that SQL makes. See
Figure 8.15 for the result.

SELECT pub_name

FROM publishers

WHERE pub_id IN

(SELECT pub_id

FROM titles

WHERE type = 'biography');

Listing

Listing 8.15b This query is equivalent to Listing 8.15a,
but with explicit qualification of pub_id. See Fig-
ure 8.15 for the result.

SELECT pub_name

FROM publishers

WHERE publishers.pub_id IN

(SELECT titles.pub_id

FROM titles

WHERE type = 'biography');

Listing

pub_name

Abatis Publishers

Schadenfreude Press

Figure 8.15 Result of Listings 8.15a and 8.15b.

Nulls in Subqueries
Beware of nulls; their presence complicates

subqueries. If you don’t eliminate them

when they’re present, you might get

an unexpected answer.

A subquery can hide a comparison to a null.

Recall from “Nulls” in Chapter 3 that nulls

don’t equal each other and that you can’t

determine whether a null matches any other

value. The following example involves a NOT
IN subquery (see “Testing Set Membership

with IN” later in this chapter). Consider the

following two tables, each with one column.

The first table is named table1:

col

————

1

2

The second table is named table2:

col

————

1

2

3

If I run Listing 8.16 to list the values in

table2 that aren’t in table1, I get Figure

8.16a, as expected.

268

Chapter 8

N
u

l
l
s

 i
n

 S
u

b
q

u
e

r
i
e

s

Listing 8.16 List the values in table2 that aren’t in
table1. See Figure 8.16 for the result.

SELECT col

FROM table2

WHERE col NOT IN

(SELECT col

FROM table1);

Listing

col

Figure 8.16b Result of Listing 8.16 when table1
contains a null. This result is an empty table, which
is correct logically but not what I expected.

col

3

Figure 8.16a Result of Listing 8.16 when table1
doesn’t contain a null.

Now add a null to table1:

col

————

1

2

NULL

If I rerun Listing 8.16, I get Figure 8.16b

(an empty table), which is correct logically

but not what I expected. Why is the result

empty this time? The solution requires

some algebra. I can move the NOT outside

the subquery condition without changing

the meaning of Listing 8.16:

SELECT col

FROM table2

WHERE NOT col IN

(SELECT col FROM table1);

The IN clause determines whether a value

in table2 matches any value in table1, so

I can rewrite the subquery as a compound

condition:

SELECT col

FROM table2

WHERE NOT ((col = 1)

OR (col = 2)

OR (col = NULL));

If I apply De Morgan’s Laws (refer to Table 4.6

in Chapter 4), this query becomes:

SELECT col

FROM table2

WHERE (col <> 1)

AND (col <> 2)

AND (col <> NULL);

The final expression, col <> NULL, always

is unknown. Refer to the AND truth table

(Table 4.3 in Chapter 4), and you’ll see that

the entire WHERE search condition reduces to

unknown, which always is rejected by WHERE.

To fix Listing 8.16 so that it doesn’t examine

the null in table1, add an IS NOT NULL condi-

tion to the subquery (see “Testing for Nulls

with IS NULL” in Chapter 4):

SELECT col

FROM table2

WHERE col NOT IN

(SELECT col

FROM table1

WHERE col IS NOT NULL);

✔ Tip

■ MySQL 4.0 and earlier don’t

support subqueries; see the

DBMS Tip in “Understanding Subqueries”

earlier in this chapter.

269

Subqueries

N
u

l
l
s

 i
n

 S
u

b
q

u
e

r
i
e

s

Using Subqueries as
Column Expressions
In Chapters 4, 5, and 6, you learned that the

items in a SELECT-clause list can be literals,

column names, or more-complex expressions.

SQL also lets you to embed a subquery in a

SELECT-clause list.

A subquery that’s used as a column expres-

sion must be a scalar subquery. Recall from

Table 8.1 in “Subquery Syntax” earlier in this

chapter that a scalar subquery returns a single

value (that is, a one-row, one-column result).

In most cases, you’ll have to use an aggregate

function or restrictive WHERE conditions in

the subquery to guarantee that the subquery

returns only one row.

The syntax for the SELECT-clause list is the

same as you’ve been using all along, except

that you can specify a parenthesized sub-

query as one of the column expressions in

the list, as the following examples show.

Listing 8.17 uses two simple subqueries as

column expressions to list each biography,

its price, the average price of all books (not

just biographies), and the difference between

the price of the biography and the average

price of all books. The aggregate function

AVG() guarantees that each subquery returns

a single value. See Figure 8.17 for the result.

Remember that AVG() ignores nulls when

computing an average; see “Calculating an

Average with AVG()” in Chapter 6.

270

Chapter 8

U
s

i
n

g
 S

u
b

q
u

e
r

i
e

s
 a

s
 C

o
l
u

m
n

 E
x

p
r

e
s

s
i
o

n
s

Listing 8.17 List each biography, its price, the average
price of all books, and the difference between the price
of the biography and the average price of all books.
See Figure 8.17 for the result.

SELECT title_id,

price,

(SELECT AVG(price) FROM titles)

AS "AVG(price)",

price - (SELECT AVG(price) FROM titles)

AS "Difference"

FROM titles

WHERE type='biography';

Listing

title_id price AVG(price) Difference

-------- ------- ---------- ----------

T06 19.95 18.3875 1.5625

T07 23.95 18.3875 5.5625

T10 NULL 18.3875 NULL

T12 12.99 18.3875 -5.3975

Figure 8.17 Result of Listing 8.17.

Listing 8.18 uses correlated subqueries to

list all the authors of each book in one row, as

you’d view them in a report or spreadsheet.

See Figure 8.18 for the result. Note that in

each WHERE clause, SQL qualifies title_id
implicitly with the table alias ta referenced in

the subquery’s FROM clause; see “Qualifying

Column Names in Subqueries” earlier in this

chapter. For a more efficient way to imple-

ment this query, see the Tips in this section.

See Listing 15.8 in Chapter 15 for the reverse

of this query.

271

Subqueries

U
s

i
n

g
 S

u
b

q
u

e
r

i
e

s
 a

s
 C

o
l
u

m
n

 E
x

p
r

e
s

s
i
o

n
s

Listing 8.18 List all the authors of each book in one
row. See Figure 8.18 for the result.

SELECT title_id,

(SELECT au_id

FROM title_authors ta

WHERE au_order = 1

AND title_id = t.title_id)

AS "Author 1",

(SELECT au_id

FROM title_authors ta

WHERE au_order = 2

AND title_id = t.title_id)

AS "Author 2",

(SELECT au_id

FROM title_authors ta

WHERE au_order = 3

AND title_id = t.title_id)

AS "Author 3"

FROM titles t;

Listing

title_id Author 1 Author 2 Author 3

-------- -------- -------- --------

T01 A01 NULL NULL

T02 A01 NULL NULL

T03 A05 NULL NULL

T04 A03 A04 NULL

T05 A04 NULL NULL

T06 A02 NULL NULL

T07 A02 A04 NULL

T08 A06 NULL NULL

T09 A06 NULL NULL

T10 A02 NULL NULL

T11 A06 A03 A04

T12 A02 NULL NULL

T13 A01 NULL NULL

Figure 8.18 Result of Listing 8.18.

In Listing 8.19, I revisit Listing 7.30 in

“Creating Outer Joins with OUTER JOIN” in

Chapter 7, but this time, I’m using a corre-

lated subquery instead of an outer join to

list the number of books that each author

wrote (or cowrote). See Figure 8.19 for

the result.

Listing 8.20 uses a correlated subquery to

list each author and the latest date on which

he or she published a book. You should qualify

every column name explicitly in a subquery

that contains a join to make it clear which

table is referenced (even when qualifiers are

unnecessary). See Figure 8.20 for the result.

272

Chapter 8

U
s

i
n

g
 S

u
b

q
u

e
r

i
e

s
 a

s
 C

o
l
u

m
n

 E
x

p
r

e
s

s
i
o

n
s

Listing 8.19 List the number of books that each
author wrote (or cowrote), including authors who
have written no books. See Figure 8.19 for the result.

SELECT au_id,

(SELECT COUNT(*)

FROM title_authors ta

WHERE ta.au_id = a.au_id)

AS "Num books"

FROM authors a

ORDER BY au_id;

Listing

au_id Num books

----- ---------

A01 3

A02 4

A03 2

A04 4

A05 1

A06 3

A07 0

Figure 8.19 Result of Listing 8.19.

Listing 8.20 List each author and the latest date on
which he or she published a book. See Figure 8.20 for
the result.

SELECT au_id,

(SELECT MAX(pubdate)

FROM titles t

INNER JOIN title_authors ta

ON ta.title_id = t.title_id

WHERE ta.au_id = a.au_id)

AS "Latest pub date"

FROM authors a;

Listing

au_id Latest pub date

----- ---------------

A01 2000-08-01

A02 2000-08-31

A03 2000-11-30

A04 2001-01-01

A05 2000-09-01

A06 2002-05-31

A07 NULL

Figure 8.20 Result of Listing 8.20.

Listing 8.21 uses a correlated subquery to

compute the running total of all book sales.

A running total, or running sum, is a com-

mon calculation: For each book, I want to

compute the sum of all sales of the books

that precede the book. Here, I’m defining

precede to mean those books whose title_id
comes before the current book’s title_id
alphabetically. Note the use of table aliases

to refer to the same table in two contexts.

The subquery returns the sum of sales for all

books preceding the current book, which is

denoted by t1.title_id. See Figure 8.21 for

the result. See also “Calculating Running

Statistics” in Chapter 9.

✔ Tips

■ You also can use a subquery in a FROM
clause. In the Tips in “Aggregating Distinct

Values with DISTINCT” in Chapter 6, I used

a FROM subquery to replicate a distinct

aggregate function. Listing 8.22 uses a

FROM subquery to calculate the greatest

number of titles written (or cowritten)

by any author. See Figure 8.22 for the

result. Note that the outer query uses

a table alias (ta) and column label

(count_titles) to reference the inner

query’s result. See also the “Column

Aliases and WHERE” sidebar in “Filtering

Rows with WHERE” in Chapter 4.

■ You also can use a subquery as a column

expression in UPDATE, INSERT, and DELETE
statements (see Chapter 10) but not in

an ORDER BY list.

continues on next page

273

Subqueries

U
s

i
n

g
 S

u
b

q
u

e
r

i
e

s
 a

s
 C

o
l
u

m
n

 E
x

p
r

e
s

s
i
o

n
s

Listing 8.21 Compute the running sum of all book
sales. See Figure 8.21 for the result.

SELECT t1.title_id, t1.sales,

(SELECT SUM(t2.sales)

FROM titles t2

WHERE t2.title_id <= t1.title_id)

AS “Running total”

FROM titles t1;

Listing

title_id sales Running total

-------- ------- -------------

T01 566 566

T02 9566 10132

T03 25667 35799

T04 13001 48800

T05 201440 250240

T06 11320 261560

T07 1500200 1761760

T08 4095 1765855

T09 5000 1770855

T10 NULL 1770855

T11 94123 1864978

T12 100001 1964979

T13 10467 1975446

Figure 8.21 Result of Listing 8.21.

Listing 8.22 Calculate the greatest number of titles
written (or cowritten) by any author. See Figure 8.22
for the result.

SELECT MAX(ta.count_titles) AS “Max titles”

FROM (SELECT COUNT(*) AS count_titles

FROM title_authors

GROUP BY au_id) ta;

Listing

Max titles

4

Figure 8.22 Result of Listing 8.22.

■ Use CASE expressions instead of correlated

subqueries to implement Listing 8.18 more

efficiently (see “Evaluating Conditional

Values with CASE” in Chapter 5):

SELECT title_id,

MIN(CASE au_order WHEN 1

THEN au_id

END)

AS “Author 1”,

MIN(CASE au_order WHEN 2

THEN au_id

END)

AS “Author 2”,

MIN(CASE au_order WHEN 3

THEN au_id

END)

AS “Author 3”

FROM title_authors

GROUP BY title_id

ORDER BY title_id ASC;

■ MySQL 4.0 and earlier don’t

support subqueries; see the

DBMS Tip in “Understanding Subqueries”

earlier in this chapter.

In Microsoft Access, you must increase

the precision of the average-price calcula-

tion in Listing 8.17. Use the type-conversion

function CDbl() to coerce the average

price to a double-precision floating-point

number; see the DBMS Tip in “Converting

Data Types with CAST()” in Chapter 5. To

run Listing 8.17, change both occurrences

of AVG(price) to CDbl(AVG(price)).

274

Chapter 8

U
s

i
n

g
 S

u
b

q
u

e
r

i
e

s
 a

s
 C

o
l
u

m
n

 E
x

p
r

e
s

s
i
o

n
s

Comparing a Subquery
Value by Using a
Comparison Operator
You can use a subquery as a filter in a WHERE
clause or HAVING clause by using one of the

comparison operators (=, <>, <, <=, >, or >=).

The important characteristics of a subquery

comparison test are:

◆ The comparison operators work the

same way as they do in other compar-

isons (refer to Table 4.2 in Chapter 4).

◆ The subquery can be simple or correlated

(see “Simple and Correlated Subqueries”

earlier in this chapter).

◆ The subquery’s SELECT-clause list

can include only one expression or

column name.

◆ The compared values must have the

same data type or must be implicitly

convertible to the same type (see

“Converting Data Types with CAST()”

in Chapter 5).

◆ String comparisons are case insensitive

or case sensitive, depending on your

DBMS; see the DBMS Tip in “Filtering

Rows with WHERE” in Chapter 4.

◆ The subquery must return a single value

(a one-row, one-column result). A sub-

query that returns more than one value

will cause an error.

◆ If the subquery result contains zero

rows, the comparison test will evaluate

to false.

275

Subqueries

C
o

m
p

a
r

i
n

g
 a

 S
u

b
q

u
e

r
y

 V
a

l
u

e

The hard part of writing these statements is

getting the subquery to return one value,

which you can guarantee several ways:

◆ Using an aggregate function on an

ungrouped table always returns a single

value (see Chapter 6).

◆ Using a join with the outer query based

on a key always returns a single value.

To compare a subquery value:

◆ In the WHERE clause of a SELECT state-

ment, type:

WHERE test_expr op (subquery)

test_expr is a literal value, a column name,

an expression, or a subquery that returns

a single value; op is a comparison operator

(=, <>, <, <=, >, or >=); and subquery is a

scalar subquery that returns exactly one

column and zero or one rows.

If the value returned by subquery satisfies

the comparison to test_expr, the compar-

ison condition evaluates to true. The

comparison condition is false if the sub-

query value doesn’t satisfy the condition,

the subquery value is null, or the subquery

result is empty (has zero rows).

The same syntax applies to a HAVING clause:

HAVING test_expr op (subquery)

Listing 8.23 tests the result of a simple

subquery for equality to list the authors

who live in the state in which Tenterhooks

Press is located. Only one publisher is

named Tenterhooks Press, so the inner

WHERE condition guarantees that the inner

query returns a single-valued result. See

Figure 8.23 for the result.

276

Chapter 8

C
o

m
p

a
r

i
n

g
 a

 S
u

b
q

u
e

r
y

 V
a

l
u

e

Listing 8.23 List the authors who live in the state in
which the publisher Tenterhooks Press is located. See
Figure 8.23 for the result.

SELECT au_id, au_fname, au_lname, state

FROM authors

WHERE state =

(SELECT state

FROM publishers

WHERE pub_name = 'Tenterhooks Press');

Listing

au_id au_fname au_lname state

----- -------- -------- -----

A03 Hallie Hull CA

A04 Klee Hull CA

A06 Kellsey CA

Figure 8.23 Result of Listing 8.23.

Listing 8.24 List the authors who live in the state in
which the publisher XXX is located. See Figure 8.24
for the result.

SELECT au_id, au_fname, au_lname, state

FROM authors

WHERE state =

(SELECT state

FROM publishers

WHERE pub_name = 'XXX');

Listing

au_id au_fname au_lname state

----- -------- -------- -----

Figure 8.24 Result of Listing 8.24 (an empty table).

Listing 8.24 is the same as Listing 8.23

except for the name of the publisher. No

publisher named XXX exists, so the sub-

query returns an empty table (zero rows).

The comparison evaluates to null, so the

final result is empty. See Figure 8.24 for

the result.

Listing 8.25 lists the books with above-

average sales. Subqueries introduced with

comparison operators often use aggregate

functions to return a single value. See

Figure 8.25 for the result.

To list the authors of the books with above-

average sales, I’ve added an inner join to

Listing 8.25 (Listing 8.26 and Figure 8.26).

277

Subqueries

C
o

m
p

a
r

i
n

g
 a

 S
u

b
q

u
e

r
y

 V
a

l
u

e

Listing 8.25 List the books with above-average sales.
See Figure 8.25 for the result.

SELECT title_id, sales

FROM titles

WHERE sales >

(SELECT AVG(sales)

FROM titles);

Listing

title_id sales

-------- -------

T05 201440

T07 1500200

Figure 8.25 Result of Listing 8.25.

Listing 8.26 List the authors of the books with above-
average sales by using a join and a subquery. See
Figure 8.26 for the result.

SELECT ta.au_id, ta.title_id

FROM titles t

INNER JOIN title_authors ta

ON ta.title_id = t.title_id

WHERE sales >

(SELECT AVG(sales)

FROM titles)

ORDER BY ta.au_id ASC, ta.title_id ASC;

Listing

au_id title_id

----- --------

A02 T07

A04 T05

A04 T07

Figure 8.26 Result of Listing 8.26.

Recall from the introduction to this chapter

that you can use a subquery almost any-

where an expression is allowed, so this

syntax is valid:

WHERE (subquery) op (subquery)

The left subquery must return a single value.

Listing 8.27 is equivalent to Listing 8.26,

but I’ve removed the inner join and instead

placed a correlated subquery to the left of

the comparison operator. See Figure 8.27

for the result.

You can include GROUP BY or HAVING clauses

in a subquery if you know that the GROUP BY
or HAVING clause itself returns a single value.

Listing 8.28 lists the books priced higher

than the highest-priced biography. See

Figure 8.28 for the result.

278

Chapter 8

C
o

m
p

a
r

i
n

g
 a

 S
u

b
q

u
e

r
y

 V
a

l
u

e

Listing 8.27 List the authors of the books with
above-average sales by using two subqueries. See
Figure 8.27 for the result.

SELECT au_id, title_id

FROM title_authors ta

WHERE

(SELECT AVG(sales)

FROM titles t

WHERE ta.title_id = t.title_id)

>

(SELECT AVG(sales)

FROM titles)

ORDER BY au_id ASC, title_id ASC;

Listing

au_id title_id

----- --------

A02 T07

A04 T05

A04 T07

Figure 8.27 Result of Listing 8.27.

Listing 8.28 List the books priced higher than the
highest-priced biography. See Figure 8.28 for the
result.

SELECT title_id, price

FROM titles

WHERE price >

(SELECT MAX(price)

FROM titles

GROUP BY type

HAVING type = 'biography');

Listing

title_id price

-------- -----

T03 39.95

T13 29.99

Figure 8.28 Result of Listing 8.28.

Listing 8.29 uses a subquery in a HAVING
clause to list the publishers whose average

sales exceed overall average sales. Again, the

subquery returns a single value (the average

of all sales). See Figure 8.29 for the result.

Listing 8.30 uses a correlated subquery to

list authors whose royalty share is less than

the highest royalty share of any coauthor

of a book. The outer query selects the rows of

title_authors (that is, of ta1) one by one.

The subquery calculates the highest royalty

share for each book being considered for

selection in the outer query. For each possible

value of ta1, the DBMS evaluates the sub-

query and puts the row being considered in

the result if the royalty share is less than the

calculated maximum. See Figure 8.30 for

the result.

279

Subqueries

C
o

m
p

a
r

i
n

g
 a

 S
u

b
q

u
e

r
y

 V
a

l
u

e

Listing 8.29 List the publishers whose average sales
exceed the overall average sales. See Figure 8.29 for
the result.

SELECT pub_id, AVG(sales) AS "AVG(sales)"

FROM titles

GROUP BY pub_id

HAVING AVG(sales) >

(SELECT AVG(sales)

FROM titles);

Listing

pub_id AVG(sales)

------ ----------

P03 506744.33

Figure 8.29 Result of Listing 8.29.

Listing 8.30 List authors whose royalty share is less
than the highest royalty share of any coauthor of a
book. See Figure 8.30 for the result.

SELECT ta1.au_id, ta1.title_id,

ta1.royalty_share

FROM title_authors ta1

WHERE ta1.royalty_share <

(SELECT MAX(ta2.royalty_share)

FROM title_authors ta2

WHERE ta1.title_id = ta2.title_id);

Listing

au_id title_id royalty_share

----- -------- -------------

A04 T04 0.40

A03 T11 0.30

A04 T11 0.30

Figure 8.30 Result of Listing 8.30.

Listing 8.31 uses a correlated subquery to

imitate a GROUP BY clause and list all books

that have a price greater than the average

for books of its type. For each possible value

of t1, the DBMS evaluates the subquery and

includes the row in the result if the price

value in that row exceeds the calculated

average. It’s unnecessary to group by type

explicitly, because the rows for which the

average price is calculated are restricted by

the subquery’s WHERE clause. See Figure 8.31

for the result.

Listing 8.32 uses the same structure as

Listing 8.31 to list all the books whose sales

are less than the best-selling books of their

types. See Figure 8.32 for the result.

✔ Tips

■ If a subquery returns more than one row,

you can use ALL or ANY to modify the

comparison operator, or you can intro-

duce the subquery with IN. (ALL, ANY, and

IN are covered later in this chapter.)

■ MySQL 4.0 and earlier don’t

support subqueries; see the

DBMS Tip in “Understanding Subqueries”

earlier in this chapter.

280

Chapter 8

C
o

m
p

a
r

i
n

g
 a

 S
u

b
q

u
e

r
y

 V
a

l
u

e

Listing 8.31 List all books that have a price greater
than the average for books of its type. See Figure 8.31
for the result.

SELECT type, title_id, price

FROM titles t1

WHERE price >

(SELECT AVG(t2.price)

FROM titles t2

WHERE t1.type = t2.type)

ORDER BY type ASC, title_id ASC;

Listing

type title_id price

---------- -------- -----

biography T06 19.95

biography T07 23.95

children T09 13.95

history T13 29.99

psychology T04 12.99

Figure 8.31 Result of Listing 8.31.

Listing 8.32 List all the books whose sales are
less than the best-selling books of their types.
See Figure 8.32 for the result.

SELECT type, title_id, sales

FROM titles t1

WHERE sales <

(SELECT MAX(sales)

FROM titles t2

WHERE t1.type = t2.type

AND sales IS NOT NULL)

ORDER BY type ASC, title_id ASC;

Listing

type title_id sales

---------- -------- ------

biography T06 11320

biography T12 100001

children T08 4095

history T01 566

history T02 9566

psychology T04 13001

psychology T11 94123

Figure 8.32 Result of Listing 8.32.

Testing Set Membership
with IN
“List Filtering with IN” in Chapter 4 describes

how to use the IN keyword in a WHERE clause

to compare a literal, column value, or more-

complex expression to a list of values. You

also can use a subquery to generate the list.

The important characteristics of a subquery

set membership test are:

◆ IN works the same way with the values

in a subquery result as it does with a

parenthesized list of values (see “List

Filtering with IN” in Chapter 4).

◆ The subquery can be simple or correlated

(see “Simple and Correlated Subqueries”

earlier in this chapter).

◆ The subquery’s SELECT-clause list

can include only one expression or

column name.

◆ The compared values must have the

same data type or must be implicitly

convertible to the same type (see

“Converting Data Types with CAST()”

in Chapter 5).

◆ String comparisons are case insensitive

or case sensitive, depending on your

DBMS; see the DBMS Tip in “Filtering

Rows with WHERE” in Chapter 4.

◆ The subquery must return exactly one

column and zero or more rows. A sub-

query that returns more than one column

will cause an error.

◆ You can use NOT IN to reverse the effect

of the IN test. If you specify NOT IN, the

DBMS takes the action specified by the

SQL statement if there is no matching

value in the subquery’s result.

281

Subqueries

T
e

s
t

i
n

g
 S

e
t

 M
e

m
b

e
r

s
h

i
p

 w
i
t

h
 I

N

To test set membership:

◆ In the WHERE clause of a SELECT state-

ment, type:

WHERE test_expr [NOT] IN (subquery)

test_expr is a literal value, a column

name, an expression, or a subquery that

returns a single value; and subquery is a

subquery that returns one column and

zero or more rows.

If the value of test_expr equals any value

returned by subquery, the IN condition

evaluates to true. The IN condition is false

if the subquery result is empty, if no row

in the subquery result matches test_expr,

or if all the values in the subquery result

are null. Specify NOT to negate the condi-

tion’s result.

The same syntax applies to a HAVING clause:

HAVING test_expr [NOT] IN (subquery)

Listing 8.33 lists the names of the publishers

that have published biographies. The DBMS

evaluates this statement in two steps. First,

the inner query returns the IDs of the pub-

lishers that have published biographies (P01

and P03). Second, the DBMS substitutes these

values into the outer query, which finds

the names that go with the IDs in the table

publishers. See Figure 8.33 for the result.

Here’s the join version of Listing 8.33:

SELECT DISTINCT pub_name

FROM publishers p

INNER JOIN titles t

ON p.pub_id = t.pub_id

AND type = ‘biography’;

282

Chapter 8

T
e

s
t

i
n

g
 S

e
t

 M
e

m
b

e
r

s
h

i
p

 w
i
t

h
 I

N

Listing 8.33 List the names of the publishers that have
published biographies. See Figure 8.33 for the result.

SELECT pub_name

FROM publishers

WHERE pub_id IN

(SELECT pub_id

FROM titles

WHERE type = 'biography');

Listing

pub_name

Abatis Publishers

Schadenfreude Press

Figure 8.33 Result of Listing 8.33.

Listing 8.34 List the names of the publishers that
haven’t published biographies. See Figure 8.34 for
the result.

SELECT pub_name

FROM publishers

WHERE pub_id NOT IN

(SELECT pub_id

FROM titles

WHERE type = 'biography');

Listing

pub_name

Core Dump Books

Tenterhooks Press

Figure 8.34 Result of Listing 8.34.

Listing 8.34 is the same as Listing 8.33,

except that it uses NOT IN to list the names

of the publishers that haven’t published

biographies. See Figure 8.34 for the result.

This statement can’t be converted to a join.

The analogous not-equal join has a different

meaning: It lists the names of publishers

that have published some book that isn’t

a biography.

Listing 8.35 is equivalent to Listing 7.31 in

Chapter 7, except that it uses a subquery

instead of an outer join to list the authors

who haven’t written (or cowritten) a book.

See Figure 8.35 for the result.

Listing 8.36 lists the names of the authors

who have published a book with publisher

P03 (Schadenfreude Press). The join to the

table authors is necessary to include the

authors’ names (not just their IDs) in the

result. See Figure 8.36 for the result.

283

Subqueries

T
e

s
t

i
n

g
 S

e
t

 M
e

m
b

e
r

s
h

i
p

 w
i
t

h
 I

N

Listing 8.35 List the authors who haven’t written (or
cowritten) a book. See Figure 8.35 for the result.

SELECT au_id, au_fname, au_lname

FROM authors

WHERE au_id NOT IN

(SELECT au_id

FROM title_authors);

Listing

au_id au_fname au_lname

----- -------- -----------

A07 Paddy O'Furniture

Figure 8.35 Result of Listing 8.35.

Listing 8.36 List the names of the authors who have
published a book with publisher P03. See Figure 8.36
for the result.

SELECT DISTINCT a.au_id, au_fname, au_lname

FROM title_authors ta

INNER JOIN authors a

ON ta.au_id = a.au_id

WHERE title_id IN

(SELECT title_id

FROM titles

WHERE pub_id = 'P03');

Listing

au_id au_fname au_lname

----- -------- ---------

A01 Sarah Buchman

A02 Wendy Heydemark

A04 Klee Hull

Figure 8.36 Result of Listing 8.36.

A subquery can itself include one or more

subqueries. Listing 8.37 lists the names of

authors who have participated in writing at

least one biography. The innermost query

returns the title IDs T06, T07, T10, and T12.

The DBMS evaluates the subquery at the

next higher level by using these title IDs and

returns the author IDs. Finally, the outer-

most query uses the author IDs to find the

names of the authors. See Figure 8.37 for

the result.

Excessive subquery nesting makes a state-

ment hard to read; often, it’s easier to restate

the query as a join. Here’s the join version of

Listing 8.37:

SELECT DISTINCT a.au_id, au_fname,

au_lname

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE type = ‘biography’;

Listing 8.38 lists the names of all non-

lead authors (au_order > 1) who live in

California and who receive less than 50

percent of the royalties for a book. See

Figure 8.38 for the result.

Here’s the join version of Listing 8.38:

SELECT DISTINCT a.au_id, au_fname,

au_lname

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

WHERE state = ‘CA’

AND royalty_share < 0.5

AND au_order > 1;

284

Chapter 8

T
e

s
t

i
n

g
 S

e
t

 M
e

m
b

e
r

s
h

i
p

 w
i
t

h
 I

N

Listing 8.37 List the names of authors who have
participated in writing at least one biography. See
Figure 8.37 for the result.

SELECT au_id, au_fname, au_lname

FROM authors

WHERE au_id IN

(SELECT au_id

FROM title_authors

WHERE title_id IN

(SELECT title_id

FROM titles

WHERE type = 'biography'));

Listing

au_id au_fname au_lname

----- -------- ---------

A02 Wendy Heydemark

A04 Klee Hull

Figure 8.37 Result of Listing 8.37.

Listing 8.38 List the names of all ancillary authors
who live in California and who receive less than 50
percent of the royalties for a book. See Figure 8.38 for
the result.

SELECT au_id, au_fname, au_lname

FROM authors

WHERE state = 'CA'

AND au_id IN

(SELECT au_id

FROM title_authors

WHERE royalty_share < 0.5

AND au_order > 1);

Listing

au_id au_fname au_lname

----- -------- --------

A03 Hallie Hull

A04 Klee Hull

Figure 8.38 Result of Listing 8.38.

Listing 8.39 lists the names of authors

who are coauthors of a book. To determine

whether an author is a coauthor or the sole

author of a book, examine his or her royalty

share for the book. If the royalty share is

less than 100 percent (1.0), the author is a

coauthor; otherwise, he or she is the sole

author. See Figure 8.39 for the result.

Listing 8.40 uses a correlated subquery

to list the names of authors who are sole

authors of a book—that is, authors who earn

100 percent (1.0) of the royalty on a book.

See Figure 8.40 for the result. The DBMS

considers each row in the outer-query table

authors to be a candidate for inclusion in

the result. When the DBMS examines the

first candidate row in authors, it sets the

correlation variable a.au_id equal to A01

(Sarah Buchman), which it substitutes into

the inner query:

SELECT royalty_share

FROM title_authors ta

WHERE ta.au_id = ‘A01’;

The inner query returns 1.0, so the outer

query evaluates to:

SELECT a.au_id, au_fname, au_lname

FROM authors a

WHERE 1.0 IN (1.0)

The WHERE condition is true, so author A01 is

included in the result. The DBMS repeats this

procedure for every author; see “Simple and

Correlated Subqueries” earlier in this chapter.

285

Subqueries

T
e

s
t

i
n

g
 S

e
t

 M
e

m
b

e
r

s
h

i
p

 w
i
t

h
 I

N

Listing 8.39 List the names of authors who are
coauthors of a book. See Figure 8.39 for the result.

SELECT au_id, au_fname, au_lname

FROM authors a

WHERE au_id IN

(SELECT au_id

FROM title_authors

WHERE royalty_share < 1.0);

Listing

au_id au_fname au_lname

----- -------- ---------

A02 Wendy Heydemark

A03 Hallie Hull

A04 Klee Hull

A06 Kellsey

Figure 8.39 Result of Listing 8.39.

Listing 8.40 List the names of authors who are sole
authors of a book. See Figure 8.40 for the result.

SELECT a.au_id, au_fname, au_lname

FROM authors a

WHERE 1.0 IN

(SELECT royalty_share

FROM title_authors ta

WHERE ta.au_id = a.au_id);

Listing

au_id au_fname au_lname

----- --------- ---------

A01 Sarah Buchman

A02 Wendy Heydemark

A04 Klee Hull

A05 Christian Kells

A06 Kellsey

Figure 8.40 Result of Listing 8.40.

Listing 8.41 lists the names of authors who

are both coauthors and sole authors. The

inner query returns the author IDs of sole

authors, and the outer query compares these

IDs with the IDs of the coauthors. See

Figure 8.41 for the result.

You can rewrite Listing 8.41 as a join or as

an intersection. Here’s the join version of

Listing 8.41:

SELECT DISTINCT a.au_id, au_fname,

au_lname

FROM authors a

INNER JOIN title_authors ta1

ON a.au_id = ta1.au_id

INNER JOIN title_authors ta2

ON a.au_id = ta2.au_id

WHERE ta1.royalty_share < 1.0

AND ta2.royalty_share = 1.0;

Here’s the intersection version of Listing 8.41

(see “Finding Common Rows with

INTERSECT” in Chapter 9):

SELECT DISTINCT a.au_id, au_fname,

au_lname

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

WHERE ta.royalty_share < 1.0

INTERSECT

SELECT DISTINCT a.au_id, au_fname,

au_lname

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

WHERE ta.royalty_share = 1.0;

286

Chapter 8

T
e

s
t

i
n

g
 S

e
t

 M
e

m
b

e
r

s
h

i
p

 w
i
t

h
 I

N

Listing 8.41 List the names of authors who are both
coauthors and sole authors. See Figure 8.41 for the
result.

SELECT DISTINCT a.au_id, au_fname, au_lname

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

WHERE ta.royalty_share < 1.0

AND a.au_id IN

(SELECT a.au_id

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

AND ta.royalty_share = 1.0);

Listing

au_id au_fname au_lname

----- -------- ---------

A02 Wendy Heydemark

A04 Klee Hull

A06 Kellsey

Figure 8.41 Result of Listing 8.41.

Listing 8.42 List the types of books common to more
than one publisher. See Figure 8.42 for the result.

SELECT DISTINCT t1.type

FROM titles t1

WHERE t1.type IN

(SELECT t2.type

FROM titles t2

WHERE t1.pub_id <> t2.pub_id);

Listing

type

biography

history

Figure 8.42 Result of Listing 8.42.

Listing 8.42 uses a correlated subquery to

list the types of books published by more than

one publisher. See Figure 8.42 for

the result.

Here’s the self-join version of Listing 8.42:

SELECT DISTINCT t1.type

FROM titles t1

INNER JOIN titles t2

ON t1.type = t2.type

AND t1.pub_id <> t2.pub_id;

✔ Tips

■ IN is equivalent to = ANY; see “Comparing

Some Subquery Values with ANY” later in

this chapter.

■ NOT IN is equivalent to <> ALL (not <>
ANY); see “Comparing All Subquery

Values with ALL” later in this chapter.

■ To run Listing 8.41 in

Microsoft Access, type:

SELECT DISTINCT a.au_id, au_fname,

au_lname

FROM (authors AS a

INNER JOIN title_authors AS ta1

ON a.au_id = ta1.au_id)

INNER JOIN title_authors AS ta2

ON a.au_id = ta2.au_id

WHERE ta1.royalty_share < 1.0

AND ta2.royalty_share = 1.0;

MySQL 4.0 and earlier don’t support

subqueries; see the DBMS Tip in

“Understanding Subqueries” earlier in

this chapter.

In older PostgreSQL versions, con-

vert the floating-point numbers in

Listings 8.38 through 8.41 to DECIMAL;

see “Converting Data Types with CAST()”

287

Subqueries

T
e

s
t

i
n

g
 S

e
t

 M
e

m
b

e
r

s
h

i
p

 w
i
t

h
 I

N

in Chapter 5. To run Listings 8.38 through

8.41, change the floating-point literals

to (Listing 8.38):

CAST(0.5 AS DECIMAL)

and (Listing 8.39):

CAST(1.0 AS DECIMAL)

and (Listing 8.40):

CAST(1.0 AS DECIMAL)

and (Listing 8.41):

CAST(1.0 AS DECIMAL) (in two places)

Some DBMSs let you test multiple values

simultaneously by using this syntax:

SELECT columns

FROM table1

WHERE (col1, col2,..., colN) IN

(SELECT colA, colB,..., colN

FROM table2);

The test expression (left of IN) is a paren-

thesized list of table1 columns. The

subquery returns the same number of

columns as there are in the list. The

DBMS compares the values in correspon-

ding columns. The following query, for

example, works in Oracle, DB2, MySQL,

and PostgreSQL:

SELECT au_id, city, state

FROM authors

WHERE (city, state) IN

(SELECT city, state

FROM publishers);

The result lists the authors who live in the

same city and state as some publisher:

au_id city state

————— ————————————— —————

A03 San Francisco CA

A04 San Francisco CA

A05 New York NY

Comparing All Subquery
Values with ALL
You can use the ALL keyword to determine

whether a value is less than or greater than

all the values in a subquery result.

The important characteristics of subquery

comparisons that use ALL are:

◆ ALL modifies a comparison operator in a

subquery comparison test and follows =,

<>, <, <=, >, or >=; see “Comparing a

Subquery Value by Using a Comparison

Operator” earlier in this chapter.

◆ The combination of a comparison opera-

tor and ALL tells the DBMS how to apply

the comparison test to the values returned

by a subquery. < ALL, for example, means

less than every value in the subquery

result, and > ALL means greater than

every value in the subquery result.

◆ When ALL is used with <, <=, >, or >=, the

comparison is equivalent to evaluating

the subquery result’s minimum or maxi-

mum value. < ALL means less than every

subquery value—in other words, less

than the minimum value. > ALL means

greater than every subquery value—that

is, greater than the maximum value.

Table 8.2 shows equivalent ALL expres-

sions and column functions. Listing 8.45

later in this section shows how to repli-

cate a > ALL query by using MAX().

◆ Semantic equivalence doesn’t mean that

two queries will run at the same speed.

For example, the query

SELECT * FROM table1

WHERE col1 > ANY

(SELECT MAX(col1) FROM table2);

usually is faster than

SELECT * FROM table1

WHERE col1 > ALL

(SELECT col1 FROM table2);

For more information, see “Comparing

Equivalent Queries” later in this chapter.

◆ The comparison = ALL is valid but isn’t

often used. = ALL always will be false

unless all the values returned by the

subquery are identical (and equal to the

test value).

◆ The subquery can be simple or correlated

(see “Simple and Correlated Subqueries”

earlier in this chapter).

◆ The subquery’s SELECT-clause list

can include only one expression or

column name.

◆ The compared values must have the

same data type or must be implicitly

convertible to the same type (see

“Converting Data Types with CAST()”

in Chapter 5).

◆ String comparisons are case insensitive

or case sensitive, depending on your

DBMS; see the DBMS Tip in “Filtering

Rows with WHERE” in Chapter 4.

◆ The subquery must return exactly one

column and zero or more rows. A sub-

query that returns more than one column

will cause an error.

◆ If the subquery returns no rows, the ALL
condition is true. (You might find this

result to be counterintuitive.)

288

Chapter 8

C
o

m
p

a
r

i
n

g
 A

l
l
 S

u
b

q
u

e
r

y
 V

a
l
u

e
s

 w
i
t

h
 A

L
L

Table 8.2

ALL Equivalencies
A L L E x p r e s s i o n C o l u m n F u n c t i o n

< ALL(subquery) < MIN(subquery values)

> ALL(subquery) > MAX(subquery values)

To compare all subquery values:

◆ In the WHERE clause of a SELECT state-

ment, type:

WHERE test_expr op ALL (subquery)

test_expr is a literal value, a column

name, an expression, or a subquery

that returns a single value; op is a com-

parison operator (=, <>, <, <=, >, or >=);

and subquery is a subquery that returns

one column and zero or more rows.

The ALL condition evaluates to true if

all values in subquery satisfy the ALL con-

dition or if the subquery result is empty

(has zero rows). The ALL condition is false

if any (at least one) value in subquery

doesn’t satisfy the ALL condition or if any

value is null.

The same syntax applies to a HAVING clause:

HAVING test_expr op ALL (subquery)

Listing 8.43 lists the authors who live in a

city in which no publisher is located. The

inner query finds all the cities in which

publishers are located, and the outer query

compares each author’s city to all the pub-

lishers’ cities. See Figure 8.43 for the result.

You can use NOT IN to replicate Listing 8.43:

SELECT au_id, au_lname, au_fname, city

FROM authors

WHERE city NOT IN

(SELECT city FROM publishers);

Listing 8.44 lists the nonbiographies that

are priced less than all the biographies. The

inner query finds all the biography prices.

The outer query inspects the lowest price in

the list and determines whether each non-

biography is cheaper. See Figure 8.44 for the

result. The price IS NOT NULL condition is

required because the price of biography T10

is null. Without this condition, the entire

query would return zero rows, because it’s

impossible to determine whether a price is

less than null (see “Nulls” in Chapter 3).

289

Subqueries

C
o

m
p

a
r

i
n

g
 A

l
l
 S

u
b

q
u

e
r

y
 V

a
l
u

e
s

 w
i
t

h
 A

L
L

Listing 8.43 List the authors who live in a city in which
no publisher is located. See Figure 8.43 for the result.

SELECT au_id, au_lname, au_fname, city

FROM authors

WHERE city <> ALL

(SELECT city

FROM publishers);

Listing

au_id au_lname au_fname city

----- ----------- -------- ---------

A01 Buchman Sarah Bronx

A02 Heydemark Wendy Boulder

A06 Kellsey Palo Alto

A07 O'Furniture Paddy Sarasota

Figure 8.43 Result of Listing 8.43.

Listing 8.44 List the nonbiographies that are cheaper
than all the biographies. See Figure 8.44 for the result.

SELECT title_id, title_name

FROM titles

WHERE type <> 'biography'

AND price < ALL

(SELECT price

FROM titles

WHERE type = 'biography'

AND price IS NOT NULL);

Listing

title_id title_name

-------- --------------------------------

T05 Exchange of Platitudes

T08 Just Wait Until After School

T11 Perhaps It's a Glandular Problem

Figure 8.44 Result of Listing 8.44.

Listing 8.45 lists the books that outsold all

the books that author A06 wrote (or cowrote).

The inner query uses a join to find the sales

of each book by author A06. The outer query

inspects the highest sales figure in the list

and determines whether each book sold more

copies. See Figure 8.45 for the result. Again,

the IS NOT NULL condition is needed in case

sales is null for a book by author A06.

I can replicate Listing 8.45 by using GROUP
BY, HAVING, and MAX() (instead of ALL):

SELECT title_id

FROM titles

GROUP BY title_id

HAVING MAX(sales) >

(SELECT MAX(sales)

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE ta.au_id = ‘A06’);

Listing 8.46 uses a correlated subquery in

the HAVING clause of the outer query to list

the types of books for which the highest

sales figure is more than twice the average

sales for that type. The inner query is evalu-

ated once for each group defined in the

outer query (once for each type of book). See

Figure 8.46 for the result.

✔ Tips

■ <> ALL is equivalent to NOT IN; see

“Testing Set Membership with IN”

earlier in this chapter.

■ MySQL 4.0 and earlier don’t

support subqueries; see the

DBMS Tip in “Understanding Subqueries”

earlier in this chapter.

In older PostgreSQL versions, convert the

floating-point numbers in Listing 8.46 to

DECIMAL; see “Converting Data Types with

CAST()” in Chapter 5. To run Listing 8.46,

change the floating-point literal to:

CAST(2.0 AS DECIMAL)

290

Chapter 8

C
o

m
p

a
r

i
n

g
 A

l
l
 S

u
b

q
u

e
r

y
 V

a
l
u

e
s

 w
i
t

h
 A

L
L

Listing 8.45 List the books that outsold all the books
that author A06 wrote (or cowrote). See Figure 8.45
for the result.

SELECT title_id, title_name

FROM titles

WHERE sales > ALL

(SELECT sales

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE ta.au_id = 'A06'

AND sales IS NOT NULL);

Listing

title_id title_name

-------- -------------------------

T05 Exchange of Platitudes

T07 I Blame My Mother

T12 Spontaneous, Not Annoying

Figure 8.45 Result of Listing 8.45.

Listing 8.46 List the types of books for which the
highest sales figure is more than twice the average
sales for that type. See Figure 8.46 for the result.

SELECT t1.type

FROM titles t1

GROUP BY t1.type

HAVING MAX(t1.sales) >= ALL

(SELECT 2.0 * AVG(t2.sales)

FROM titles t2

WHERE t1.type = t2.type);

Listing

type

biography

Figure 8.46 Result of Listing 8.46.

Comparing Some
Subquery Values with ANY
ANY works like ALL (see the preceding section)

but instead determines whether a value is

equal to, less than, or greater than any (at

least one) of the values in a subquery result.

The important characteristics of subquery

comparisons that use ANY are:

◆ ANY modifies a comparison operator in a

subquery comparison test and follows =,

<>, <, <=, >, or >=; see “Comparing a

Subquery Value by Using a Comparison

Operator” earlier in this chapter.

◆ The combination of a comparison opera-

tor and ANY tells the DBMS how to apply

the comparison test to the values returned

by a subquery. < ANY, for example, means

less than at least one value in the subquery

result, and > ANY means greater than at

least one value in the subquery result.

◆ When ANY is used with <, <=, >, or >=, the

comparison is equivalent to evaluating

the subquery result’s maximum or mini-

mum value. < ANY means less than at least

one subquery value—in other words, less

than the maximum value. > ANY means

greater than at least one subquery value—

that is, greater than the minimum value.

Table 8.3 shows equivalent ANY expres-

sions and column functions. Listing 8.49

later in this section shows how to repli-

cate a > ANY query by using MIN().

◆ The comparison = ANY is equivalent to IN;

see “Testing Set Membership with IN”

earlier in this chapter.

◆ The subquery can be simple or correlated

(see “Simple and Correlated Subqueries”

earlier in this chapter).

◆ The subquery’s SELECT-clause list

can include only one expression or

column name.

◆ The compared values must have the

same data type or must be implicitly

convertible to the same type (see

“Converting Data Types with CAST()”

in Chapter 5).

◆ String comparisons are case insensitive

or case sensitive, depending on your

DBMS; see the DBMS Tip in “Filtering

Rows with WHERE” in Chapter 4.

◆ The subquery must return exactly one

column and zero or more rows. A sub-

query that returns more than one column

will cause an error.

◆ If the subquery returns no rows, the ANY
condition is false.

291

Subqueries

C
o

m
p

a
r

i
n

g
 S

o
m

e
 S

u
b

q
u

e
r

y
 V

a
l
u

e
s

 w
i
t

h
 A

N
Y

Table 8.3

ANY Equivalencies
A N Y E x p r e s s i o n C o l u m n F u n c t i o n

< ANY(subquery) < MAX(subquery values)

> ANY(subquery) > MIN(subquery values)

To compare some subquery values:

◆ In the WHERE clause of a SELECT state-

ment, type:

WHERE test_expr op ANY (subquery)

test_expr is a literal value, a column

name, an expression, or a subquery

that returns a single value; op is a com-

parison operator (=, <>, <, <=, >, or >=);

and subquery is a subquery that returns

one column and zero or more rows.

If any (at least one) value in subquery

satisfies the ANY condition, the condition

evaluates to true. The ANY condition is

false if no value in subquery satisfies the

condition or if subquery is empty (has

zero rows) or contains all nulls.

The same syntax applies to a HAVING clause:

HAVING test_expr op ANY (subquery)

Listing 8.47 lists the authors who live in

a city in which a publisher is located. The

inner query finds all the cities in which

publishers are located, and the outer query

compares each author’s city to all the pub-

lishers’ cities. See Figure 8.47 for the result.

You can use IN to replicate Listing 8.47:

SELECT au_id, au_lname, au_fname, city

FROM authors

WHERE city IN

(SELECT city FROM publishers);

Listing 8.48 lists the nonbiographies that are

priced less than at least one biography. The

inner query finds all the biography prices. The

outer query inspects the highest price in the

list and determines whether each nonbiogra-

phy is cheaper. See Figure 8.48 for the result.

Unlike the ALL comparison in Listing 8.44 in

the preceding section, the price IS NOT NULL
condition isn’t required here, even though

the price of biography T10 is null. The DBMS

doesn’t determine whether all the price com-

parisons are true—just whether at least one

is true—so the null comparison is ignored.

292

Chapter 8

C
o

m
p

a
r

i
n

g
 S

o
m

e
 S

u
b

q
u

e
r

y
 V

a
l
u

e
s

 w
i
t

h
 A

N
Y

Listing 8.47 List the authors who live in a city in which
a publisher is located. See Figure 8.47 for the result.

SELECT au_id, au_lname, au_fname, city

FROM authors

WHERE city = ANY

(SELECT city

FROM publishers);

Listing

au_id au_lname au_fname city

----- -------- --------- -------------

A03 Hull Hallie San Francisco

A04 Hull Klee San Francisco

A05 Kells Christian New York

Figure 8.47 Result of Listing 8.47.

Listing 8.48 List the nonbiographies that are cheaper
than at least one biography. See Figure 8.48 for the
result.

SELECT title_id, title_name

FROM titles

WHERE type <> 'biography'

AND price < ANY

(SELECT price

FROM titles

WHERE type = 'biography');

Listing

title_id title_name

-------- --------------------------------

T01 1977!

T02 200 Years of German Humor

T04 But I Did It Unconsciously

T05 Exchange of Platitudes

T08 Just Wait Until After School

T09 Kiss My Boo-Boo

T11 Perhaps It's a Glandular Problem

Figure 8.48 Result of Listing 8.48.

Listing 8.49 lists the books that outsold at

least one of the books that author A06 wrote

(or cowrote). The inner query uses a join to

find the sales of each book by author A06.

The outer query inspects the lowest sales

figure in the list and determines whether

each book sold more copies. See Figure 8.49

for the result. Again, unlike the ALL compari-

son in Listing 8.45 in the preceding section,

the IS NOT NULL condition isn’t needed here.

I can replicate Listing 8.49 by using GROUP BY,

HAVING, and MIN() (instead of ANY):

SELECT title_id

FROM titles

GROUP BY title_id

HAVING MIN(sales) >

(SELECT MIN(sales)

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE ta.au_id = ‘A06’);

✔ Tips

■ = ANY is equivalent to IN, but <> ANY isn’t

equivalent to NOT IN. If subquery returns

the values x, y, and z,

test_expr <> ANY (subquery)

is equivalent to:

test_expr <> x OR

test_expr <> y OR

test_expr <> z

But

test_expr NOT IN (subquery)

is equivalent to:

test_expr <> x AND

test_expr <> y AND

test_expr <> z

(NOT IN actually is equivalent to <> ALL.)

293

Subqueries

C
o

m
p

a
r

i
n

g
 S

o
m

e
 S

u
b

q
u

e
r

y
 V

a
l
u

e
s

 w
i
t

h
 A

N
Y

Listing 8.49 List the books that outsold at least one
of the books that author A06 wrote (or cowrote). See
Figure 8.49 for the result.

SELECT title_id, title_name

FROM titles

WHERE sales > ANY

(SELECT sales

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE ta.au_id = 'A06');

Listing

title_id title_name

-------- -----------------------------------

T02 200 Years of German Humor

T03 Ask Your System Administrator

T04 But I Did It Unconsciously

T05 Exchange of Platitudes

T06 How About Never?

T07 I Blame My Mother

T09 Kiss My Boo-Boo

T11 Perhaps It's a Glandular Problem

T12 Spontaneous, Not Annoying

T13 What Are The Civilian Applications?

Figure 8.49 Result of Listing 8.49.

■ In the SQL standard, the keywords ANY
and SOME are synonyms. In many DBMSs,

you can use SOME in place of ANY.

■ MySQL 4.0 and earlier don’t

support subqueries; see the

DBMS Tip in “Understanding

Subqueries” earlier in this chapter.

Testing Existence
with EXISTS
So far in this chapter, I’ve been using the

comparison operators IN, ALL, and ANY to

compare a specific test value to values in

a subquery result. EXISTS and NOT EXISTS
don’t compare values; rather, they simply

look for the existence or nonexistence of

rows in a subquery result.

The important characteristics of an existence

test are:

◆ An existence test doesn’t compare values,

so it isn’t preceded by a test expression.

◆ The subquery can be simple or correlated

but usually is correlated (see “Simple

and Correlated Subqueries” earlier in

this chapter).

◆ The subquery can return any number of

columns and rows.

◆ By convention, the SELECT clause in the

subquery is SELECT * to retrieve all

columns. Listing specific column names

is unnecessary, because EXISTS simply

tests for the existence of rows that satisfy

the subquery conditions; the actual val-

ues in the rows are irrelevant.

◆ All IN, ALL, and ANY queries can be

expressed with EXISTS or NOT EXISTS.

I’ll give equivalent queries in some of

the examples later in this section.

◆ If the subquery returns at least one row,

an EXISTS test is true, and a NOT EXISTS
test is false.

◆ If the subquery returns no rows, an

EXISTS test is false, and a NOT EXISTS
test is true.

◆ A subquery row that contains only nulls

counts as a row. (An EXISTS test is true,

and a NOT EXISTS test is false.)

◆ Because an EXISTS test performs no

comparisons, it’s not subject to the same

problems with nulls as tests that use IN,

ALL, or ANY; see “Nulls in Subqueries”

earlier in this chapter.

294

Chapter 8

T
e

s
t

i
n

g
 E

x
i
s

t
e

n
c

e
 w

i
t

h
 E

X
I
S

T
S

To test existence:

◆ In the WHERE clause of a SELECT state-

ment, type:

WHERE [NOT] EXISTS (subquery)

subquery is a subquery that returns any

number of columns and rows.

If subquery returns one or more rows, the

EXISTS test evaluates to true. If subquery

returns zero rows, the EXISTS test evalu-

ates to false. Specify NOT to negate the

test’s result.

The same syntax applies to a HAVING clause:

HAVING [NOT] EXISTS (subquery)

Listing 8.50 lists the names of the publish-

ers that have published biographies. This

query considers each publisher’s ID in turn

and determines whether it causes the exis-

tence test to evaluate to true. Here, the first

publisher is P01 (Abatis Publishers). The

DBMS ascertains whether any rows exist in

the table titles in which pub_id is P01 and

type is biography. If so, Abatis Publishers is

included in the final result. The DBMS repeats

the same process for each of the other pub-

lisher IDs. See Figure 8.50 for the result. If I

wanted to list the names of publishers that

haven’t published biographies, I’d change

EXISTS to NOT EXISTS. See Listing 8.33 earlier

in this chapter for an equivalent query that

uses IN.

Listing 8.51 lists the authors who haven’t

written (or cowritten) a book. See

Figure 8.51 for the result. See Listing 8.35

earlier in this chapter for an equivalent

query that uses NOT IN.

295

Subqueries

T
e

s
t

i
n

g
 E

x
i
s

t
e

n
c

e
 w

i
t

h
 E

X
I
S

T
S

Listing 8.50 List the names of the publishers that have
published biographies. See Figure 8.50 for the result.

SELECT pub_name

FROM publishers p

WHERE EXISTS

(SELECT *

FROM titles t

WHERE t.pub_id = p.pub_id

AND type = 'biography');

Listing

pub_name

Abatis Publishers

Schadenfreude Press

Figure 8.50 Result of Listing 8.50.

Listing 8.51 List the authors who haven’t written (or
cowritten) a book. See Figure 8.51 for the result.

SELECT au_id, au_fname, au_lname

FROM authors a

WHERE NOT EXISTS

(SELECT *

FROM title_authors ta

WHERE ta.au_id = a.au_id);

Listing

au_id au_fname au_lname

----- --------- -----------

A07 Paddy O'Furniture

Figure 8.51 Result of Listing 8.51.

Listing 8.52 lists the authors who live in a

city in which a publisher is located. See

Figure 8.52 for the result. See Listing 8.47

earlier in this chapter for an equivalent

query that uses = ANY.

“Finding Common Rows with INTERSECT” in

Chapter 9 describes how to use INTERSECT
to retrieve the rows that two tables have in

common. You also can use EXISTS to find an

intersection. Listing 8.53 lists the cities in

which both an author and publisher are

located. See Figure 8.53 for the result. See

Listing 9.8 in Chapter 9 for an equivalent

query that uses INTERSECT.

You also can replicate this query with an

inner join:

SELECT DISTINCT a.city

FROM authors a

INNER JOIN publishers p

ON a.city = p.city;

296

Chapter 8

T
e

s
t

i
n

g
 E

x
i
s

t
e

n
c

e
 w

i
t

h
 E

X
I
S

T
S

Listing 8.52 List the authors who live in a city in which
a publisher is located. See Figure 8.52 for the result.

SELECT au_id, au_lname, au_fname, city

FROM authors a

WHERE EXISTS

(SELECT *

FROM publishers p

WHERE p.city = a.city);

Listing

au_id au_lname au_fname city

----- -------- --------- -------------

A03 Hull Hallie San Francisco

A04 Hull Klee San Francisco

A05 Kells Christian New York

Figure 8.52 Result of Listing 8.52.

Listing 8.53 List the cities in which both an author and
publisher are located. See Figure 8.53 for the result.

SELECT DISTINCT city

FROM authors a

WHERE EXISTS

(SELECT *

FROM publishers p

WHERE p.city = a.city);

Listing

city

New York

San Francisco

Figure 8.53 Result of Listing 8.53.

“Finding Different Rows with EXCEPT” in

Chapter 9 describes how to use EXCEPT to

retrieve the rows in one table that aren’t also

in another table. You also can use NOT EXISTS
to find a difference. Listing 8.54 lists the

cities in which an author lives but a publish-

er isn’t located. See Figure 8.54 for the

result. See Listing 9.9 in Chapter 9 for an

equivalent query that uses EXCEPT.

You also can replicate this query with NOT IN:

SELECT DISTINCT city

FROM authors

WHERE city NOT IN

(SELECT city

FROM publishers);

Or with an outer join:

SELECT DISTINCT a.city

FROM authors a

LEFT OUTER JOIN publishers p

ON a.city = p.city

WHERE p.city IS NULL;

Listing 8.55 lists the authors who wrote

(or cowrote) three or more books. See

Figure 8.55 for the result.

297

Subqueries

T
e

s
t

i
n

g
 E

x
i
s

t
e

n
c

e
 w

i
t

h
 E

X
I
S

T
S

Listing 8.54 List the cities in which an author lives but
a publisher isn’t located. See Figure 8.54 for the result.

SELECT DISTINCT city

FROM authors a

WHERE NOT EXISTS

(SELECT *

FROM publishers p

WHERE p.city = a.city);

Listing

city

Boulder

Bronx

Palo Alto

Sarasota

Figure 8.54 Result of Listing 8.54.

Listing 8.55 List the authors who wrote (or cowrote)
three or more books. See Figure 8.55 for the result.

SELECT au_id, au_fname, au_lname

FROM authors a

WHERE EXISTS

(SELECT *

FROM title_authors ta

WHERE ta.au_id = a.au_id

HAVING COUNT(*) >= 3);

Listing

au_id au_fname au_lname

----- -------- ---------

A01 Sarah Buchman

A02 Wendy Heydemark

A04 Klee Hull

A06 Kellsey

Figure 8.55 Result of Listing 8.55.

Listing 8.56 uses two existence tests to

list the authors who wrote (or cowrote)

both children’s and psychology books. See

Figure 8.56 for the result.

Listing 8.57 performs a uniqueness test to

determine whether duplicates occur in the

column au_id in the table authors. The

query prints Yes if duplicate values exist in

the column au_id; otherwise, it returns an

empty result. See Figure 8.57 for the result.

au_id is the primary key of authors, so of

course it contains no duplicates.

298

Chapter 8

T
e

s
t

i
n

g
 E

x
i
s

t
e

n
c

e
 w

i
t

h
 E

X
I
S

T
S

Listing 8.56 List the authors who wrote (or cowrote) a
children’s book and also wrote (or cowrote) a
psychology book. See Figure 8.56 for the result.

SELECT au_id, au_fname, au_lname

FROM authors a

WHERE EXISTS

(SELECT *

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE ta.au_id = a.au_id

AND t.type = 'children')

AND EXISTS

(SELECT *

FROM title_authors ta

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE ta.au_id = a.au_id

AND t.type = 'psychology');

Listing

au_id au_fname au_lname

----- -------- --------

A06 Kellsey

Figure 8.56 Result of Listing 8.56.

Listing 8.57 Does the column au_id in the table
authors contain duplicate values? See Figure 8.57 for
the result.

SELECT DISTINCT 'Yes' AS "Duplicates?"

WHERE EXISTS

(SELECT *

FROM authors

GROUP BY au_id

HAVING COUNT(*) > 1);

Listing

Duplicates?

Figure 8.57 Result of Listing 8.57.

Listing 8.58 shows the same query for the

table title_authors, which does contain

duplicate au_id values. See Figure 8.58 for

the result. You can add grouping columns to

the GROUP BY clause to determine whether

multiple-column duplicates exist.

✔ Tips

■ You also can use COUNT(*) to determine

whether a subquery returns at least one

row, but COUNT(*) (usually) is less efficient

than EXISTS. The DBMS quits processing

an EXISTS subquery as soon as it deter-

mines whether the subquery returns a

row, whereas COUNT(*) forces the DBMS

to process the entire subquery. This

query is equivalent to Listing 8.52 but

runs slower:

SELECT au_id, au_lname, au_fname,

city

FROM authors a

WHERE

(SELECT COUNT(*)

FROM publishers p

WHERE p.city = a.city) > 0;

■ Although SELECT * is the most common

form of the SELECT clause in an EXISTS
subquery, you can use SELECT column or

SELECT constant_value to speed queries

if your DBMS’s optimizer isn’t bright

enough to figure out that it doesn’t need

to construct an entire interim table for

an EXISTS subquery. For more informa-

tion, see “Comparing Equivalent Queries”

later in this chapter.

continues on next page

299

Subqueries

T
e

s
t

i
n

g
 E

x
i
s

t
e

n
c

e
 w

i
t

h
 E

X
I
S

T
S

Listing 8.58 Does the column au_id in the table
title_authors contain duplicate values? See
Figure 8.58 for the result.

SELECT DISTINCT 'Yes' AS "Duplicates?"

WHERE EXISTS

(SELECT *

FROM title_authors

GROUP BY au_id

HAVING COUNT(*) > 1);

Listing

Duplicates?

Yes

Figure 8.58 Result of Listing 8.58.

■ Although I use SELECT COUNT(*) in some

of the DBMS-specific subqueries in the

DBMS Tip in this section, you should be

wary of using an aggregate function in

a subquery’s SELECT clause. The existence

test in Listing 8.59, for example, always is

true because COUNT(*) always will return

a row (with the value zero here). I could

argue that the result, Figure 8.59, is

flawed logically because no publisher ID

XXX exists.

■ To run Listings 8.55, 8.57, and

8.58 in Microsoft Access,

change SELECT * to SELECT 1. Additionally,

in Listing 8.57 add the clause FROM authors
to the outer query, and in Listing 8.58

add the clause FROM title_authors to

the outer query.

To run Listings 8.57 and 8.58 in Oracle,

add the clause FROM DUAL to the outer

query; see the DBMS Tip in “Creating

Derived Columns” in Chapter 5.

To run Listings 8.55, 8.57, and 8.58 in

DB2, change SELECT * to SELECT 1.

Additionally, in Listings 8.57 and 8.58,

add the clause FROM SYSIBM.SYSDUMMY1 to

the outer query; see the DBMS Tip in

“Creating Derived Columns” in Chapter

5. For example, change Listing 8.57 to:

SELECT DISTINCT ‘Yes’ AS

“Duplicates?”

FROM SYSIBM.SYSDUMMY1

WHERE EXISTS

(SELECT 1

FROM authors

GROUP BY au_id

HAVING COUNT(*) > 1);

In MySQL, to run Listing 8.57 add the

clause FROM authors to the outer query,

and in Listing 8.58 add the clause FROM
title_authors to the outer query. MySQL

4.0 and earlier don’t support subqueries;

see the DBMS Tip in “Understanding

Subqueries” earlier in this chapter.

To run Listings 8.55, 8.57, and 8.58 in

PostgreSQL, change SELECT * to SELECT 1.

300

Chapter 8

T
e

s
t

i
n

g
 E

x
i
s

t
e

n
c

e
 w

i
t

h
 E

X
I
S

T
S

Listing 8.59 Be careful when using aggregate
functions in a subquery SELECT clause. See
Figure 8.59 for the result.

SELECT pub_id

FROM publishers

WHERE EXISTS

(SELECT COUNT(*)

FROM titles

WHERE pub_id = 'XXX');

Listing

pub_id

P01

P02

P03

P04

Figure 8.59 The result of Listing 8.59.

Comparing
Equivalent Queries
As you’ve seen in this chapter and the pre-

ceding one, you can express the same query

in different ways (different syntax, same

semantics). To expand on this point, I’ve

written the same query six semantically

equivalent ways. Each of the statements in

Listing 8.60 lists the authors who have

written (or cowritten) at least one book.

See Figure 8.60 for the result.

The first two queries (inner joins) will run

at the same speed as one another. Of the

third through sixth queries (which use sub-

queries), the last one probably is the worst

performer. The DBMS will stop processing

the other subqueries as soon as it encounters

a single matching value. But the subquery

in the last statement has to count all the

matching rows before it returns either true

or false. Your DBMS’s optimizer should run

the inner joins at about the same speed as

the fastest subquery statement.

You might find this programming flexibility

to be attractive, but people who design DBMS

optimizers don’t, because they’re tasked

with considering all the possible ways to

express a query, figuring out which one per-

forms best, and reformulating your query

internally to its optimal form. (Entire careers

are devoted to solving these types of opti-

mization problems.) If your DBMS has a

flawless optimizer, it will run all six of the

queries in Listing 8.60 at the same speed. But

that situation is unlikely, so you’ll have to

experiment with your DBMS to see which

version runs fastest.

301

Subqueries

C
o

m
p

a
r

i
n

g
 E

q
u

i
v

a
l
e

n
t

 Q
u

e
r

i
e

s

Listing 8.60 These six queries are equivalent
semantically; they all list the authors who have
written (or cowritten) at least one book. See
Figure 8.60 for the result.

SELECT DISTINCT a.au_id

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id;

SELECT DISTINCT a.au_id

FROM authors a, title_authors ta

WHERE a.au_id = ta.au_id;

SELECT au_id

FROM authors a

WHERE au_id IN

(SELECT au_id

FROM title_authors);

SELECT au_id

FROM authors a

WHERE au_id = ANY

(SELECT au_id

FROM title_authors);

SELECT au_id

FROM authors a

WHERE EXISTS

(SELECT *

FROM title_authors ta

WHERE a.au_id = ta.au_id);

SELECT au_id

FROM authors a

WHERE 0 <

(SELECT COUNT(*)

FROM title_authors ta

WHERE a.au_id = ta.au_id);

Listing

au_id

A01

A02

A03

A04

A05

A06

Figure 8.60 Each of the six statements in Listing 8.60
returns this result.

✔ Tips

■ You should compare queries against large

test tables (more than 10,000 or even

100,000 rows) so that speed and memory

differences will be obvious.

■ DBMSs provide tools to let

you measure the efficiency of

queries. Tables 8.4 and 8.5 list the com-

mands that time queries and show their

execution plans.

302

Chapter 8

C
o

m
p

a
r

i
n

g
 E

q
u

i
v

a
l
e

n
t

 Q
u

e
r

i
e

s

Table 8.4

Timing Queries
D B M S C o m m a n d

Access Not available
SQL Server SET STATISTICS TIME ON

Oracle SET TIMING ON

DB2 db2batch

MySQL The mysql command-line utility
prints execution times by default.

PostgreSQL \timing

Table 8.5

Showing Query Execution Plans
D B M S C o m m a n d

Access Not available
SQL Server SET SHOWPLAN_TEXT ON

Oracle EXPLAIN PLAN

DB2 EXPLAIN or db2expln
MySQL EXPLAIN

PostgreSQL EXPLAIN

SQL Tuning

After you learn the basics of SQL, your next step is to tune your SQL statements so that they

run efficiently, which means learning about your DBMS’s optimizer. Performance tuning

involves some platform-independent general principles, but the most effective tuning relies

on the idiosyncrasies of the specific DBMS. Tuning is beyond the scope of this book, but the

internet has plenty of discussion groups and articles—search for tuning (or performance or

optimization) together with the name of your DBMS.

A good book to get started with is Peter Gulutzan and Trudy Pelzer’s SQL Performance

Tuning (Addison-Wesley), which covers eight DBMSs, or Dan Tow’s SQL Tuning (O’Reilly),

which covers Microsoft SQL Server, Oracle, and DB2. If you look up one of these books on

Amazon.com, you can find other tuning books by clicking the Similar Items link.

Recall from Chapter 2 that set theory is

fundamental to the relational model. But

whereas mathematical sets are unchanging,

database sets are dynamic—they grow, shrink,

and otherwise change over time. This chapter

covers the following SQL set operators, which

combine the results of two SELECT statements

into one result:

◆ UNION returns all the rows returned by

both queries, with duplicates removed.

◆ INTERSECT returns all rows common to

both queries (that is, all distinct rows

retrieved by both queries).

◆ EXCEPT returns all rows from the first

query without the rows that appear in the

second query, with duplicates removed.

These set operations aren’t joins, but you

can mix and chain them to combine two or

more tables.

303

Set Operations
9

S
e

t
 O

p
e

r
a

t
i
o

n
s

Combining Rows with UNION
A UNION operation combines the results of two

queries into a single result that has the rows

returned by both queries. (This operation

differs from a join, which combines columns

from two tables.) A UNION expression removes

duplicate rows from the result; a UNION ALL
expression doesn’t remove duplicates.

Unions are simple, but they have some

restrictions:

◆ The SELECT-clause lists in the two queries

must have the same number of columns

(column names, arithmetic expressions,

aggregate functions, and so on).

◆ The corresponding columns in the two

queries must be listed in the same order

in the two queries.

◆ The corresponding columns must have

the same data type or must be implicitly

convertible to the same type.

◆ If the names of corresponding columns

match, that column name is used in the

result. If the corresponding column names

differ, it’s up to the DBMS to determine

the column name in the result. Most

DBMSs take the result’s column names

from the first individual query in the

UNION statement. If you want to rename a

column in the result, use an AS clause in

the first query; see “Creating Column

Aliases with AS” in Chapter 4.

◆ An ORDER BY clause can appear in only

the final query in the UNION statement.

The sort is applied to the final, combined

result. Because the result’s column

names depend on the DBMS, it’s often

easiest to use relative column positions

to specify the sort order; see “Sorting

Rows with ORDER BY” in Chapter 4.

◆ GROUP BY and HAVING can be specified in

the individual queries only; they can’t be

used to affect the final result.

304

Chapter 9

C
o

m
b

i
n

i
n

g
 R

o
w

s
 w

i
t

h
 U

N
I
O

N

Listing 9.1 List the states where authors and
publishers are located. See Figure 9.1 for the result.

SELECT state FROM authors

UNION

SELECT state FROM publishers;

Listing

state

NULL

CA

CO

FL

NY

Figure 9.1 Result of Listing 9.1.

Listing 9.2 List the states where authors and
publishers are located, including duplicates. See
Figure 9.2 for the result.

SELECT state FROM authors

UNION ALL

SELECT state FROM publishers;

Listing

state

NY

CO

CA

CA

NY

CA

FL

NY

CA

NULL

CA

Figure 9.2 Result of Listing 9.2.

To combine rows:

◆ Type:

select_statement1

UNION [ALL]

select_statement2;

select_statement1 and select_statement2

are SELECT statements. The number and

the order of the columns must be identi-

cal in both statements, and the data

types of corresponding columns must be

compatible. Duplicate rows are eliminated

from the result unless ALL is specified.

Listing 9.1 lists the states where authors

and publishers are located. By default, UNION
removes duplicate rows from the result. See

Figure 9.1 for the result.

Listing 9.2 is the same as Listing 9.1 except

that it includes the ALL keyword, so all rows

are included in the results, and duplicates

aren’t removed. See Figure 9.2 for the result.

Listing 9.3 lists the names of all the authors

and publishers. The AS clause in the first

query names the column in the result. The

ORDER BY clause uses a relative column posi-

tion instead of a column name to sort the

result. See Figure 9.3 for the result.

305

Set Operations

C
o

m
b

i
n

i
n

g
 R

o
w

s
 w

i
t

h
 U

N
I
O

N

Listing 9.3 List the names of all the authors and
publishers. See Figure 9.3 for the result.

SELECT au_fname || ' ' || au_lname AS "Name"

FROM authors

UNION

SELECT pub_name

FROM publishers

ORDER BY 1 ASC;

Listing

Name

Kellsey

Abatis Publishers

Christian Kells

Core Dump Books

Hallie Hull

Klee Hull

Paddy O'Furniture

Sarah Buchman

Schadenfreude Press

Tenterhooks Press

Wendy Heydemark

Figure 9.3 Result of Listing 9.3.

Listing 9.4 expands on Listing 9.3 and

defines the extra column Type to identify

which table each row came from. The

WHERE conditions retrieve the authors and

publishers from New York state only. See

Figure 9.4 for the result.

Listing 9.5 adds a third query to Listing 9.4

to retrieve the titles of books published in

New York state also. See Figure 9.5 for

the result.

Listing 9.6 is similar to Listing 9.5 except

that it lists the counts of each author, pub-

lisher, and book, instead of their names.

See Figure 9.6 for the result.

306

Chapter 9

C
o

m
b

i
n

i
n

g
 R

o
w

s
 w

i
t

h
 U

N
I
O

N

Listing 9.4 List the names of all the authors and
publishers located in New York state, sorted by type
and then by name. See Figure 9.4 for the result.

SELECT

'author' AS "Type",

au_fname || ' ' || au_lname AS "Name",

state

FROM authors

WHERE state = 'NY'

UNION

SELECT

'publisher',

pub_name,

state

FROM publishers

WHERE state = 'NY'

ORDER BY 1 ASC, 2 ASC;

Listing

Type Name state

--------- ----------------- -----

author Christian Kells NY

author Sarah Buchman NY

publisher Abatis Publishers NY

Figure 9.4 Result of Listing 9.4.

307

Set Operations

C
o

m
b

i
n

i
n

g
 R

o
w

s
 w

i
t

h
 U

N
I
O

N

Listing 9.5 List the names of all the authors and
publishers located in New York state and the titles
of books published in New York state, sorted by type
and then by name. See Figure 9.5 for the result.

SELECT

'author' AS "Type",

au_fname || ' ' || au_lname AS "Name"

FROM authors

WHERE state = 'NY'

UNION

SELECT

'publisher',

pub_name

FROM publishers

WHERE state = 'NY'

UNION

SELECT

'title',

title_name

FROM titles t

INNER JOIN publishers p

ON t.pub_id = p.pub_id

WHERE p.state = 'NY'

ORDER BY 1 ASC, 2 ASC;

Listing

Type Name

--------- --------------------------

author Christian Kells

author Sarah Buchman

publisher Abatis Publishers

title 1977!

title How About Never?

title Not Without My Faberge Egg

title Spontaneous, Not Annoying

Figure 9.5 Result of Listing 9.5.

Listing 9.6 List the counts of all the authors and
publishers located in New York state and the titles
of books published in New York state, sorted by type.
See Figure 9.6 for the result.

SELECT

'author' AS "Type",

COUNT(au_id) AS "Count"

FROM authors

WHERE state = 'NY'

UNION

SELECT

'publisher',

COUNT(pub_id)

FROM publishers

WHERE state = 'NY'

UNION

SELECT

'title',

COUNT(title_id)

FROM titles t

INNER JOIN publishers p

ON t.pub_id = p.pub_id

WHERE p.state = 'NY'

ORDER BY 1 ASC;

Listing

Type Count

--------- -----

author 2

publisher 1

title 4

Figure 9.6 Result of Listing 9.6.

In Listing 9.7, I revisit Listing 5.30 in

“Evaluating Conditional Values with CASE”

in Chapter 5. But instead of using CASE to

change book prices and simulate if-then
logic, I use multiple UNION queries. See

Figure 9.7 for the result.

308

Chapter 9

C
o

m
b

i
n

i
n

g
 R

o
w

s
 w

i
t

h
 U

N
I
O

N

Listing 9.7 Raise the price of history books by
10 percent and psychology books by 20 percent,
and leave the prices of other books unchanged.
See Figure 9.7 for the result.

SELECT title_id, type, price,

price * 1.10 AS "New price"

FROM titles

WHERE type = 'history'

UNION

SELECT title_id, type, price, price * 1.20

FROM titles

WHERE type = 'psychology'

UNION

SELECT title_id, type, price, price

FROM titles

WHERE type NOT IN ('psychology','history')

ORDER BY type ASC, title_id ASC;

Listing

title_id type price New price

-------- ---------- ------- ---------

T06 biography 19.95 19.95

T07 biography 23.95 23.95

T10 biography NULL NULL

T12 biography 12.99 12.99

T08 children 10.00 10.00

T09 children 13.95 13.95

T03 computer 39.95 39.95

T01 history 21.99 24.19

T02 history 19.95 21.95

T13 history 29.99 32.99

T04 psychology 12.99 15.59

T05 psychology 6.95 8.34

T11 psychology 7.99 9.59

Figure 9.7 Result of Listing 9.7.

UNION Commutativity

In theory, the order in which the SELECT
statements (tables) occur in a UNION
should make no speed difference. But

in practice your DBMS might run

small_table1

UNION

small_table2

UNION

big_table;

faster than

small_table1

UNION

big_table

UNION

small_table2;

because of the way the optimizer merges

intermediate results and removes

duplicate rows. The results are DBMS

dependent. Experiment.

✔ Tips

■ UNION is a commutative operation:

A UNION B is the same as B UNION A.

■ The SQL standard gives INTERSECT higher

precedence than UNION and EXCEPT, but

your DBMS might use a different order.

Use parentheses to specify order of eval-

uation in queries with mixed set operators;

see “Determining the Order of Evaluation”

in Chapter 5.

■ Don’t use UNION where a compound con-

dition will suffice:

SELECT DISTINCT * FROM mytable

WHERE col1 = 1 AND col2 = 2;

usually is faster than

SELECT * FROM mytable

WHERE col1 = 1;

UNION

SELECT * FROM mytable

WHERE col2 = 2;

■ If you mix UNION and UNION ALL in a

single statement, use parentheses to

specify order of evaluation. Take these

two statements, for example:

SELECT * FROM table1

UNION ALL

(SELECT * FROM table2

UNION

SELECT * FROM table3);

and:

(SELECT * FROM table1

UNION ALL

SELECT * FROM table2)

UNION

SELECT * FROM table3;

The first statement eliminates duplicates in

the union of table2 and table3 but doesn’t

eliminate duplicates in the union of that

result and table1. The second statement

includes duplicates in the union of table1

and table2 but eliminates duplicates in

the subsequent union with table3, so ALL
has no effect on the final result of this

statement.

■ For UNION operations, the DBMS per-

forms an internal sort to identify and

remove duplicate rows; hence, the result

of a UNION might be sorted even if you

don’t specify an ORDER BY clause. UNION
ALL doesn’t sort because it doesn’t need

to remove duplicates. Sorting is compu-

tationally expensive—don’t use UNION
when UNION ALL will suffice.

■ In Microsoft Access and

Microsoft SQL Server, use +
to concatenate strings (see “Concatenating

Strings with ||” in Chapter 5). To run

Listings 9.3 through 9.5, change the con-

catenation expressions to:

au_fname + ‘ ‘ + au_lname

In MySQL, use CONCAT() to concatenate

strings (see “Concatenating Strings with

||” in Chapter 5). To run Listings 9.3

through 9.5, change the concatenation

expressions to:

CONCAT(au_fname, ‘ ‘, au_lname)

In older PostgreSQL versions, convert

the floating-point numbers in Listing 9.7

to DECIMAL; see “Converting Data Types

with CAST()” in Chapter 5. To run

Listing 9.7, change new-price calcula-

tions to:

price * CAST((1.10) AS DECIMAL)

price * CAST((1.20) AS DECIMAL)

309

Set Operations

C
o

m
b

i
n

i
n

g
 R

o
w

s
 w

i
t

h
 U

N
I
O

N

Finding Common Rows
with INTERSECT
An INTERSECT operation combines the results

of two queries into a single result that has

all the rows common to both queries.

Intersections have the same restrictions as

unions; see “Combining Rows with UNION”

earlier in this chapter.

To find common rows:

◆ Type:

select_statement1

INTERSECT

select_statement2;

select_statement1 and select_statement2

are SELECT statements. The number and

the order of the columns must be identical

in both statements, and the data types of

corresponding columns must be compat-

ible. Duplicate rows are eliminated from

the result.

Listing 9.8 uses INTERSECT to list the cities

in which both an author and a publisher are

located. See Figure 9.8 for the result.

310

Chapter 9

F
i
n

d
i
n

g
 C

o
m

m
o

n
 R

o
w

s
 w

i
t

h
 I

N
T

E
R

S
E

C
T

Listing 9.8 List the cities in which both an author and
a publisher are located. See Figure 9.8 for the result.

SELECT city

FROM authors

INTERSECT

SELECT city

FROM publishers;

Listing

city

New York

San Francisco

Figure 9.8 Result of Listing 9.8.

✔ Tips

■ INTERSECT is a commutative oper-

ation: A INTERSECT B is the same as

B INTERSECT A.

■ The SQL standard gives INTERSECT higher

precedence than UNION and EXCEPT, but

your DBMS might use a different order.

Use parentheses to specify order of eval-

uation in queries with mixed set operators;

see “Determining the Order of Evaluation”

in Chapter 5.

■ It’s helpful to think of UNION as logical

OR and INTERSECTION as logical AND; see

“Combining and Negating Conditions

with AND, OR, and NOT” in Chapter 4. If you

want to know, for example, which prod-

ucts are supplied by vendor A or vendor

B, type:

SELECT product_id

FROM vendor_a_product_list

UNION

SELECT product_id

FROM vendor_b_product_list;

If you want to know which products are

supplied by vendor A and vendor B, type:

SELECT product_id

FROM vendor_a_product_list

INTERSECT

SELECT product_id

FROM vendor_b_product_list;

■ If your DBMS doesn’t support INTERSECT,

you can replicate it with an INNER JOIN
or an EXISTS subquery. Each of the fol-

lowing statements is equivalent to

Listing 9.8 (inner join):

SELECT DISTINCT authors.city

FROM authors

INNER JOIN publishers

ON authors.city =

publishers.city;

or (EXISTS subquery):

SELECT DISTINCT city

FROM authors

WHERE EXISTS

(SELECT *

FROM publishers

WHERE authors.city =

publishers.city;)

■ Microsoft Access, Microsoft

SQL Server 2000, and MySQL

don’t support INTERSECT. To run List-

ing 9.8, use one of the equivalent queries

given in the preceding Tip. (Microsoft

SQL Server 2005 and later support

INTERSECT.)

311

Set Operations

F
i
n

d
i
n

g
 C

o
m

m
o

n
 R

o
w

s
 w

i
t

h
 I

N
T

E
R

S
E

C
T

Finding Different Rows
with EXCEPT
An EXCEPT operation, also called a difference,

combines the results of two queries into a

single result that has the rows that belong

to only the first query. To contrast INTERSECT
and EXCEPT, A INTERSECT B contains rows

from table A that are duplicated in table B,

whereas A EXCEPT B contains rows from

table A that aren’t duplicated in table B.

Differences have the same restrictions as

unions; see “Combining Rows with UNION”

earlier in this chapter.

To find different rows:

◆ Type:

select_statement1

EXCEPT

select_statement2;

select_statement1 and select_statement2

are SELECT statements. The number and

the order of the columns must be identi-

cal in both statements, and the data types

of corresponding columns must be com-

patible. Duplicate rows are eliminated

from the result.

Listing 9.9 uses EXCEPT to list the cities in

which an author lives but a publisher isn’t

located. See Figure 9.9 for the result.

312

Chapter 9

F
i
n

d
i
n

g
 D

i
f
f
e

r
e

n
t

 R
o

w
s

 w
i
t

h
 E

X
C

E
P

T

Listing 9.9 List the cities in which an author lives but
a publisher isn’t located. See Figure 9.9 for the result.

SELECT city

FROM authors

EXCEPT

SELECT city

FROM publishers;

Listing

city

Boulder

Bronx

Palo Alto

Sarasota

Figure 9.9 Result of Listing 9.9.

✔ Tips

■ Unlike UNION and INTERSECT, EXCEPT is

not commutative: A EXCEPT B isn’t the

same as B EXCEPT A.

■ The SQL standard gives INTERSECT higher

precedence than UNION and EXCEPT, but

your DBMS might use a different order.

Use parentheses to specify order of eval-

uation in queries with mixed set operators;

see “Determining the Order of Evaluation”

in Chapter 5.

■ Don’t use EXCEPT where a compound

condition will suffice.

SELECT * FROM mytable

WHERE col1 = 1 AND NOT col2 = 2;

usually is faster than

SELECT * FROM mytable

WHERE col1 = 1;

EXCEPT

SELECT * FROM mytable

WHERE col2 = 2;

■ If your DBMS doesn’t support EXCEPT,

you can replicate it with an outer join, a

NOT EXISTS subquery, or a NOT IN sub-

query. Each of the following statements

is equivalent to Listing 9.9 (outer join):

SELECT DISTINCT a.city

FROM authors a

LEFT OUTER JOIN publishers p

ON a.city = p.city

WHERE p.city IS NULL;

or (NOT EXISTS subquery):

SELECT DISTINCT city

FROM authors

WHERE NOT EXISTS

(SELECT *

FROM publishers

WHERE authors.city =

publishers.city);

or (NOT IN subquery):

SELECT DISTINCT city

FROM authors

WHERE city NOT IN

(SELECT city

FROM publishers);

■ Microsoft Access, Microsoft

SQL Server 2000, and MySQL

don’t support EXCEPT. To run Listing 9.9,

use one of the equivalent queries given

in the preceding Tip. (Microsoft SQL

Server 2005 and later support EXCEPT.)

In Oracle, the EXCEPT operator is called

MINUS. To run Listing 9.9, type:

SELECT city FROM authors

MINUS

SELECT city FROM publishers;

313

Set Operations

F
i
n

d
i
n

g
 D

i
f
f
e

r
e

n
t

 R
o

w
s

 w
i
t

h
 E

X
C

E
P

T

This page intentionally left blank

To this point, I’ve explained how to use SELECT
to retrieve and analyze the data in tables.

In this chapter, I’ll explain how to use SQL

statements to modify table data:

◆ The INSERT statement adds new rows to

a table.

◆ The UPDATE statement changes the values

in a table’s existing rows.

◆ The DELETE statement removes rows

from a table.

These statements don’t return a result, but

your DBMS normally will print a message

indicating whether the statement ran success-

fully and, if so, the number of rows affected

by the change. To see the actual effect the

statement had on a table, use a SELECT state-

ment such as SELECT * FROM table;.

Unlike SELECT, which only accesses data,

these statements change data, so your data-

base administrator might need to grant you

permission to run them.

315

Inserting,
Updating,
and Deleting Rows

10

I
n

s
e

r
t

i
n

g
, U

p
d

a
t

i
n

g
, a

n
d

 D
e

l
e

t
i
n

g
 R

o
w

s

Displaying Table
Definitions
To use INSERT, UPDATE, or DELETE, you must

know about the columns of the table whose

data you’re modifying, including:

◆ The order of the columns in the table

◆ Each column’s name

◆ Each column’s data type

◆ Whether a column is a key (or part of

a key)

◆ Whether a column’s values must be

unique within that column

◆ Whether a column allows nulls

◆ Each column’s default value (if any)

◆ Table and column contstraints

(Chapter 11)

I gave the table definitions of the sample-

database tables in Tables 2.3 through 2.7 in

“The Sample Database” in Chapter 2, but

you can get the same information by using

DBMS tools that describe database objects.

This section explains how to use those tools

to display table definitions for the current

database.

To display table definitions in
Microsoft Access:

◆ In Access 2003 or earlier, press F11 to show

the Database window, click Tables (below

Objects), click a table in the list, and then

click Design in the toolbar to open the

table in Design View (Figure 10.1).

or

In Access 2007 or later, press F11 to show

the Navigation pane (on the left); then

right-click the table name and choose

Design View from the shortcut menu. (If

tables aren’t visible in the Navigation

pane, click the menu at the top of the

pane and choose Object Type; then click

the menu again and choose Tables.)

316

Chapter 10

D
i
s

p
l

a
y

i
n

g
 T

a
b

l
e

 D
e

f
i
n

i
t

i
o

n
s

Figure 10.1 Displaying a table definition in Microsoft
Access.

To display table definitions in
Microsoft SQL Server:

1. In SQL Server 2000, start SQL Query

Analyzer or the interactive osql
command-line tool (see “Microsoft

SQL Server” in Chapter 1).

or

In SQL Server 2005 and later, start SQL

Server Management Studio or the inter-

active sqlcmd command-line tool (see

“Microsoft SQL Server” in Chapter 1).

The osql and sqlcmd commands display a

few pages that speed by. It’s easier to use

the graphical tools and choose Query >

Results in Grid (or Results to Grid).

2. Type sp_help table.

table is a table name.

3. In SQL Query Analyzer or SQL Server

Management Studio, choose Query >

Execute or press F5 (Figure 10.2).

or

In osql or sqlcmd, press Enter; then type

go and press Enter.

To display table definitions in Oracle:

1. Start the interactive sqlplus command-

line tool (see “Oracle” in Chapter 1).

2. Type describe table; and then press

Enter (Figure 10.3).

table is a table name.

To display table definitions in
IBM DB2:

1. Start Command Center or the db2
command-line processor (see “IBM DB2”

in Chapter 1).

2. Type describe table table; and then

press Enter (or Ctrl+Enter in Command

Center) (Figure 10.4).

table is a table name.

317

Inserting, Updating, and Deleting Rows

D
i
s

p
l

a
y

i
n

g
 T

a
b

l
e

 D
e

f
i
n

i
t

i
o

n
s

Figure 10.2 Displaying a table definition in Microsoft
SQL Server.

Figure 10.3 Displaying a table definition in Oracle.

Figure 10.4 Displaying a table definition in IBM DB2.

To display table definitions in MySQL:

1. Start the interactive mysql command-line

tool (see “MySQL” in Chapter 1).

2. Type describe table; and then press

Enter (Figure 10.5).

table is a table name.

To display table definitions in
PostgreSQL:

1. Start the interactive psql command-line

tool (see “PostgreSQL” in Chapter 1).

2. Type \d table and then press Enter

(Figure 10.6).

table is a table name. Note that you

don’t terminate this command with

a semicolon.

✔ Tips

■ To list a table’s column names and the

order in which they appear without list-

ing any of the table’s data, type:

SELECT * FROM table WHERE 1 = 2;

table is a table name, and 1 = 2 represents

any condition that always is false.

■ For general information about columns,

see “Tables, Columns, and Rows” in

Chapter 2.

For information about keys, see “Primary

Keys” and “Foreign Keys” in Chapter 2.

For information about data types, see

“Data Types” in Chapter 3.

To modify table definitions, see Chapter 11.

■ Table 10.1 shows the com-

mands and queries that list the

tables in the current database.

318

Chapter 10

D
i
s

p
l

a
y

i
n

g
 T

a
b

l
e

 D
e

f
i
n

i
t

i
o

n
s

Figure 10.5 Displaying a table definition in MySQL.

Figure 10.6 Displaying a table definition in
PostgreSQL.

Table 10.1

Listing Database Tables
D B M S C o m m a n d o r Q u e r y

Access Database window (press F11)
SQL Server sp_tables

Oracle SELECT * FROM TAB;

DB2 LIST TABLES;

MySQL SHOW TABLES;

PostgreSQL \d

Inserting Rows
with INSERT
The INSERT statement adds new rows to a

table. This section explains how to use several

variations of INSERT to:

◆ Insert a row by using column positions

(INSERT VALUES)

◆ Insert a row by using column names

(INSERT VALUES)

◆ Insert rows from one table into another

table (INSERT SELECT)

The important characteristics of INSERT are:

◆ In a positional insert, you insert ordered

values into a new row in the same sequence

as the columns appear in a table (see “To

insert a row by using column positions”

later in this section). In a named-column

insert, you name the specific column

into which each value is inserted in the

new row (see “To insert a row by using

column names” later in this section).

You always should use a named-column

insert so your SQL code still will work if

someone reorders the table’s columns or

adds new columns.

◆ With INSERT VALUES, you specify explicit

values to insert into a table. With INSERT
SELECT, you choose rows from another

table to insert into a table.

◆ INSERT VALUES adds one row to a table.

INSERT SELECT adds zero or more rows

to a table.

◆ Each inserted value must have the same

data type or must be implicitly convert-

ible to the same type as its corresponding

column (see “Converting Data Types with

CAST()” in Chapter 5).

◆ To preserve referential integrity, an

inserted foreign-key value must contain

either null (if allowed) or an existing key

value from the primary or unique key

column referenced by the foreign key;

see “Primary Keys” and “Foreign Keys”

in Chapter 2.

◆ An inserted value can’t violate a check

constraint; see “Adding a Check Constraint

with CHECK” in Chapter 11.

◆ No expression can cause an arithmetic

error (an overflow or divide-by-zero

error, for example).

◆ Recall from “Tables, Columns, and Rows”

in Chapter 2 that the order of rows in a

table is unimportant and that you have

no control over the physical location of

rows, so new rows can appear anywhere

among a table’s existing rows.

319

Inserting, Updating, and Deleting Rows

I
n

s
e

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 I

N
S

E
R

T

To insert a row by using
column positions:

◆ Type:

INSERT INTO table

VALUES(value1, value2, ..., valueN);

table is the name of a table to insert the

row into. value1, value2, …, valueN is a

parenthesized list of comma-separated

literals or expressions that provides a

value to every column in the new row.

The number of values must equal the num-

ber of columns in table, and the values

must be listed in the same sequence as

the columns in table. The DBMS inserts

each value into the column that corre-

sponds to the value’s position in table.

value1 is inserted into the first column

of table in the new row, value2 into the

second column, and so on.

This statement adds one row to table

(Listing 10.1).

320

Chapter 10

I
n

s
e

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 I

N
S

E
R

T

Listing 10.1 This INSERT statement adds a new row
to the table authors by listing values in the same
order in which the columns appear in authors. See
Figure 10.7 for the result.

INSERT INTO authors

VALUES(

'A08',

'Michael',

'Polk',

'512-953-1231',

'4028 Guadalupe St',

'Austin',

'TX',

'78701');

Listing

To insert a row by using
column names:

◆ Type:

INSERT INTO table

(column1, column2, ..., columnN)

VALUES(value1, value2, ..., valueN);

table is the name of the table to insert the

row into. column1, column2, …, columnN

is a parenthesized list of comma-separat-

ed names of columns in table. value1,

value2, …, valueN is a parenthesized list

of comma-separated literals or expres-

sions that provides values to the named

columns in the new row.

The number of values must equal the

number of columns in the column list,

and the values must be listed in the same

sequence as the column names. The

DBMS inserts each value into a column

by using corresponding list positions.

value1 is inserted into column1 in the

new row, value2 into column2, and so on.

An omitted column is assigned its

default value or null.

This statement adds one row to table.

It’s clearer to list column names in the

same order as they appear in the table

(Listing 10.2), but you can list them in any

order (Listing 10.3). In either case, the values

in the VALUES clause must match the sequence

in which you list the column names.

321

Inserting, Updating, and Deleting Rows

I
n

s
e

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 I

N
S

E
R

T

Listing 10.2 This INSERT statement adds a new row to
the table authors by listing values in the same order
in which the column names appear in the column list.
See Figure 10.7 for the result.

INSERT INTO authors(

au_id,

au_fname,

au_lname,

phone,

address,

city,

state,

zip)

VALUES(

'A09',

'Irene',

'Bell',

'415-225-4689',

'810 Throckmorton Ave',

'Mill Valley',

'CA',

'94941');

Listing

Listing 10.3 You don’t have to list column names in
the same order in which they appear in the table.
Here, I’ve rearranged the column names and their
corresponding values. See Figure 10.7 for the result.

INSERT INTO authors(

zip,

phone,

address,

au_lname,

au_fname,

state,

au_id,

city)

VALUES(

'60614',

'312-998-0020',

'1937 N. Clark St',

'Weston',

'Dianne',

'IL',

'A10',

'Chicago');

Listing

You can omit column names if you want to

provide values for only some columns explic-

itly (Listing 10.4). If you omit a column, the

DBMS must be able to provide a value based

on the column’s definition. The DBMS will

insert the column’s default value (if defined)

or null (if allowed). If you omit a column that

doesn’t have a default value or allow nulls,

the DBMS will display an error message and

won’t insert the row. In this case, the VALUES
clause is equivalent to VALUES(‘A11’, ‘Max’,
‘Allard’, ‘212-502-0955’, NULL, NULL,
NULL, NULL). For information about specify-

ing a default value and allowing nulls, see

“Specifying a Default Value with DEFAULT”

and “Forbidding Nulls with NOT NULL” in

Chapter 11.

Figure 10.7 shows the new rows in table

authors after Listings 10.1 through 10.4

have run.

322

Chapter 10

I
n

s
e

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 I

N
S

E
R

T

Listing 10.4 Here, I’ve added a row for a new author
but omitted column names and values for the
author’s address information. The DBMS inserts
nulls into the omitted columns automatically. See
Figure 10.7 for the result.

INSERT INTO authors(

au_id,

au_fname,

au_lname,

phone)

VALUES(

'A11',

'Max',

'Allard',

'212-502-0955');

Listing

au_id au_fname au_lname phone address city state zip

----- --------- ----------- ------------ -------------------- ------------- ----- -----

A01 Sarah Buchman 718-496-7223 75 West 205 St Bronx NY 10468

A02 Wendy Heydemark 303-986-7020 2922 Baseline Rd Boulder CO 80303

A03 Hallie Hull 415-549-4278 3800 Waldo Ave, #14F San Francisco CA 94123

A04 Klee Hull 415-549-4278 3800 Waldo Ave, #14F San Francisco CA 94123

A05 Christian Kells 212-771-4680 114 Horatio St New York NY 10014

A06 Kellsey 650-836-7128 390 Serra Mall Palo Alto CA 94305

A07 Paddy O'Furniture 941-925-0752 1442 Main St Sarasota FL 34236

A08 Michael Polk 512-953-1231 4028 Guadalupe St Austin TX 78701

A09 Irene Bell 415-225-4689 810 Throckmorton Ave Mill Valley CA 94941

A10 Dianne Weston 312-998-0020 1937 N. Clark St Chicago IL 60614

A11 Max Allard 212-502-0955 NULL NULL NULL NULL

Figure 10.7 The table authors has four new rows after I run Listings 10.1 through 10.4.

To insert rows from one table into
another table:

◆ Type:

INSERT INTO table

[(column1, column2,..., columnN)]

subquery;

table is the name of table to insert the

rows into. column1, column2, …, columnN

is an optional parenthesized list of comma-

separated names of columns in table.

subquery is a SELECT statement that

returns rows to insert into table.

The number of columns in the subquery

result must equal the number of columns

in table or in the column list. The DBMS

ignores the column names in the subquery

result and uses column position instead.

The first column in the subquery result

is used to populate the first column in

table or column1, and so on. An omitted

column is assigned its default value

or null.

This statement adds zero or more rows

to table.

The remaining examples in this section use

the table new_publishers (Figure 10.8),

which I created to show how INSERT SELECT
works. new_publishers has the same struc-

ture as the table publishers and acts only as

the source of new rows; it isn’t itself

changed by the INSERT operations.

323

Inserting, Updating, and Deleting Rows

I
n

s
e

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 I

N
S

E
R

T

pub_id pub_name city state country

------ -------------------- ----------- ----- -------------

P05 This is Pizza? Press New York NY USA

P06 This is Beer? Press Toronto ON Canada

P07 This is Irony? Press London NULL United Kindom

P08 This is Fame? Press Los Angeles CA USA

Figure 10.8 This table, named new_publishers, is used in Listings 10.5 through 10.7. new_publishers has the same
structure as publishers.

Listing 10.5 inserts the rows for Los Angeles–

based publishers from new_publishers into

publishers. Here, I’ve omitted the column

list, so the DBMS uses the column positions

in publishers rather than column names to

insert values. This statement inserts one row

into publishers; see Figure 10.9 for the result.

Listing 10.6 inserts the rows for non-

U.S. publishers from new_publishers into

publishers. Here, the column names are the

same in both the INSERT and SELECT clauses,

but they don’t have to match because the

DBMS disregards the names of the columns

returned by SELECT and uses their positions

instead. This statement inserts two rows

into publishers; see Figure 10.9 for the result.

It’s legal for the SELECT clause to return an

empty result (zero rows). Listing 10.7

inserts the rows for publishers named XXX

from new_publishers into publishers. I can

use SELECT * instead of listing column names

because new_publishers and publishers
have the same structure. This statement

inserts no rows into publishers because no

publisher is named XXX; see Figure 10.9 for

the result.

324

Chapter 10

I
n

s
e

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 I

N
S

E
R

T

Listing 10.5 Insert the rows for Los Angeles–based
publishers from new_publishers into publishers. See
Figure 10.9 for the result.

INSERT INTO publishers

SELECT

pub_id,

pub_name,

city,

state,

country

FROM new_publishers

WHERE city = 'Los Angeles';

Listing

Listing 10.6 Insert the rows for non-U.S. publishers
from new_publishers into publishers. This statement
has no effect on the target table. See Figure 10.9 for
the result.

INSERT INTO publishers(

pub_id,

pub_name,

city,

state,

country)

SELECT

pub_id,

pub_name,

city,

state,

country

FROM new_publishers

WHERE country <> 'USA';

Listing

Figure 10.9 shows the table publishers
after Listings 10.5 through 10.7 are run.

✔ Tips

■ The process of adding rows to a table for

the first time is called populating the

table.

■ If you want to be extra-careful before

you insert rows, you can test your INSERT
statement on a temporary copy of the

target table; see “Creating a Temporary

Table with CREATE TEMPORARY TABLE” and

“Creating a New Table from an Existing

One with CREATE TABLE AS” in Chapter 11.

■ You also can INSERT rows through a view;

see “Updating Data Through a View” in

Chapter 13.

■ If you’re using transactions, you must

use a COMMIT statement after your final

INSERT statement to make the changes

to the table permanent. For information

about transactions, see Chapter 14.

continues on next page

325

Inserting, Updating, and Deleting Rows

I
n

s
e

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 I

N
S

E
R

T

Listing 10.7 Insert the rows for publishers named XXX
from new_publishers into publishers. See Figure 10.9
for the result.

INSERT INTO publishers(

pub_id,

pub_name,

city,

state,

country)

SELECT *

FROM new_publishers

WHERE pub_name = 'XXX';

Listing

pub_id pub_name city state country

------ -------------------- ------------- ----- -------------

P01 Abatis Publishers New York NY USA

P02 Core Dump Books San Francisco CA USA

P03 Schadenfreude Press Hamburg NULL Germany

P04 Tenterhooks Press Berkeley CA USA

P06 This is Beer? Press Toronto ON Canada

P07 This is Irony? Press London NULL United Kindom

P08 This is Fame? Press Los Angeles CA USA

Figure 10.9 The table publishers has three new rows after I run Listings 10.5 through 10.7.

■ If table1 and table2 have compatible

structures, you can insert all the rows

from table2 into table1 with:

INSERT INTO table1

SELECT * FROM table2;

■ In some DBMSs, the INTO key-

word is optional in an INSERT
statement, but you should always include

it for portability.

By default, MySQL (unfortunately) con-

verts some invalid INSERT or UPDATE values

and issues a warning instead of triggering

an error, which is useless unless you’re

using transactions and can roll back the

operation. If you insert 9/0, for example,

MySQL will try to insert a null rather

than return a division-by-zero error and

complain only if the column forbids nulls.

If you insert the out-of-range value 999999

into a SMALLINT column, MySQL will insert

32767 (the largest SMALLINT value) and

issue a warning. MySQL provides ERROR_
FOR_DIVISION_BY_ZERO, STRICT_ALL_TABLES,

STRICT_TRANS_TABLES, and other modes to

handle invalid or missing values properly.

For all DBMSs, check the documenta-

tion to see how your DBMS handles the

insertion of values into columns whose

data type generates a unique row identifi-

er automatically (see “Unique Identifiers”

in Chapter 3).

326

Chapter 10

I
n

s
e

r
t

i
n

g
 R

o
w

s
 w

i
t

h
 I

N
S

E
R

T

Updating Rows
with UPDATE
The UPDATE statement changes the values in

a table’s existing rows. You can use UPDATE
to change:

◆ All rows in a table

◆ Specific rows in a table

To update rows, you specify:

◆ The table to update

◆ The names of the columns to update

and their new values

◆ An optional search condition that speci-

fies which rows to update

The important characteristics of UPDATE are:

◆ UPDATE takes an optional WHERE clause

that specifies which rows to update.

Without a WHERE clause, UPDATE changes

all the rows in the table.

◆ UPDATE is dangerous because it’s easy to

omit the WHERE clause mistakenly (and

update all rows) or misspecify the WHERE
search condition (and update the wrong

rows). It’s wise to run a SELECT statement

that uses the same WHERE clause before

running the actual UPDATE statement.

Use SELECT * to display all rows that the

DBMS will change when you run UPDATE,

or use SELECT COUNT(*) to display only

the number of rows that will change.

◆ Each updated value must have the same

data type or must be implicitly convert-

ible to the same type as its column (see

“Converting Data Types with CAST()” in

Chapter 5).

◆ To preserve referential integrity, you can

define the action that the DBMS takes

automatically when you try to UPDATE a

key value to which foreign-key values

point; see the Tips in “Specifying a Foreign

Key with FOREIGN KEY” in Chapter 11.

◆ An updated value can’t violate a check

constraint; see “Adding a Check Constraint

with CHECK” in Chapter 11.

◆ No expression can cause an arithmetic

error (an overflow or divide-by-zero

error, for example).

◆ Recall from “Tables, Columns, and Rows”

in Chapter 2 that the order of rows in a

table is unimportant and that you have

no control over the physical location of

rows, so an updated row can change

position in a table.

327

Inserting, Updating, and Deleting Rows

U
p

d
a

t
i
n

g
 R

o
w

s
 w

i
t

h
 U

P
D

A
T

E

To update rows:

◆ Type:

UPDATE table

SET column = expr

[WHERE search_condition];

table is the name of a table to update.

column is the name of the column in

table that contains the rows to change.

expr is a literal, an expression, or a paren-

thesized subquery that returns a single

value. The value returned by expr replaces

the existing value in column. To change

the values in multiple columns, type a

list of comma-separated column = expr

expressions in the SET clause. You can list

the column = expr expressions in any

order.

search_condition specifies the conditions

that rows have to meet to be updated.

The search_condition conditions can

be WHERE conditions (comparison opera-

tors, LIKE, BETWEEN, IN, and IS NULL; see

Chapter 4) or subquery conditions (com-

parison operators, IN, ALL, ANY, and

EXISTS; see Chapter 8), combined with

AND, OR, and NOT. If the WHERE clause is

omitted, every row in table is updated.

Listing 10.8 changes the value of contract
to zero in every row of titles. The lack of

a WHERE clause tells the DBMS to update all

the rows in the column contract. This state-

ment updates 13 rows; see Figure 10.10 for

the result.

Listing 10.9 uses an arithmetic expression

and a WHERE condition to double the price of

history books. This statement updates three

rows; see Figure 10.10 for the result.

328

Chapter 10

U
p

d
a

t
i
n

g
 R

o
w

s
 w

i
t

h
 U

P
D

A
T

E

Listing 10.8 Change the value of contract to zero in
every row. See Figure 10.10 for the result.

UPDATE titles

SET contract = 0;

Listing

Listing 10.9 Double the price of history books. See
Figure 10.10 for the result.

UPDATE titles

SET price = price * 2.0

WHERE type = 'history';

Listing

✔ Tip

■ A tricky way to change prices with CASE:

UPDATE titles

SET price = price * CASE type

WHEN ‘history’ THEN 1.10

WHEN ‘psychology’ THEN 1.20

ELSE 1

END;

Listing 10.10 updates the columns type
and pages for psychology books. You use

only a single SET clause to update multiple

columns, with column = expr expressions

separated by commas. (Don’t put a comma

after the last expression.) This statement

updates three rows; see Figure 10.10 for

the result.

Listing 10.11 uses a subquery and an

aggregate function to cut the sales of books

with above-average sales in half. This state-

ment updates two rows; see Figure 10.10 for

the result.

You can update values in a given table

based on the values stored in another table.

Listing 10.12 uses nested subqueries to

update the publication date for all the books

written (or cowritten) by Sarah Buchman.

This statement updates three rows; see

Figure 10.10 for the result.

329

Inserting, Updating, and Deleting Rows

U
p

d
a

t
i
n

g
 R

o
w

s
 w

i
t

h
 U

P
D

A
T

E

Listing 10.10 For psychology books, set the type to
self help and the number of pages to null. See
Figure 10.10 for the result.

UPDATE titles

SET type = 'self help',

pages = NULL

WHERE type = 'psychology';

Listing

Listing 10.11 Cut the sales of books with above-
average sales in half. See Figure 10.10 for the result.

UPDATE titles

SET sales = sales * 0.5

WHERE sales >

(SELECT AVG(sales)

FROM titles);

Listing

Listing 10.12 Change the publication date of all of
Sarah Buchman’s books to January 1, 2003. See
Figure 10.10 for the result.

UPDATE titles

SET pubdate = DATE '2003-01-01'

WHERE title_id IN

(SELECT title_id

FROM title_authors

WHERE au_id IN

(SELECT au_id

FROM authors

WHERE au_fname = 'Sarah'

AND au_lname = 'Buchman'));

Listing

Suppose that Abatis Publishers (publisher P01)

swallows Tenterhooks Press (P04) in a merger,

so now, all the Tenterhooks Press books are

published by Abatis Publishers. Listing 10.13

works in a bottom-up fashion to change the

publisher IDs in titles from P04 to P01.

The WHERE subquery retrieves the pub_id for

Tenterhooks Press. The DBMS uses this pub_id
to retrieve the books in the table titles whose

publisher is Tenterhooks Press. Finally, the

DBMS uses the value returned by the SET
subquery to update the appropriate rows in

the table titles. Because the subqueries are

used with an unmodified comparison opera-

tor, they must be scalar subqueries that return

a single value (that is, a one-row, one-column

result); see “Comparing a Subquery Value by

Using a Comparison Operator” in Chapter 8.

Listing 10.13 updates five rows; see Figure

10.10 for the result.

Figure 10.10 shows the table titles after

Listings 10.8 through 10.13 are run. Each

listing updates values in a different column

(or columns) from those in the other list-

ings. The updated values in each column are

shown in red.

330

Chapter 10

U
p

d
a

t
i
n

g
 R

o
w

s
 w

i
t

h
 U

P
D

A
T

E

Listing 10.13 Change the publisher of all of
Tenterhooks Press’s books to Abatis Publishers.
See Figure 10.10 for the result.

UPDATE titles

SET pub_id =

(SELECT pub_id

FROM publishers

WHERE pub_name = 'Abatis Publishers')

WHERE pub_id =

(SELECT pub_id

FROM publishers

WHERE pub_name = 'Tenterhooks Press');

Listing

title_id title_name type pub_id pages price sales pubdate contract

-------- ----------------------------------- --------- ------ ----- ----- ------ ---------- --------

T01 1977! history P01 107 43.98 566 2003-01-01 0

T02 200 Years of German Humor history P03 14 39.90 9566 2003-01-01 0

T03 Ask Your System Administrator computer P02 1226 39.95 25667 2000-09-01 0

T04 But I Did It Unconsciously self help P01 NULL 12.99 13001 1999-05-31 0

T05 Exchange of Platitudes self help P01 NULL 6.95 100720 2001-01-01 0

T06 How About Never? biography P01 473 19.95 11320 2000-07-31 0

T07 I Blame My Mother biography P03 333 23.95 750100 1999-10-01 0

T08 Just Wait Until After School children P01 86 10.00 4095 2001-06-01 0

T09 Kiss My Boo-Boo children P01 22 13.95 5000 2002-05-31 0

T10 Not Without My Faberge Egg biography P01 NULL NULL NULL NULL 0

T11 Perhaps It's a Glandular Problem self help P01 NULL 7.99 94123 2000-11-30 0

T12 Spontaneous, Not Annoying biography P01 507 12.99 100001 2000-08-31 0

T13 What Are The Civilian Applications? history P03 802 59.98 10467 2003-01-01 0

Figure 10.10 The table titles after I run Listings 10.8 through 10.13. The updated values are shown in red.

✔ Tips

■ A DBMS will evaluate expressions in a

SET or WHERE clause by using the values

that the referenced columns had before

any updates. Consider this UPDATE
statement:

UPDATE mytable

SET col1 = col1 * 2,

col2 = col1 * 4,

col3 = col2 * 8

WHERE col1 = 1

AND col2 = 2;

For the rows matching the WHERE condi-

tions, the DBMS sets col1 to 2, col2 to 4

(1 ✕ 4, not 2 ✕ 4), and col3 to 16 (2 ✕ 8,

not 4 ✕ 8).

This evaluation scheme lets you swap

the values of compatible columns with:

UPDATE mytable

SET col1 = col2,

col2 = col1;

(This trick won’t work in MySQL.)

■ If you want to be extra-careful before you

update rows, you can test your UPDATE
statement on a temporary copy of the

target table; see “Creating a Temporary

Table with CREATE TEMPORARY TABLE” and

“Creating a New Table from an Existing

One with CREATE TABLE AS” in Chapter 11.

■ You also can UPDATE rows through a view;

see “Updating Data Through a View” in

Chapter 13.

■ If you’re using transactions, you must

use a COMMIT statement after your final

UPDATE statement to make the changes

to the table permanent. For information

about transactions, see Chapter 14.

■ SQL:2003 introduced the MERGE state-

ment as a convenient way to combine

multiple UPDATE and INSERT operations

in a single statement. These operations

informally are called upserts. Oracle and

DB2 support MERGE. MySQL has the sim-

plified MERGE variants REPLACE INTO and

INSERT...ON DUPLICATE KEY UPDATE.

■ In Microsoft Access date liter-

als, omit the DATE keyword and

surround the literal with # characters

instead of quotes. To run Listing 10.12,

change the date literal to #2003-01-01#.

Microsoft Access doesn’t support scalar

subqueries in the SET clause. To run

Listing 10.13, split the UPDATE statement

into two statements: one that SELECTs

the pub_id for Abatis Publishers from

publishers and one that uses this

pub_id to change the pub_id of all the

Tenterhooks Press books in titles. Then

run the statements programmatically

(in a host language such as Visual Basic

or C#), using the result of the first state-

ment as the input for the second statement.

continues on next page

331

Inserting, Updating, and Deleting Rows

U
p

d
a

t
i
n

g
 R

o
w

s
 w

i
t

h
 U

P
D

A
T

E

In Microsoft SQL Server and DB2 date

literals, omit the DATE keyword. To run

Listing 10.12, change the date literal to

‘2003-01-01’.

MySQL 4.1 and later support subqueries

but won’t run Listing 10.11 because

MySQL won’t let you use the same table

(titles, in this case) for both the sub-

query’s FROM clause and the update target.

Earlier MySQL versions don’t support

subqueries and won’t run Listings 10.11,

10.12, and 10.13; for workarounds, see the

DBMS Tip in “Understanding Subqueries”

in Chapter 8.

For MySQL, see also the DBMS Tip in

“Inserting Rows with INSERT” earlier in

this chapter.

To run Listings 10.9 and 10.11 in older

PostgreSQL versions, convert the floating-

point numbers to DECIMAL (see “Converting

Data Types with CAST()” in Chapter 5).

The changes are (Listing 10.9):

CAST(2.0 AS DECIMAL)

and (Listing 10.11):

CAST(0.5 AS DECIMAL)

For all DBMSs, check the documenta-

tion to see how your DBMS handles

updating values in columns whose data

type generates a unique row identifier

automatically (see “Unique Identifiers”

in Chapter 3).

332

Chapter 10

U
p

d
a

t
i
n

g
 R

o
w

s
 w

i
t

h
 U

P
D

A
T

E

Deleting Rows with DELETE
The DELETE statement removes rows from

a table. You can use DELETE to remove:

◆ All rows in a table

◆ Specific rows in a table

To delete rows, you specify:

◆ The table whose rows to delete

◆ An optional search condition that speci-

fies which rows to delete

The important characteristics of DELETE are:

◆ Unlike INSERT and UPDATE, DELETE takes

no column names because it removes

entire rows.

◆ DELETE removes rows from a table, but it

never deletes the table’s definition. Even

if you remove all rows from a table, the

table itself still exists. If you want to

delete a table definition (and all its asso-

ciated data, indexes, and so on), see

“Dropping a Table with DROP TABLE” in

Chapter 11.

◆ DELETE takes an optional WHERE clause

that specifies which rows to delete.

Without a WHERE clause, DELETE removes

all the rows in the table.

◆ DELETE is dangerous because it’s easy to

omit the WHERE clause mistakenly (and

remove all rows) or misspecify the WHERE
search condition (and remove the wrong

rows). It’s wise to run a SELECT statement

that uses the same WHERE clause before

running the actual DELETE statement.

Use SELECT * to display all rows that the

DBMS will remove when you run DELETE,

or use SELECT COUNT(*) to display only

the number of rows that will disappear.

◆ To preserve referential integrity, you can

define the action the DBMS takes auto-

matically when you try to DELETE a key

value to which foreign-key values point;

see the Tips in “Specifying a Foreign Key

with FOREIGN KEY” in Chapter 11.

◆ No expression can cause an arithmetic

error (an overflow or divide-by-zero

error, for example).

◆ Recall from “Tables, Columns, and Rows”

in Chapter 2 that the order of rows in a

table is unimportant and that you have

no control over the physical location of

rows, so a deletion might reorder the posi-

tions of the rows remaining in a table.

333

Inserting, Updating, and Deleting Rows

D
e

l
e

t
i
n

g
 R

o
w

s
 w

i
t

h
 D

E
L

E
T

E

To delete rows:

◆ Type:

DELETE FROM table

[WHERE search_condition];

table is the name of a table to delete

rows from.

search_condition specifies the conditions

to be met for the rows that are deleted.

The search_condition conditions can

be WHERE conditions (comparison opera-

tors, LIKE, BETWEEN, IN, and IS NULL; see

Chapter 4) or subquery conditions (com-

parison operators, IN, ALL, ANY, and

EXISTS; see Chapter 8), combined with

AND, OR, and NOT. If the WHERE clause is

omitted, every row in table is deleted.

In the following examples, I’m going to

ignore referential-integrity constraints—

which I wouldn’t do in a production data-

base, of course.

Listing 10.14 deletes every row in

royalties. The lack of a WHERE clause tells

the DBMS to delete all the rows. This state-

ment deletes 13 rows; see Figure 10.11 for

the result.

The WHERE clause in Listing 10.15 tells

the DBMS to remove the authors with the

last name Hull from authors. This statement

deletes two rows; see Figure 10.12 for

the result.

334

Chapter 10

D
e

l
e

t
i
n

g
 R

o
w

s
 w

i
t

h
 D

E
L

E
T

E

Listing 10.14 Delete all rows from the table royalties.
See Figure 10.11 for the result.

DELETE FROM royalties;

Listing

title_id advance royalty_rate

-------- ------- ------------

Figure 10.11 Result of Listing 10.14.

Listing 10.15 Delete the rows in which the author’s
last name is Hull from the table authors. See
Figure 10.12 for the result.

DELETE FROM authors

WHERE au_lname = 'Hull';

Listing

au_id au_fname au_lname phone address city state zip

----- --------- ----------- ------------ ---------------- ---------- ----- -----

A01 Sarah Buchman 718-496-7223 75 West 205 St Bronx NY 10468

A02 Wendy Heydemark 303-986-7020 2922 Baseline Rd Boulder CO 80303

A05 Christian Kells 212-771-4680 114 Horatio St New York NY 10014

A06 Kellsey 650-836-7128 390 Serra Mall Palo Alto CA 94305

A07 Paddy O'Furniture 941-925-0752 1442 Main St Sarasota FL 34236

Figure 10.12 Result of Listing 10.15.

You can delete rows in a given table based

on the values stored in another table.

Listing 10.16 uses a subquery to remove all

the books published by publishers P01 or P04

from title_authors. This statement deletes

12 rows; see Figure 10.13 for the result.

✔ Tips

■ If you want to be extra-careful before you

remove rows, you can test your DELETE
statement on a temporary copy of the

target table; see “Creating a Temporary

Table with CREATE TEMPORARY TABLE” and

“Creating a New Table from an Existing

One with CREATE TABLE AS” in Chapter 11.

■ You also can DELETE rows through a view;

see “Updating Data Through a View” in

Chapter 13.

■ If you’re using transactions, you must

use a COMMIT statement after your final

DELETE statement to make the changes

to the table permanent. For information

about transactions, see Chapter 14.

335

Inserting, Updating, and Deleting Rows

D
e

l
e

t
i
n

g
 R

o
w

s
 w

i
t

h
 D

E
L

E
T

E

Listing 10.16 Delete the rows for books published by
publisher P01 or P04 from the table title_authors.
See Figure 10.13 for the result.

DELETE FROM title_authors

WHERE title_id IN

(SELECT title_id

FROM titles

WHERE pub_id IN ('P01', 'P04'));

Listing

title_id au_id au_order royalty_share

-------- ----- -------- -------------

T02 A01 1 1.00

T03 A05 1 1.00

T07 A02 1 0.50

T07 A04 2 0.50

T13 A01 1 1.00

Figure 10.13 Result of Listing 10.16.

■ You can use a NOT EXISTS or NOT IN sub-

query to delete rows from one table that

refer to nonexistent rows in another

table (useful for removing orphaned rows

or referential-integrity violations). The

following statements remove all rows

from the table titles for which no pub-

lisher exists in the table publishers:

DELETE FROM titles
WHERE NOT EXISTS
(SELECT * FROM publishers

WHERE publishers.pub_id =
titles.pub_id);

or

DELETE FROM titles
WHERE pub_id NOT IN
(SELECT pub_id FROM publishers);

■ In some DBMSs, the FROM key-

word is optional in a DELETE
statement, but you should always include

it for portability.

MySQL 4.1 and later support subqueries

and will run Listing 10.16. Earlier MySQL

versions don’t support subqueries and

won’t run it; for workarounds, see the

DBMS Tip in “Understanding Subqueries”

in Chapter 8.

For MySQL, see also the DBMS Tip in

“Inserting Rows with INSERT” earlier in

this chapter.

336

Chapter 10

D
e

l
e

t
i
n

g
 R

o
w

s
 w

i
t

h
 D

E
L

E
T

E

Truncating Tables

If you want to delete all the rows in a table,

the TRUNCATE statement is faster than

DELETE. TRUNCATE isn’t part of the SQL ,

standard, but Microsoft SQL Server,

Oracle, MySQL, and PostgreSQL sup-

port it. TRUNCATE works like a DELETE
statement with no WHERE clause: Both

remove all rows in a table. But TRUNCATE is

faster and uses fewer system resources

than DELETE because TRUNCATE doesn’t

scan the entire table and record changes

in the transaction log (see Chapter 14).

The trade-off is that with TRUNCATE, you

can’t recover (roll back) your changes if

you make a mistake. The syntax is:

TRUNCATE TABLE table;

table is the name of the table to be trun-

cated. For information about TRUNCATE,

search your DBMS documentation

for truncate.

To truncate a table in DB2, run LOAD with

the REPLACE option, using a zero-byte file

as input.

Many DBMSs have interactive, graphical

tools that let you create and manage tables

and table properties such as column defini-

tions and constraints. This chapter explains

how to perform those tasks programmatically

by using SQL:

◆ The CREATE TABLE statement creates a

new table.

◆ The ALTER TABLE statement modifies the

structure of an existing table.

◆ The DROP TABLE statement destroys a

table and all its data.

◆ The CREATE TEMPORARY TABLE statement

creates a table that the DBMS destroys

automatically when it’s no longer in use.

◆ The CREATE TABLE AS statement creates a

new table from an existing one.

These statements don’t return a result, but

your DBMS might print a message indicat-

ing whether the statement ran successfully.

To see the actual effect the statement had

on a table, examine the table’s structure by

using one of the commands described in

“Displaying Table Definitions” in Chapter 10.

These statements modify database objects

and data, so your database administrator

might need to grant you permission to

run them.

337

Creating,
Altering, and
Dropping Tables

11

C
r

e
a

t
i
n

g
, A

l
t

e
r

i
n

g
, a

n
d

 D
r

o
p

p
i
n

g
 T

a
b

l
e

s

Creating Tables
Database designers spend considerable time

normalizing tables and defining relationships

and constraints before they write a line of

SQL code. If you’re going to create tables

for production databases, study database

design and relational-model principles

beyond those presented in Chapter 2.

Recall from “Tables, Columns, and Rows”

in Chapter 2 that a database is organized

around tables. To a user or an SQL program-

mer, a database appears to be a collection of

one or more tables (and nothing but tables).

To create a table, you specify the following:

◆ Table name

◆ Column names

◆ Data types of the columns

◆ Default values of columns

◆ Constraints

The table name and the column names

must conform to the rules for SQL identi-

fiers; see “Identifiers” in Chapter 3. The data

type of each column is a character, numeric,

datetime, or other data type; see “Data

Types” in Chapter 3. A default is the value

the column takes if you don’t specify a value

explicitly. Constraints define properties such

as nullability, keys, and permissible values.

You create a new table by using the CREATE
TABLE statement, whose general syntax is:

CREATE TABLE table

(

column1 data_type1 [col_constraints1],

column2 data_type2 [col_constraints2],

...

columnN data_typeN [col_constraintsN]

[, table_constraint1]

[, table_constraint2]

...

[, table_constraintM]

);

Each column definition has a column name,

a data type, and an optional list of one or

more column constraints. An optional list

of table constraints follows the final column

definition. By convention, I start each col-

umn definition and table constraint on its

own line.

338

Chapter 11

C
r

e
a

t
i
n

g
 T

a
b

l
e

s

Understanding
Constraints
Constraints let you define rules for values

allowed in columns (Table 11.1). Your DBMS

uses these rules to enforce the integrity of

information in the database automatically.

Constraints come in two flavors:

◆ A column constraint is part of a column

definition and imposes a condition on

that column only.

◆ A table constraint is declared independ-

ently of a column definition and can

impose a condition on more than one

column in a table. You must use a table

constraint to include more than one

column in a single constraint.

You can specify some constraints as either

column or table constraints, depending on

the context in which they’re used. If a pri-

mary key contains one column, for example,

you can define it as either a column con-

straint or a table constraint. If the primary

key has two or more columns, you must use

a table constraint.

Assigning names to constraints lets you

manage them efficiently; you can change or

delete a named constraint by using the ALTER
TABLE statement, for example. Constraint

names are optional, but many SQL pro-

grammers and database designers name

all constraints. It’s not uncommon to leave

a NOT NULL constraint unnamed, but you

always should name other types of con-

straints (even if I don’t do so in some of

the examples).

339

Creating, Altering, and Dropping Tables

U
n

d
e

r
s

t
a

n
d

i
n

g
 C

o
n

s
t

r
a

i
n

t
s

Table 11.1

Constraints
C o n s t r a i n t D e s c r i p t i o n

NOT NULL Prevents nulls from being inserted into
a column

PRIMARY KEY Sets the table’s primary-key column(s)
FOREIGN KEY Sets the table’s foreign-key column(s)
UNIQUE Prevents duplicate values from being

inserted into a column
CHECK Limits the values that can be inserted

into a column by using logical
(Boolean) expressions

If you don’t name a constraint explicitly,

your DBMS will generate a name and assign

it to the constraint quietly and automatically.

System-assigned names often contain strings

of random characters and are cumbersome

to use, so use the CONSTRAINT clause to assign

your own name instead. Constraint names

also appear in warnings, error messages, and

logs, which is another good reason to name

constraints yourself.

To name a constraint:

◆ Preceding a constraint definition, type:

CONSTRAINT constraint_name

constraint_name is the name of the

constraint and is a valid SQL identifier.

Constraints names must be unique

within a table.

340

Chapter 11

U
n

d
e

r
s

t
a

n
d

i
n

g
 C

o
n

s
t

r
a

i
n

t
s

Creating a New Table
with CREATE TABLE
This section describes how to create a new

table by using a minimal CREATE TABLE
statement. Subsequent sections show you

how to add column and table constraints

to CREATE TABLE.

To create a new table:

◆ Type:

CREATE TABLE table

(

column1 data_type1,

column2 data_type2,

...

columnN data_typeN

);

table is the name of the new table to create.

column1, column2, …, columnN are the

names of the columns in table. You must

create at least one column.

data_type1, data_type2, …, data_typeN

specify the SQL data type of each corre-

sponding column. A data type can

specify a length, scale, or precision,

where applicable; see “Data Types” and

subsequent sections in Chapter 3.

The table name must be unique within

the database, and each column name

must be unique within the table.

Listing 11.1 creates the sample-database

table titles.

Listing 11.2 creates the sample-database

table title_authors.

341

Creating, Altering, and Dropping Tables

C
r

e
a

t
i
n

g
 a

 N
e

w
 T

a
b

l
e

 w
i
t

h
 C

R
E

A
T

E
 T

A
B

L
E

Listing 11.1 Create the sample-database table titles.

CREATE TABLE titles

(

title_id CHAR(3) ,

title_name VARCHAR(40) ,

type VARCHAR(10) ,

pub_id CHAR(3) ,

pages INTEGER ,

price DECIMAL(5,2),

sales INTEGER ,

pubdate DATE ,

contract SMALLINT

);

Listing

Listing 11.2 Create the sample-database table
title_authors.

CREATE TABLE title_authors

(

title_id CHAR(3) ,

au_id CHAR(3) ,

au_order SMALLINT ,

royalty_share DECIMAL(5,2)

);

Listing

✔ Tips

■ To see the result of a CREATE TABLE
statement, examine the table’s structure

by using one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ Your DBMS will generate an error if you

try to create a table with a name that

already exists in the database. To prevent

you from overwriting a table accidentally,

SQL requires that you destroy a table

explicitly with DROP TABLE before creating

a new table with the same name; see

“Dropping a Table with DROP TABLE” later

in this chapter.

■ A newly created table is empty (has zero

rows). To populate the table with data,

use the INSERT statement; see “Inserting

Rows with INSERT” in Chapter 10.

■ Columns allow nulls by default. If you

don’t want to allow nulls, see “Forbidding

Nulls with NOT NULL” later in this chapter.

■ To modify the structure of an existing

table, see “Altering a Table with ALTER
TABLE” later in this chapter.

■ To create a table by using the struc-

ture and data of an existing table, see

“Creating a New Table from an Existing

One with CREATE TABLE AS” later in this

chapter.

■ Microsoft SQL Server doesn’t

support the data type DATE. To

run Listing 11.1, change the data type of

the column pubdate to DATETIME.

MySQL might change the type of a

CHAR or VARCHAR column silently when

creating a table. VARCHAR columns with

a length less than four are changed to

CHAR, for example.

342

Chapter 11

C
r

e
a

t
i
n

g
 a

 N
e

w
 T

a
b

l
e

 w
i
t

h
 C

R
E

A
T

E
 T

A
B

L
E

Forbidding Nulls with
NOT NULL
A column’s nullability determines whether

its rows can contain nulls—that is, whether

values are required or optional in the col-

umn. I described nulls and their effects in

“Nulls” in Chapter 3, but I’ll review the

basics here:

◆ A null is not a value but a marker that

means no value has been entered.

◆ A null represents a missing, unknown,

or inapplicable value. A null in the col-

umn price doesn’t mean that an item

has no price or that its price is zero; it

means that the price is unknown or has

not been set.

◆ A null isn’t the same as zero (0), a blank,

or an empty string (‘’).

◆ Nulls belong to no data type and can be

inserted into any column that allows nulls.

◆ In SQL statements, the keyword NULL
represents a null.

When you’re defining a nullability constraint,

some important considerations are:

◆ A nullability constraint always is a column

constraint and not a table constraint; see

“Understanding Constraints” earlier in

this chapter.

◆ You define a nullability constraint by

using the keywords NOT NULL in a CREATE
TABLE column definition.

◆ In general, avoid allowing nulls because

they complicate queries, insertions,

and updates.

◆ Forbidding nulls in a column can help

maintain data integrity by ensuring that

users entering data must enter a value in

the column. The DBMS won’t insert or

update a row if a non-nullable column

contains a null.

◆ Some other constraints, such as a

PRIMARY KEY constraint, can’t be used

with nullable columns.

◆ Nulls affect referential-integrity checks

in foreign keys; see “Specifying a

Foreign Key with FOREIGN KEY” later

in this chapter.

◆ If you INSERT a row but include no value

for a column that allows null values, your

DBMS supplies a null (unless a DEFAULT
clause exists); see “Inserting Rows with

INSERT” in Chapter 10 and “Specifying

a Default Value with DEFAULT” later in

this chapter.

◆ A user can enter NULL explicitly in a

nullable column, no matter what data

type or default value the column has.

◆ If you don’t specify a NOT NULL constraint,

the column accepts nulls by default.

343

Creating, Altering, and Dropping Tables

F
o

r
b

i
d

d
i
n

g
 N

u
l
l
s

 w
i
t

h
 N

O
T

N
U

L
L

To specify a column’s nullability:

◆ Add the following column constraint to

a CREATE TABLE column definition:

[CONSTRAINT constraint_name]

NOT NULL

NOT NULL forbids nulls in a column.

If the nullability constraint is omitted,

the column accepts nulls. For the general

syntax of CREATE TABLE, see “Creating

Tables” earlier in this chapter.

The CONSTRAINT clause is optional, and

constraint_name is the name of the

column’s nullability constraint; see

“Understanding Constraints” earlier in

this chapter.

Listing 11.3 creates the sample-database

table authors, forbidding nulls in some

columns. Missing addresses and telephone

numbers are common, so I’ve allowed nulls

in those columns.

Notice that I’ve forbidden nulls in both the

first-name and last-name columns. If the

author’s name has only a single word (like

author A06, Kellsey), I’ll insert the name into

au_lname and insert an empty string (‘’)

into au_fname. Or I could have allowed nulls

in au_fname and inserted a null into au_fname
for one-named authors. Or I could have

allowed nulls in both au_fname and au_lname
and added a check constraint that required

at least one of the two columns to contain a

non-null, non-empty string. The database

designer makes these types of decisions

before creating a table.

Most DBMSs let you specify only the NULL
keyword (without the NOT) to allow nulls.

Listing 11.4 creates the sample-database

table titles.

344

Chapter 11

F
o

r
b

i
d

d
i
n

g
 N

u
l
l
s

 w
i
t

h
 N

O
T

N
U

L
L

Listing 11.3 Create the sample-database table
authors. Where omitted, the nullability constraint
defaults to allow nulls.

CREATE TABLE authors

(

au_id CHAR(3) NOT NULL,

au_fname VARCHAR(15) NOT NULL,

au_lname VARCHAR(15) NOT NULL,

phone VARCHAR(12) ,

address VARCHAR(20) ,

city VARCHAR(15) ,

state CHAR(2) ,

zip CHAR(5)

);

Listing

Listing 11.4 Create the sample-database table titles
and assign nullability constraints to each column
explicitly.

CREATE TABLE titles

(

title_id CHAR(3) NOT NULL,

title_name VARCHAR(40) NOT NULL,

type VARCHAR(10) NULL ,

pub_id CHAR(3) NOT NULL,

pages INTEGER NULL ,

price DECIMAL(5,2) NULL ,

sales INTEGER NULL ,

pubdate DATE NULL ,

contract SMALLINT NOT NULL

);

Listing

✔ Tips

■ To see the result of a CREATE TABLE
statement, examine the table’s structure

by using one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ When you insert a row into a table,

you must provide values explicitly for

columns that prohibit nulls (and have

no default value). For the table authors
created by Listing 11.3, for example,

the minimal INSERT statement looks

like this:

INSERT INTO authors(

au_id,

au_fname,

au_lname)

VALUES(

‘A08’,

‘Michael’,

‘Polk’);

The DBMS assigns nulls automatically

to the columns in authors that aren’t

listed in the INSERT column list (phone,

address, and so on); see “Inserting Rows

with INSERT” in Chapter 10.

■ When INSERTing a null into a row, don’t

quote the keyword NULL; your DBMS will

interpret it as the character string ‘NULL’
rather than as a null.

■ See also “Testing for Nulls with IS NULL”

in Chapter 4, and “Checking for Nulls

with COALESCE()” and “Comparing

Expressions with NULLIF()” in Chapter 5.

■ Microsoft SQL Server doesn’t

support the data type DATE.

To run Listing 11.4, change the data type

of the column pubdate to DATETIME.

Oracle treats an empty string (‘’) as

null; see the DBMS Tip in “Nulls” in

Chapter 3.

DB2 doesn’t accept a stand-alone NULL
keyword (without a NOT) in a nullability

constraint. To run Listing 11.4, omit each

nullability constraint that isn’t NOT NULL.

DB2 and MySQL don’t accept named

NOT NULL constraints. Omit the clause

CONSTRAINT constraint_name from NOT
NULL column definitions.

Nullability constraints for the DBMSs

covered in this book are optional (and

allow nulls by default), but other DBMSs

might behave differently.

For all DBMSs, check the documenta-

tion to see how your DBMS handles

nullability constraints for columns

whose data type generates a unique

row identifier automatically; see “Other

Data Types” in Chapter 3.

345

Creating, Altering, and Dropping Tables

F
o

r
b

i
d

d
i
n

g
 N

u
l
l
s

 w
i
t

h
 N

O
T

N
U

L
L

Specifying a Default Value
with DEFAULT
A default specifies a value that your DBMS

assigns to a column if you omit a value for

the column when inserting a row; see

“Inserting Rows with INSERT” in Chapter 10.

When you’re defining a default value, some

important considerations are:

◆ A default applies to a single column.

◆ You define a default by using the

keyword DEFAULT in a CREATE TABLE
column definition.

◆ A default value can be any expression

that evaluates to a constant.

◆ The default must have the same data

type or must be implicitly convertible

to the same type as its column; see

“Converting Data Types with CAST()” in

Chapter 5.

◆ The column must be long enough to hold

the default value.

◆ If you INSERT a row without specifying a

value for a column, that column’s default

is used. If the column definition has no

DEFAULT, the default is null.

◆ If a column has no DEFAULT and is declared

NOT NULL, you should specify the column’s

value explicitly when you INSERT a row

(see “Inserting Rows with INSERT” in

Chapter 10). If you omit an explicit value

in this situation, some DBMSs will refuse

to INSERT the row, whereas others will

assign a default automatically based on

the column’s date type. MySQL, for

example, assigns a default value of zero

to numeric, non-nullable columns with-

out explicit defaults.

346

Chapter 11

S
p

e
c

i
f
y

i
n

g
 a

 D
e

f
a

u
l
t

 V
a

l
u

e
 w

i
t

h
 D

E
F
A

U
L
T

To specify a column’s default value:

◆ Add the following clause to a CREATE
TABLE column definition:

DEFAULT expr

expr is an expression that evaluates to

a constant, such as a literal, a built-in

function, a mathematical expression,

or NULL. If no default is specified, NULL
is assumed. For the general syntax of

CREATE TABLE, see “Creating Tables”

earlier in this chapter.

Listing 11.5 assigns defaults to some of

the columns in the sample-database table

titles. The columns title_id and pub_id
are NOT NULL and have no default values, so

you must provide explicit values for them

in an INSERT statement. The pages clause

DEFAULT NULL is equivalent to omitting

the DEFAULT. The pubdate and contract
defaults show that the defaults can be expres-

sions more complex than plain literals.

Listing 11.6 shows the minimal INSERT
statement that you can use to insert a

row into the table titles (as created by

Listing 11.5). Figure 11.1 shows the

inserted row, with default values high-

lighted. The title_name default, an empty

string (‘’), is invisible.

347

Creating, Altering, and Dropping Tables

S
p

e
c

i
f
y

i
n

g
 a

 D
e

f
a

u
l
t

 V
a

l
u

e
 w

i
t

h
 D

E
F
A

U
L
T

Listing 11.5 Set default values for some of the columns in the sample-database table titles.

CREATE TABLE titles

(

title_id CHAR(3) NOT NULL ,

title_name VARCHAR(40) NOT NULL DEFAULT '' ,

type VARCHAR(10) DEFAULT 'undefined' ,

pub_id CHAR(3) NOT NULL ,

pages INTEGER DEFAULT NULL ,

price DECIMAL(5,2) NOT NULL DEFAULT 0.00 ,

sales INTEGER ,

pubdate DATE DEFAULT CURRENT_DATE,

contract SMALLINT NOT NULL DEFAULT (3*7)-21

);

Listing

Listing 11.6 The DBMS inserts default values into columns omitted from this INSERT statement. Where no default is
specified, the DBMS inserts a null. See Figure 11.1 for the result.

INSERT INTO titles(title_id, pub_id) VALUES('T14','P01');

Listing

title_id title_name type pub_id pages price sales pubdate contract

-------- ------------- ---------- ------ ----- ----- ----- ---------- --------

T14 undefined P01 NULL 0.00 NULL 2005-02-21 0

Figure 11.1 Listing 11.6 inserts this row into the table titles.

✔ Tips

■ To see the result of a CREATE TABLE
statement, examine the table’s structure

by using one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ Microsoft Access doesn’t allow

arithmetic expressions in a

DEFAULT clause; use a numeric literal. Use

Date() instead of CURRENT_DATE to return

the system date. (See the DBMS Tip in

“Getting the Current Date and Time” in

Chapter 5.) To run Listing 11.5, change

the default clause of the column pubdate
to DEFAULT Date() and the default clause

of the column contract to DEFAULT 0.

Microsoft SQL Server doesn’t support

the data type DATE; use DATETIME instead.

Use GETDATE() instead of CURRENT_DATE
to return the system date; see the DBMS

Tip in “Getting the Current Date and

Time” in Chapter 5. To run Listing 11.5,

change the pubdate column’s data type to

DATETIME, and change its default clause

to DEFAULT GETDATE().

348

Chapter 11

S
p

e
c

i
f
y

i
n

g
 a

 D
e

f
a

u
l
t

 V
a

l
u

e
 w

i
t

h
 D

E
F
A

U
L
T

In Oracle, the DEFAULT clause follows the

data type and precedes all column constraints,

including the nullability constraint. Oracle 9i

and later versions support CURRENT_DATE; use

SYSDATE instead of CURRENT_DATE in Oracle 8i

and earlier; see the DBMS Tip in “Getting

the Current Date and Time” in Chapter 5.

Oracle treats an empty string (‘’) as null, so

I’ve changed the title_name default to a

space character (‘ ‘); see the DBMS Tip in

“Nulls” in Chapter 3. See Listing 11.7 for

the Oracle version of Listing 11.5.

DB2 doesn’t support arithmetic expressions

as default values. To run Listing 11.5, change

the default clause of the column contract to

DEFAULT 0.

In MySQL, a default value must be a literal

and not a function or expression. This restric-

tion means that you can’t set the default of

a date column to CURRENT_DATE. To run

Listing 11.5, delete the default clause of the

column pubdate (or change the default

expression to a datetime literal), and change

the default clause of the column contract
to DEFAULT 0. (Exception: You can specify

CURRENT_TIMESTAMP as the default for a

TIMESTAMP column.)

For all DBMSs, check the documentation

to see how your DBMS handles default

clauses for columns whose data type gener-

ates a unique row identifier automatically;

see “Other Data Types” in Chapter 3.

349

Creating, Altering, and Dropping Tables

S
p

e
c

i
f
y

i
n

g
 a

 D
e

f
a

u
l
t

 V
a

l
u

e
 w

i
t

h
 D

E
F
A

U
L
T

Listing 11.7 In Oracle, the default clause must come before all column constraints.

CREATE TABLE titles

(

title_id CHAR(3) NOT NULL,

title_name VARCHAR(40) DEFAULT ' ' NOT NULL,

type VARCHAR(10) DEFAULT 'undefined' ,

pub_id CHAR(3) NOT NULL,

pages INTEGER DEFAULT NULL ,

price DECIMAL(5,2) DEFAULT 0.00 NOT NULL,

sales INTEGER ,

pubdate DATE DEFAULT SYSDATE ,

contract SMALLINT DEFAULT (3*7)-21 NOT NULL

);

Listing

Specifying a Primary Key
with PRIMARY KEY
I described primary keys in “Primary Keys”

in Chapter 2, but I’ll review the basics here:

◆ A primary key identifies each row

uniquely in a table.

◆ No two rows can have the same primary-

key value.

◆ Primary keys don’t allow nulls.

◆ Each table has exactly one primary key.

◆ A one-column key is a simple key;

a multiple-column key is a composite key.

◆ In a composite key, values can be dupli-

cated within one column, but each

combination of values from all the key’s

columns must be unique.

◆ A table can have more than one combi-

nation of columns that uniquely identify

its rows; each combination is a candidate

key. The database designer picks one of

the candidate keys to be the primary key.

When you’re defining a primary-key con-

straint, some important considerations are:

◆ A simple key can be a column constraint or

a table constraint; a composite key always

is a table constraint. See “Understanding

Constraints” earlier in this chapter.

◆ You define a primary-key constraint by

using the keywords PRIMARY KEY in a

CREATE TABLE definition.

◆ As a table constraint, PRIMARY KEY makes

you specify column name(s) explicitly. As

a column constraint, PRIMARY KEY applies

to the column in which it’s defined.

◆ The SQL standard lets you create a table

without a primary key (in violation of

the relational model). In practice, you

always should define a primary key for

every table.

◆ No more than one primary-key constraint

is allowed in a table.

◆ In practice, primary-key constraints

almost always are named explicitly.

Use a CONSTRAINT clause to do so; see

“Understanding Constraints” earlier in

this chapter.

◆ The nullability of all PRIMARY KEY columns

must be NOT NULL. If you don’t specify

a nullability constraint, the DBMS sets

all primary-key columns to NOT NULL
implicitly; see “Forbidding Nulls with

NOT NULL” earlier in this chapter.

◆ You must specify a primary-key value

explicitly when you INSERT a row unless

the column’s data type generates a unique

row identifier automatically; see “Other

Data Types” in Chapter 3. For informa-

tion about inserting rows, see “Inserting

Rows with INSERT” in Chapter 10.

◆ Primary-key values normally don’t

change after they’re inserted.

◆ For considerations related to inserting,

updating, and deleting primary keys

that are referenced by foreign keys, see

“Specifying a Foreign Key with FOREIGN
KEY” later in this chapter.

◆ The DBMS will create a unique index

for a primary key automatically (see

Chapter 12).

350

Chapter 11

S
p

e
c

i
f
y

i
n

g
 a

 P
r

i
m

a
r

y
 K

e
y

 w
i
t

h
 P

R
I
M

A
R

Y
 K

E
Y

To specify a simple primary key:

◆ To specify a simple primary key as a

column constraint, add the follow-

ing column constraint to a CREATE
TABLE column definition:

[CONSTRAINT constraint_name]

PRIMARY KEY

or

To specify a simple primary key as a

table constraint, add the following table

constraint to a CREATE TABLE definition:

[CONSTRAINT constraint_name]

PRIMARY KEY (key_column)

key_column is the name of the primary-

key column. No more than one PRIMARY
KEY constraint is allowed in a table. For the

general syntax of CREATE TABLE, see

“Creating Tables” earlier in this chapter.

The CONSTRAINT clause is optional, and

constraint_name is the name of the pri-

mary-key constraint; see “Understanding

Constraints” earlier in this chapter.

Listings 11.8a, 11.8b, and 11.8c show three

equivalent ways to define a simple primary

key for the sample-database table publishers.

Listing 11.8a uses a column constraint to

designate the primary-key column. This

syntax shows the easiest way to create a

simple primary key.

Listing 11.8b uses an unnamed table con-

straint to specify the primary key. I’ve added

an explicit NOT NULL column constraint to

pub_id, but it’s unnecessary because the

DBMS sets this constraint implicitly and

silently (except for DB2; see the DBMS Tip

later in this section).

Listing 11.8c uses a named table constraint

to specify the primary key. This syntax shows

the preferred way to add a primary key; you

can use the name publishers_pk if you decide

to change or delete the key later. See “Altering

a Table with ALTER TABLE” later in this chapter.

351

Creating, Altering, and Dropping Tables

S
p

e
c

i
f
y

i
n

g
 a

 P
r

i
m

a
r

y
 K

e
y

 w
i
t

h
 P

R
I
M

A
R

Y
 K

E
Y

Listing 11.8a Define a simple primary key for the
sample-database table publishers by using a column
constraint.

CREATE TABLE publishers

(

pub_id CHAR(3) PRIMARY KEY,

pub_name VARCHAR(20) NOT NULL ,

city VARCHAR(15) NOT NULL ,

state CHAR(2) ,

country VARCHAR(15) NOT NULL

);

Listing

Listing 11.8b Define a simple primary key for the
sample-database table publishers by using an
unnamed table constraint.

CREATE TABLE publishers

(

pub_id CHAR(3) NOT NULL,

pub_name VARCHAR(20) NOT NULL,

city VARCHAR(15) NOT NULL,

state CHAR(2) ,

country VARCHAR(15) NOT NULL,

PRIMARY KEY (pub_id)

);

Listing

Listing 11.8c Define a simple primary key for the
sample-database table publishers by using a named
table constraint.

CREATE TABLE publishers

(

pub_id CHAR(3) NOT NULL,

pub_name VARCHAR(20) NOT NULL,

city VARCHAR(15) NOT NULL,

state CHAR(2) ,

country VARCHAR(15) NOT NULL,

CONSTRAINT publishers_pk

PRIMARY KEY (pub_id)

);

Listing

To specify a composite primary key:

◆ Add the following table constraint to a

CREATE TABLE definition:

[CONSTRAINT constraint_name]

PRIMARY KEY (key_columns)

key_columns is a list of comma-separated

names of the primary-key columns. No

more than one PRIMARY KEY constraint is

allowed in a table. For the general syntax

of CREATE TABLE, see “Creating Tables”

earlier in this chapter.

The CONSTRAINT clause is optional, and

constraint_name is the name of the

primary-key constraint; see “Understand-

ing Constraints” earlier in this chapter.

Listing 11.9 defines a composite primary

key for the sample-database table

title_authors. The primary-key columns

are title_id and au_id, and the key is named

title_authors_pk.

✔ Tips

■ To see the result of a CREATE TABLE
statement, examine the table’s structure

by using one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ To define a column that contains unique

values but isn’t a primary key, see

“Forcing Unique Values with UNIQUE”

later in this chapter.

■ It’s illegal to specify two or more PRIMARY
KEY column constraints in the same table.

You can’t use the following statement,

for example, to specify the composite

key for title_authors:

CREATE TABLE title_authors(

title_id CHAR(3) PRIMARY KEY,

au_id CHAR(3) PRIMARY KEY,

au_order SMALLINT NOT NULL,

...

); --Illegal

■ DB2 makes you set the

nullability constraint to

NOT NULL explicitly for PRIMARY KEY
columns; see “Forbidding Nulls with

NOT NULL” earlier in this chapter. To

run Listing 11.8a, add NOT NULL to

pub_id’s column constraint.

Oracle treats an empty string (‘’) as

null; see the DBMS Tip in “Nulls” in

Chapter 3.

352

Chapter 11

S
p

e
c

i
f
y

i
n

g
 a

 P
r

i
m

a
r

y
 K

e
y

 w
i
t

h
 P

R
I
M

A
R

Y
 K

E
Y

Listing 11.9 Define a composite primary key for the sample-database table title_authors by using a named
table constraint.

CREATE TABLE title_authors

(

title_id CHAR(3) NOT NULL,

au_id CHAR(3) NOT NULL,

au_order SMALLINT NOT NULL,

royalty_share DECIMAL(5,2) NOT NULL,

CONSTRAINT title_authors_pk

PRIMARY KEY (title_id, au_id)

);

Listing

Specifying a Foreign Key
with FOREIGN KEY
I described foreign keys in “Foreign Keys”

in Chapter 2, but I’ll review the basics here:

◆ A foreign key is a mechanism that

associates two tables.

◆ A foreign key is a column (or set of

columns) in a table whose values relate to,

or reference, values in some other table.

◆ A foreign key ensures that rows in one

table have corresponding rows in another

table, called the referenced table or

parent table.

◆ A foreign key establishes a direct relation-

ship to a primary key or candidate key in

the referenced table, so foreign-key values

are restricted to parent-key values that

already exist. This restriction is called

referential integrity.

◆ A foreign key, unlike a primary key, can

allow nulls.

◆ A table can have zero or more for-

eign keys.

◆ Foreign-key values generally aren’t

unique in their own table.

◆ Foreign-key columns in different tables

can reference the same column in a

parent table.

◆ A one-column key is a simple key;

a multiple-column key is a composite key.

When you’re defining a foreign-key constraint,

some important considerations are:

◆ A simple key can be a column con-

straint or a table constraint; a composite

key always is a table constraint. See

“Understanding Constraints” earlier in

this chapter.

◆ You define a foreign-key constraint by

using the keywords FOREIGN KEY or

REFERENCES in a CREATE TABLE definition.

◆ A foreign key and its parent key can

have different column names.

◆ The foreign key’s data type must have

the same data type or must be convertible

implicitly to the same type as its parent

key; see “Converting Data Types with

CAST()” in Chapter 5.

◆ A FOREIGN KEY column doesn’t have to

reference only a PRIMARY KEY column in

another table; it also can reference a

UNIQUE column in another table. See

“Forcing Unique Values with UNIQUE”

later in this chapter.

◆ A table can have any number of foreign-

key constraints (or none at all).

◆ In practice, foreign-key constraints

almost always are named explicitly.

Use a CONSTRAINT clause to name a con-

straint; see “Understanding Constraints”

earlier in this chapter.

◆ Foreign-key constraints simplify updates

and deletions and make it difficult to

introduce inconsistencies into a database,

but the topology of relations in even a

medium-size database can become

astonishingly complex. Poor design can

lead to time-consuming routine queries,

circular rules, tricky backup-and-restore

operations, and psychotically ambitious

cascading deletes.

353

Creating, Altering, and Dropping Tables

S
p

e
c

i
f
y

i
n

g
 a

 F
o

r
e

i
g

n
 K

e
y

 w
i
t

h
 F

O
R

E
I
G

N
 K

E
Y

To preserve referential integrity, your DBMS

won’t let you create orphan rows or make

existing rows orphans (rows in a foreign-key

table without an associated row in a parent

table). When you INSERT, UPDATE, or DELETE
a row with a FOREIGN KEY column that refer-

ences a PRIMARY KEY column in a parent

table, your DBMS performs the following

referential-integrity checks:

Inserting a row into the foreign-key

table. The DBMS checks that the new

FOREIGN KEY value matches a PRIMARY KEY
value in the parent table. If no match exists,

the DBMS won’t INSERT the row.

Updating a row in the foreign-key table.

The DBMS checks that the updated FOREIGN
KEY value matches a PRIMARY KEY value in the

parent table. If no match exists, the DBMS

won’t UPDATE the row.

Deleting a row in the foreign-key table.

A referential-integrity check is unnecessary.

Inserting a row into the parent table.

A referential-integrity check is unnecessary.

Updating a row in the parent table. The

DBMS checks that none of the FOREIGN KEY
values matches the PRIMARY KEY value to be

updated. If a match exists, the DBMS won’t

UPDATE the row.

Deleting a row from the parent table.

The DBMS checks that none of the FOREIGN
KEY values matches the PRIMARY KEY value

to be deleted. If a match exists, the DBMS

won’t DELETE the row.

354

Chapter 11

S
p

e
c

i
f
y

i
n

g
 a

 F
o

r
e

i
g

n
 K

e
y

 w
i
t

h
 F

O
R

E
I
G

N
 K

E
Y

The DBMS skips the referential-integrity

check for rows with a null in the FOREIGN KEY
column.

To specify a simple foreign key:

◆ To specify a simple foreign key as a col-

umn constraint, add the following column

constraint to a CREATE TABLE column

definition:

[CONSTRAINT constraint_name]

REFERENCES ref_table(ref_column)

or

To specify a simple foreign key as a table

constraint, add the following table con-

straint to a CREATE TABLE definition:

[CONSTRAINT constraint_name]

FOREIGN KEY (key_column)

REFERENCES ref_table(ref_column)

key_column is the name of the foreign-

key column. ref_table is the name of the

parent table referenced by the FOREIGN
KEY constraint. ref_column is the name

of the column in ref_table that is the ref-

erenced key. Zero or more FOREIGN KEY
constraints are allowed in a table. For

the general syntax of CREATE TABLE, see

“Creating Tables” earlier in this chapter.

The CONSTRAINT clause is optional, and

constraint_name is the name of the for-

eign-key constraint; see “Understanding

Constraints” earlier in this chapter.

Listing 11.10 uses a column constraint to

designate a foreign-key column in the table

titles. This syntax shows the easiest way

to create a simple foreign key. After you run

this statement, the DBMS will ensure that

values inserted into the column pub_id in

titles already exist in the column pub_id
in publishers. Note that nulls aren’t allowed

in the foreign-key column, so every book

must have a publisher.

355

Creating, Altering, and Dropping Tables

S
p

e
c

i
f
y

i
n

g
 a

 F
o

r
e

i
g

n
 K

e
y

 w
i
t

h
 F

O
R

E
I
G

N
 K

E
Y

Listing 11.10 Define a simple foreign key for the
sample-database table titles by using a column
constraint.

CREATE TABLE titles

(

title_id CHAR(3) NOT NULL

PRIMARY KEY ,

title_name VARCHAR(40) NOT NULL,

type VARCHAR(10) ,

pub_id CHAR(3) NOT NULL

REFERENCES publishers(pub_id) ,

pages INTEGER ,

price DECIMAL(5,2) ,

sales INTEGER ,

pubdate DATE ,

contract SMALLINT NOT NULL

);

Listing

The table royalties has a one-to-one relation-

ship with the table titles, so Listing 11.11

defines the column title_id to be both the

primary key and a foreign key that points to

title_id in titles. For information about

relationships, see “Relationships” in Chapter 2.

Listing 11.12 uses named table constraints

to create two foreign keys. This syntax shows

the preferred way to add foreign keys; you

can use the names if you decide to change

or delete the keys later. (See “Altering a Table

with ALTER TABLE” later in this chapter.) Each

foreign-key column is an individual key and

not part of a single composite key. Note that

foreign keys together, however, comprise the

table’s composite primary key.

To specify a composite foreign key:

◆ Add the following table constraint to a

CREATE TABLE definition:

[CONSTRAINT constraint_name]

FOREIGN KEY (key_columns)

REFERENCES ref_table(ref_columns)

key_columns is a list of comma-separated

names of the foreign-key columns.

ref_table is the name of the parent table

referenced by the FOREIGN KEY constraint.

ref_columns is a list of comma-separated

names of the columns in ref_table that

are the referenced keys. key_columns and

ref_columns must have the same number

of columns, listed in corresponding order.

Zero or more FOREIGN KEY constraints are

allowed in a table. For the general syntax

of CREATE TABLE, see “Creating Tables”

earlier in this chapter.

The CONSTRAINT clause is optional, and

constraint_name is the name of the for-

eign-key constraint; see “Understanding

Constraints” earlier in this chapter.

356

Chapter 11

S
p

e
c

i
f
y

i
n

g
 a

 F
o

r
e

i
g

n
 K

e
y

 w
i
t

h
 F

O
R

E
I
G

N
 K

E
Y

Listing 11.11 Define a simple foreign key for the
sample-database table royalties by using a named
table constraint.

CREATE TABLE royalties

(

title_id CHAR(3) NOT NULL,

advance DECIMAL(9,2) ,

royalty_rate DECIMAL(5,2) ,

CONSTRAINT royalties_pk

PRIMARY KEY (title_id),

CONSTRAINT royalties_title_id_fk

FOREIGN KEY (title_id)

REFERENCES titles(title_id)

);

Listing

Listing 11.12 Define simple foreign keys for the
sample-database table title_authors by using
named table constraints.

CREATE TABLE title_authors

(

title_id CHAR(3) NOT NULL,

au_id CHAR(3) NOT NULL,

au_order SMALLINT NOT NULL,

royalty_share DECIMAL(5,2) NOT NULL,

CONSTRAINT title_authors_pk

PRIMARY KEY (title_id, au_id),

CONSTRAINT title_authors_fk1

FOREIGN KEY (title_id)

REFERENCES titles(title_id),

CONSTRAINT title_authors_fk2

FOREIGN KEY (au_id)

REFERENCES authors(au_id)

);

Listing

The sample database contains no composite

foreign keys, but suppose that I create a

table named out_of_print to store informa-

tion about each author’s out-of-print books.

The table title_authors has a composite

primary key. This constraint shows how to

reference this key from the table out_of_print:

CONSTRAINT out_of_print_fk

FOREIGN KEY

(title_id, au_id)

REFERENCES

title_authors(title_id, au_id)

✔ Tips

■ To see the result of a CREATE TABLE
statement, examine the table’s structure

by using one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ You can omit the (ref_column) or

(ref_columns) expression in the

REFERENCES clause if the referenced col-

umn(s) is the primary key of ref_table.

■ A FOREIGN KEY constraint can reference

another column in the same table (a self-

reference). Recall from “Creating a Self-Join”

in Chapter 7 that the table employees is

self-referencing. (I created employees for

illustrative purposes; it’s not part of the

sample database.)

employees has three columns: emp_id,

emp_name, and boss_id. emp_id is a primary

key that uniquely identifies an employee,

and boss_id is an employee ID that

identifies the employee’s manager. Each

manager also is an employee, so to ensure

that each manager ID that is added to

the table matches an existing employee

ID, boss_id is defined as a foreign key

of emp_id:

CREATE TABLE employees

(

emp_id CHAR(3) NOT NULL,

emp_name CHAR(20) NOT NULL,

boss_id CHAR(3) NULL,

CONSTRAINT employees_pk

PRIMARY KEY (emp_id),

CONSTRAINT employees_fk

FOREIGN KEY (boss_id)

REFERENCES employees(emp_id)

);

■ SQL lets you define the action the DBMS

takes when you try to UPDATE or DELETE
a key value (in a parent table) to which

foreign-key values point. To trigger a

referential action, specify an ON UPDATE or

ON DELETE clause in the FOREIGN KEY con-

straint. Support for these clauses varies

by DBMS; search your DBMS documen-

tation for foreign key or referential

integrity. The next two Tips explain the

SQL standard’s definition of these clauses.

continues on next page

357

Creating, Altering, and Dropping Tables

S
p

e
c

i
f
y

i
n

g
 a

 F
o

r
e

i
g

n
 K

e
y

 w
i
t

h
 F

O
R

E
I
G

N
 K

E
Y

■ The ON UPDATE action clause specifies

what the DBMS does if you attempt to

UPDATE a key value in a row (in a parent

table) where the key value is referenced

by foreign keys in rows in other tables.

action takes one of four values:

CASCADE updates the dependent foreign-

key values to the new parent-key value.

SET NULL sets the dependent foreign-key

values to nulls.

SET DEFAULT sets the dependent foreign-

key values to their default values; see

“Specifying a Default Value with DEFAULT”

earlier in this chapter.

NO ACTION generates an error on a foreign-

key violation. This action is the default.

■ The ON DELETE action clause specifies

what the DBMS does if you attempt to

DELETE a key value in a row (in a parent

table) where the key value is referenced

by foreign keys in rows in other tables.

action takes one of four values:

CASCADE deletes the rows that contain

foreign-key values that match the deleted

parent-key value.

SET NULL sets the dependent foreign-key

values to null.

SET DEFAULT sets the dependent foreign-

key values to their default values; see

“Specifying a Default Value with DEFAULT”

earlier in this chapter.

NO ACTION generates an error on a foreign-

key violation. This action is the default.

■ Microsoft SQL Server doesn’t

support the data type DATE. To

run Listing 11.10, change the data type

of the column pubdate to DATETIME.

Oracle treats an empty string (‘’) as

null; see the DBMS Tip in “Nulls” in

Chapter 3.

MySQL enforces foreign-key constraints

through InnoDB tables; search MySQL

documentation for foreign key. InnoDB

FOREIGN KEY syntax is more restrictive

than standard CREATE TABLE syntax.

358

Chapter 11

S
p

e
c

i
f
y

i
n

g
 a

 F
o

r
e

i
g

n
 K

e
y

 w
i
t

h
 F

O
R

E
I
G

N
 K

E
Y

Forcing Unique Values
with UNIQUE
A unique constraint ensures that a column

(or set of columns) contains no duplicate

values. A unique constraint is similar to a

primary-key constraint, except that a unique

column can contain nulls and a table can

have multiple unique columns. (For infor-

mation about primary-key constraints, see

“Specifying a Primary Key with PRIMARY KEY”

earlier in this chapter.)

Suppose that I add the column isbn to the

table titles to hold a book’s ISBN. An ISBN

is a unique, standardized identification

number that marks a book unmistakably.

titles already has a primary key (title_id),

so to ensure that each ISBN value is unique,

I can define a unique constraint on the

column isbn.

When you’re defining a unique constraint,

some important considerations are:

◆ A one-column key is a simple constraint;

a multiple-column key is a composite

constraint.

◆ In a composite constraint, values can

be duplicated within one column, but

each combination of values from all the

columns must be unique.

◆ A simple unique constraint can be a

column constraint or a table constraint;

a composite unique constraint always is a

table constraint. See “Understanding

Constraints” earlier in this chapter.

◆ You define a unique constraint by using

the keyword UNIQUE in a CREATE TABLE
definition.

◆ As a table constraint, UNIQUE makes you

specify column name(s). As a column

constraint, UNIQUE applies to the column

in which it’s defined.

◆ A table can have zero or more unique

constraints.

◆ In practice, unique constraints almost

always are named explicitly. Use a

CONSTRAINT clause to name a constraint;

see “Understanding Constraints” earlier

in this chapter.

◆ A UNIQUE column can forbid nulls; see

“Forbidding Nulls with NOT NULL” earlier

in this chapter.

359

Creating, Altering, and Dropping Tables

F
o

r
c

i
n

g
 U

n
i
q

u
e

 V
a

l
u

e
s

 w
i
t

h
 U

N
I
Q

U
E

To specify a simple unique constraint:

◆ To specify a simple unique constraint

as a column constraint, add the follow-

ing column constraint to a CREATE TABLE
column definition:

[CONSTRAINT constraint_name]

UNIQUE

or

To specify a simple unique constraint

as a table constraint, add the following

table constraint to a CREATE TABLE
definition:

[CONSTRAINT constraint_name]

UNIQUE (unique_column)

unique_column is the name of the column

that forbids duplicate values. Zero or

more UNIQUE constraints are allowed in

a table. For the general syntax of CREATE
TABLE, see “Creating Tables” earlier in

this chapter.

The CONSTRAINT clause is optional, and

constraint_name is the name of the

unique constraint; see “Understanding

Constraints” earlier in this chapter.

Listings 11.13a and 11.13b show two

equivalent ways to define a simple unique con-

straint for the sample-database table titles.

Listing 11.13a uses a column constraint to

designate a unique column. This syntax

shows the easiest way to create a simple

unique constraint.

Listing 11.13b uses a named table constraint

to specify a unique column. This syntax shows

the preferred way to add a unique constraint;

you can use the name if you decide to

change or delete the constraint later. See

“Altering a Table with ALTER TABLE” later in

this chapter.

360

Chapter 11

F
o

r
c

i
n

g
 U

n
i
q

u
e

 V
a

l
u

e
s

 w
i
t

h
 U

N
I
Q

U
E

Listing 11.13a Define a simple unique constraint on
the column title_name for the sample-database table
titles by using a column constraint.

CREATE TABLE titles

(

title_id CHAR(3) PRIMARY KEY ,

title_name VARCHAR(40) NOT NULL UNIQUE,

type VARCHAR(10) ,

pub_id CHAR(3) NOT NULL ,

pages INTEGER ,

price DECIMAL(5,2) ,

sales INTEGER ,

pubdate DATE ,

contract SMALLINT NOT NULL

);

Listing

Listing 11.13b Define a simple unique constraint on
the column title_name for the sample-database table
titles by using a named table constraint.

CREATE TABLE titles

(

title_id CHAR(3) NOT NULL,

title_name VARCHAR(40) NOT NULL,

type VARCHAR(10) ,

pub_id CHAR(3) NOT NULL,

pages INTEGER ,

price DECIMAL(5,2) ,

sales INTEGER ,

pubdate DATE ,

contract SMALLINT NOT NULL,

CONSTRAINT titles_pk

PRIMARY KEY (title_id),

CONSTRAINT titles_unique1

UNIQUE (title_name)

);

Listing

To specify a composite unique
constraint:

◆ Add the following table constraint to a

CREATE TABLE definition:

[CONSTRAINT constraint_name]

UNIQUE (unique_columns)

unique_columns is a list of comma-

separated names of the columns that

forbid duplicate values. Zero or more

unique constraints are allowed in a table.

For the general syntax of CREATE TABLE,

see “Creating Tables” earlier in this chapter.

The CONSTRAINT clause is optional, and

constraint_name is the name of the

unique constraint; see “Understanding

Constraints” earlier in this chapter.

Listing 11.14 defines a multicolumn unique

constraint for the sample-database table

authors. This constraint forces the combina-

tion of each author’s first and last name to

be unique.

✔ Tips

■ To see the result of a CREATE TABLE
statement, examine the table’s structure

by using one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ A foreign-key column can point to a

UNIQUE column; see “Specifying a

Foreign Key with FOREIGN KEY” earlier

in this chapter.

■ You should assign non-nullable unique

constraints to alternate keys; see

“Primary Keys” in Chapter 2.

continues on next page

361

Creating, Altering, and Dropping Tables

F
o

r
c

i
n

g
 U

n
i
q

u
e

 V
a

l
u

e
s

 w
i
t

h
 U

N
I
Q

U
E

Listing 11.14 Define a composite unique constraint on
the columns au_fname and au_lname for the sample-
database table authors by using a named table
constraint.

CREATE TABLE authors

(

au_id CHAR(3) NOT NULL,

au_fname VARCHAR(15) NOT NULL,

au_lname VARCHAR(15) NOT NULL,

phone VARCHAR(12) ,

address VARCHAR(20) ,

city VARCHAR(15) ,

state CHAR(2) ,

zip CHAR(5) ,

CONSTRAINT authors_pk

PRIMARY KEY (au_id),

CONSTRAINT authors_unique1

UNIQUE (au_fname, au_lname)

);

Listing

■ You can create a unique index instead of

a unique constraint; see “Creating an

Index with CREATE INDEX” in Chapter 12.

To determine whether your DBMS

prefers an index or a constraint, search

your DBMS documentation for unique,

index, or constraint.

■ Microsoft SQL Server doesn’t

support the data type DATE. To

run Listings 11.13a and 11.13b, change

the data type of the column pubdate to

DATETIME.

Oracle treats an empty string (‘’) as

null; see the DBMS Tip in “Nulls” in

Chapter 3.

DB2 makes you set the nullability con-

straint to NOT NULL explicitly for PRIMARY
KEY columns. To run Listing 11.13a, add

NOT NULL to title_id’s column constraint.

The SQL standard allows any number

of nulls in a nullable, unique column.

Microsoft SQL Server allows only

one null in such a column, and DB2

allows none.

362

Chapter 11

F
o

r
c

i
n

g
 U

n
i
q

u
e

 V
a

l
u

e
s

 w
i
t

h
 U

N
I
Q

U
E

Adding a Check
Constraint with CHECK
So far, the only restrictions on an inserted

value are that it have the proper data type,

size, and range for its column. You can use

check constraints to further limit the values

that a column (or set of columns) accepts.

Check constraints commonly are used to

check the following:

Minimum or maximum values. Prevent

sales of fewer than zero items, for example.

Specific values. Allow only ‘biology’,

‘chemistry’, or ‘physics’ in the column

science, for example.

A range of values. Make sure that an

author’s royalty rate is between 2 percent

and 20 percent, for example.

A check constraint resembles a foreign-key

constraint in that both restrict the values

that can be placed in a column (see

“Specifying a Foreign Key with FOREIGN KEY”

earlier in this chapter). They differ in how

they determine which values are allowed.

A foreign-key constraint gets the list of valid

values from another table, whereas a check

constraint determines the valid values by using

a logical (Boolean) expression. The following

check constraint, for example, ensures that

no employee’s salary exceeds $50,000:

CHECK (salary <= 50000)

When you’re defining a check constraint,

some important considerations are:

◆ A check constraint that applies to a single

column can be a column constraint or a

table constraint; a check constraint that

applies to multiple columns always is a

table constraint. See “Understanding

Constraints” earlier in this chapter.

◆ You define a check constraint by using

the keyword CHECK in a CREATE TABLE
definition.

◆ A column can have zero or more check

constraints associated with it.

◆ If you create multiple check constraints

for a column, design them carefully so

that their purposes don’t conflict. Don’t

assume that the DBMS will evaluate the

constraints in any particular order or

will verify that the constraints are

mutually exclusive.

◆ In practice, check constraints almost

always are named explicitly. Use a

CONSTRAINT clause to name a constraint;

see “Understanding Constraints” earlier

in this chapter.

◆ The check constraint’s condition is

almost any valid WHERE condition, such

as a comparison (=, <>, <, <=, >, >=),

LIKE, BETWEEN, IN, or IS NULL condition.

(Most DBMSs don’t allow subqueries

in check constraints.) You can join mul-

tiple conditions with AND, OR, and NOT.

For information about conditions, see

“Filtering Rows with WHERE” and subse-

quent sections in Chapter 4.

◆ A check constraint’s condition can refer

to any column in the table, but it can’t

refer to columns in other tables.

◆ Although it’s possible to add check

constraints after a table has been popu-

lated, it’s a better practice to impose

check constraints before populating

the table to detect input errors as early

as possible.

363

Creating, Altering, and Dropping Tables

A
d

d
i
n

g
 a

 C
h

e
c

k
 C

o
n

s
t

r
a

i
n

t
 w

i
t

h
 C

H
E

C
K

To add a check constraint:

◆ To add a check constraint as a column

constraint or table constraint, add the

following constraint to a CREATE TABLE
definition:

[CONSTRAINT constraint_name]

CHECK (condition)

condition is a logical (Boolean) condition

that the DBMS evaluates each time a

INSERT, UPDATE, or DELETE statement

modifies the contents of the table. If

condition evaluates to true or unknown

(due to a null) after the modification,

the DBMS allows the change. If condition

evaluates to false, the DBMS undoes

the change and returns an error. For the

general syntax of CREATE TABLE, see

“Creating Tables” earlier in this chapter.

The CONSTRAINT clause is optional, and

constraint_name is the name of the pri-

mary-key constraint; see “Understanding

Constraints” earlier in this chapter.

Listing 11.15 shows various column and

table check constraints for the sample-

database table titles. The constraint

title_id_chk makes sure the each primary-

key value takes the form ‘Tnn’, in which

nn represents an integer between 00 and

99, inclusive.

364

Chapter 11

A
d

d
i
n

g
 a

 C
h

e
c

k
 C

o
n

s
t

r
a

i
n

t
 w

i
t

h
 C

H
E

C
K

Listing 11.15 Define some check constraints for the
sample-database table titles.

CREATE TABLE titles

(

title_id CHAR(3) NOT NULL,

title_name VARCHAR(40) NOT NULL,

type VARCHAR(10)

CONSTRAINT type_chk

CHECK (type IN ('biography',

'children','computer',

'history','psychology')) ,

pub_id CHAR(3) NOT NULL,

pages INTEGER

CHECK (pages > 0) ,

price DECIMAL(5,2) ,

sales INTEGER ,

pubdate DATE ,

contract SMALLINT NOT NULL,

CONSTRAINT titles_pk

PRIMARY KEY (title_id),

CONSTRAINT titles_pub_id_fk

FOREIGN KEY (pub_id)

REFERENCES publishers(pub_id),

CONSTRAINT title_id_chk

CHECK (

(SUBSTRING(title_id FROM 1 FOR 1) = 'T')

AND

(CAST(SUBSTRING(title_id FROM 2 FOR 2)

AS INTEGER) BETWEEN 0 AND 99)),

CONSTRAINT price_chk

CHECK (price >= 0.00

AND price < 100.00),

CONSTRAINT sales_chk

CHECK (sales >= 0),

CONSTRAINT pubdate_chk

CHECK (pubdate >= DATE '1950-01-01'),

CONSTRAINT title_name_chk

CHECK (title_name <> ''

AND contract >= 0),

CONSTRAINT revenue_chk

CHECK (price * sales >= 0.00)

);

Listing

✔ Tips

■ To see the result of a CREATE TABLE state-

ment, examine the table’s structure by

using one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ The SQL standard says that a check

condition can’t reference the datetime

and user functions (CURRENT_TIMESTAMP,

CURRENT_USER, and so on), but some

DBMSs, such as Microsoft Access,

Microsoft SQL Server, and PostgreSQL,

allow them, for example:

CHECK(ship_time >= CURRENT_TIMESTAMP)

These functions are described in

“Getting the Current Date and Time”

and “Getting User Information” in

Chapter 5.

■ To run Listing 11.15 in

Microsoft Access, convert

the two column constraints (for the

columns type and pages) to table con-

straints by moving them after the last

column definition. Change the first sub-

string expression to Mid(title_id, 1, 1);

change the CAST expression to

CInt(Mid(title_id, 2, 2)); and drop the

keyword DATE from the date literal and

surround it with # characters instead of

quotes (#1950-01-01#).

To run Listing 11.15 in Microsoft

SQL Server, change the data type

of the column pubdate to DATETIME;

change the two substring expressions

to SUBSTRING(title_id, 1, 1) and

SUBSTRING(title_id, 2, 2); and drop

the keyword DATE from the date literal

(‘1950-01-01’).

To run Listing 11.15 in Oracle,

change the two substring expressions

to SUBSTR(title_id, 1, 1) and

SUBSTR(title_id, 2, 2).

To run Listing 11.15 in DB2, change

the two substring expressions

to SUBSTR(title_id, 1, 1) and

SUBSTR(title_id, 2, 2) and drop

the keyword DATE from the date

literal (‘1950-01-01’).

MySQL doesn’t support named CHECK
column constraints, nor does it enforce

check constraints. To run Listing 11.15,

remove CONSTRAINT type_chk. Also,

change the CAST data type from INTEGER
to SIGNED.

To run Listing 11.15 in older PostgreSQL

versions, change the floating-point literals

0.00 and 100.00 to CAST(0.00 AS DECIMAL)
and CAST(100.00 AS DECIMAL); see

“Converting Data Types with CAST()”

in Chapter 5.

In Microsoft SQL Server, you

can specify the check constraint

title_id_chk alternatively as CHECK
(title_id LIKE ‘[T][0-9][0-9]’); search

SQL Server Help for pattern or wildcard.

Oracle treats an empty string (‘’) as

null; see the DBMS Tip in “Nulls” in

Chapter 3.

365

Creating, Altering, and Dropping Tables

A
d

d
i
n

g
 a

 C
h

e
c

k
 C

o
n

s
t

r
a

i
n

t
 w

i
t

h
 C

H
E

C
K

Creating a Temporary
Table with CREATE
TEMPORARY TABLE
Every table I’ve created so far has been a

permanent table, called a base table, which

stores data persistently until you destroy

(DROP) the table explicitly. SQL also lets you

create temporary tables to use for working

storage or intermediate results. Temporary

tables commonly are used to:

◆ Store the result of a complex, time-

consuming query once and use the

result repeatedly in subsequent queries,

improving performance greatly.

◆ Create an image, or snapshot, of a table

at a particular moment in time. (You can

add a column with the DEFAULT value

CURRENT_TIMESTAMP to record the time.)

◆ Hold the result of a subquery.

◆ Hold intermediate results of long or

complex calculations.

A temporary table is a table that the DBMS

empties automatically at the end of a session

or transaction. (The table’s data are destroyed

along with the table.) A session is the time

during which you’re connected to a DBMS—

between login and logoff—and the DBMS

accepts and executes your commands.

When you’re creating a temporary table,

some important considerations are:

◆ Temporary tables follow the same rules

as base tables with regard to table

names, column names, date types,

and so on.

◆ You define a temporary table by using a

standard CREATE TABLE statement with

a bit of extra syntax. Add the keywords

GLOBAL TEMPORARY or LOCAL TEMPORARY
before the keyword TABLE.

◆ A temporary table has no rows initially.

You can INSERT, UPDATE, and DELETE
rows as you would in a base table (see

Chapter 10).

◆ If you create a large temporary table,

you can free memory by destroying it

yourself rather than waiting for the

DBMS to do so; see “Dropping a Table

with DROP TABLE” later in this chapter.

◆ CREATE TEMPORARY TABLE lets database

administrators give users working storage

space without giving them (potentially

disastrous) CREATE TABLE, ALTER TABLE, or

DROP TABLE privileges.

366

Chapter 11

C
r

e
a

t
i
n

g
 a

 T
e

m
p

o
r

a
r

y
 T

a
b

l
e

To create a temporary table:

◆ Type:

CREATE {LOCAL | GLOBAL} TEMPORARY
➝ TABLE table

(

column1 data_type1 [constraints1],

column2 data_type2 [constraints2],

...

columnN data_typeN [constraintsN]

[, table_constraints]

);

table is the name of the temporary table

to create. LOCAL specifies that table is a

local temporary table. GLOBAL specifies

that table is a global temporary table

(Listings 11.16 and 11.17).

column1, column2, …, columnN are the

names of the columns in table.

data_type1, data_type2, …, data_typeN

specify the SQL data type of each corre-

sponding column.

The permissible column constraints and

table constraints for temporary tables

vary by DBMS; search your DBMS docu-

mentation for temporary tables. For

general information about constraints,

see “Understanding Constraints” earlier

in this chapter.

367

Creating, Altering, and Dropping Tables

C
r

e
a

t
i
n

g
 a

 T
e

m
p

o
r

a
r

y
 T

a
b

l
e

Listing 11.16 A local temporary table is available to only
you. It dematerializes when your DBMS session ends.

CREATE LOCAL TEMPORARY TABLE editors

(

ed_id CHAR(3) ,

ed_fname VARCHAR(15),

ed_lname VARCHAR(15),

phone VARCHAR(12),

pub_id CHAR(3)

);

Listing

Listing 11.17 A global temporary table can be
accessed by you and other users. It dematerializes
when your DBMS session ends and all other tasks
have stopped referencing it.

CREATE GLOBAL TEMPORARY TABLE editors

(

ed_id CHAR(3) ,

ed_fname VARCHAR(15),

ed_lname VARCHAR(15),

phone VARCHAR(12),

pub_id CHAR(3)

);

Listing

✔ Tips

■ To see the result of a CREATE TEMPORARY
TABLE statement, examine the table’s

structure by using one of the commands

described in “Displaying Table Definitions”

in Chapter 10.

■ To modify a temporary table, see

“Altering a Table with ALTER TABLE”

later in this chapter.

■ To create a temporary copy of an existing

table, see “Creating a New Table from an

Existing One with CREATE TABLE AS” later

in this chapter.

■ Microsoft Access doesn’t

support temporary tables.

The Microsoft SQL Server syntax to

create a temporary table is, for a local table:

CREATE TABLE #table (...);

or, for a global table:

CREATE TABLE ##table (...);

You must include the # character(s)

whenever you refer to a temporary table

by name.

The Oracle syntax to create a temporary

table is:

CREATE GLOBAL TEMPORARY
➝ TABLE table (...);

The DB2 syntax to create a temporary

table is:

DECLARE GLOBAL TEMPORARY
➝ TABLE table (...);

MySQL doesn’t distinguish between

local and global temporary tables; omit

the keyword LOCAL or GLOBAL.

PostgreSQL supports (but ignores) the

GLOBAL and LOCAL keywords and creates

only one type of temporary table.

Your DBMS might support the optional

ON COMMIT clause that is defined by the

SQL standard. ON COMMIT PRESERVE ROWS
preserves any data modifications to the

temporary table on a COMMIT, whereas

ON COMMIT DELETE ROWS empties the table

after a COMMIT. For information about

COMMIT, see Chapter 14.

For all DBMSs, check the documenta-

tion to see how the DBMS handles a

temporary table that has the same name

as a base table. In some cases, for example,

a temporary table will hide, or occlude,

the like-named base table until the tem-

porary table is dropped.

As you can see, the SQL standard’s

definition of the behavior of temporary

tables is widely ignored. DBMSs vary in

how they implement temporary tables

with respect to their persistence, visibility,

constraints, foreign keys (referential

integrity), indexes, and views; search your

DBMS documentation for temporary

tables.

368

Chapter 11

C
r

e
a

t
i
n

g
 a

 T
e

m
p

o
r

a
r

y
 T

a
b

l
e

Creating a New Table from
an Existing One with
CREATE TABLE AS
The CREATE TABLE AS statement creates a

new table and populates it with the result

of a SELECT. It’s similar to creating an empty

table with CREATE TABLE and then populating

the table with INSERT SELECT (see “Inserting

Rows with INSERT” in Chapter 10). CREATE
TABLE AS commonly is used to:

◆ Archive specific rows

◆ Make backup copies of tables

◆ Create a snapshot of a table at a particu-

lar moment in time

◆ Quickly duplicate a table’s structure but

not its data

◆ Create test data

◆ Copy a table to test INSERT, UPDATE, and

DELETE operations before modifying pro-

duction data

When you’re using CREATE TABLE AS, some

important considerations are:

◆ You can choose rows for the new table

by using the standard SELECT clauses

WHERE, JOIN, GROUP BY, and HAVING or any

of the SELECT options described in

Chapters 4 through 9.

◆ CREATE TABLE AS inserts rows into a

single table regardless of how many

source tables the SELECT references.

◆ The properties of the columns and

expressions in the SELECT-clause list

define the new table’s structure.

◆ When you include a derived (computed)

column in the SELECT-clause list, the

values in the new table’s corresponding

column are the values that were computed

at the time CREATE TABLE AS was executed.

See “Creating Derived Columns” in

Chapter 5.

◆ The new table must have a different

name from the existing table.

◆ You must have CREATE TABLE permission

from your database administrator.

369

Creating, Altering, and Dropping Tables

C
r

e
a

t
i
n

g
 a

 N
e

w
 T

a
b

l
e

 f
r

o
m

 a
n

 E
x

i
s

t
i
n

g
 O

n
e

To create a new table from an
existing table:

◆ Type:

CREATE TABLE new_table

AS subquery;

new_table is the name of the table to

create. subquery is a SELECT statement that

returns rows to insert into new_table.

The DBMS uses the result of subquery

to determine the structure of new_table

and the order, names, data types, and

values of its columns.

Listing 11.18 copies the structure and data

of the existing table authors to a new table

named authors2.

Listing 11.19 uses a WHERE condition that

always is false to copy only the structure (but

not the data) of the existing table publishers
to a new table named publishers2.

Listing 11.20 creates a global temporary

table named titles2 that contains the

titles and sales of books published by pub-

lisher P01; see “Creating a Temporary Table

with CREATE TEMPORARY TABLE” earlier in

this chapter.

Listing 11.21 uses joins to create a new

table named author_title_names that con-

tains the names of the authors who aren’t

from New York State or California and the

titles of their books.

370

Chapter 11

C
r

e
a

t
i
n

g
 a

 N
e

w
 T

a
b

l
e

 f
r

o
m

 a
n

 E
x

i
s

t
i
n

g
 O

n
e

Listing 11.18 Copy the structure and data of the
existing table authors to a new table named
authors2.

CREATE TABLE authors2 AS

SELECT *

FROM authors;

Listing

Listing 11.19 Copy the structure (but not the data) of
the existing table publishers to a new table named
publishers2.

CREATE TABLE publishers2 AS

SELECT *

FROM publishers

WHERE 1 = 2;

Listing

Listing 11.20 Create a global temporary table named
titles2 that contains the titles and sales of books
published by publisher P01.

CREATE GLOBAL TEMPORARY TABLE titles2 AS

SELECT title_name, sales

FROM titles

WHERE pub_id = 'P01';

Listing

Listing 11.21 Create a new table named
author_title_names that contains the names
of the authors who aren’t from New York state
or California and the titles of their books.

CREATE TABLE author_title_names AS

SELECT a.au_fname, a.au_lname,

t.title_name

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

INNER JOIN titles t

ON ta.title_id = t.title_id

WHERE a.state NOT IN ('CA', 'NY');

Listing

✔ Tips

■ To examine the new table’s structure,

use one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ It’s common to create a temporary table

that contains data for the current date.

For example:

CREATE GLOBAL TEMPORARY TABLE

sales_today AS

SELECT *

FROM orders

WHERE order_date = CURRENT_DATE;

■ SQL:2003 introduced CREATE
TABLE AS, but Microsoft

Access and Microsoft SQL Server use

SELECT INTO to create a new table from

an existing one:

SELECT columns

INTO new_table

FROM existing_table

[WHERE search_condition];

The SQL standard’s version of SELECT
INTO isn’t the same thing—it selects a

value into a scalar variable in a host pro-

gram rather than creating a new table.

The Oracle, DB2, and MySQL imple-

mentations of SELECT INTO work in

the standard way. For portability, you

shouldn’t use CREATE TABLE AS or SELECT
INTO. Instead, create a new, empty table

with CREATE TABLE and then populate

it with INSERT SELECT.

To run Listings 11.18 through 11.21 in

Microsoft Access, type (Listing 11.18):

SELECT *

INTO authors2

FROM authors;

and (Listing 11.19):

SELECT *

INTO publishers2

FROM publishers

WHERE 1=2;

and (Listing 11.20):

SELECT title_name, sales

INTO titles2

FROM titles

WHERE pub_id=’P01’;

and (Listing 11.21):

SELECT a.au_fname, a.au_lname,

t.title_name

INTO author_title_names

FROM titles t

INNER JOIN (authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id)

ON t.title_id = ta.title_id

WHERE a.state NOT IN (‘NY’,’CA’);

371

Creating, Altering, and Dropping Tables

C
r

e
a

t
i
n

g
 a

 N
e

w
 T

a
b

l
e

 f
r

o
m

 a
n

 E
x

i
s

t
i
n

g
 O

n
e

To run Listings 11.18 through 11.21 in

Microsoft SQL Server, type (Listing 11.18):

SELECT *

INTO authors2

FROM authors;

and (Listing 11.19):

SELECT *

INTO publishers2

FROM publishers

WHERE 1=2;

and (Listing 11.20):

SELECT title_name, sales

INTO ##titles2

FROM titles

WHERE pub_id = ‘P01’;

and (Listing 11.21):

SELECT a.au_fname, a.au_lname,

t.title_name

INTO author_title_names

FROM authors a

INNER JOIN title_authors ta

ON a.au_id = ta.au_id

INNER JOIN titles t

ON ta.title_id = t.title_id

WHERE a.state NOT IN (‘CA’, ‘NY’);

In Oracle 8i, use WHERE syntax instead of

JOIN syntax in Listing 11.21:

CREATE TABLE author_title_names AS

SELECT a.au_fname, a.au_lname,

t.title_name

FROM authors a, title_authors ta,

titles t

WHERE a.au_id = ta.au_id

AND ta.title_id = t.title_id

AND a.state NOT IN (‘CA’, ‘NY’);

DB2’s CREATE TABLE AS syntax is:

CREATE TABLE new_table AS

(subquery) options;

The DB2 documentation describes the

available options. To run Listing 11.19, for

example, type:

CREATE TABLE publishers2 AS

(SELECT * FROM publishers)

WITH NO DATA;

DB2 also supports CREATE TABLE new_table
LIKE existing_table to use one table as the

pattern for creating another.

To run Listing 11.20 in MySQL, delete the

keyword GLOBAL.

PostgreSQL also lets you use SELECT INTO
to define a new table from a query result but

recommends that you use CREATE TABLE AS.

CREATE TABLE AS is similar to what some ven-

dors call materialized tables or materialized

views, except that the standard’s statement

doesn’t create a linkage between the new

and old tables.

372

Chapter 11

C
r

e
a

t
i
n

g
 a

 N
e

w
 T

a
b

l
e

 f
r

o
m

 a
n

 E
x

i
s

t
i
n

g
 O

n
e

Altering a Table with
ALTER TABLE
Use the ALTER TABLE statement to modify a

table definition by adding, altering, or drop-

ping columns and constraints.

Despite the SQL standard, the

implementation of ALTER TABLE
varies greatly by DBMS. To determine what

you can alter and the conditions under

which alterations are allowed, search your

DBMS documentation for ALTER TABLE.

Depending on your DBMS, some of the

modifications that you can make by using

ALTER TABLE are:

◆ Add or drop a column

◆ Alter a column’s data type

◆ Add, alter, or drop a column’s default

value or nullability constraint

◆ Add, alter, or drop column or table con-

straints such as primary-key, foreign-key,

unique, and check constraints

◆ Rename a column

◆ Rename a table

373

Creating, Altering, and Dropping Tables

A
l
t

e
r

i
n

g
 a

 T
a

b
l
e

 w
i
t

h
 A

L
T

E
R

 T
A

B
L

E

To alter a table:

◆ Type:

ALTER TABLE table

alter_table_action;

table is the name of the table to alter.

alter_table_action is a clause that speci-

fies the action to take and begins with

the keyword ADD, ALTER, or DROP. Some

example actions are:

ADD COLUMN column type [constraints]

ALTER COLUMN column SET DEFAULT expr

DROP COLUMN column [RESTRICT|CASCADE]

ADD table_constraint

DROP CONSTRAINT constraint_name

Listings 11.22 and 11.23 add and drop the

column email_address from the table authors.

If your DBMS’s ALTER TABLE statement doesn’t

support an action that you need (such as,

say, dropping or renaming a column or con-

straint), check whether your DBMS offers

the action in a different SQL statement or

as a separate (non-SQL) command via the

command line or graphical user interface.

As a last resort, you can re-create and repop-

ulate the table in its desired state manually.

To re-create and repopulate a table:

1. Use CREATE TABLE to create a new table

with the new column definitions, column

constraints, and table constraints; see

“Creating a New Table with CREATE TABLE”

and subsequent sections earlier

in this chapter.

2. Use INSERT SELECT to copy rows (from

the appropriate columns) from the old

table into the new table; see “Inserting

Rows with INSERT” in Chapter 10.

3. Use SELECT * FROM new_table to confirm

that the new table has the proper rows;

see “Retrieving Columns with SELECT and

FROM” in Chapter 4.

374

Chapter 11

A
l
t

e
r

i
n

g
 a

 T
a

b
l
e

 w
i
t

h
 A

L
T

E
R

 T
A

B
L

E

Listing 11.22 Add the column email_address to the
table authors.

ALTER TABLE authors

ADD email_address CHAR(25);

Listing

Listing 11.23 Drop the column email_address from the
table authors.

ALTER TABLE authors

DROP COLUMN email_address;

Listing

4. Use DROP TABLE to drop the old table; see

“Dropping a Table with DROP TABLE” later

in this chapter.

5. Rename the new table to the name of

the old table; see the DBMS Tip in

this section.

6. Re-create indexes as needed; see

“Creating an Index with CREATE INDEX”

in Chapter 12.

You also need to re-create any other prop-

erties that were dropped along with the old

table, such as permissions and triggers.

✔ Tips

■ To see the result of an ALTER TABLE
statement, examine the table’s structure

by using one of the commands described

in “Displaying Table Definitions” in

Chapter 10.

■ You can’t drop a table’s only remaining

column.

■ To alter or drop a constraint, use the name

that you specified in the CONSTRAINT
clause when you created the constraint;

see “Understanding Constraints” earlier

in this chapter. If you didn’t name the

constraint, use the constraint name that

your DBMS generated automatically.

■ DBMSs typically enforce fewer modifica-

tion restrictions on empty tables than

they do on populated tables. When you

add a new column to a table that already

has one or more rows, for example, that

column can’t have a NOT NULL constraint,

whereas a new column in an empty table

can be non-nullable.

■ DB2 won’t let you drop a

column with ALTER TABLE,

so Listing 11.23 won’t work.

Table 11.2 lists the commands and

queries that rename tables in the

current database.

375

Creating, Altering, and Dropping Tables

A
l
t

e
r

i
n

g
 a

 T
a

b
l
e

 w
i
t

h
 A

L
T

E
R

 T
A

B
L

E

Table 11.2

Renaming Tables
D B M S C o m m a n d o r Q u e r y

Access Right-click a table in the Database window
and then click Rename

SQL Server EXEC sp_rename ‘old_name’,
‘new_name’

Oracle RENAME old_name TO new_name;

DB2 RENAME TABLE old_name TO new_name;

MySQL RENAME TABLE old_name TO new_name;

PostgreSQL ALTER TABLE old_name RENAME TO
new_name;

Dropping a Table with
DROP TABLE
Use the DROP TABLE statement to remove a

table from a database. When you’re dropping

a table, some important considerations are:

◆ You can drop a base table or a tempo-

rary table.

◆ Some DBMSs let you recover a dropped

table by rolling back a transaction (see

Chapter 14). If a dropped table wasn’t

part of a transaction, you can restore the

table from the most recent backup

(though it might be out of date).

◆ Dropping a table destroys its structure,

data, indexes, constraints, permissions,

and so on.

◆ Dropping a table isn’t the same as delet-

ing all its rows. You can empty a table

of rows, but not destroy it, with DELETE
FROM table;. See “Deleting Rows with

DELETE” in Chapter 10.

◆ Dropping a table doesn’t drop views that

reference that table; see Chapter 13.

◆ You’ll have problems with foreign keys

or views that reference a dropped table

unless they’re altered or dropped as well.

To drop a table:

◆ Type:

DROP TABLE table;

table is the name of the table to drop

(Listing 11.24).

376

Chapter 11

D
r

o
p

p
i
n

g
 a

 T
a

b
l
e

 w
i
t

h
 D

R
O

P
T

A
B

L
E

✔ Tip

■ Some DBMSs make you drop or

alter certain other proper-

ties before dropping the table itself.

In Microsoft SQL Server, for example,

you can’t use DROP TABLE to drop a table

referenced by a FOREIGN KEY constraint

until the referencing FOREIGN KEY con-

straint or the referencing table is

dropped first.

Standard SQL lets you specify RESTRICT or

CASCADE drop behavior. RESTRICT (which

is safe) prevents you from dropping a

table that’s referenced by views or other

constraints. CASCADE (which is dangerous)

causes referencing objects to be dropped

along with the table. To find out whether

your DBMS supports this feature or a

similar one, search your DBMS documen-

tation for DROP TABLE.

Listing 11.24 Drop the table royalties.

DROP TABLE royalties;

Listing

Recall from “Tables, Columns, and Rows”

in Chapter 2 that rows stored in a table are

unordered, as required by the relational

model. This lack of order makes it easy for

the DBMS to INSERT, UPDATE, and DELETE
rows quickly, but its unfortunate side effect

is that it makes searching and sorting ineffi-

cient. Suppose that you run this query:

SELECT *

FROM authors

WHERE au_lname = ‘Hull’;

To execute this query, the DBMS must search

the entire table authors sequentially, compar-

ing the value in each row’s au_lname column

to the string Hull. Searching an entire table

in a small database is trivial, but production

database tables can have millions of rows.

DBMSs provide a mechanism called an index

that has the same purpose as its book or library

counterpart: speeding data retrieval. At a sim-

plified level, an index is a sorted list in which

every distinct value in an indexed column (or

set of columns) is stored with the disk address

(physical location) of the rows containing that

value. Instead of reading an entire table to

locate specific rows, the DBMS scans only the

index for addresses to access directly. Indexed

searches typically are orders of magnitude

faster than sequential searches, but some trade-

offs are involved, as explained in this chapter.

377

Indexes
12

I
n

d
e

x
e

s

Creating an Index with
CREATE INDEX
Indexes are complex; their design and effects

on performance depend on the idiosyncrasies

of your DBMS’s optimizer. I’ll provide guide-

lines in this section, but search your DBMS

documentation for index to learn how your

DBMS implements and uses indexes. In gen-

eral, indexes are appropriate for columns

that are frequently:

◆ Searched (WHERE)

◆ Sorted (ORDER BY)

◆ Grouped (GROUP BY)

◆ Used in joins (JOIN)

◆ Used to calculate order statistics (MIN(),

MAX(), or the median, for example)

In general, indexes are inappropriate for

columns that:

◆ Accept only a few distinct values

(gender, marital_status, or state,

for example)

◆ Are used rarely in queries

◆ Are part of a small table with few rows

When you’re creating an index, some impor-

tant considerations are:

◆ SQL’s indexing statements modify

database objects, so your database

administrator might need to grant you

permission to run them.

◆ An index never changes data; it’s merely

a fast access path to the data.

◆ A table can have zero or more indexes.

◆ Ideally, you create all a table’s indexes

when you create the table. In practice,

index management is an iterative process.

Typically, only vital indexes are created

along with the table. Other indexes are

added or deleted over time as perform-

ance problems grow or ebb and users’

access patterns change. DBMSs provide

testing and benchmarking tools to deter-

mine the effectiveness of indexes.

◆ Don’t create any more indexes than you

need. The DBMS must update (and pos-

sibly reorganize) an index after you

INSERT, UPDATE, or DELETE rows in a table

(see Chapter 10). As the number of

indexes on a table grows, row-modification

performance degrades as the DBMS spends

more and more time maintaining indexes.

In general, you shouldn’t create more than

about a dozen indexes for a table.

◆ Your DBMS will maintain and use indexes

automatically after they’re created.

No additional actions are required by

users or SQL programmers to reflect

data changes in all relevant indexes.

◆ Indexes are transparent to the user and

SQL programmer. The absence or pres-

ence of an index doesn’t require a change

in the wording of any SQL statement.

◆ An index can reference one or more

columns in a table. An index that refer-

ences a single column is a simple index;

an index that references multiple columns

is a composite index. Columns in a com-

posite index need not be adjacent in

the table. A single index can’t span mul-

tiple tables.

378

Chapter 12

C
r

e
a

t
i
n

g
 a

n
 I

n
d

e
x

 w
i
t

h
 C

R
E

A
T

E
 I

N
D

E
X

◆ The order in which columns appear in a

composite index is significant. A com-

posite index applies only to the group of

columns on which it’s defined, not to

each column individually or the same

columns in different order.

◆ You can create multiple composite indexes

that use the same columns if you specify

distinctly different combinations of the

columns. The following two statements,

for example, specify valid combinations

for the same table:

CREATE INDEX au_name_idx1

ON authors (au_fname, au_lname);

CREATE INDEX au_name_idx2

ON authors (au_lname, au_fname);

◆ In addition to allowing rapid sorts and

searches, an index can ensure unique-

ness. A unique index forces the value of

the column (or columns) upon which the

index is based to be distinct in the table.

If you try to create a unique index for

column(s) in which duplicate values

already exist, your DBMS will generate

an error and refuse to create the index.

DBMSs create unique indexes automati-

cally when you define a primary-key con-

straint or unique constraint.

◆ A DBMS may or may not create indexes

for foreign keys automatically. If not,

you should create these indexes yourself,

because most joins involve a foreign key.

◆ All DBMSs implement indexes even

though indexes aren’t part of the rela-

tional model (and don’t violate any of

the model’s rules).

379

Indexes

C
r

e
a

t
i
n

g
 a

n
 I

n
d

e
x

 w
i
t

h
 C

R
E

A
T

E
 I

N
D

E
X

Indexes aren’t part of the SQL standard, so

index-related SQL statements vary by DBMS,

although the syntax for the minimal CREATE
INDEX statement is the same for the DBMSs

covered in this book.

To create an index:

◆ Type:

CREATE [UNIQUE] INDEX index

ON table (index_columns);

index is the name of the index to create

and is a valid SQL identifier. Index names

must be unique within a table. For Oracle,

DB2, and PostgreSQL, index names

must be unique within a database.

table is the name of the table to create

the index for, and index_columns is a list

of one or more comma-separated names

of the columns to index.

Specify UNIQUE to create a unique index.

UNIQUE causes the DBMS to check for

duplicates in index_columns. If table

already contains rows with duplicates

in index_columns, the DBMS won’t

create the index. If you attempt to INSERT
or UPDATE duplicate values in unique

index_columns, the DBMS generates an

error and cancels the operation.

Listing 12.1 creates a simple index named

pub_id_idx on the column pub_id for the

table titles. pub_id is a foreign key and is

a good candidate for an index because:

◆ Changes to PRIMARY KEY constraints are

checked with FOREIGN KEY constraints in

related tables.

◆ Foreign-key columns often are used in

join criteria when the data from related

tables are combined in queries by match-

ing the FOREIGN KEY column(s) of one

table with the PRIMARY KEY or UNIQUE
column(s) in the other table.

380

Chapter 12

C
r

e
a

t
i
n

g
 a

n
 I

n
d

e
x

 w
i
t

h
 C

R
E

A
T

E
 I

N
D

E
X

Listing 12.1 Create a simple index on the column
pub_id for the table titles.

CREATE INDEX pub_id_idx

ON titles (pub_id);

Listing

Listing 12.2 creates a simple unique index

named title_name_idx on the column

title_name for the table titles. The DBMS

will create this index only if no duplicates

already exist in the column title_name. This

index also prohibits nondistinct title names

from being INSERTed or UPDATEd.

Listing 12.3 creates a composite index

named state_city_idx on the columns

state and city for the table authors. The

DBMS uses this index when you sort rows in

state plus city order. This index is useless

for sorts and searches on state alone, city
alone, or city plus state; you must create

separate indexes for those purposes.

✔ Tips

■ Don’t use the terms index and key inter-

changeably (although you’ll see them

used so in books). An index is a physical

(hardware-related) mechanism that the

DBMS uses to improve performance.

A key is a logical (based on data) concept

that the DBMS uses to enforce referential

integrity and update through views.

■ You also can use a unique constraint to

prevent duplicate column values; see

“Forcing Unique Values with UNIQUE” in

Chapter 11.

■ Indexes are files stored on disk and so

occupy storage space (possibly a lot of

space). But when used properly, indexes

are the primary means of reducing disk

wear and tear by obviating the need to

read large tables sequentially. While a

DBMS is creating an index, it uses as

much as 1.5 times the space that the

associated table occupies (make sure you

have room). Most of that space is

released after the index is complete.

continues on next page

381

Indexes

C
r

e
a

t
i
n

g
 a

n
 I

n
d

e
x

 w
i
t

h
 C

R
E

A
T

E
 I

N
D

E
X

Listing 12.2 Create a simple unique index on the
column title_name for the table titles.

CREATE UNIQUE INDEX title_name_idx

ON titles (title_name);

Listing

Listing 12.3 Create a composite index on the columns
state and city for the table authors.

CREATE INDEX state_city_idx

ON authors (state, city);

Listing

■ Searching a table sequentially (for lack of

an index) is called a table scan.

■ A clustered index is an index in which the

logical order of the key values determines

the physical order of the corresponding

rows in a table. In a nonclustered index,

the index’s logical order differs from the

physical, stored order of the on-disk rows.

A table can have at most one clustered

index. Clustered indexes usually improve

performance, but in some cases they

make searches much faster but INSERTs,

UPDATEs, and DELETEs much slower.

■ Most indexes are implemented as

balanced trees, or B-trees. A B-tree is

an advanced data structure that mini-

mizes disk read/write operations. Some

DBMSs let you specify the data structure

to use when constructing an index.

■ Microsoft SQL Server and

DB2 consider multiple nulls to

be duplicates when UNIQUE is specified and

allow no more than one null in columns

with a unique index. Microsoft Access,

Oracle, MySQL, and PostgreSQL allow

multiple nulls in such columns.

Some DBMSs let you create indexes on

views (Chapter 13) as well as tables.

382

Chapter 12

C
r

e
a

t
i
n

g
 a

n
 I

n
d

e
x

 w
i
t

h
 C

R
E

A
T

E
 I

N
D

E
X

Dropping an Index with
DROP INDEX
Use the DROP INDEX statement to destroy

an index. Because an index is logically and

physically independent of the data in its

associated table, you can drop the index at

any time without affecting the table (or

other indexes). All SQL programs and other

applications will continue to work if you

drop an index, but access to previously

indexed data will be slower.

The usual reasons for dropping an index are:

◆ The index is no longer needed because

the associated table is much smaller (or

was dropped), or users don’t access the

index’s columns much anymore.

◆ The extra time it takes the DBMS to

maintain the index after INSERT, UPDATE,

or DELETE operations outweighs the

speed improvement in retrieval opera-

tions that the index provides.

The SQL standard omits indexes, so index-

related SQL statements vary by DBMS. This

section describes how to drop an index for

each DBMS covered in this book. If you’re

using a different DBMS, search the documen-

tation for index to learn how to drop an

index.

In Oracle, DB2, and PostgreSQL, index

names must be unique within a database, so

you don’t specify a table name when you drop

an index. In Microsoft Access, Microsoft

SQL Server, and MySQL, index names

must be unique within a table but can be

reused in other tables, so you must specify a

table along with the index to be dropped. The

examples in this section drop the index cre-

ated by Listing 12.1 in the preceding section.

383

Indexes

D
r

o
p

p
i
n

g
 a

n
 I

n
d

e
x

 w
i
t

h
 D

R
O

P
I
N

D
E

X

To drop an index in Microsoft Access
or MySQL:

◆ Type:

DROP INDEX index

ON table;

index is the name of the index to drop,

and table is the name of the index’s

associated table (Listing 12.4a).

To drop an index in Microsoft
SQL Server:

◆ Type:

DROP INDEX table.index;

index is the name of the index to drop,

and table is the name of the index’s

associated table (Listing 12.4b).

To drop an index in Oracle, DB2,
or PostgreSQL:

◆ Type:

DROP INDEX index;

index is the name of the index to drop

(Listing 12.4c).

✔ Tip

■ You can’t drop indexes that the DBMS

creates automatically for PRIMARY KEY
and UNIQUE constraints (Chapter 11).

384

Chapter 12

D
r

o
p

p
i
n

g
 a

n
 I

n
d

e
x

 w
i
t

h
 D

R
O

P
I
N

D
E

X

Listing 12.4a Drop the index pub_id_idx (Microsoft
Access or MySQL).

DROP INDEX pub_id_idx

ON titles;

Listing

Listing 12.4b Drop the index pub_id_idx (Microsoft
SQL Server).

DROP INDEX titles.pub_id_idx;

Listing

Listing 12.4c Drop the index pub_id_idx (Oracle, DB2,
or PostgreSQL).

DROP INDEX pub_id_idx;

Listing

A view is a stored SELECT statement that returns

a table whose data are derived from one or more

other tables (called underlying tables). Some

important characteristics of a view are:

◆ A view’s underlying tables can be base

tables, temporary tables, or other views.

◆ A view is called a virtual or derived table to

distinguish it from a base or temporary table.

◆ The DBMS stores a view as only a SELECT
statement, not as a set of data values, thus

preventing data redundancy.

◆ A view materializes dynamically as a physi-

cal table when referenced by name in an

SQL statement. It exists only for the dura-

tion of the statement and vanishes when

the statement finishes.

◆ A view is a set of named columns and rows

of data, so you can use it almost anywhere

you’d use a real table.

◆ You have no restrictions on querying

(SELECTing) through views. In some cases,

views can be updated, causing the data

changes to be passed through to the under-

lying base tables.

◆ Because of closure, a view always is a single

table no matter how many underlying tables

it references or how those tables are com-

bined; see the Tips in “Tables, Columns,

and Rows” in Chapter 2.

385

Views
13

V
i
e

w
s

Creating a View with
CREATE VIEW
Think of a view as being a tailored presenta-

tion that provides a tabular window into

one or more base tables. The window can

display an entire base table, part of a base

table, or a combination of base tables (or

parts thereof). A view also can reflect the

data in base tables through other views—

windows into windows. Generally, SQL pro-

grammers use views to present data to end-

users in database applications. Views offer

these advantages:

Simplified data access. Views hide data

complexity and simplify statements, so

users can perform operations on a view

more easily than on the base tables directly.

If you create a complex view—one that

involves, say, multiple base tables, joins, and

subqueries—users can query this view with-

out having to understand complex relational

concepts or even knowing that multiple

tables are involved.

Automatic updating. When a base table is

updated, all views that reference the table

reflect the change automatically. If you insert

a row representing a new author into the

table authors, for example, all views defined

over authors will reflect the new author

automatically. This scheme saves disk space

and prevents redundancy because, without

views, the DBMS would have to store

derived data to keep it synchronized.

Increased security. One of the most com-

mon uses of views is to hide data from users

by filtering the underlying tables. Suppose that

the table employees contains the columns

salary and commission. If you create a view

on employees that omits these two columns

but contains other innocuous columns (such

as email_address), the database administra-

tor can grant users permission to see the view

but not see the underlying table, thereby

hiding compensation data from the curious.

Logical data independence. Base tables

provide a real view of a database. But when

you use SQL to build a database application,

you want to present end users not the real

view, but a virtual view specific to the appli-

cation. The virtual view hides the parts of

the database (entire tables or specific rows

or columns) that aren’t relevant to the appli-

cation. Thus, users interact with the virtual

view, which is derived from—though inde-

pendent of—the real view presented by the

base tables.

A virtual view immunizes an application

from logical changes in the design of the

database. Suppose that many applications

access the table titles. Books go out of

print over time, so the database designer

decides to reduce the system load by segre-

gating out-of-print books. He splits titles
into two tables: in_print_titles and

out_of_print_titles. Consequently, all the

applications break because they expect the

now-unavailable table titles.

But if those applications had accessed a

view of titles instead of the real table, that

view could be redefined to be the UNION of

in_print_titles and out_of_print_titles
(see “Combining Rows with UNION” in

Chapter 9). The applications transparently

would see the two new tables as though they

were the one original table and continue to

work as though the split never happened.

(You can’t use views to immunize an appli-

cation against all changes, however. Views

can’t compensate for dropped tables or

columns, for example.)

386

Chapter 13

C
r

e
a

t
i
n

g
 a

 V
i
e

w
 w

i
t

h
 C

R
E

A
T

E
 V

I
E

W

When you’re creating a view, some impor-

tant considerations are:

◆ View-related SQL statements modify

database objects and data, so your data-

base administrator might need to grant

you permission to run them.

◆ View names follow the same rules that

table names do.

◆ View names must be unique within a

schema (or database). They can’t have the

same name as any other table or view.

◆ The columns in a view inherit the default

column names from the underlying

tables. You can give view columns differ-

ent names by using AS; see “Creating

Column Aliases with AS” in Chapter 4.

◆ You must specify a new name for a col-

umn in a view that would have the same

name as another column in the view

(usually because the view definition

includes a join and the columns from

two or more different underlying tables

have the same name).

◆ A column defined in a view can be a

simple column reference, a literal, or an

expression that involves calculations or

aggregate functions.

◆ In some DBMSs, you must specify explic-

itly the name of a column in a view if the

column is derived from an arithmetic

expression, a built-in function, or a literal.

◆ A view column inherits the data type of

the column or expression from which it

is derived.

◆ You have no practical limit on the num-

ber of views that you can create. Generally,

you want to create views on subsets of

data that are of interest to many users.

◆ Some DBMSs don’t allow views on tem-

porary tables.

◆ Almost any valid SELECT statement can

define a view, though an ORDER BY clause

usually is prohibited.

◆ You can nest views—that is, a view’s

SELECT statement can retrieve data from

another view. Nested views eventually

must resolve to base tables (otherwise,

you’d be viewing nothing). The maximum

number of nesting levels varies by DBMS.

◆ You can use views as a convenience to

save complex queries. By saving a query

that performs extensive calculations as

a view, you can recalculate each time the

view is queried.

◆ A view can express a query that you’d

otherwise be unable to run. You can

define a view that joins a GROUP BY view

with a base table, for example, or define

a view that joins a UNION view with a

base table.

◆ A view definition can’t reference itself,

because it doesn’t exist yet.

◆ Views can display data formatted differ-

ently from those in the underlying tables.

◆ Unlike a base table, a view doesn’t sup-

port constraints. Some DBMSs let you

index views.

◆ When you define a view by using SELECT *,

SQL converts the * to a list of all columns

internally. This conversion occurs only once,

at view creation (not at execution), so the

definition of your view won’t change if

someone adds a column to an underlying

table (by using ALTER TABLE).

◆ Because views store no data, the DBMS

must execute them every time they’re

referenced. Complex views—particularly

nested views—can degrade performance

seriously.

387

Views

C
r

e
a

t
i
n

g
 a

 V
i
e

w
 w

i
t

h
 C

R
E

A
T

E
 V

I
E

W

To create a view:

◆ Type:

CREATE VIEW view [(view_columns)]

AS select_statement;

view is the name of the view to create.

The view name must be unique within

the database.

view_columns is an optional, parenthe-

sized list of one or more comma-separated

names to be used for the columns in view.

The number of columns in view_columns

must match the number of columns in

the SELECT clause of select_statement.

(If you name one column this way, you

must name them all this way.) Specify

view_columns when a column in

select_statement is derived from an arith-

metic expression, a function, or a literal;

when two or more view columns would

otherwise have the same name (usually

because of a join); or to give a column in

view a name different from that of the

column from which it was derived. If

view_columns is omitted, view inherits

column names from select_statement.

Column names also can be assigned in

select_statement via AS clauses. Each col-

umn name must be unique within the view.

select_statement is a SELECT statement

that identifies the columns and rows of

the table(s) that the view is based on.

select_statement can be arbitrarily com-

plex and use more than one table or other

views. An ORDER BY clause usually is pro-

hibited. For information about the SELECT
statement, see Chapters 4 through 9. For

DBMS-specific restrictions on SELECT in

views, search your DBMS’s documenta-

tion for CREATE VIEW (Listings 13.1

through 13.5).

388

Chapter 13

C
r

e
a

t
i
n

g
 a

 V
i
e

w
 w

i
t

h
 C

R
E

A
T

E
 V

I
E

W

Listing 13.1 Create a view that hides the authors’
personal information (telephone numbers and
addresses).

CREATE VIEW au_names

AS

SELECT au_id, au_fname, au_lname

FROM authors;

Listing

Listing 13.2 Create a view that lists the authors who
live in a city in which a publisher is located. Note that
I use the column names au_city and pub_city in the
view. Renaming these columns resolves the ambiguity
that would arise if both columns inherited the same
column name city from the underlying tables.

CREATE VIEW cities

(au_id, au_city, pub_id, pub_city)

AS

SELECT a.au_id, a.city, p.pub_id, p.city

FROM authors a

INNER JOIN publishers p

ON a.city = p.city;

Listing

Listing 13.3 Create a view that lists total revenue
(= price ✕ sales) grouped by book type within publisher.
This view will be easy to query later because I name
the result of an arithmetic expression explicitly rather
than let the DBMS assign a default name.

CREATE VIEW revenues

(Publisher, BookType, Revenue)

AS

SELECT pub_id, type, SUM(price * sales)

FROM titles

GROUP BY pub_id, type;

Listing

✔ Tips

■ You can’t create temporary views. Views

and temporary tables differ in their per-

sistence. A view exists for the duration

of an SQL statement; a temporary table

exists for the duration of a session. See

“Creating a Temporary Table with CREATE
TEMPORARY TABLE” in Chapter 11.

■ Standard SQL has no ALTER VIEW state-

ment. If the underlying table(s) or view(s)

have changed since a view was created,

drop and re-create the view. Microsoft

SQL Server, Oracle, DB2, MySQL, and

PostgreSQL, however, support a non-

standard ALTER VIEW statement.

continues on next page

389

Views

C
r

e
a

t
i
n

g
 a

 V
i
e

w
 w

i
t

h
 C

R
E

A
T

E
 V

I
E

W

Listing 13.4 Create a view that makes it easy to
print mailing labels for authors. Note that I assigned
column names in the SELECT clause rather than in
the CREATE VIEW clause.

CREATE VIEW mailing_labels

AS

SELECT

TRIM(au_fname || ' ' || au_lname)

AS "address1",

TRIM(address)

AS "address2",

TRIM(city) || ', ' || TRIM(state) ||

' ' || TRIM(zip)

AS "address3"

FROM authors;

Listing

Listing 13.5 Create a view that lists the last names of
authors A02 and A05, and the books that each one
wrote (or cowrote). Note that this statement uses a
nested view: It references the view au_names created
by Listing 13.1.

CREATE VIEW au_titles (LastName, Title)

AS

SELECT an.au_lname, t.title_name

FROM title_authors ta

INNER JOIN au_names an

ON ta.au_id = an.au_id

INNER JOIN titles t

ON t.title_id = ta.title_id

WHERE an.au_id in ('A02','A05');

Listing

■ When you run a CREATE VIEW
statement in Microsoft

Access, the view appears as a query

object in the Database window. To run

Listing 13.4, change every occurrence of

|| to +; see the DBMS Tip in

“Concatenating Strings with ||” in

Chapter 5. To run Listing 13.5, type:

CREATE VIEW au_titles

(LastName, Title)

AS

SELECT an.au_lname, t.title_name

FROM au_names an

INNER JOIN (titles t

INNER JOIN title_authors ta

ON t.title_id = ta.title_id)

ON an.au_id = ta.au_id

WHERE an.au_id IN (‘A02’,’A05’);

To run Listings 13.1 through 13.5 in

Microsoft SQL Server, remove the ter-

minating semicolon from each statement.

Additionally, to run Listing 13.4, change

every occurrence of || to + and every

occurrence of TRIM(x) to LTRIM(RTRIM(x));

see the DBMS Tips in “Concatenating

Strings with ||” and “Trimming Characters

with TRIM()” in Chapter 5.

To run Listings 13.2 and 13.5 in Oracle 8i

and earlier, use WHERE syntax instead

of JOIN syntax. Type (Listing 13.2):

CREATE VIEW cities

(au_id, au_city, pub_id, pub_city)

AS

SELECT a.au_id, a.city,

p.pub_id, p.city

FROM authors a, publishers p

WHERE a.city = p.city;

and (Listing 13.5):

CREATE VIEW au_titles

(LastName, Title)

AS

SELECT an.au_lname, t.title_name

FROM title_authors ta,

au_names an, titles t

WHERE ta.au_id = an.au_id

AND t.title_id = ta.title_id

AND an.au_id in (‘A02’,’A05’);

To run Listing 13.4 in DB2, change every

occurrence of TRIM(x) to LTRIM(RTRIM(x));

see the DBMS Tip in “Trimming Characters

with TRIM()” in Chapter 5.

To run Listing 13.4 in MySQL, use the

function CONCAT() instead of the concatena-

tion operator ||; see the DBMS Tips in

“Concatenating Strings with ||” in Chapter 5.

MySQL 5.0 and later support views. Earlier

versions won’t run the listings in this section.

(To hide data in earlier versions, use MySQL’s

privilege system to restrict column access.)

In Microsoft SQL Server, Oracle, DB2,

MySQL, and PostgreSQL, you can add the

optional clause WITH [CASCADED | LOCAL]
CHECK OPTION when you create a view. This

clause applies to only updateable views and

ensures that only data that can be read by

the view can be inserted, updated, or delet-

ed; see “Updating Data Through a View”

later in this chapter. If a view shows authors

from only New York state, for example, it

would be impossible to insert, update, or

delete non–New York authors through that

view. The CASCADED and LOCAL options apply

to nested views only. CASCADED performs the

check for the current view and all the views

it references. LOCAL performs the check for

the current view only.

390

Chapter 13

C
r

e
a

t
i
n

g
 a

 V
i
e

w
 w

i
t

h
 C

R
E

A
T

E
 V

I
E

W

Retrieving Data
Through a View
Creating a view displays nothing. All that

CREATE VIEW does is cause the DBMS to save

the view as a named SELECT statement. To

see data through a view, query the view by

using SELECT, just as you would query a

table. You can:

◆ Rearrange the order of the displayed

columns with the SELECT clause

◆ Use operators and functions to perform

calculations

◆ Change column headings with AS

◆ Filter rows with WHERE

◆ Group rows with GROUP BY

◆ Filter grouped rows with HAVING

◆ Join the view to other views, tables, and

temporary tables with JOIN

◆ Sort the result with ORDER BY

391

Views

R
e

t
r

i
e

v
i
n

g
 D

a
t
a

 T
h

r
o

u
g

h
 a

 V
i
e

w

To retrieve data through a view:

◆ Type:

SELECT columns

FROM view

[JOIN joins]

[WHERE search_condition]

[GROUP BY group_columns]

[HAVING search_condition]

[ORDER BY sort_columns];

view is the name of the view to query.

The clauses work with views the same way

that they work with tables, as described

in Chapters 4 through 9.

Listings 13.6 through 13.11 and

Figures 13.1 through 13.6 show how

to retrieve data through the views

created by Listings 13.1 through 13.5

in “Creating a View with CREATE VIEW”

earlier in this chapter.

✔ Tip

■ To run Listing 13.9 in

Microsoft Access, enclose

the view’s column names in double

quotes and brackets:

SELECT [“address3”]

FROM mailing_labels

WHERE [“address1”] LIKE ‘%Kell%’;

To run Listing 13.9 in Oracle and DB2,

enclose the view’s column names in

double quotes:

SELECT “address3”

FROM mailing_labels

WHERE “address1” LIKE ‘%Kell%’;

MySQL 5.0 and later support views.

Earlier versions won’t run the listings

in this section.

392

Chapter 13

R
e

t
r

i
e

v
i
n

g
 D

a
t
a

 T
h

r
o

u
g

h
 a

 V
i
e

w

Listing 13.6 List all the rows and columns of the view
au_titles. See Figure 13.1 for the result.

SELECT *

FROM au_titles;

Listing

LastName Title

--------- -----------------------------

Kells Ask Your System Administrator

Heydemark How About Never?

Heydemark I Blame My Mother

Heydemark Not Without My Faberge Egg

Heydemark Spontaneous, Not Annoying

Figure 13.1 Result of Listing 13.6.

Listing 13.7 List the distinct cities in the view cities.
See Figure 13.2 for the result.

SELECT DISTINCT au_city

FROM cities;

Listing

au_city

New York

San Francisco

Figure 13.2 Result of Listing 13.7.

393

Views

R
e

t
r

i
e

v
i
n

g
 D

a
t
a

 T
h

r
o

u
g

h
 a

 V
i
e

w

Listing 13.8 List the types of books whose average
revenue exceeds $1 million. See Figure 13.3 for
the result.

SELECT BookType,

AVG(Revenue) AS "AVG(Revenue)"

FROM revenues

GROUP BY BookType

HAVING AVG(Revenue) > 1000000;

Listing

BookType AVG(Revenue)

---------- ------------

biography 18727318.50

computer 1025396.65

psychology 2320933.76

Figure 13.3 Result of Listing 13.8.

Listing 13.9 List the third line of the mailing address
of each author whose name contains the string Kell.
See Figure 13.4 for the result.

SELECT address3

FROM mailing_labels

WHERE address1 LIKE '%Kell%';

Listing

address3

New York, NY 10014

Palo Alto, CA 94305

Figure 13.4 Result of Listing 13.9.

Listing 13.10 List the name of each author who wasn’t
the lead author of at least one book. See Figure 13.5
for the result.

SELECT DISTINCT an.au_fname, an.au_lname

FROM au_names an

INNER JOIN title_authors ta

ON an.au_id = ta.au_id

WHERE ta.au_order > 1;

Listing

au_fname au_lname

-------- --------

Hallie Hull

Klee Hull

Figure 13.5 Result of Listing 13.10.

Listing 13.11 List the names of the authors from
California. See Figure 13.6 for the result.

SELECT au_fname, au_lname

FROM au_names

WHERE state = 'CA';

Listing

ERROR: Invalid column name 'state'.

Figure 13.6 Result of Listing 13.11. The view au_names
references authors but hides the column state, so
referring to state through the view causes an error.

Updating Data
Through a View
An updateable view is a view to which you

can apply INSERT, UPDATE, and DELETE opera-

tions to modify data in the underlying table(s).

Any changes made in an updateable view

always pass through to the base table(s)

unambiguously. The syntax for the INSERT,

UPDATE, and DELETE statements is the same

for views as it is for tables; see Chapter 10.

A nonupdateable (or read-only) view is one

that doesn’t support INSERT, UPDATE, and

DELETE operations because changes would be

ambiguous. To change the data that appear

in a read-only view, you must change the

underlying table(s) directly (or through

another, nonambiguous view).

Each row in an updateable view is associated

with exactly one row in an underlying base

table. A view isn’t updateable if its SELECT
statement uses GROUP BY, HAVING, DISTINCT,

or aggregate functions, for example.

SQL-92 said that an updateable view must

be defined over only one table, which is

stringent but very safe. SQL:1999 relaxed

that restriction because many more types

of updateable views exist. By the time that

standard was released, the DBMS vendors

already offered an expanded set of update-

able views. Single-table views always are

updateable. DBMSs also examine the under-

lying tables’ joins and referential-integrity

constraints of a multitable view to deter-

mine whether the view is updateable. Here

are some of the types of queries that can

define updateable views:

◆ One-to-one inner joins

◆ One-to-one outer joins

◆ One-to-many inner joins

◆ One-to-many outer joins

◆ Many-to-many joins

◆ UNION and EXCEPT queries

The examples in this section use updateable

views that reference only one underlying

table. See your DBMS documentation to

find out which multitable views you can

update and how those updates affect each

base table.

394

Chapter 13

U
p

d
a

t
i
n

g
 D

a
t
a

 T
h

r
o

u
g

h
 a

 V
i
e

w

Inserting a row through a view
Consider the view ny_authors, which consists

of the IDs, names, and states of only those

authors from New York State (Listing 13.12

and Figure 13.7). ny_authors references

only the base table authors.

Listing 13.13 inserts a new row through a

view. The DBMS inserts a new row into the

table authors. The row contains A08 in the

column au_id, Don in au_fname, Dawson

in au_lname, and NY in state. The other

columns in the row—phone, address, city,

and zip—are set to null (or their default

values, if DEFAULT constraints exist).

Listing 13.14, like Listing 13.13, inserts a

new row through a view. But this time, the

new author is from California, not New York,

which violates the WHERE condition in the

view’s definition. Does the DBMS insert the

row or cancel the operation? The answer

depends on how the view was created. In this

particular example, the insertion is allowed

because the CREATE VIEW statement (see

Listing 13.12) lacks a WITH CHECK OPTION
clause, so the DBMS isn’t forced to maintain

consistency with the view’s original definition.

For information about WITH CHECK OPTION,

see the DBMS Tip in “Creating a View with

CREATE VIEW” earlier in this chapter. The

DBMS would have canceled the insertion if

ny_authors were defined as:

CREATE VIEW ny_authors

AS

SELECT au_id, au_fname, au_lname,

state

FROM authors

WHERE state = ‘NY’

WITH CHECK OPTION;

395

Views

U
p

d
a

t
i
n

g
 D

a
t
a

 T
h

r
o

u
g

h
 a

 V
i
e

w

Listing 13.12 Create and display the view ny_authors,
which lists the IDs, names, and states of only those
authors from New York state. See Figure 13.7 for
the result.

CREATE VIEW ny_authors

AS

SELECT au_id, au_fname, au_lname, state

FROM authors

WHERE state = 'NY';

SELECT *

FROM ny_authors;

Listing

au_id au_fname au_lname state

----- --------- -------- -----

A01 Sarah Buchman NY

A05 Christian Kells NY

Figure 13.7 Result of Listing 13.12: the view
ny_authors.

Listing 13.13 Insert a new row through the view
ny_authors.

INSERT INTO ny_authors

VALUES('A08','Don','Dawson','NY');

Listing

Listing 13.14 Insert a new row through the view
ny_authors. The DBMS would cancel this insertion if
WITH CHECK OPTION had been used when ny_authors
was created.

INSERT INTO ny_authors

VALUES('A09','Jill','LeFlore','CA');

Listing

Updating a row through a view
Listing 13.15 updates an existing row

through a view. The DBMS updates the row

for author A01 in the table authors by chang-

ing the author’s name from Sarah Buchman

to Yasmin Howcomely. The values in the

other columns in the row—au_id, phone,

address, city, state, and zip—don’t change.

But suppose that Listing 13.15 looked

like this:

UPDATE ny_authors

SET au_fname = ‘Yasmin’,

au_lname = ‘Howcomely’,

state = ‘CA’

WHERE au_id = ‘A01’;

This statement presents the same problem

as Listing 13.14: The desired change would

cause Yasmin’s row to no longer meet the

conditions for membership in the view.

Again, the DBMS will accept or reject the

UPDATE depending on whether the WITH CHECK
OPTION clause was specified when the view

was created. If WITH CHECK OPTION is used,

rows can’t be modified in a way that causes

them to disappear from the view.

396

Chapter 13

U
p

d
a

t
i
n

g
 D

a
t
a

 T
h

r
o

u
g

h
 a

 V
i
e

w

Listing 13.15 Update an existing row through the view
ny_authors.

UPDATE ny_authors

SET au_fname = 'Yasmin',

au_lname = 'Howcomely'

WHERE au_id = 'A01';

Listing

Deleting a row through a view
Listing 13.16 deletes a row through a view.

The DBMS deletes the row for author A05

in the table authors. (Every column in the

row is deleted, not just those in the view.)

In turn, the row disappears from the view

ny_authors.

View updates can have integrity repercussions,

of course. The DBMS will disallow a deletion if

removing a row violates a referential-integrity

constraint; see “Specifying a Foreign Key with

FOREIGN KEY” in Chapter 11. If you delete a

row, all the underlying FOREIGN KEY constraints

in related tables must still be satisfied for the

deletion to succeed. Some updating can be

handled by the CASCADE option (if specified)

of a FOREIGN KEY constraint, not by the

view definition.

In Listing 13.16, for example, the DBMS

will cancel the DELETE if I don’t first change

or delete the foreign-key values in the

table title_authors that point to author

A05 in authors.

✔ Tips

■ An updateable view must contain a key

of the base table to ensure that each view

row maps back to only one row in the

base table.

■ Any column excluded from an update-

able view must be nullable or have a

DEFAULT constraint in the base table, so

that the DBMS can construct the entire

row for insertion.

■ Updated values must adhere to the base

table’s column restrictions, such as data

type, nullability, and other constraints.

397

Views

U
p

d
a

t
i
n

g
 D

a
t
a

 T
h

r
o

u
g

h
 a

 V
i
e

w

Listing 13.16 Delete a row through the view
ny_authors.

DELETE FROM ny_authors

WHERE au_id = 'A05';

Listing

■ Some arithmetically derived columns are

(theoretically) updateable. In a view with

the derived column bonus = 0.1 * salary,

for example, you’d expect to be able to

update bonus and have SQL apply the

inverse function (bonus/0.1) to update

salary in the base table. Your expecta-

tions would be dashed, however, because

SQL won’t back-propagate updates in

derived columns.

■ For complex updateable views, one type

of operation can involve other types.

A view UPDATE, for example, might

involve INSERTing new base rows.

■ To run Listing 13.12 in

Microsoft SQL Server, omit

the terminating semicolon from the

CREATE VIEW statement and run the two

statements separately.

MySQL 5.0 and later support views.

Earlier versions won’t run the listings in

this section.

PostgreSQL doesn’t offer updateable

views, but you can use its rule system to

create the illusion of an updateable view

by defining ON INSERT, ON UPDATE, and ON
DELETE rules. Search PostgreSQL documen-

tation for CREATE RULE or rule system.

For all DBMSs, check the documenta-

tion to see how your DBMS handles

updateable views for columns whose data

type generates a unique row identifier

automatically; see “Unique Identifiers”

in Chapter 3.

Dropping a View
with DROP VIEW
Use the DROP VIEW statement to destroy a

view. Because a view is physically independ-

ent of its underlying table(s), you can drop

the view at any time without affecting the

table(s). All SQL programs, applications, and

other views that reference the dropped view

will break, however.

To drop a view:

◆ Type:

DROP VIEW view;

view is the name of the view to drop

(Listing 13.17).

✔ Tips

■ Dropping a table doesn’t drop the views

that reference that table, so you must

drop the views with DROP VIEW explicitly;

see “Dropping a Table with DROP TABLE” in

Chapter 11.

■ MySQL 5.0 and later support

views. Earlier versions won’t

run the listing in this section.

398

Chapter 13

D
r

o
p

p
i
n

g
 a

 V
i
e

w
 w

i
t

h
 D

R
O

P
V

I
E

W

Listing 13.17 Drop the view ny_authors.

DROP VIEW ny_authors;

Listing

A transaction is a sequence of one or more SQL

statements executed as a single logical unit

of work. The DBMS considers a transaction

to be an indivisible, all-or-nothing proposition:

It executes all the transaction’s statements

as a group, or it executes none of them.

Canonical law requires me to illustrate the

importance of transactions with a banking

example. Suppose that a customer transfers

$500 from her savings account to her check-

ing account. This operation consists of two

separate actions, executed sequentially:

1. Decrement savings balance by $500.

2. Increment checking balance by $500.

Figure 14.1 shows the two SQL statements

for this transaction. Now imagine that the

DBMS fails—power outage, system crash,

hardware problem—after it executes the

first statement but before the second. The

accounts would be out of balance without

your knowledge. Accusations of malfeasance

and prison time would soon follow.

To avoid a police record, use a transaction to

guarantee that both SQL statements are per-

formed to maintain the accounts in proper

balance. When something prevents one of the

statements in a transaction from executing,

the DBMS undoes (rolls back) the other state-

ments of the transaction. If no error occurs,

the changes are made permanent (committed).

399

Transactions
14

T
r

a
n

s
a

c
t

i
o

n
s

UPDATE savings_accounts

SET balance = balance - 500.00

WHERE account_number = 1009;

UPDATE checking_accounts

SET balance = balance + 500.00

WHERE account_number = 6482;

Figure 14.1 Two SQL statements are needed when a
banking customer transfers money from savings to
checking.

Executing a Transaction
To learn how transactions work, you need to

learn a few terms:

Commit. Committing a transaction makes

all data modifications performed since the

start of the transaction a permanent part of

the database. After a transaction is commit-

ted, all changes made by the transaction

become visible to other users and are guar-

anteed to be permanent if a crash or other

failure occurs.

Roll back. Rolling back a transaction

retracts any of the changes resulting from

the SQL statements in the transaction.

After a transaction is rolled back, the affected

data are left unchanged, as though the

SQL statements in the transaction were

never executed.

Transaction log. The transaction log file,

or just log, is a serial record of all modifica-

tions that have occurred in a database via

transactions. The transaction log records

the start of each transaction, the changes to

the data, and enough information to undo

or redo the changes made by the transaction

(if necessary later). The log grows continually

as transactions occur in the database.

Although it’s the DBMS’s responsibility to

ensure the physical integrity of each trans-

action, it’s your responsibility to start and

end transactions at points that enforce the

logical consistency of the data, according to

the rules of your organization or business.

A transaction should contain only the SQL

statements necessary to make a consistent

change—no more and no fewer. Data in all

referenced tables must be in a consistent

state before the transaction begins and after

it ends.

When you’re designing and executing trans-

actions, some important considerations are:

◆ Transaction-related SQL statements

modify data, so your database adminis-

trator might need to grant you permission

to run them.

◆ Transaction processing applies to state-

ments that change data or database

objects (INSERT, UPDATE, DELETE, CREATE,

ALTER, DROP—the list varies by DBMS).

For production databases, every such

statement should be executed as part

of a transaction.

◆ A committed transaction is said to be

durable, meaning that its changes

remain in place permanently, persisting

even if the system fails.

400

Chapter 14

E
x

e
c

u
t

i
n

g
 a

 T
r

a
n

s
a

c
t

i
o

n

◆ A DBMS’s data-recovery mechanism

depends on transactions. When the DBMS

is brought back online following a failure,

the DBMS checks its transaction log to see

whether all transactions were committed

to the database. If it finds uncommitted

(partially executed) transactions, it rolls

them back based on the log. You must

resubmit the rolled-back transactions

(although some DBMSs can complete

unfinished transactions automatically).

◆ A DBMS’s backup/restore facility

depends on transactions. The backup

facility takes regular snapshots of the

database and stores them with (subse-

quent) transaction logs on a backup

disk. Suppose that a crash damages a

production disk in a way that renders

the data and transaction log unreadable.

You can invoke the restore facility, which

will use the most recent database back-

up and then execute, or roll forward, all

committed transactions in the log from

the time the snapshot was taken to the

last transaction preceding the failure.

This restore operation brings the data-

base to its correct state before the crash.

(Again, you’ll have to resubmit uncom-

mitted transactions.)

◆ For obvious reasons, you should store

a database and its transaction log on

separate physical disks.

401

Transactions

E
x

e
c

u
t

i
n

g
 a

 T
r

a
n

s
a

c
t

i
o

n

Concurrency Control

To humans, computers appear to carry out two or more processes at the same time. In reality,

computer operations occur not concurrently, but in sequence. The illusion of simultaneity appears

because a microprocessor works with much smaller time slices than people can perceive. In a

DBMS, concurrency control is a group of strategies that prevents loss of data integrity caused by

interference between two or more users trying to access or change the same data simultaneously.

DBMSs use locking strategies to ensure transactional integrity and database consistency.

Locking restricts data access during read and write operations; thus, it prevents users from

reading data that are being changed by other users and prevents multiple users from chang-

ing the same data at the same time. Without locking, data can become logically incorrect,

and statements executed against those data can return unexpected results. Occasionally

you’ll end up in a deadlock, where you and another user, each having locked a piece of data

needed for the other’s transaction, attempt to get a lock on each other’s piece. Most DBMSs

can detect and resolve deadlocks by rolling back one user’s transaction so that the other can

proceed (otherwise, you’d both wait forever for the other to release the lock). Locking mecha-

nisms are very sophisticated; search your DBMS documentation for locking.

Concurrency transparency is the appearance from a transaction’s perspective that it’s the only

transaction operating on the database. A DBMS isolates a transaction’s changes from changes

made by any other concurrent transactions. Consequently, a transaction never sees data in

an intermediate state; either it sees data in the state they were in before another concurrent

transaction changed them, or it sees the data after the other transaction has completed. Isolated

transactions let you reload starting data and replay (roll forward) a series of transactions to end

up with the data in the same state they were in after the original transactions were executed.

For a transaction to be executed in all-or-

nothing fashion, the transaction’s boundaries

(starting and ending points) must be clear.

These boundaries let the DBMS execute

the statements as one atomic unit of work.

A transaction can start implicitly with the

first executable SQL statement or explicitly

with the START TRANSACTION statement. A

transaction ends explicitly with a COMMIT or

ROLLBACK statement (it never ends implicitly).

You can’t roll back a transaction after you

commit it.

Oracle and DB2 transactions

always start implicitly, so those

DBMSs have no statement that marks

the start of a transaction. In Microsoft

Access, Microsoft SQL Server, MySQL,

and PostgreSQL, you can (or must) start

a transaction explicitly by using the BEGIN
statement. SQL:1999 introduced the START
TRANSACTION statement—long after these

DBMSs already were using BEGIN to start

transactions, so the extended BEGIN syntax

varies by DBMS. MySQL and PostgreSQL

support START TRANSACTION (as a synonym

for BEGIN).

To start a transaction explicitly:

◆ In Microsoft Access or Microsoft SQL

Server, type:

BEGIN TRANSACTION;

or

In MySQL or PostgreSQL, type:

START TRANSACTION;

To commit a transaction:

◆ Type:

COMMIT;

To roll back a transaction:

◆ Type:

ROLLBACK;

402

Chapter 14

E
x

e
c

u
t

i
n

g
 a

 T
r

a
n

s
a

c
t

i
o

n

Listing 14.1 Within a transaction block, UPDATE
operations (like INSERT and DELETE operations) are
never final. See Figure 14.2 for the result.

SELECT SUM(pages), AVG(price) FROM titles;

BEGIN TRANSACTION;

UPDATE titles SET pages = 0;

UPDATE titles SET price = price * 2;

SELECT SUM(pages), AVG(price) FROM titles;

ROLLBACK;

SELECT SUM(pages), AVG(price) FROM titles;

Listing

SUM(pages) AVG(price)

---------- ----------

5107 18.3875

SUM(pages) AVG(price)

---------- ----------

0 36.7750

SUM(pages) AVG(price)

---------- ----------

5107 18.3875

Figure 14.2 Result of Listing 14.1. The results of the
SELECT statements show that the DBMS cancelled the
transaction.

The SELECT statements in Listing 14.1 show

that the UPDATE operations are performed by

the DBMS and then undone by a ROLLBACK
statement. See Figure 14.2 for the result.

Listing 14.2 shows a more practical example

of a transaction. I want to delete the pub-

lisher P04 from the table publishers without

generating a referential-integrity error. Because

some of the foreign-key values in titles
point to publisher P04 in publishers, I first

need to delete the related rows from the tables

titles, titles_authors, and royalties. I use

a transaction to be certain that all the DELETE
statements are executed. If only some of the

statements were successful, the data would

be left inconsistent. (For information about

referential-integrity checks, see “Specifying a

Foreign Key with FOREIGN KEY” in Chapter 11.)

403

Transactions

E
x

e
c

u
t

i
n

g
 a

 T
r

a
n

s
a

c
t

i
o

n

Listing 14.2 Use a transaction to delete publisher P04
from the table publishers and delete P04’s related
rows in other tables.

BEGIN TRANSACTION;

DELETE FROM title_authors

WHERE title_id IN

(SELECT title_id

FROM titles

WHERE pub_id = 'P04');

DELETE FROM royalties

WHERE title_id IN

(SELECT title_id

FROM titles

WHERE pub_id = 'P04');

DELETE FROM titles

WHERE pub_id = 'P04';

DELETE FROM publishers

WHERE pub_id = 'P04';

COMMIT;

Listing

ACID

ACID is an acronym that summarizes the properties of a transaction:

Atomicity. Either all of a transaction’s data modifications are performed, or none of them are.

Consistency. A completed transaction leaves all data in a consistent state that maintains

all data integrity. A consistent state satisfies all defined database constraints. (Note that con-

sistency isn’t necessarily preserved at any intermediate point within a transaction.)

Isolation. A transaction’s effects are isolated (or concealed) from those of all other trans-

actions. See the sidebar “Concurrency Control” earlier in this chapter.

Durability. After a transaction completes, its effects are permanent and persist even if the

system fails.

Transaction theory is a big topic, separate from the relational model. A good reference is

Transaction Processing: Concepts and Techniques by Jim Gray and Andreas Reuter (Morgan

Kaufmann).

✔ Tips

■ Don’t forget to end transactions explicitly

with either COMMIT or ROLLBACK. A missing

endpoint could lead to huge transactions

with unpredictable results on the data or,

on abnormal program termination, rollback

of the last uncommitted transaction. Keep

your transactions as small as possible

because they can lock rows, entire tables,

indexes, and other resources for their

duration. COMMIT or ROLLBACK releases the

resources for other transactions.

■ You can nest transactions. The maximum

number of nesting levels depends on

the DBMS.

■ It’s faster to UPDATE multiple columns

with a single SET clause than to use

multiple UPDATEs. For example, the query

UPDATE mytable

SET col1 = 1

col2 = 2

col3 = 3

WHERE col1 <> 1

OR col2 <> 2

OR col3 <> 3;

is better than three UPDATE statements

because it decreases logging (although

it increases locking).

■ By default, DBMSs run in autocommit

mode unless overridden by either explicit

or implicit transactions (or turned off

with a system setting). In this mode,

each statement is executed as its own

transaction. If a statement completes

successfully, the DBMS commits it; if the

DBMS encounters any error, it rolls back

the statement.

■ For long transactions, you can set arbitrary

intermediate markers, called savepoints,

to divide a transaction into smaller parts.

Savepoints let you roll back changes made

from the current point in the transaction

to a location earlier in the transaction

(provided that the transaction hasn’t

been committed). Imagine a session in

which you’ve made a complex series of

uncommitted INSERTs, UPDATEs, and

DELETEs and then realize that the last few

changes are incorrect or unnecessary.

You can use savepoints to avoid resub-

mitting every statement. Microsoft

Access doesn’t support savepoints.

For Oracle, DB2, MySQL, and

PostgreSQL, use the statement

SAVEPOINT savepoint_name;

For Microsoft SQL Server, use the

statement

SAVE TRANSACTION savepoint_name;

See your DBMS documentation for infor-

mation about savepoint locking subtleties

and how to COMMIT or ROLLBACK to a par-

ticular savepoint.

■ In Microsoft Access, you can’t

execute transactions in a SQL

View window or via DAO; you must use the

Microsoft Jet OLE DB Provider and ADO.

Oracle and DB2 transactions begin

implicitly. To run Listings 14.1 and 14.2

in Oracle and DB2, omit the statement

BEGIN TRANSACTION;.

To run Listings 14.1 and 14.2 in MySQL,

change the statement BEGIN TRANSACTION;
to START TRANSACTION; (or to BEGIN;).

MySQL supports transactions through

InnoDB and BDB tables; search the

MySQL documentation for transactions.

Microsoft SQL Server, Oracle, MySQL,

and PostgreSQL support the statement

SET TRANSACTION to set the characteris-

tics of the upcoming transaction. DB2

transaction characteristics are controlled

via server-level and connection initializa-

tion settings.

404

Chapter 14

E
x

e
c

u
t

i
n

g
 a

 T
r

a
n

s
a

c
t

i
o

n

This chapter describes how to solve com-

mon problems with SQL programs that

◆ Contain nonobvious or clever combina-

tions of standard SQL elements, or

◆ Use nonstandard (DBMS-specific) SQL

elements that obviate the need for con-

voluted solutions in standard SQL

I call these queries tricks, but they’re actu-

ally part of the arsenal of any experienced

SQL programmer. You can find deeper

descriptions of the query techniques used

in this chapter in the books listed in the

“Advanced SQL Books” sidebar.

405

SQL Tricks
15

S
Q

L
T

r
i
c

k
s

Advanced SQL Books

Inside Microsoft SQL Server 2005:

T-SQL Querying by Itzik Ben-Gan, et al.

(Microsoft Press)

Joe Celko’s SQL for Smarties by Joe Celko

(Morgan Kaufmann)

SQL Hacks by Andrew Cumming and

Gordon Russell (O’Reilly)

MySQL Cookbook by Paul DuBois

(O’Reilly)

The Guru’s Guide to Transact-SQL by

Ken Henderson (Addison-Wesley)

SQL Cookbook by Anthony Molinaro

(O’Reilly)

The Essence of SQL by David Rozenshtein

(Coriolis)

Optimizing Transact-SQL by David

Rozenshtein, et al. (SQL Forum Press)

Developing Time-Oriented Database

Applications in SQL by Richard T.

Snodgrass (Morgan Kaufmann)

Transact-SQL Cookbook by Ales Spetic

and Jonathan Gennick (O’Reilly)

Calculating Running
Statistics
A running (or cumulative) statistic is a row-

by-row calculation that uses progressively

more data values, starting with a single value

(the first value), continuing with more val-

ues in the order in which they’re supplied,

and ending with all the values. A running

sum (total) and running average (mean) are

the most common running statistics.

Listing 15.1 calculates the running sum and

running average of book sales, along with a

cumulative count of data items. The query

cross-joins two instances of the table titles,

grouping the result by the first-table (t1) title

IDs and limiting the second-table (t2) rows

to ID values smaller than or equal to the t1
row to which they’re joined. The intermedi-

ate cross-joined table, to which SUM(), AVG(),

and COUNT() are applied, looks like this:

t1.id t1.sales t2.id t2.sales

————— ———————— ————— ————————

T01 566 T01 566

T02 9566 T01 566

T02 9566 T02 9566

T03 25667 T01 566

T03 25667 T02 9566

T03 25667 T03 25667

T04 13001 T01 566

T04 13001 T02 9566

T04 13001 T03 25667

T04 13001 T04 13001

T05 201440 T01 566

...

Note that the running statistics don’t

change for title T10 because its sales value

is null. The ORDER BY clause is necessary

because GROUP BY doesn’t sort the result

implicitly. See Figure 15.1 for the result.

406

Chapter 15

C
a

l
c

u
l

a
t

i
n

g
 R

u
n

n
i
n

g
 S

t
a

t
i
s

t
i
c

s

Listing 15.1 Calculate the running sum, average, and
count of book sales. See Figure 15.1 for the result.

SELECT

t1.title_id,

SUM(t2.sales) AS RunSum,

AVG(t2.sales) AS RunAvg,

COUNT(t2.sales) AS RunCount

FROM titles t1, titles t2

WHERE t1.title_id >= t2.title_id

GROUP BY t1.title_id

ORDER BY t1.title_id;

Listing

title_id RunSum RunAvg RunCount

-------- ------- ------ --------

T01 566 566 1

T02 10132 5066 2

T03 35799 11933 3

T04 48800 12200 4

T05 250240 50048 5

T06 261560 43593 6

T07 1761760 251680 7

T08 1765855 220731 8

T09 1770855 196761 9

T10 1770855 196761 9

T11 1864978 186497 10

T12 1964979 178634 11

T13 1975446 164620 12

Figure 15.1 Result of Listing 15.1.

A moving average is a way of smoothing a

time series (such as a list of stock prices

over time) by replacing each value by an

average of that value and its nearest neigh-

bors. Calculating a moving average is easy if

you have a column that contains a sequence

of integers or dates, such as in this table,

named time_series:

seq price

——— —————

1 10.0

2 10.5

3 11.0

4 11.0

5 10.5

6 11.5

7 12.0

8 13.0

9 15.0

10 13.5

11 13.0

12 12.5

13 12.0

14 12.5

15 11.0

Listing 15.2 calculates the moving average

of price. See Figure 15.2 for the result. Each

value in the result’s moving-average column

is the average of five values: the price in the

current row and the prices in the four preced-

ing rows (as ordered by seq). The first four

rows are omitted because they don’t have

the required number of preceding values.

You can adjust the values in the WHERE clause

to cover any size averaging window. To make

Listing 15.2 calculate a five-point moving

average that averages each price with the

two prices before it and the two prices after

it, for example, change the WHERE clause to:

WHERE t1.seq >= 3

AND t1.seq <= 13

AND t1.seq BETWEEN t2.seq - 2 AND

t2.seq + 2

407

SQL Tricks

C
a

l
c

u
l

a
t

i
n

g
 R

u
n

n
i
n

g
 S

t
a

t
i
s

t
i
c

s

Listing 15.2 Calculate a moving average with a five-
point window. See Figure 15.2 for the result.

SELECT t1.seq, AVG(t2.price) AS MovingAvg

FROM time_series t1, time_series t2

WHERE t1.seq >= 5

AND t1.seq BETWEEN t2.seq AND

t2.seq + 4

GROUP BY t1.seq

ORDER BY t1.seq;

Listing

seq MovingAvg

--- ---------

5 10.6

6 10.9

7 11.2

8 11.6

9 12.4

10 13.0

11 13.3

12 13.4

13 13.2

14 12.7

15 12.2

Figure 15.2 Result of Listing 15.2.

If you have a table that already has running

totals, you can calculate the differences

between pairs of successive rows. Listing 15.3

backs out the intercity distances from the fol-

lowing table, named roadtrip, which con-

tains the cumulative distances for each leg of

a trip from Seattle, Washington, to San Diego,

California. See Figure 15.3 for the result.

seq city miles

——— ————————————————— —————

1 Seattle, WA 0

2 Portland, OR 174

3 San Francisco, CA 808

4 Monterey, CA 926

5 Los Angeles, CA 1251

6 San Diego, CA 1372

✔ Tips

■ Listings 15.1 and 15.2 give inaccurate

results if the grouping column contains

duplicate values.

■ See Listing 8.21 in Chapter 8 for another

way to calculate a running statistic.

■ In Oracle and DB2, you can use

window functions to calculate

running statistics; for example:

SELECT title_id, sales,

SUM(sales) OVER (ORDER BY title_id)

AS RunSum

FROM titles

ORDER BY title_id;

408

Chapter 15

C
a

l
c

u
l

a
t

i
n

g
 R

u
n

n
i
n

g
 S

t
a

t
i
s

t
i
c

s

Listing 15.3 Calculate intercity distances from
cumulative distances. See Figure 15.3 for the result.

SELECT

t1.seq AS seq1,

t2.seq AS seq2,

t1.city AS city1,

t2.city AS city2,

t1.miles AS miles1,

t2.miles AS miles2,

t2.miles - t1.miles AS dist

FROM roadtrip t1, roadtrip t2

WHERE t1.seq + 1 = t2.seq

ORDER BY t1.seq;

Listing

seq1 seq2 city1 city2 miles1 miles2 dist

---- ---- ----------------- ----------------- ------ ------ ----

1 2 Seattle, WA Portland, OR 0 174 174

2 3 Portland, OR San Francisco, CA 174 808 634

3 4 San Francisco, CA Monterey, CA 808 926 118

4 5 Monterey, CA Los Angeles, CA 926 1251 325

5 6 Los Angeles, CA San Diego, CA 1251 1372 121

Figure 15.3 Result of Listing 15.3.

Generating Sequences
Recall from “Unique Identifiers” in Chapter 3

that you can use sequences of autogenerated

integers to create identity columns (typically

for primary keys). The SQL standard pro-

vides sequence generators to create them.

To define a sequence generator:

◆ Type:

CREATE SEQUENCE seq_name

[INCREMENT [BY] increment]

[MINVALUE min | NO MINVALUE]

[MAXVALUE max | NO MAXVALUE]

[START [WITH] start]

[[NO] CYCLE];

seq_name is the name (a unique identi-

fier) of the sequence to create.

increment specifies which value is added

to the current sequence value to create

a new value. A positive value will make

an ascending sequence; a negative one,

a descending sequence. The value

of increment can’t be zero. If the clause

INCREMENT BY is omitted, the default

increment is 1.

min specifies the minimum value that

a sequence can generate. If the clause

MINVALUE is omitted or NO MINVALUE is

specified, a default minimum is used.

The defaults vary by DBMS, but they’re

typically 1 for an ascending sequence or

a very large number for a descending one.

max (> min) specifies the maximum value

that a sequence can generate. If the clause

MAXVALUE is omitted or NO MAXVALUE is

specified, a default maximum is used. The

defaults vary by DBMS, but they’re typi-

cally a very large number for an ascending

sequence or –1 for a descending one.

start specifies the first value of the

sequence. If the clause START WITH is

omitted, the default starting value is

min for an ascending sequence or max

for a descending one.

CYCLE indicates that the sequence con-

tinues to generate values after reaching

either its min or max. After an ascending

sequence reaches its maximum value,

it generates its minimum value. After a

descending sequence reaches its mini-

mum, it generates its maximum value.

NO CYCLE (the default) indicates that the

sequence can’t generate more values after

reaching its maximum or minimum value.

409

SQL Tricks

G
e

n
e

r
a

t
i
n

g
 S

e
q

u
e

n
c

e
s

Listing 15.4 defines the sequence shown

in Figure 15.4. You can use a sequence

generator in a few ways. The SQL standard

provides the built-in function NEXT VALUE FOR
to increment a sequence value, as in:

INSERT INTO shipment(

part_num,

desc,

quantity)

VALUES(

NEXT VALUE FOR part_seq,

‘motherboard’,

5);

If you’re creating a column of unique

values, you can use the keyword IDENTITY
to define a sequence right in the CREATE
TABLE statement:

CREATE TABLE parts (

part_num INTEGER AS

IDENTITY(INCREMENT BY 1

MINVALUE 1

MAXVALUE 10000

START WITH 1

NO CYCLE),

desc AS VARCHAR(100),

quantity INTEGER;

This table definition lets you omit NEXT
VALUE FOR when you insert a row:

INSERT INTO shipment(

desc,

quantity)

VALUES(

‘motherboard’,

5);

SQL also provides ALTER SEQUENCE and

DROP SEQUENCE to change and remove

sequence generators.

410

Chapter 15

G
e

n
e

r
a

t
i
n

g
 S

e
q

u
e

n
c

e
s

Listing 15.4 Create a sequence generator for the
consecutive integers 1 to 10,000. See Figure 15.4 for
the result.

CREATE SEQUENCE part_seq

INCREMENT BY 1

MINVALUE 1

MAXVALUE 10000

START WITH 1

NO CYCLE;

Listing

1

2

3

...

9998

9999

10000

Figure 15.4 The sequence that Listing 15.4 generates.

✔ Tip

■ Oracle, DB2, and PostgreSQL

support CREATE SEQUENCE, ALTER
SEQUENCE, and DROP SEQUENCE. In Oracle,

use NOCYCLE instead of NO CYCLE. See

your DBMS documentation to see how

sequences are used in your system.

Most DBMSs don’t support IDENTITY
columns because they have other (pre-

SQL:2003) ways that define columns with

unique values. See Table 3.18 in “Unique

Identifiers” in Chapter 3. PostgreSQL’s

generate_series() function offers a

quick way to generate numbered rows.

A one-column table containing a sequence

of consecutive integers makes it easy to

solve problems that would otherwise be

difficult with SQL’s limited computational

power. Sequence tables aren’t really part of

the data model—they’re auxiliary tables that

are adjuncts to queries and other “real” tables.

You can create a sequence table by using one

of the methods just described. Alternatively,

you can create one by using Listing 15.5,

which creates the sequence table seq by

cross-joining the intermediate table temp09
with itself. The CAST expression concatenates

digit characters into sequential numbers

and then casts them as integers. You can

drop temp09 after seq is created. Figure 15.5

shows the result. The table seq contains the

integer sequence 0, 1, 2, …, 9999. You can

shrink or grow this sequence by changing

the SELECT and FROM expressions in the

INSERT INTO seq statement.

411

SQL Tricks

G
e

n
e

r
a

t
i
n

g
 S

e
q

u
e

n
c

e
s

Listing 15.5 Create a one-column table that contains
consecutive integers. See Figure 15.5 for the result.

CREATE TABLE temp09 (

i CHAR(1) NOT NULL PRIMARY KEY

);

INSERT INTO temp09 VALUES('0');

INSERT INTO temp09 VALUES('1');

INSERT INTO temp09 VALUES('2');

INSERT INTO temp09 VALUES('3');

INSERT INTO temp09 VALUES('4');

INSERT INTO temp09 VALUES('5');

INSERT INTO temp09 VALUES('6');

INSERT INTO temp09 VALUES('7');

INSERT INTO temp09 VALUES('8');

INSERT INTO temp09 VALUES('9');

CREATE TABLE seq (

i INTEGER NOT NULL PRIMARY KEY

);

INSERT INTO seq

SELECT CAST(t1.i || t2.i ||

t3.i || t4.i AS INTEGER)

FROM temp09 t1, temp09 t2,

temp09 t3, temp09 t4;

DROP TABLE temp09;

Listing

i

0

1

2

3

4

...

9996

9997

9998

9999

Figure 15.5 Result of Listing 15.5.

A sequence table is especially useful for

enumerative and datetime functions.

Listing 15.6 lists the 95 printable charac-

ters in the ASCII character set (if that’s the

character set in use). See Figure 15.6 for

the result.

Listing 15.7 adds monthly intervals to

today’s date (7-March-2005) for the next six

months. See Figure 15.7 for the result. This

example works on Microsoft SQL Server;

the other DBMSs have similar functions that

increment dates.

Sequence tables are handy for normalizing

data that you’ve imported from a non-

relational environment such as a spreadsheet.

Suppose that you have the following non-

normalized table, named au_orders, showing

the order of the authors’ names on each

book’s cover:

title_id author1 author2 author3

———————— ——————— ——————— ———————

T01 A01 NULL NULL

T02 A01 NULL NULL

T03 A05 NULL NULL

T04 A03 A04 NULL

T05 A04 NULL NULL

T06 A02 NULL NULL

T07 A02 A04 NULL

T08 A06 NULL NULL

T09 A06 NULL NULL

T10 A02 NULL NULL

T11 A06 A03 A04

T12 A02 NULL NULL

T13 A01 NULL NULL

Listing 15.8 cross-joins au_orders with seq
to produce Figure 15.8. You can DELETE the

result rows with nulls in the column au_id,

leaving the result set looking like the table

title_authors in the sample database.

Note that Listing 15.8 does the reverse of

Listing 8.18 in Chapter 8.

412

Chapter 15

G
e

n
e

r
a

t
i
n

g
 S

e
q

u
e

n
c

e
s

Listing 15.6 List the characters associated with a set
of character codes. See Figure 15.6 for the result.

SELECT

i AS CharCode,

CHR(i) AS Ch

FROM seq

WHERE i BETWEEN 32 AND 126;

Listing

CharCode Ch

-------- --

32

33 !

34 "

35 #

36 $

37 %

38 &

39 '

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

...

Figure 15.6 Result of Listing 15.6.

413

SQL Tricks

G
e

n
e

r
a

t
i
n

g
 S

e
q

u
e

n
c

e
s

Listing 15.7 Increment today’s date to six months
hence, in one-month intervals. See Figure 15.7 for
the result.

SELECT

i AS MonthsAhead,

DATEADD("m", i, CURRENT_TIMESTAMP)

AS FutureDate

FROM seq

WHERE i BETWEEN 1 AND 6;

Listing

MonthsAhead FutureDate

----------- ----------

1 2005-04-07

2 2005-05-07

3 2005-06-07

4 2005-07-07

5 2005-08-07

6 2005-09-07

Figure 15.7 Result of Listing 15.7.

Listing 15.8 Normalize the table au_orders. See
Figure 15.8 for the result.

SELECT title_id,

(CASE WHEN i=1 THEN '1'

WHEN i=2 THEN '2'

WHEN i=3 THEN '3'

END) AS au_order,

(CASE WHEN i=1 THEN author1

WHEN i=2 THEN author2

WHEN i=3 THEN author3

END) AS au_id

FROM au_orders, seq

WHERE i BETWEEN 1 AND 3

ORDER BY title_id, i;

Listing

title_id au_order au_id

-------- -------- -----

T01 1 A01

T01 2 NULL

T01 3 NULL

T02 1 A01

T02 2 NULL

T02 3 NULL

T03 1 A05

T03 2 NULL

T03 3 NULL

T04 1 A03

T04 2 A04

T04 3 NULL

T05 1 A04

T05 2 NULL

T05 3 NULL

T06 1 A02

T06 2 NULL

T06 3 NULL

T07 1 A02

T07 2 A04

T07 3 NULL

T08 1 A06

T08 2 NULL

T08 3 NULL

T09 1 A06

T09 2 NULL

T09 3 NULL

T10 1 A02

T10 2 NULL

T10 3 NULL

T11 1 A06

T11 2 A03

T11 3 A04

T12 1 A02

T12 2 NULL

T12 3 NULL

T13 1 A01

T13 2 NULL

T13 3 NULL

Figure 15.8 Result of Listing 15.8.

✔ Tips

■ If you have a column of sequential inte-

gers that’s missing some numbers, you

can fill in the gaps by EXCEPTing the

column with a sequence column. See

“Finding Different Rows with EXCEPT”

earlier in this chapter.

■ To run Listing 15.5 in Microsoft

Access and Microsoft SQL

Server, change the CAST expression to:

t1.i + t2.i + t3.i + t4.i

To run Listing 15.5 in MySQL, change

the CAST expression to:

CONCAT(t1.i, t2.i, t3.i, t4.i)

To run Listing 15.6 in Microsoft SQL

Server and MySQL, change CHR(i)
to CHAR(i).

To run Listing 15.8 in Microsoft Access,

change the CASE expressions to Switch()
function calls (see the DBMS Tip in

“Evaluating Conditional Values with

CASE” in Chapter 5):

(Switch(i=1, ‘1’, i=2, ‘2’,

i=3, ‘3’)) AS au_order,

(Switch(i=1, author1, i=2, author2,

i=3, author3)) AS au_id

414

Chapter 15

G
e

n
e

r
a

t
i
n

g
 S

e
q

u
e

n
c

e
s

Calendar Tables

Another useful auxiliary table is a calendar

table. One type of calendar table has a

primary-key column that contains a row

for each calendar date (past and future)

and other columns that indicate the

date’s attributes: business day, holiday,

international holiday, fiscal-month end,

fiscal-year end, Julian date, business-

day offsets, and so on. Another type of

calendar table stores the starting and

ending dates of events (in the columns

event_id, start_date, and end_date, for

example). Spreadsheets have more date-

arithmetic functions than DBMSs, so it

might be easier to build a calendar table

in a spreadsheet and then import it as a

database table.

Even if your DBMS has plenty of date-

arithmetic functions, it might be faster to

look up data in a calendar table than to

call these functions in a query.

Finding Sequences, Runs,
and Regions
A sequence is a series of consecutive values

without gaps. A run is like a sequence, but

the values don’t have to be consecutive,

just increasing (that is, gaps are allowed).

A region is an unbroken series of values that

all are equal.

Finding these series requires a table that has

at least two columns: a primary-key column

that holds a sequence of consecutive inte-

gers and a column that holds the values of

interest. The table temps (Listing 15.9 and

Figure 15.9) shows a series of high temper-

atures over 15 days.

As a set-oriented language, SQL isn’t a good

choice for finding series of values. The fol-

lowing queries won’t run very fast, so if you

have a lot of data to analyze, you might con-

sider exporting it to a statistical package or

using a procedural host language.

✔ Tip

■ These queries are based on the ideas in

David Rozenshtein, Anatoly Abramovich,

and Eugene Birger’s Optimizing Transact-

SQL: Advanced Programming Techniques

(SQL Forum Press). You can use the

queries’ common framework to create

similar queries that find other series

of values.

415

SQL Tricks

F
i
n

d
i
n

g
 S

e
q

u
e

n
c

e
s

, R
u

n
s

, a
n

d
 R

e
g

i
o

n
s

Listing 15.9 List all the column in the table temps.
See Figure 15.9 for the result.

SELECT *

FROM temps;

Listing

id hi_temp

-- -------

1 49

2 46

3 48

4 50

5 50

6 50

7 51

8 52

9 53

10 50

11 50

12 47

13 50

14 51

15 52

Figure 15.9 Result of Listing 15.9.

Listing 15.10 finds all the sequences in

temps and lists each sequence’s start

position, end position, and length. See

Figure 15.10 for the result. This query

is a lot to take in at first glance, but it’s

easier to understand it if you look at it

piecemeal. Then you’ll be able to under-

stand the rest of the queries in this section.

The subquery’s WHERE clause subtracts id
from hi_temp, yielding (internally):

id hi_temp diff

—— ——————— ————

1 49 48

2 46 44

3 48 45

4 50 46

5 50 45

6 50 44

7 51 44

8 52 44

9 53 44

10 50 40

11 50 39

12 47 35

13 50 37

14 51 37

15 52 37

In the column diff, note that successive

differences are constant for sequences

(50 – 6 = 44, 51 – 7 = 44, and so on). To find

neighboring rows, the outer query cross-joins

two instances of the same table (t1 and t2), as

described in “Calculating Running Statistics”

earlier in this chapter. The condition

WHERE (t1.id < t2.id)

guarantees that any t1 row represents an

element with an index (id) lower than the

corresponding t2 row.

416

Chapter 15

F
i
n

d
i
n

g
 S

e
q

u
e

n
c

e
s

,
R

u
n

s
,

a
n

d
 R

e
g

i
o

n
s

Listing 15.10 List the starting point, ending point,
and length of each sequence in the table temps.
See Figure 15.10 for the result.

SELECT

t1.id AS StartSeq,

t2.id AS EndSeq,

t2.id - t1.id + 1 AS SeqLen

FROM temps t1, temps t2

WHERE (t1.id < t2.id)

AND NOT EXISTS(

SELECT *

FROM temps t3

WHERE (t3.hi_temp - t3.id <>

t1.hi_temp - t1.id

AND t3.id BETWEEN

t1.id AND t2.id)

OR (t3.id = t1.id - 1

AND t3.hi_temp - t3.id =

t1.hi_temp - t1.id)

OR (t3.id = t2.id + 1

AND t3.hi_temp - t3.id =

t1.hi_temp - t1.id)

);

Listing

StartSeq EndSeq SeqSize

-------- ------ -------

6 9 4

13 15 3

Figure 15.10 Result of Listing 15.10.

The subquery detects sequence breaks with

the condition

t3.hi_temp - t3.id <> t1.hi_temp - t1.id

The third instance of temps (t3) in the sub-

query is used to determine whether any row

in a candidate sequence (t3) has the same

difference as the sequence’s first row (t1).

If so, it’s a sequence member. If not, the can-

didate pair (t1 and t2) is rejected.

The last two OR conditions determine whether

the candidate sequence’s borders can expand.

A row that satisfies these conditions means the

current candidate sequence can be extended

and is rejected in favor of a longer one.

✔ Tip

■ To find only sequences larger than n

rows, add the WHERE condition

AND (t2.id - t1.id) >= n - 1

To change Listing 15.10 to find all

sequences of four or more rows, for

example, replace

WHERE (t1.id < t2.id)

with

WHERE (t1.id < t2.id)

AND (t2.id - t1.id) >= 3

The result is:

StartSeq EndSeq SeqSize

———————— —————— ———————

6 9 4

417

SQL Tricks

F
i
n

d
i
n

g
 S

e
q

u
e

n
c

e
s

, R
u

n
s

, a
n

d
 R

e
g

i
o

n
s

Listing 15.11 finds all the runs in temps and

lists each run’s start position, end position,

and length. See Figure 15.11 for the result.

The logic of this query is similar to that

of the preceding one but accounts for run

values needing only to increase, not (neces-

sarily) be consecutive. The fourth instance

of temps (t4) is needed because there doesn’t

have to be a constant difference between id
and hi_temp values. The subquery cross-

joins t3 and t4 to check rows in the middle

of a candidate run, whose borders are t1
and t2. For every element between t1 and t2
(limited by BETWEEN), t3 and its predecessor

t4 are compared to see whether their values

are increasing.

418

Chapter 15

F
i
n

d
i
n

g
 S

e
q

u
e

n
c

e
s

,
R

u
n

s
,

a
n

d
 R

e
g

i
o

n
s

Listing 15.11 List the starting point, ending point, and
length of each run in the table temps. See Figure 15.11
for the result.

SELECT

t1.id AS StartRun,

t2.id AS EndRun,

t2.id - t1.id + 1 AS RunLen

FROM temps t1, temps t2

WHERE (t1.id < t2.id)

AND NOT EXISTS(

SELECT *

FROM temps t3, temps t4

WHERE (t3.hi_temp <= t4.hi_temp

AND t4.id = t3.id - 1

AND t3.id BETWEEN

t1.id + 1 AND t2.id)

OR (t3.id = t1.id - 1

AND t3.hi_temp <

t1.hi_temp)

OR (t3.id = t2.id + 1

AND t3.hi_temp >

t2.hi_temp)

);

Listing

StartRun EndRun RunLen

-------- ------ ------

2 4 3

6 9 4

12 15 4

Figure 15.11 Result of Listing 15.11.

Listing 15.12 finds all regions in temps with

a high temperature of 50 and lists each

region’s start position, end position, and

length. See Figure 15.12 for the result.

✔ Tips

■ To rank regions by length, add an ORDER
BY clause to the outer query:

ORDER BY t2.id - t1.id DESC

■ To list the individual ids that fall in a

region (with value 50), type:

SELECT DISTINCT t1.id

FROM temps t1, temps t2

WHERE t1.hi_temp = 50

AND t2.hi_temp = 50

AND ABS(t1.id - t2.id) = 1;

The standard function ABS(), which all

DBMSs support, returns the absolute

value of its argument. The result is:

id
––

4

5

6

10

11

419

SQL Tricks

F
i
n

d
i
n

g
 S

e
q

u
e

n
c

e
s

, R
u

n
s

, a
n

d
 R

e
g

i
o

n
s

Listing 15.12 List the starting point, ending point, and
length of each region (with value 50) in the table
temps. See Figure 15.12 for the result.

SELECT

t1.id AS StartReg,

t2.id AS EndReg,

t2.id - t1.id + 1 AS RegLen

FROM temps t1, temps t2

WHERE (t1.id < t2.id)

AND NOT EXISTS(

SELECT *

FROM temps t3

WHERE (t3.hi_temp <> 50

AND t3.id BETWEEN

t1.id AND t2.id)

OR (t3.id = t1.id - 1

AND t3.hi_temp = 50)

OR (t3.id = t2.id + 1

AND t3.hi_temp = 50)

);

Listing

StartReg EndReg RegLen

-------- ------ ------

4 6 3

10 11 2

Figure 15.12 Result of Listing 15.12.

Listing 15.13 is a variation of Listing 15.12

that finds all regions of length 2. See

Figure 15.13 for the result. Note that over-

lapping subregions are listed. To return

regions of length n, change the WHERE
clause’s second condition to:

AND t2.id - t1.id = n - 1

420

Chapter 15

F
i
n

d
i
n

g
 S

e
q

u
e

n
c

e
s

,
R

u
n

s
,

a
n

d
 R

e
g

i
o

n
s

Listing 15.13 List all regions of length 2. See
Figure 15.13 for the result.

SELECT

t1.id AS StartReg,

t2.id AS EndReg,

t2.id - t1.id + 1 AS RegLen

FROM temps t1, temps t2

WHERE (t1.id < t2.id)

AND t2.id - t1.id = 1

AND NOT EXISTS(

SELECT *

FROM temps t3

WHERE (t3.hi_temp <> 50

AND t3.id BETWEEN

t1.id AND t2.id)

);

Listing

StartReg EndReg RegLen

-------- ------ ------

4 5 2

5 6 2

10 11 2

Figure 15.13 Result of Listing 15.13.

Limiting the Number of
Rows Returned
In practice it’s common to use queries that

return a certain number (n) of rows that fall

at the top or the bottom of a range specified

by an ORDER BY clause. SQL doesn’t require

an ORDER BY clause, but if you omit it, the

query will return an arbitrary set of rows

(because SQL doesn’t promise to deliver query

results in any particular order without an

ORDER BY clause).

The examples in this section use the table

empsales (Listing 15.14 and Figure 15.14),

which lists sales figures by employee. Note

that some employees have the same sales

amounts. A correct query for the top three

salespeople in empsales actually will return

four rows: employees E09, E02, E10, and E05.

Ties shouldn’t force the query to choose

arbitrarily between equal values (E10 and

E05 in this case). No standard terminology

exists, but queries that return at most n rows

(regardless of ties) sometimes are called

limit queries. Queries that include ties and

return possibly more than n rows are top-n

queries or quota queries.

The SQL:2003 standard introduced

the functions ROW_NUMBER() and

RANK() to use in limit and top-n queries.

Microsoft SQL Server 2005 and later,

Oracle, and DB2 support both functions.

Queries that use pre-2003 SQL are complex,

unintuitive, and run slowly (see the Tips at

the end of this section for an SQL-92 exam-

ple). The SQL standard has lagged DBMSs,

which for years have offered nonstandard

extensions to create these types of queries.

Some DBMSs also let you return a percent-

age of rows (rather than a fixed n) or return

offsets by skipping a specified number of

initial rows (returning rows 3–8 instead of

1–5, for example). This section covers the

DBMS extensions individually.

421

SQL Tricks

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.14 List employees by descending sales. See
Figure 15.14 for the result.

SELECT emp_id, sales

FROM empsales

ORDER BY sales DESC;

Listing

emp_id sales

------ -----

E09 900

E02 800

E10 700

E05 700

E01 600

E04 500

E03 500

E06 500

E08 400

E07 300

Figure 15.14 Result of Listing 15.14.

✔ Tips

■ You also can use these queries to limit

the number of rows affected by an

UPDATE or DELETE (see Chapter 10).

■ Some of these queries might be illegal in

some contexts (such as in subqueries or

views); see your DBMS documentation.

■ Some of the following examples are based

on the ideas in Troels Arvin’s “Comparison

of Different SQL Implementations”

(http://troels.arvin.dk/db/rdbms).

http://troels.arvin.dk/db/rdbms

Microsoft Access
Listing 15.15 lists the top three salespeo-

ple, including ties. See Figure 15.15 for the

result. This query orders highest to lowest;

to reverse the order, change DESC to ASC in

the ORDER BY clause.

Listing 15.16 lists the bottom 40 percent of

salespeople, including ties. See Figure 15.16

for the result. This query orders lowest to

highest; to reverse the order, change ASC to

DESC in the ORDER BY clause.

The TOP clause always includes ties. Its

syntax is:

TOP n [PERCENT]

✔ Tip

■ The following offset query returns n rows

but excludes the topmost skip rows from

the result. This query orders highest to

lowest; to reverse the order, change ASC
to DESC and DESC to ASC in each ORDER BY
clause.

SELECT *

FROM (

SELECT TOP n *

FROM (

SELECT TOP n + skip *

FROM table

ORDER BY sort_col DESC)

ORDER BY sort_col ASC)

ORDER BY sort_col DESC;

422

Chapter 15

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.15 List the top three salespeople, with ties.
See Figure 15.15 for the result.

SELECT TOP 3 emp_id, sales

FROM empsales

ORDER BY sales DESC;

Listing

emp_id sales

------ -----

E09 900

E02 800

E10 700

E05 700

Figure 15.15 Result of Listing 15.15.

Listing 15.16 List the bottom 40 percent of
salespeople, with ties. See Figure 15.16 for the result.

SELECT TOP 40 PERCENT emp_id, sales

FROM empsales

ORDER BY sales ASC;

Listing

emp_id sales

------ -----

E07 300

E08 400

E06 500

E04 500

E03 500

Figure 15.16 Result of Listing 15.16.

Microsoft SQL Server
Listing 15.17 lists the top three salespeo-

ple, not including ties. See Figure 15.17 for

the result. Note that this query is inconsis-

tent when ties exist; rerunning it can return

either E10 or E05, depending on how ORDER
BY sorts the table. This query orders highest

to lowest; to reverse the order, change DESC
to ASC in the ORDER BY clause.

Listing 15.18 lists the top three salespeo-

ple, including ties. See Figure 15.18 for the

result. This query orders highest to lowest;

to reverse the order, change DESC to ASC in

the ORDER BY clause.

423

SQL Tricks

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.17 List the top three salespeople, without
ties. See Figure 15.17 for the result.

SELECT TOP 3 emp_id, sales

FROM empsales

ORDER BY sales DESC;

Listing

emp_id sales

------ -----

E09 900

E02 800

E05 700

Figure 15.17 Result of Listing 15.17.

Listing 15.18 List the top three salespeople, with ties.
See Figure 15.18 for the result.

SELECT TOP 3 WITH TIES emp_id, sales

FROM empsales

ORDER BY sales DESC;

Listing

emp_id sales

------ -----

E09 900

E02 800

E05 700

E10 700

Figure 15.18 Result of Listing 15.18.

Listing 15.19 lists the bottom 40 percent of

salespeople, including ties. See Figure 15.19

for the result. This query orders lowest to

highest; to reverse the order, change ASC to

DESC in the ORDER BY clause.

The TOP clause’s syntax is:

TOP n [PERCENT] [WITH TIES]

✔ Tips

■ The statement SET ROWCOUNT n provides

an alternative method returning n rows.

■ To retrieve a specific subset of ordered

rows, you can use a cursor (not covered

in this book). The following offset query

returns n rows but excludes the topmost

skip rows from the result. This query

orders highest to lowest; to reverse the

order, change ASC to DESC and DESC to ASC
in each ORDER BY clause.

SELECT *

FROM (

SELECT TOP n *

FROM (

SELECT TOP n + skip *

FROM table

ORDER BY sort_col DESC)

AS any_name1

ORDER BY sort_col ASC)

AS any_name2

ORDER BY sort_col DESC;

424

Chapter 15

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.19 List the bottom 40 percent of sales-
people, with ties. See Figure 15.19 for the result.

SELECT TOP 40 PERCENT WITH TIES

emp_id, sales

FROM empsales

ORDER BY sales ASC;

Listing

emp_id sales

------ -----

E07 300

E08 400

E06 500

E03 500

E04 500

Figure 15.19 Result of Listing 15.19.

Oracle
Use the built-in ROWNUM pseudocolumn to

limit the number or rows returned. The first

row selected has a ROWNUM of 1, the second

has 2, and so on. Use the window function

RANK() to include ties.

Listing 15.20 lists the top three salespeo-

ple, not including ties. See Figure 15.20 for

the result. Note that this query is inconsis-

tent when ties exist; re-running it can return

either E10 or E05, depending on how ORDER
BY sorts the table. This query orders highest

to lowest; to reverse the order, change DESC
to ASC in the ORDER BY clause.

Listing 15.21 lists the top three salespeo-

ple, including ties. See Figure 15.21 for the

result. This query orders highest to lowest;

to reverse the order, change DESC to ASC in

the ORDER BY clause.

✔ Tips

■ The function ROW_NUMBER() provides an

alternative method of assigning unique

numbers to rows.

■ To retrieve a specific subset of ordered

rows, you can use a cursor (not covered

in this book). The following offset query

returns n rows but excludes the topmost

skip rows from the result. This query orders

highest to lowest; to reverse the order,

change DESC to ASC in the ORDER BY clause.

SELECT *

FROM (

SELECT

ROW_NUMBER() OVER

(ORDER BY sort_col DESC)

AS rnum,

columns

FROM table)

WHERE rnum > skip

AND rnum <= (n + skip);

425

SQL Tricks

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.20 List the top three salespeople, without
ties. See Figure 15.20 for the result.

SELECT emp_id, sales

FROM (

SELECT *

FROM empsales

ORDER BY sales DESC)

WHERE ROWNUM <= 3;

Listing

emp_id sales

------ -----

E09 900

E02 800

E05 700

Figure 15.20 Result of Listing 15.20.

Listing 15.21 List the top three salespeople, with ties.
See Figure 15.21 for the result.

SELECT emp_id, sales

FROM (

SELECT

RANK() OVER

(ORDER BY sales DESC)

AS sales_rank,

emp_id,

sales

FROM empsales)

WHERE sales_rank <= 3;

Listing

emp_id sales

------ -----

E09 900

E02 800

E05 700

E10 700

Figure 15.21 Result of Listing 15.21.

IBM DB2
Listing 15.22 lists the top three salespeo-

ple, not including ties. See Figure 15.22 for

the result. Note that this query is inconsis-

tent when ties exist; re-running it can return

either E10 or E05, depending on how ORDER
BY sorts the table. This query orders highest

to lowest; to reverse the order, change DESC
to ASC in the ORDER BY clause.

Listing 15.23 lists the top three salespeo-

ple, including ties. See Figure 15.23 for the

result. This query orders highest to lowest; to

reverse the order, change DESC to ASC in the

ORDER BY clause.

The FETCH clause’s syntax is:

FETCH FIRST n ROW[S] ONLY

✔ Tip

■ To retrieve a specific subset of ordered

rows, you can use a cursor (not covered

in this book). The following offset query

returns n rows but excludes the topmost

skip rows from the result. This query

orders highest to lowest; to reverse the

order, change DESC to ASC in the ORDER BY
clause.

SELECT *

FROM (

SELECT

ROW_NUMBER() OVER

(ORDER BY sort_col DESC)

AS rnum,

columns

FROM table)

AS any_name

WHERE rnum > skip

AND rnum <= n + skip;

426

Chapter 15

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.22 List the top three salespeople, without
ties. See Figure 15.22 for the result.

SELECT emp_id, sales

FROM empsales

ORDER BY sales DESC

FETCH FIRST 3 ROWS ONLY;

Listing

emp_id sales

------ -----

E09 900

E02 800

E05 700

Figure 15.22 Result of Listing 15.22.

Listing 15.23 List the top three salespeople, with ties.
See Figure 15.23 for the result.

SELECT emp_id, sales

FROM (

SELECT

RANK() OVER

(ORDER BY sales DESC)

AS sales_rank,

emp_id,

sales

FROM empsales)

AS any_name

WHERE sales_rank <= 3;

Listing

emp_id sales

------ -----

E09 900

E02 800

E05 700

E10 700

Figure 15.23 Result of Listing 15.23.

MySQL
Listing 15.24 lists the top three salespeo-

ple, not including ties. See Figure 15.24 for

the result. Note that this query is inconsis-

tent when ties exist; re-running it can return

either E10 or E05, depending on how ORDER
BY sorts the table. This query orders highest

to lowest; to reverse the order, change DESC
to ASC in the ORDER BY clause.

Listing 15.25 lists the top three salespeople,

including ties. The OFFSET value is n – 1 = 2.

COALESCE()’s second argument lets the query

work in case the table has fewer than n rows;

see “Checking for Nulls with COALESCE()” in

Chapter 5. See Figure 15.25 for the result.

This query orders highest to lowest; to

reverse the order, change >= to <= in the

comparison, change MIN() to MAX() in the

second subquery, and change DESC to ASC
in each ORDER BY clause.

427

SQL Tricks

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.24 List the top three salespeople, without
ties. See Figure 15.24 for the result.

SELECT emp_id, sales

FROM empsales

ORDER BY sales DESC

LIMIT 3;

Listing

emp_id sales

------ -----

E09 900

E02 800

E10 700

Figure 15.24 Result of Listing 15.24.

Listing 15.25 List the top three salespeople, with ties.
See Figure 15.25 for the result.

SELECT emp_id, sales

FROM empsales

WHERE sales >= COALESCE(

(SELECT sales

FROM empsales

ORDER BY sales DESC

LIMIT 1 OFFSET 2),

(SELECT MIN(sales)

FROM empsales))

ORDER BY sales DESC;

Listing

emp_id sales

------ -----

E09 900

E02 800

E05 700

E10 700

Figure 15.25 Result of Listing 15.25.

Listing 15.26 lists the top three sales-

people, skipping the initial four rows. See

Figure 15.26 for the result. Note that this

query is inconsistent when ties exist.

This query orders highest to lowest; to

reverse the order, change DESC to ASC in

the ORDER BY clause.

The LIMIT clause’s syntax is:

LIMIT n [OFFSET skip]

or

LIMIT [skip,] n

The offset of the initial row is 0 (not 1).

PostgreSQL
Listing 15.27 lists the top three salespeo-

ple, not including ties. See Figure 15.27 for

the result. Note that this query is inconsis-

tent when ties exist; re-running it can return

either E10 or E05, depending on how ORDER
BY sorts the table. This query orders highest

to lowest; to reverse the order, change DESC
to ASC in the ORDER BY clause.

Listing 15.28 lists the top three salespeople,

including ties. The OFFSET value is n – 1 = 2.

See Figure 15.28 for the result. This query

orders highest to lowest; to reverse the order,

change >= to <= in the comparison and

change DESC to ASC in each ORDER BY clause.

Listing 15.29 lists the top three sales-

people, skipping the initial four rows. See

Figure 15.29 for the result. Note that this

query is inconsistent when ties exist.

This query orders highest to lowest; to

reverse the order, change DESC to ASC in

the ORDER BY clause.

The LIMIT clause’s syntax is:

LIMIT n [OFFSET skip]

The offset of the initial row is 0 (not 1).

428

Chapter 15

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.26 List the top three salespeople, skipping
the initial four rows. See Figure 15.26 for the result.

SELECT emp_id, sales

FROM empsales

ORDER BY sales DESC

LIMIT 3 OFFSET 4;

Listing

emp_id sales

------ -----

E01 600

E04 500

E03 500

Figure 15.26 Result of Listing 15.26.

Listing 15.27 List the top three salespeople, without
ties. See Figure 15.27 for the result.

SELECT emp_id, sales

FROM empsales

ORDER BY sales DESC

LIMIT 3;

Listing

emp_id sales

------ -----

E09 900

E02 800

E05 700

Figure 15.27 Result of Listing 15.27.

✔ Tips

■ When using a inconsistent query to pre-

sent results to end-users, it’s a good practice

to include a tie-breaking ORDER BY column

so users see ties ranked consistently

across queries. Adding emp_id after sales
in the (outermost) ORDER BY clause in the

queries in this section, for example, guar-

antees that employees with the same sales
value always will sort the same way.

■ Fabian Pascal’s Practical Issues in

Database Management (Addison-Wesley)

discusses quota queries. His SQL-92

solution (which is too slow for practical

use) to list the top three salespeople,

including ties, is:

SELECT emp_id, sales

FROM empsales e1

WHERE (

SELECT COUNT(*)

FROM empsales e2

WHERE e2.sales > e1.sales

) < 3;

This query orders highest to lowest; to

reverse the order, change > to < in the

innermost WHERE clause.

429

SQL Tricks

L
i
m

i
t

i
n

g
 t

h
e

 N
u

m
b

e
r

 o
f
 R

o
w

s
 R

e
t

u
r

n
e

d

Listing 15.28 List the top three salespeople, with ties.
See Figure 15.28 for the result.

SELECT emp_id, sales

FROM empsales

WHERE (

sales >= (

SELECT sales

FROM empsales

ORDER BY sales DESC

LIMIT 1 OFFSET 2)

) IS NOT FALSE

ORDER BY sales DESC;

Listing

emp_id sales

------ -----

E09 900

E02 800

E10 700

E05 700

Figure 15.28 Result of Listing 15.28.

Listing 15.29 List the top three salespeople, skipping
the initial four rows. See Figure 15.29 for the result.

SELECT emp_id, sales

FROM empsales

ORDER BY sales DESC

LIMIT 3 OFFSET 4;

Listing

emp_id sales

------ -----

E01 600

E06 500

E03 500

Figure 15.29 Result of Listing 15.29.

Assigning Ranks
Ranking, which allocates the numbers 1, 2,

3, … to sorted values, is related to top-n

queries and shares the problem of interpret-

ing ties. The following queries calculate

ranks for sales values in the table empsales
from the preceding section.

Listings 15.30a to 15.30e rank employees

by sales. The first two queries shows the

most commonly accepted ways to rank val-

ues. The other queries show variations on

them. Figure 15.30 shows the result of each

ranking method, a to e, combined for brevity

and ease of comparison. These queries rank

highest to lowest; to reverse the order, change

> (or >=) to < (or <=) in the WHERE comparisons.

430

Chapter 15

A
s

s
i
g

n
i
n

g
 R

a
n

k
s

Listing 15.30a Rank employees by sales (method a).
See Figure 15.30 for the result.

SELECT e1.emp_id, e1.sales,

(SELECT COUNT(sales)

FROM empsales e2

WHERE e2.sales >= e1.sales)

AS ranking

FROM empsales e1;

Listing

Listing 15.30b Rank employees by sales (method b).
See Figure 15.30 for the result.

SELECT e1.emp_id, e1.sales,

(SELECT COUNT(sales)

FROM empsales e2

WHERE e2.sales > e1.sales) + 1

AS ranking

FROM empsales e1;

Listing

Listing 15.30c Rank employees by sales (method c).
See Figure 15.30 for the result.

SELECT e1.emp_id, e1.sales,

(SELECT COUNT(sales)

FROM empsales e2

WHERE e2.sales > e1.sales)

AS ranking

FROM empsales e1;

Listing

Listing 15.30d Rank employees by sales (method d).
See Figure 15.30 for the result.

SELECT e1.emp_id, e1.sales,

(SELECT COUNT(DISTINCT sales)

FROM empsales e2

WHERE e2.sales >= e1.sales)

AS ranking

FROM empsales e1;

Listing

These queries use correlated

subqueries and so run slowly.

If you’re ranking a large number of items,

you should use a built-in rank function or

OLAP component, if available. The SQL:2003

standard introduced the functions RANK()
and DENSE_RANK(), which Microsoft SQL

Server 2005 and later, Oracle, and DB2

support. For Microsoft SQL Server 2000,

look at the Analysis Services (OLAP) func-

tion RANK(). Alternatively, you can use your

DBMS’s SQL extensions to calculate ranks

efficiently. The following MySQL script, for

example, is equivalent to Listing 15.30b:

SET @rownum = 0;

SET @rank = 0;

SET @prev_val = NULL;

SELECT

@rownum := @rownum + 1 AS row,

@rank := IF(@prev_val <> sales,

@rownum, @rank) AS rank,

@prev_val := sales AS sales

FROM empsales

ORDER BY sales DESC;

✔ Tips

■ You can add the clause ORDER BY ranking
ASC to a query’s outer SELECT to sort the

results by rank.

■ Microsoft Access doesn’t sup-

port COUNT(DISTINCT) and won’t

run Listings 15.30d and 15.30e. For a

workaround, see “Aggregating Distinct

Values with DISTINCT” in Chapter 6.

431

SQL Tricks

A
s

s
i
g

n
i
n

g
 R

a
n

k
s

Listing 15.30e Rank employees by sales (method e).
See Figure 15.30 for the result.

SELECT e1.emp_id, e1.sales,

(SELECT COUNT(DISTINCT sales)

FROM empsales e2

WHERE e2.sales > e1.sales)

AS ranking

FROM empsales e1;

Listing

emp_id sales a b c d e

------ ----- -- -- -- -- --

E09 900 1 1 0 1 0

E02 800 2 2 1 2 1

E10 700 4 3 2 3 2

E05 700 4 3 2 3 2

E01 600 5 5 4 4 3

E04 500 8 6 5 5 4

E03 500 8 6 5 5 4

E06 500 8 6 5 5 4

E08 400 9 9 8 6 5

E07 300 10 10 9 7 6

Figure 15.30 Compilation of results of Listings 15.30a
to 15.30e.

Calculating a
Trimmed Mean
The trimmed mean is a robust order statis-

tic that is the mean (average) of the data if

the k smallest values and k largest values are

discarded. The idea is to avoid influence of

extreme observations.

Listing 15.31 calculates the trimmed mean

of book sales in the sample database by

omitting the top three and bottom three

sales figures. See Figure 15.31 for the result.

For reference, the 12 sorted sales values are

566, 4095, 5000, 9566, 10467, 11320, 13001,

25667, 94123, 100001, 201440, and 1500200.

This query discards 566, 4095, 5000, 100001,

201440, and 1500200 and calculates the

mean in the usual way by using the remain-

ing six middle values. Nulls are ignored.

Duplicate values are either all removed or all

retained. (If all sales are the same, none of

them will be trimmed no matter what k is,

for example.)

Listing 15.32 is similar to Listing 15.40 but

trims a fixed percentage of the extreme val-

ues rather than a fixed number. Trimming by

0.25 (25%), for example, discards the sales in

the top and bottom quartiles and averages

what’s left. See Figure 15.32 for the result.

✔ Tip

■ Microsoft SQL Server and

DB2 return an integer for the

trimmed mean because the column

sales is defined as an INTEGER. To get a

floating-point value, change AVG(sales)
to AVG(CAST(sales AS FLOAT)). For more

information, see “Converting Data Types

with CAST()” in Chapter 5.

432

Chapter 15

C
a

l
c

u
l

a
t

i
n

g
 a

 T
r

i
m

m
e

d
 M

e
a

n

Listing 15.31 Calculate the trimmed mean for k = 3.
See Figure 15.31 for the result.

SELECT AVG(sales) AS TrimmedMean

FROM titles t1

WHERE

(SELECT COUNT(*)

FROM titles t2

WHERE t2.sales <= t1.sales) > 3

AND

(SELECT COUNT(*)

FROM titles t3

WHERE t3.sales >= t1.sales) > 3;

Listing

TrimmedMean

27357.3333

Figure 15.31 Result of Listing 15.31.

Listing 15.32 Calculate the trimmed mean by
discarding the lower and upper 25% of values.
See Figure 15.32 for the result.

SELECT AVG(sales) AS TrimmedMean

FROM titles t1

WHERE

(SELECT COUNT(*)

FROM titles t2

WHERE t2.sales <= t1.sales) >=

(SELECT 0.25 * COUNT(*)

FROM titles)

AND

(SELECT COUNT(*)

FROM titles t3

WHERE t3.sales >= t1.sales) >=

(SELECT 0.25 * COUNT(*)

FROM titles);

Listing

TrimmedMean

27357.3333

Figure 15.32 Result of Listing 15.32.

Picking Random Rows
Some databases are so large, and queries on

them so complex, that often it’s impractical

(and unnecessary) to retrieve all the data

relevant to a query. If you’re interested in

finding an overall trend or pattern, for exam-

ple, an approximate answer within some

margin of error usually will do. One way to

speed such queries is to select a random

sample of rows. An efficient sample can

improve performance by orders of magni-

tude yet still yield accurate results.

Standard SQL’s TABLESAMPLE clause returns

a random subset of rows. DB2 and SQL

Server 2005 and later support TABLESAMPLE,

and Oracle has something similar. For the

other DBMSs, use a (nonstandard) function

that returns a uniform random number

between 0 and 1 (Table 15.1).

Listing 15.33a randomly picks about 25%

(0.25) of the rows from the sample-database

table titles. If necessary, change RAND()
to the function that appears in Table 15.1 for

your DBMS. For Oracle, use Listing 15.33b.

For SQL Server 2005 and later and DB2,

use Listing 15.33c.

433

SQL Tricks

P
i
c

k
i
n

g
 R

a
n

d
o

m
 R

o
w

s

Table 15.1

Randomization Features
D B M S C l a u s e o r F u n c t i o n

Access RND() function
SQL Server 2000 RAND() function
SQL Server 2005/2008 TABLESAMPLE clause
Oracle SAMPLE clause or DBMS_RANDOM

package
DB2 TABLESAMPLE clause
MySQL RAND() function
PostgreSQL RANDOM() function

Listing 15.33a Select about 25% percent of the rows
in the table titles at random. See Figure 15.33 for a
possible result.

SELECT title_id, type, sales

FROM titles

WHERE RAND() < 0.25;

Listing

Listing 15.33b Select about 25% percent of the rows
in the table titles at random (Oracle only). See
Figure 15.33 for a possible result.

SELECT title_id, type, sales

FROM titles

SAMPLE (25);

Listing

Listing 15.33c Select about 25% percent of the
rows in the table titles at random (SQL Server 2005
and later and DB2 only). See Figure 15.33 for a
possible result.

SELECT title_id, type, sales

FROM titles

TABLESAMPLE SYSTEM (25);

Listing

Figure 15.33 shows one possible result of a

random selection. The rows and the number

of rows returned will change each time you

run the query. If you need an exact number

of random rows, increase the sampling per-

centage and use one of the techniques

described in “Limiting the Number of Rows

Returned” earlier in this chapter.

✔ Tips

■ Randomizers take an optional seed argu-

ment or setting that sets the starting

value for a random-number sequence.

Identical seeds yield identical sequences

(handy for testing). By default, the DBMS

sets the seed based on the system time to

generate different sequences every time.

■ Listing 15.33a won’t run correctly

on Microsoft Access or

Microsoft SQL Server 2000 because

the random-number function returns the

same “random” number for each selected

row. In Access, use Visual Basic or C# to

pick random rows. For SQL Server 2000,

search for the article “Returning Rows in

Random Order” at www.sqlteam.com.

To use the NEWID() function to pick n

random rows in Microsoft SQL Server:

SELECT TOP n title_id, type, sales

FROM titles

ORDER BY NEWID();

To use the VALUE() function in the

DBMS_RANDOM package to pick n random

rows in Oracle:

SELECT * FROM

(SELECT title_id, type, sales

FROM titles

ORDER BY DBMS_RANDOM.VALUE())

WHERE ROWNUM <= n;

434

Chapter 15

P
i
c

k
i
n

g
 R

a
n

d
o

m
 R

o
w

s

title_id type sales

-------- ---------- -----

T03 computer 25667

T04 psychology 13001

T11 psychology 94123

Figure 15.33 One possible result of Listing 15.33a/b/c.

Selecting Every nth Row

Instead of picking random rows, you can

pick every nth row by using a modulo

expression:

◆ m MOD n (Microsoft Access)

◆ m % n (Microsoft SQL Server)

◆ MOD(m,n) (other DBMSs)

This expression returns the remainder of

m divided by n. For example, MOD(20,6) is

2 because 20 equals (3 ✕ 6) + 2. MOD(a,2)
is 0 if a is an even number.

The condition MOD(rownumber,n) = 0
picks every nth row, where rownumber is

a column of consecutive integers or row

identifiers. This Oracle query picks every

third row in a table, for example:

SELECT *

FROM table

WHERE (ROWID,0) IN

(SELECT ROWID, MOD(ROWNUM,3)

FROM table);

Note that rownumber imposes a row

order that doesn’t exist implicitly in a

relational-database table.

www.sqlteam.com

Handling Duplicates
Normally you use SQL’s PRIMARY KEY or UNIQUE
constraints (see Chapter 11) to prevent dupli-

cate rows from appearing in production

tables. But you need to know how to handle

duplicates that appear when you accidentally

import the same data twice or import data

from a nonrelational environment, such as a

spreadsheet or accounting package, where

redundant information is rampant. This sec-

tion describes how to detect, count, and

remove duplicates.

Suppose that you import rows into a staging

table to detect and eliminate any duplicates

before inserting the data into a production

table (Listing 15.34 and Figure 15.34). The

column id is a unique row identifier that

lets you identify and select rows that other-

wise would be duplicates. If your imported

rows don’t already have an identity column,

you can add one yourself; see “Unique

Identifiers” in Chapter 3 and “Generating

Sequences” earlier in this chapter. It’s a good

practice to add an identity column to even

short-lived working tables, but in this case it

also makes deleting duplicates easy. The

imported data might include other columns

too, but you’ve decided that the combination

of only book title, book type, and price deter-

mines whether a row is a duplicate, regardless

of the values in any other columns. Before

you identify or delete duplicates, you must

define exactly what it means for two rows to

be considered “duplicates” of each other.

Listing 15.35 lists only the duplicates by

counting the number of occurrences of each

unique combination of title_name, type,

and price. See Figure 15.35 for the result.

If this query returns an empty result, the

table contains no duplicates. To list only

the nonduplicates, change COUNT(*) > 1
to COUNT(*) = 1.

435

SQL Tricks

H
a

n
d

l
i
n

g
 D

u
p

l
i
c

a
t

e
s

Listing 15.34 List the imported rows. See Figure 15.34
for the result.

SELECT id, title_name, type, price

FROM dups;

Listing

id title_name type price

-- ------------ --------- -----

1 Book Title 5 children 15.00

2 Book Title 3 biography 7.00

3 Book Title 1 history 10.00

4 Book Title 2 children 20.00

5 Book Title 4 history 15.00

6 Book Title 1 history 10.00

7 Book Title 3 biography 7.00

8 Book Title 1 history 10.00

Figure 15.34 Result of Listing 15.34.

Listing 15.35 List only duplicates. See Figure 15.35 for
the result.

SELECT title_name, type, price

FROM dups

GROUP BY title_name, type, price

HAVING COUNT(*) > 1;

Listing

title_name type price

------------ --------- -----

Book Title 1 history 10.00

Book Title 3 biography 7.00

Figure 15.35 Result of Listing 15.35.

Listing 15.36 uses a similar technique

to list each row and its duplicate count.

See Figure 15.36 for the result. To list

only the duplicates, change COUNT(*) >= 1
to COUNT(*) > 1.

Listing 15.37 deletes duplicate rows from

dups in place. This statement uses the col-

umn id to leave exactly one occurrence (the

one with the highest ID) of each duplicate.

Figure 15.37 shows the table dups after

running this statement. See also “Deleting

Rows with DELETE” in Chapter 10.

436

Chapter 15

H
a

n
d

l
i
n

g
 D

u
p

l
i
c

a
t

e
s

Listing 15.36 List each row and its number of
repetitions. See Figure 15.36 for the result.

SELECT title_name, type, price,

COUNT(*) AS NumDups

FROM dups

GROUP BY title_name, type, price

HAVING COUNT(*) >= 1

ORDER BY COUNT(*) DESC;

Listing

title_name type price NumDups

------------ --------- ----- -------

Book Title 1 history 10.00 3

Book Title 3 biography 7.00 2

Book Title 4 history 15.00 1

Book Title 2 children 20.00 1

Book Title 5 children 15.00 1

Figure 15.36 Result of Listing 15.36.

Listing 15.37 Remove the redundant duplicates in
place. See Figure 15.37 for the result.

DELETE FROM dups

WHERE id < (

SELECT MAX(d.id)

FROM dups d

WHERE dups.title_name = d.title_name

AND dups.type = d.type

AND dups.price = d.price);

Listing

id title_name type price

-- ------------ --------- -----

1 Book Title 5 children 15.00

4 Book Title 2 children 20.00

5 Book Title 4 history 15.00

7 Book Title 3 biography 7.00

8 Book Title 1 history 10.00

Figure 15.37 Result of Listing 15.37.

✔ Tips

■ If you define a duplicate to span every

column in a row (not just a subset of

columns), you can drop the column id
and use SELECT DISTINCT * FROM table
to delete duplicates. See “Eliminating

Duplicate Rows with DISTINCT” in

Chapter 4.

■ If your DBMS offers a built-in

unique row identifier, you

can drop the column id and still delete

duplicates in place. In Oracle, for exam-

ple, you can replace id with the ROWID
pseudocolumn in Listing 15.37; change

the outer WHERE clause to:

WHERE ROWID < (SELECT
MAX(d.ROWID)...

To run Listing 15.45 in MySQL, change

ORDER BY COUNT(*) DESC to ORDER BY
NumDups DESC. You can’t use Listing 15.37

to do an in-place deletion because

MySQL won’t let you use same table for

both the subquery’s FROM clause and the

DELETE target.

437

SQL Tricks

H
a

n
d

l
i
n

g
 D

u
p

l
i
c

a
t

e
s

Messy Data

Deleting duplicates gets harder as data

get messier. It’s not unusual to buy a mail-

ing list with entries that look like this:

name address1

—————————— ——————————————————

John Smith 123 Main St

John Smith 123 Main St, Apt 1

Jack Smiht 121 Main Rd

John Symthe 123 Main St.

Jon Smith 123 Mian Street

DBMSs offer nonstandard tools such

as Soundex (phonetic) functions to sup-

press spelling variations, but creating an

automated deletion program that works

over thousands or millions of rows is a

major project.

Creating a Telephone List
You can use the function COALESCE() with

a left outer join to create a convenient

telephone listing from a normalized table

of phone numbers. Suppose that the

sample database has an extra table named

telephones that stores the authors’ work

and home telephone numbers:

au_id tel_type tel_no

----- -------- ------------

A01 H 111-111-1111

A01 W 222-222-2222

A02 W 333-333-3333

A04 H 444-444-4444

A04 W 555-555-5555

A05 H 666-666-6666

The table’s composite primary key is (au_id,
tel_type), where tel_type indicates whether

tel_no is a work (W) or home (H) number.

Listing 15.38 lists the authors’ names and

numbers. If an author has only one number,

that number is listed. If an author has both

home and work numbers, only the work

number is listed. Authors with no numbers

aren’t listed. See Figure 15.38 for the result.

The first left join picks out the work num-

bers, and the second picks out the home

numbers. The WHERE clause filters out authors

with no numbers. (You can extend this query

to add cell-phone and other numbers.)

✔ Tips

■ For more information about COALESCE(),

see “Checking for Nulls with COALESCE()”

in Chapter 5. For left outer joins, see

“Creating Outer Joins with OUTER JOIN”

in Chapter 7.

■ Microsoft Access won’t

run Listing 15.38 because of

the restrictions Access puts on join

expressions.

438

Chapter 15

C
r

e
a

t
i
n

g
 a

 T
e

l
e

p
h

o
n

e
 L

i
s

t

Listing 15.38 Lists the authors’ names and telephone
numbers, favoring work numbers over home numbers.
See Figure 15.38 for the result.

SELECT

a.au_id AS "ID",

a.au_fname AS "FirstName",

a.au_lname AS "LastName",

COALESCE(twork.tel_no, thome.tel_no)

AS "TelNo",

COALESCE(twork.tel_type, thome.tel_type)

AS "TelType"

FROM authors a

LEFT OUTER JOIN telephones twork

ON a.au_id = twork.au_id

AND twork.tel_type = 'W'

LEFT OUTER JOIN telephones thome

ON a.au_id = thome.au_id

AND thome.tel_type = 'H'

WHERE COALESCE(twork.tel_no, thome.tel_no)

IS NOT NULL

ORDER BY a.au_fname ASC, a.au_lname ASC;

Listing

ID FirstName LastName TelNo TelType

--- --------- --------- ------------ -------

A05 Christian Kells 666-666-6666 H

A04 Klee Hull 555-555-5555 W

A01 Sarah Buchman 222-222-2222 W

A02 Wendy Heydemark 333-333-3333 W

Figure 15.38 Result of Listing 15.38.

Retrieving Metadata
Metadata are data about data. In DBMSs,

metadata include information about

schemas, databases, users, tables, columns,

and so on. You already saw metadata in

“Getting User Information” in Chapter 5 and

“Displaying Table Definitions” in Chapter 10.

The first thing to do when meeting a new

database is to inspect its metadata: What’s

in the database? How big is it? How are the

tables organized?

Metadata, like other data, are stored in

tables and so can be accessed via SELECT
queries. Metadata also can be accessed,

often more conveniently, by using com-

mand-line and graphical tools. The following

listings show DBMS-specific examples for

viewing metadata. The DBMS itself main-

tains metadata—look, but don’t touch.

✔ Tip

■ The SQL standard calls a set

of metadata a catalog and

specifies that it be accessed through the

schema INFORMATION_SCHEMA. Not all

DBMSs implement this schema or use

the same terms. In Microsoft SQL

Server, for example, the equivalent term

for a catalog is a database and for a

schema, an owner. In Oracle, the reposi-

tory of metadata is the data dictionary.

439

SQL Tricks

R
e

t
r

i
e

v
i
n

g
 M

e
t
a

d
a

t
a

Microsoft Access
Access metadata are available graphically

through the Design View of each database

object and programmatically through the

Visual Basic for Applications (VBA) or C#

language. Access also creates and maintains

hidden system tables in each database.

To show system tables:

◆ In Access 2003 or earlier, choose Tools >

Options > View tab > check System

Objects.

or

In Access 2007 or later, choose Microsoft

Office button > Access Options >

Current Database (in the left pane) >

scroll to Navigation > click Navigation

Options > check Show System Objects.

The system tables begin with MSys and are

commingled with the database’s other

tables. You can open and query them as you

would ordinary tables. The most interesting

system table is MSysObjects, which catalogs

all the objects in the database. Listing 15.39

lists all the tables in the current database.

Note that system tables don’t have to be visi-

ble to be used in queries.

Microsoft SQL Server
SQL Server metadata are available through

the schema INFORMATION_SCHEMA and via sys-

tem stored procedures (Listing 15.40).

440

Chapter 15

R
e

t
r

i
e

v
i
n

g
 M

e
t
a

d
a

t
a

Listing 15.39 List the tables in the current Access
database. To list queries instead, change Type = 1 to
Type = 5.

SELECT Name

FROM MSysObjects

WHERE Type = 1;

Listing

Listing 15.40 Metadata statements and commands
for Microsoft SQL Server.

-- List the databases.

exec sp_helpdb;

-- List the schemas.

SELECT schema_name

FROM information_schema.schemata;

-- List the tables (Method 1).

SELECT *

FROM information_schema.tables

WHERE table_type = 'BASE TABLE'

AND table_schema = 'schema_name';

-- List the tables (Method 2).

exec sp_tables;

-- Describe a table (Method 1).

SELECT *

FROM information_schema.columns

WHERE table_catalog = 'db_name'

AND table_schema = 'schema_name'

AND table_name = 'table_name';

-- Describe a table (Method 2).

exec sp_help table_name;

Listing

Oracle
Oracle metadata are available through

data dictionary views and via sqlplus
(Listing 15.41). To list data dictionary

views, run this query in sqlplus:

SELECT table_name, comments

FROM dictionary

ORDER BY table_name;

For a list of Oracle databases (instances) in

Unix or Linux, look in the file oratab located

in the directory /etc or /var/opt/oracle.

In Windows, run this command at a com-

mand prompt:

net start | find /i "OracleService"

Or choose Start > Run (Windows logo

key+R), type services.msc, press Enter, and

then inspect the Services list for entries that

begin with OracleService.

441

SQL Tricks

R
e

t
r

i
e

v
i
n

g
 M

e
t
a

d
a

t
a

Listing 15.41 Metadata statements and commands
for Oracle.

-- List the schemas (users).

SELECT *

FROM all_users;

-- List the tables.

SELECT table_name

FROM all_tables

WHERE owner = 'user_name';

-- Describe a table (Method 1).

SELECT *

FROM all_tab_columns

WHERE owner = 'user_name'

AND table_name = 'table_name';

-- Describe a table (Method 2, in sqlplus).

DESCRIBE table_name;

Listing

IBM DB2
DB2 metadata are available through the

system catalog SYSCAT and via db2
(Listing 15.42).

442

Chapter 15

R
e

t
r

i
e

v
i
n

g
 M

e
t
a

d
a

t
a

Listing 15.42 Metadata statements and commands
for IBM DB2.

-- List the databases (in db2).

LIST DATABASE DIRECTORY;

-- List the schemas.

SELECT schemaname

FROM syscat.schemata;

-- List the tables (Method 1).

SELECT tabname

FROM syscat.tables

WHERE tabschema = 'schema_name';

-- List the tables (Method 2, in db2).

LIST TABLES;

-- List the tables (Method 3, in db2).

LIST TABLES FOR SCHEMA schema_name;

-- Describe a table (Method 1).

SELECT *

FROM syscat.columns

WHERE tabname = 'table_name'

AND tabschema = 'schema_name';

-- Describe a table (Method 2, in db2).

DESCRIBE TABLE table_name SHOW DETAIL;

Listing

MySQL
MySQL metadata are available through the

schema INFORMATION_SCHEMA and via mysql
(Listing 15.43).

443

SQL Tricks

R
e

t
r

i
e

v
i
n

g
 M

e
t
a

d
a

t
a

Listing 15.43 Metadata statements and commands for
MySQL.

-- List the databases (Method 1).

SELECT schema_name

FROM information_schema.schemata;

-- List the databases (Method 2, in mysql).

SHOW DATABASES;

-- List the tables (Method 1).

SELECT table_name

FROM information_schema.tables

WHERE table_schema = 'db_name';

-- List the tables (Method 2, in mysql).

SHOW TABLES;

-- Describe a table (Method 1).

SELECT *

FROM information_schema.columns

WHERE table_schema = 'db_name'

AND table_name = 'table_name';

-- Describe a table (Method 2, in mysql).

DESCRIBE table_name;

Listing

PostgreSQL
PostgreSQL metadata are available through

the schema INFORMATION_SCHEMA and via

psql (Listing 15.44).

444

Chapter 15

R
e

t
r

i
e

v
i
n

g
 M

e
t
a

d
a

t
a

Listing 15.44 Metadata statements and commands
for PostgreSQL.

-- List the databases (Method 1).

psql --list

-- List the databases (Method 2, in psql).

\l

-- List the schemas.

SELECT schema_name

FROM information_schema.schemata;

-- List the tables (Method 1).

SELECT table_name

FROM information_schema.tables

WHERE table_schema = 'schema_name';

-- List the tables (Method 2, in psql).

\dt

-- Describe a table (Method 1).

SELECT *

FROM information_schema.columns

WHERE table_schema = 'schema_name'

AND table_name = 'table_name';

-- Describe a table (Method 2, in psql).

\d table_name;

Listing

Working with Dates
As pointed out in “Getting the Current Date

and Time” and “Performing Datetime and

Interval Arithmetic” in Chapter 5, DBMSs

provide their own extended (nonstandard)

functions for manipulating dates and times.

This section explains how to use these built-

in functions to do simple date arithmetic.

The queries in each listing:

◆ Extract parts (hour, day, month, and so

on) of the current (system) datetime and

return them as numbers.

◆ Add and subtract intervals of days,

months, and years from a date.

◆ Count the days between two dates in dif-

ferent rows of the same column. The

result is positive, zero, or negative

depending on whether the first date falls

before, on, or after the second date.

◆ Count the months between the earliest

and latest dates in the same column.

Microsoft Access
The function datepart() extracts the speci-

fied part of a datetime. now() returns the

current (system) date and time. dateadd()
adds a specified time interval to a date.

datediff() returns the number of speci-

fied time intervals between two dates

(Listing 15.45).

✔ Tip

■ Alternatives to datepart() are the

extraction functions second(), day(),

month(), and so on.

445

SQL Tricks

W
o

r
k

i
n

g
 w

i
t

h
 D

a
t

e
s

Listing 15.45 Working with dates in Microsoft Access.

-- Extract parts of the current datetime.

SELECT

datepart("s", now()) AS sec_pt,

datepart("n", now()) AS min_pt,

datepart("h", now()) AS hr_pt,

datepart("d", now()) AS day_pt,

datepart("m", now()) AS mon_pt,

datepart("yyyy",now()) AS yr_pt;

-- Add or subtract days, months, and years.

SELECT

dateadd("d", 2,pubdate) AS p2d,

dateadd("d", -2,pubdate) AS m2d,

dateadd("m", 2,pubdate) AS p2m,

dateadd("m", -2,pubdate) AS m2m,

dateadd("yyyy", 2,pubdate) AS p2y,

dateadd("yyyy",-2,pubdate) AS m2y

FROM titles

WHERE title_id = 'T05';

-- Count the days between two dates.

SELECT datediff("d",date1,date2) AS days

FROM

(SELECT pubdate as date1

FROM titles

WHERE title_id = 'T05') t1,

(SELECT pubdate as date2

FROM titles

WHERE title_id = 'T06') t2;

-- Count the months between two dates.

SELECT datediff("m",date1,date2) AS months

FROM

(SELECT

MIN(pubdate) AS date1,

MAX(pubdate) AS date2

FROM titles) t1;

Listing

Microsoft SQL Server
The function datepart() extracts the speci-

fied part of a datetime. getdate() returns

the current (system) date and time.

dateadd() adds a specified time interval to a

date. datediff() returns the number of

specified time intervals between two dates

(Listing 15.46).

✔ Tip

■ Alternatives to datepart() are the

extraction functions day(), month(),

and year().

446

Chapter 15

W
o

r
k

i
n

g
 w

i
t

h
 D

a
t

e
s

Listing 15.46 Working with dates in Microsoft SQL
Server.

-- Extract parts of the current datetime.

SELECT

datepart("s", getdate()) AS sec_pt,

datepart("n", getdate()) AS min_pt,

datepart("hh", getdate()) AS hr_pt,

datepart("d", getdate()) AS day_pt,

datepart("m", getdate()) AS mon_pt,

datepart("yyyy",getdate()) AS yr_pt;

-- Add or subtract days, months, and years.

SELECT

dateadd("d", 2,pubdate) AS p2d,

dateadd("d", -2,pubdate) AS m2d,

dateadd("m", 2,pubdate) AS p2m,

dateadd("m", -2,pubdate) AS m2m,

dateadd("yyyy", 2,pubdate) AS p2y,

dateadd("yyyy",-2,pubdate) AS m2y

FROM titles

WHERE title_id = 'T05';

-- Count the days between two dates.

SELECT datediff("d",date1,date2) AS days

FROM

(SELECT pubdate as date1

FROM titles

WHERE title_id = 'T05') t1,

(SELECT pubdate as date2

FROM titles

WHERE title_id = 'T06') t2;

-- Count the months between two dates.

SELECT datediff("m",date1,date2) AS months

FROM

(SELECT

MIN(pubdate) AS date1,

MAX(pubdate) AS date2

FROM titles) t1;

Listing

Oracle
The function to_char() converts a datetime

to a character value in the given format.

to_number() converts its argument to a

number. sysdate returns the current (sys-

tem) date and time. The standard addition

and subtraction operators add and subtract

days from a date. add_months() adds a speci-

fied number of months to a date.

Subtracting one date from another yields

the number of days between them.

months_between() returns the number of

months between two dates (Listing 15.47).

447

SQL Tricks

W
o

r
k

i
n

g
 w

i
t

h
 D

a
t

e
s

Listing 15.47 Working with dates in Oracle.

-- Extract parts of the current datetime.

SELECT

to_number(to_char(sysdate,'ss'))

AS sec_pt,

to_number(to_char(sysdate,'mi'))

AS min_pt,

to_number(to_char(sysdate,'hh24'))

AS hr_pt,

to_number(to_char(sysdate,'dd'))

AS day_pt,

to_number(to_char(sysdate,'mm'))

AS mon_pt,

to_number(to_char(sysdate,'yyyy'))

AS yr_pt

FROM dual;

-- Add or subtract days, months, and years.

SELECT

pubdate+2 AS p2d,

pubdate-2 AS m2d,

add_months(pubdate,+2) AS p2m,

add_months(pubdate,-2) AS m2m,

add_months(pubdate,+24) AS p2y,

add_months(pubdate,-24) AS m2y

FROM titles

WHERE title_id = 'T05';

-- Count the days between two dates.

SELECT date2 - date1 AS days

FROM

(SELECT pubdate as date1

FROM titles

WHERE title_id = 'T05') t1,

(SELECT pubdate as date2

FROM titles

WHERE title_id = 'T06') t2;

-- Count the months between two dates.

SELECT months_between(date2,date1) AS months

FROM

(SELECT

MIN(pubdate) AS date1,

MAX(pubdate) AS date2

FROM titles) t1;

Listing

IBM DB2
The functions second(), day(), month(),

and so on, extract part of a datetime.

current_timestamp returns the current

(system) date and time. The standard

addition and subtraction operators add

and subtract time intervals from a date.

days() converts a date to an integer serial

number (Listing 15.48).

448

Chapter 15

W
o

r
k

i
n

g
 w

i
t

h
 D

a
t

e
s

Listing 15.48 Working with dates in IBM DB2.

-- Extract parts of the current datetime.

SELECT

second(current_timestamp) AS sec_pt,

minute(current_timestamp) AS min_pt,

hour(current_timestamp) AS hr_pt,

day(current_timestamp) AS day_pt,

month(current_timestamp) AS mon_pt,

year(current_timestamp) AS yr_pt

FROM SYSIBM.SYSDUMMY1;

-- Add or subtract days, months, and years.

SELECT

pubdate + 2 DAY AS p2d,

pubdate - 2 DAY AS m2d,

pubdate + 2 MONTH AS p2m,

pubdate - 2 MONTH AS m2m,

pubdate + 2 YEAR AS p2y,

pubdate - 2 YEAR AS m2y

FROM titles

WHERE title_id = 'T05';

-- Count the days between two dates.

SELECT days(date2) - days(date1) AS days

FROM

(SELECT pubdate as date1

FROM titles

WHERE title_id = 'T05') t1,

(SELECT pubdate as date2

FROM titles

WHERE title_id = 'T06') t2;

-- Count the months between two dates.

SELECT

(year(date2)*12 + month(date2)) -

(year(date1)*12 + month(date1))

AS months

FROM

(SELECT

MIN(pubdate) AS date1,

MAX(pubdate) AS date2

FROM titles) t1;

Listing

MySQL
The function date_format() formats a

datetime according to the specified format.

current_timestamp returns the current

(system) date and time. The standard addi-

tion and subtraction operators add and sub-

tract time intervals from a date. datediff()
returns the number of days between two

dates (Listing 15.49).

✔ Tip

■ Alternatives to date_format() are the

extraction functions extract(),

second(), day(), month(), and so on.

449

SQL Tricks

W
o

r
k

i
n

g
 w

i
t

h
 D

a
t

e
s

Listing 15.49 Working with dates in MySQL.

-- Extract parts of the current datetime.

SELECT

date_format(current_timestamp,'%s')

AS sec_pt,

date_format(current_timestamp,'%i')

AS min_pt,

date_format(current_timestamp,'%k')

AS hr_pt,

date_format(current_timestamp,'%d')

AS day_pt,

date_format(current_timestamp,'%m')

AS mon_pt,

date_format(current_timestamp,'%Y')

AS yr_pt;

-- Add or subtract days, months, and years.

SELECT

pubdate + INTERVAL 2 DAY AS p2d,

pubdate - INTERVAL 2 DAY AS m2d,

pubdate + INTERVAL 2 MONTH AS p2m,

pubdate - INTERVAL 2 MONTH AS m2m,

pubdate + INTERVAL 2 YEAR AS p2y,

pubdate - INTERVAL 2 YEAR AS m2y

FROM titles

WHERE title_id = 'T05';

-- Count the days between two dates.

SELECT datediff(date2,date1) AS days

FROM

(SELECT pubdate as date1

FROM titles

WHERE title_id = 'T05') t1,

(SELECT pubdate as date2

FROM titles

WHERE title_id = 'T06') t2;

-- Count the months between two dates.

SELECT

(year(date2)*12 + month(date2)) -

(year(date1)*12 + month(date1))

AS months

FROM

(SELECT

MIN(pubdate) AS date1,

MAX(pubdate) AS date2

FROM titles) t1;

Listing

PostgreSQL
The function date_part() extracts the spec-

ified part of a datetime. current_timestamp
returns the current (system) date and time.

The standard addition and subtraction oper-

ators add and subtract time intervals from a

date. Subtracting one date from another

yields the number of days between them

(Listing 15.50).

✔ Tip

■ An alternative to date_part() is

extract().

450

Chapter 15

W
o

r
k

i
n

g
 w

i
t

h
 D

a
t

e
s

Listing 15.50 Working with dates in PostgreSQL.

-- Extract parts of the current datetime.

SELECT

date_part('second',current_timestamp)

AS sec_pt,

date_part('minute',current_timestamp)

AS min_pt,

date_part('hour',current_timestamp)

AS hr_pt,

date_part('day',current_timestamp)

AS day_pt,

date_part('month',current_timestamp)

AS mon_pt,

date_part('year',current_timestamp)

AS yr_pt;

-- Add or subtract days, months, and years.

SELECT

pubdate + INTERVAL '2 DAY' AS p2d,

pubdate - INTERVAL '2 DAY' AS m2d,

pubdate + INTERVAL '2 MONTH' AS p2m,

pubdate - INTERVAL '2 MONTH' AS m2m,

pubdate + INTERVAL '2 YEAR' AS p2y,

pubdate - INTERVAL '2 YEAR' AS m2y

FROM titles

WHERE title_id = 'T05';

-- Count the days between two dates.

SELECT date2 - date1 AS days

FROM

(SELECT pubdate as date1

FROM titles

WHERE title_id = 'T05') t1,

(SELECT pubdate as date2

FROM titles

WHERE title_id = 'T06') t2;

-- Count the months between two dates.

SELECT

(date_part('year', date2)*12 +

date_part('month',date2)) -

(date_part('year', date1)*12 +

date_part('month',date1))

AS months

FROM

(SELECT

MIN(pubdate) AS date1,

MAX(pubdate) AS date2

FROM titles) t1;

Listing

Calculating a Median
The median describes the center of the

data as the middle point of n (sorted) values.

If n is odd, the median is the observation

number (n+1)/2. If n is even, the median is

the midpoint (average) of observations n/2

and n/2+1. The examples in this section cal-

culate the median of the column sales in

the table empsales (Figure 15.39). The

median is 550—the average of the middle

two numbers, 500 and 600, in the sorted list.

Search online or in advanced SQL books,

and you’ll find many standard and DBMS-

specific ways to calculate the median.

Listing 15.51 shows one way—it uses a

self-join and GROUP BY to create a Cartesian

product (e1 and e2) without duplicates and

then uses HAVING and SUM to find the row

(containing the median) where the number

of times e1.sales = e2.sales equals (or

exceeds) the number of times e1.sales >
e2.sales. Like all methods that use standard

(or near-standard) SQL, it’s cumbersome,

it’s hard to understand, and it runs slowly

because it’s difficult to pick the middle value

of an ordered set when SQL is about

unordered sets.

451

SQL Tricks

C
a

l
c

u
l

a
t

i
n

g
 a

 M
e

d
i
a

n

emp_id sales

------ -----

E07 300

E08 400

E03 500

E04 500

E06 500

E01 600

E05 700

E10 700

E02 800

E09 900

Figure 15.39 The table empsales, sorted by ascending
sales.

Listing 15.51 Calculate the median of sales in
standard SQL.

SELECT AVG(sales) AS median

FROM

(SELECT e1.sales

FROM empsales e1, empsales e2

GROUP BY e1.sales

HAVING

SUM(CASE WHEN e1.sales = e2.sales

THEN 1 ELSE 0 END) >=

ABS(SUM(SIGN(e1.sales -

e2.sales)))) t1;

Listing

Median vs. Mean

The median is a popular statistic because it’s robust, meaning it’s not affected seriously by

extreme high or low values, either legitimate or caused by errors. The arithmetic mean (aver-

age), on the other hand, is so sensitive that it can swing wildly with the addition or removal

of even a single extreme value. That’s why you see the median applied to skewed (lopsided)

distributions such as wealth, house prices, military budgets, and gene expression. The medi-

an is also known as the 50th percentile or the second quartile. See also “Finding Extreme

Values” later in this chapter.

It’s faster and more efficient to cal-

culate the median by using DBMS-

specific functions, if available. Listing 15.52

calculates the median in Microsoft SQL

Server. Listing 15.53 calculates it in Oracle.

The second query in Listing 15.52 also works

in DB2. The DB2 SQL Reference, Vol. 2,

shows how to create a median procedure by

using a cursor (a scrolling marker that steps

through rows; not covered in this book).

✔ Tips

■ If you use an alternate method to com-

pute the median, make sure it doesn’t

eliminate duplicate values during calcu-

lations and averages the two middle

observations for an even n (rather than

just lazily choosing one of them as the

median).

■ See also the “Statistics in SQL” sidebar

in “Calculating an Average with AVG()” in

Chapter 6.

■ To run Listing 15.51 in

Microsoft Access, change

the CASE expression to iif(e1.sales =
e2.sales, 1, 0) and change SIGN to SGN.

452

Chapter 15

C
a

l
c

u
l

a
t

i
n

g
 a

 M
e

d
i
a

n

Listing 15.53 Two ways to calculate the median in
Oracle.

-- Works in Oracle 9i and later.

SELECT

percentile_cont(0.5)

WITHIN GROUP (ORDER BY sales)

AS median

FROM empsales;

-- Works in Oracle 10g and later.

SELECT median(sales) AS median

FROM empsales;

Listing

Listing 15.52 Two ways to calculate the median in
Microsoft SQL Server. The second way (which also
works in DB2) is much faster than the first.

-- Works in SQL Server 2000 and later.

SELECT

(

(SELECT MAX(sales) FROM

(SELECT TOP 50 PERCENT sales

FROM empsales

ORDER BY sales ASC) AS t1)

+

(SELECT MIN(sales) FROM

(SELECT TOP 50 PERCENT sales

FROM empsales

ORDER BY sales DESC) AS t2)

)/2 AS median;

-- Works in SQL Server 2005 and later.

-- Works in DB2.

SELECT AVG(sales) AS median

FROM

(SELECT

sales,

ROW_NUMBER() OVER (ORDER BY sales)

AS rownum,

COUNT(*) OVER () AS cnt

FROM empsales) t1

WHERE rownum IN ((cnt+1)/2, (cnt+2)/2);

Listing

Finding Extreme Values
Listing 15.54 finds the rows with the high-

est and lowest values (ties included) of the

column advance in the table royalties.

Figure 15.40 shows the result.

✔ Tips

■ You also can use the queries in “Limiting

the Number of Rows Returned” earlier in

this chapter to find extremes, though not

both highs and lows in the same query.

■ In Microsoft SQL Server,

Oracle, and DB2, you can

replicate Listing 15.54 by using the win-

dow functions MIN OVER and MAX OVER
(Listing 15.55).

453

SQL Tricks

F
i
n

d
i
n

g
 E

x
t

r
e

m
e

 V
a

l
u

e
s

Listing 15.54 List the books with the highest and
lowest advances. See Figure 15.40 for the result.

SELECT title_id, advance

FROM royalties

WHERE advance IN (

(SELECT MIN(advance) FROM royalties),

(SELECT MAX(advance) FROM royalties));

Listing

Listing 15.55 List the books with the highest and
lowest advances, using window functions.

SELECT title_id, advance

FROM

(SELECT title_id, advance,

MIN(advance) OVER () min_adv,

MAX(advance) OVER () max_adv

FROM royalties) t1

WHERE advance IN (min_adv, max_adv);

Listing

title_id advance

-------- ----------

T07 1000000.00

T08 0.00

T09 0.00

Figure 15.40 Result of Listing 15.54.

Changing Running
Statistics Midstream
You can modify values of an in-progress

running statistic depending on values in

another column. First, review Listing 15.1 in

“Calculating Running Statistics” earlier in

this chapter.

Listing 15.56 calculates the running sum of

book sales, ignoring biographies. The scalar

subquery computes the running sum, and the

inner CASE expression identifies biographies

and changes their sales value to NULL, which

is ignored by the aggregate function SUM().

(The outer CASE expression merely creates

a label column in the result; it’s not part of

the running-sum logic.) Figure 15.41 shows

the result.

454

Chapter 15

C
h

a
n

g
i
n

g
 R

u
n

n
i
n

g
 S

t
a

t
i
s

t
i
c

s
 M

i
d

s
t

r
e

a
m

Listing 15.56 Calculate the running sum of book sales,
ignoring biographies. See Figure 15.41 for the result.

SELECT

t1.title_id,

CASE WHEN t1.type = 'biography'

THEN '*IGNORED*'

ELSE t1.type END

AS title_type,

t1.sales,

(SELECT

SUM(CASE WHEN t2.type = 'biography'

THEN NULL

ELSE t2.sales END)

FROM titles t2

WHERE t1.title_id >= t2.title_id)

AS RunSum

FROM titles t1;

Listing

title_id title_type sales RunSum

-------- ---------- ------- ------

T01 history 566 566

T02 history 9566 10132

T03 computer 25667 35799

T04 psychology 13001 48800

T05 psychology 201440 250240

T06 *IGNORED* 11320 250240

T07 *IGNORED* 1500200 250240

T08 children 4095 254335

T09 children 5000 259335

T10 *IGNORED* NULL 259335

T11 psychology 94123 353458

T12 *IGNORED* 100001 353458

T13 history 10467 363925

Figure 15.41 Result of Listing 15.56.

✔ Tips

■ In the inner CASE expression, you can

set the value being summed to any

number, not only NULL. If you were sum-

ming bank transactions, for example,

you could make the deposits positive

and withdrawals negative.

■ To run Listing 15.51 in

Microsoft Access, change the

two CASE expressions to iif(t1.type =
'biography', '*IGNORED*', t1.type)
and iif(t2.type = 'biography', NULL,
t2.sales).

In Oracle and DB2, you can replicate

Listing 15.56 by using the window func-

tion SUM OVER (Listing 15.57).

455

SQL Tricks

C
h

a
n

g
i
n

g
 R

u
n

n
i
n

g
 S

t
a

t
i
s

t
i
c

s
 M

i
d

s
t

r
e

a
m

Listing 15.57 Calculate the running sum of book sales,
ignoring biographies and using window functions.

SELECT

title_id,

CASE WHEN type = 'biography'

THEN '*IGNORED*'

ELSE type END

AS title_type,

sales,

SUM(CASE WHEN type = 'biography'

THEN NULL

ELSE sales END)

OVER (ORDER BY title_id, sales)

AS RunSum

FROM titles;

Listing

Pivoting Results
Pivoting a table swaps its columns and rows,

typically to display data in a compact format

on a report.

Listing 15.58 uses SUM functions and CASE
expressions to list the number of books

each author wrote (or cowrote). But instead

of displaying the result in the usual way

(see Listing 6.9 in Chapter 6, for example),

like this:

au_id num_books

----- ---------

A01 3

A02 4

A03 2

A04 4

A05 1

A06 3

A07 0

Listing 15.58 produces a pivoted result:

A01 A02 A03 A04 A05 A06 A07

--- --- --- --- --- --- ---

3 4 2 4 1 3 0

456

Chapter 15

P
i
v

o
t

i
n

g
 R

e
s

u
l
t

s

Listing 15.58 List the number of books each author
wrote (or cowrote), pivoting the result.

SELECT

SUM(CASE WHEN au_id='A01'

THEN 1 ELSE 0 END) AS A01,

SUM(CASE WHEN au_id='A02'

THEN 1 ELSE 0 END) AS A02,

SUM(CASE WHEN au_id='A03'

THEN 1 ELSE 0 END) AS A03,

SUM(CASE WHEN au_id='A04'

THEN 1 ELSE 0 END) AS A04,

SUM(CASE WHEN au_id='A05'

THEN 1 ELSE 0 END) AS A05,

SUM(CASE WHEN au_id='A06'

THEN 1 ELSE 0 END) AS A06,

SUM(CASE WHEN au_id='A07'

THEN 1 ELSE 0 END) AS A07

FROM title_authors;

Listing

Listing 15.59 reverses the pivot. The first

subquery in the FROM clause returns the

unique authors’ IDs. The second subquery

reproduces the result of Listing 15.58.

✔ Tip

■ To run Listings 15.58 and 15.59

in Microsoft Access, change

the simple CASE expressions to iff
functions (for example, change the first

CASE expression in Listing 15.58 to

iif(au_id = 'A01', 1, 0)) and change

the searched CASE expression to a

switch() function (see the DBMS Tip in

“Evaluating Conditional Values with

CASE” in Chapter 5).

457

SQL Tricks

P
i
v

o
t

i
n

g
 R

e
s

u
l
t

s

Listing 15.59 List the number of books each author
wrote (or cowrote), reverse-pivoting the result.

SELECT

au_ids.au_id,

CASE au_ids.au_id

WHEN 'A01' THEN num_books.A01

WHEN 'A02' THEN num_books.A02

WHEN 'A03' THEN num_books.A03

WHEN 'A04' THEN num_books.A04

WHEN 'A05' THEN num_books.A05

WHEN 'A06' THEN num_books.A06

WHEN 'A07' THEN num_books.A07

END

AS num_books

FROM

(SELECT au_id FROM authors) au_ids,

(SELECT

SUM(CASE WHEN au_id='A01'

THEN 1 ELSE 0 END) AS A01,

SUM(CASE WHEN au_id='A02'

THEN 1 ELSE 0 END) AS A02,

SUM(CASE WHEN au_id='A03'

THEN 1 ELSE 0 END) AS A03,

SUM(CASE WHEN au_id='A04'

THEN 1 ELSE 0 END) AS A04,

SUM(CASE WHEN au_id='A05'

THEN 1 ELSE 0 END) AS A05,

SUM(CASE WHEN au_id='A06'

THEN 1 ELSE 0 END) AS A06,

SUM(CASE WHEN au_id='A07'

THEN 1 ELSE 0 END) AS A07

FROM title_authors) num_books;

Listing

Working with Hierarchies
A hierarchy ranks and organizes people or

things within a system. Each element

(except the top one) is a subordinate to a

single other element. Figure 15.42 is a tree

diagram of a corporate pecking order, with

the chief executive officer (CEO) at top,

above vice presidents (VP), directors (DIR),

and wage slaves (WS).

Hierarchical trees come with their own

vocabulary. Each element in the tree is a

node. Nodes are connected by branches.

Two connected nodes form a parent–child

relationship (three connected nodes form

a grandparent–parent–child relationship,

and so on). At the top of the pyramid is the

root node (CEO, in this example). Nodes

without children are end nodes or leaf nodes

(DIR2 and all the WSs). Branch nodes con-

nect to leaf nodes or other branch nodes

(VP1, VP2, DIR1, and DIR3—think middle

management).

The table hier (Figure 15.43) represents

the tree in Figure 15.42. The table hier
has the same structure as the table

employees in “Creating a Self-Join” in

Chapter 7. Review that section for the

basics of using self-joins with hierarchies.

✔ Tip

■ Hierarchies are common in life and data-

bases. Most of the books in the

“Advanced SQL Books” sidebar at the

start of this chapter cover hierarchies in

more detail than I do. For an advanced

treatment, read Joe Celko’s Trees and

Hierarchies in SQL for Smarties by Joe

Celko (Morgan Kaufmann).

458

Chapter 15

W
o

r
k

i
n

g
 w

i
t

h
 H

i
e

r
a

r
c

h
i
e

s

CEO

WS4 WS5WS2 WS3WS1

DIR1 DIR2 DIR3

VP1 VP2

Figure 15.42 An organization chart showing a simple
company hierarchy.

emp_id emp_title boss_id

------ --------- -------

E01 CEO NULL

E02 VP1 E01

E03 VP2 E01

E04 DIR1 E02

E05 DIR2 E02

E06 DIR3 E03

E07 WS1 E04

E08 WS2 E04

E09 WS3 E04

E10 WS4 E06

E11 WS5 E06

Figure 15.43 The result of the query SELECT * FROM
hier;. The table hier represents the organization
chart in Figure 15.42.

Listing 15.60 uses a self-join to list who

works for whom. See Figure 15.44 for

the result.

✔ Tip

■ To run Listing 15.60 in

Microsoft Access and

Microsoft SQL Server, change each

|| to +. In MySQL, use CONCAT() to con-

catenate strings. See “Concatenating

Strings with ||” in Chapter 5.

459

SQL Tricks

W
o

r
k

i
n

g
 w

i
t

h
 H

i
e

r
a

r
c

h
i
e

s

Listing 15.60 List the parent–child relationships. See
Figure 15.44 for the result.

SELECT h1.emp_title ||

' obeys ' ||

h2.emp_title

AS power_structure

FROM hier h1, hier h2

WHERE h1.boss_id = h2.emp_id;

Listing

power_structure

VP1 obeys CEO

VP2 obeys CEO

DIR1 obeys VP1

DIR2 obeys VP1

DIR3 obeys VP2

WS1 obeys DIR1

WS2 obeys DIR1

WS3 obeys DIR1

WS4 obeys DIR3

WS5 obeys DIR3

Figure 15.44 Result of Listing 15.60.

Listing 15.61 traverses the hierarchy by

using multiple self-joins to trace the chain

of command from employee WS3 to the top

of the tree. See Figure 15.45 for the result.

Unfortunately, you must know the depth of

the hierarchy before you write this query;

use one of the alternatives given in the tip,

if possible.

460

Chapter 15

W
o

r
k

i
n

g
 w

i
t

h
 H

i
e

r
a

r
c

h
i
e

s

Listing 15.61 Show the full hierarchical relationship of
employee WS3. See Figure 15.45 for the result.

SELECT

h1.emp_title || ' < ' ||

h2.emp_title || ' < ' ||

h3.emp_title || ' < ' ||

h4.emp_title

AS chain_of_command

FROM hier h1, hier h2, hier h3, hier h4

WHERE h1.emp_title = 'WS3'

AND h1.boss_id = h2.emp_id

AND h2.boss_id = h3.emp_id

AND h3.boss_id = h4.emp_id;

Listing

chain_of_command

WS3 < DIR1 < VP1 < CEO

Figure 15.45 Result of Listing 15.61.

461

SQL Tricks

W
o

r
k

i
n

g
 w

i
t

h
 H

i
e

r
a

r
c

h
i
e

s

In Microsoft SQL Server and DB2, to

list everyone who reports to a particular

employee (VP1, in this example), either

directly or indirectly (through a boss’s

boss), use this query:

WITH recurse (emp_title, emp_id) AS

(SELECT emp_title,emp_id

FROM hier

WHERE emp_title = 'VP1'

UNION ALL

SELECT hier.emp_title, hier.emp_id

FROM hier, recurse

WHERE recurse.emp_id =

hier.boss_id

)

SELECT emp_title AS "Works for VP1"

FROM recurse

WHERE emp_title <> 'VP1';

In Oracle 10g or later, use the (nonstan-

dard) CONNECT BY syntax to traverse a

hierarchy. The following query is equiva-

lent to Listing 15.61:

SELECT LTRIM(SYS_CONNECT_BY_PATH(

emp_title, ' < '), ' < ')

AS chain_of_command

FROM hier

WHERE LEVEL = 4

START WITH emp_title = 'WS3'

CONNECT BY PRIOR boss_id = emp_id;

In Oracle 10g or later, to list everyone

who reports to a particular employee

(VP1, in this example), either directly or

indirectly (through a boss’s boss), use

this query:

SELECT emp_title AS "Works for VP1"

FROM hier

WHERE emp_title <> 'VP1'

START WITH emp_title = 'VP1'

CONNECT BY PRIOR emp_id = boss_id;

✔ Tip

■ To run Listing 15.61 in

Microsoft Access and

Microsoft SQL Server, change each

|| to +. In MySQL, use CONCAT() to con-

catenate strings. See “Concatenating

Strings with ||” in Chapter 5.

In Microsoft SQL Server and DB2, use

the (standard) recursive WITH clause to

traverse a hierarchy. The following query

is equivalent to Listing 15.61 (in SQL

Server, change each || to +.):

WITH recurse (chain, emp_level,

boss_id) AS

(SELECT

CAST(emp_title

AS VARCHAR(50)),

0,

boss_id

FROM hier

WHERE emp_title = 'WS3'

UNION ALL

SELECT

CAST(recurse.chain || ' < ' ||

hier.emp_title

AS VARCHAR(50)),

recurse.emp_level + 1,

hier.boss_id

FROM hier, recurse

WHERE recurse.boss_id =

hier.emp_id

)

SELECT chain AS chain_of_command

FROM recurse

WHERE emp_level = 3;

Listing 15.62 traverses the hierarchy by

using multiple UNIONs and self-joins to trace

the chain of command for every employee.

See Figure 15.46 for the result. Unfortu-

nately, you must know the maximum depth

of the hierarchy before you write this query;

use one of the alternatives given in the tip,

if possible.

✔ Tip

■ Microsoft Access won’t

run Listing 15.62 because of

the restrictions Access puts on join

expressions.

To run Listing 15.62 in Microsoft SQL

Server, change each || to +.

To run Listing 15.62 in MySQL, use

CONCAT() instead of || to concatenate

strings.

In Microsoft SQL Server and DB2, use

the (standard) recursive WITH clause to

traverse a hierarchy. The following query

is equivalent to Listing 15.62 (in SQL

Server, change each || to +.):

WITH recurse (emp_title, emp_id) AS

(SELECT

CAST(emp_title

AS VARCHAR(50)),

emp_id

FROM hier

WHERE boss_id IS NULL

UNION ALL

SELECT

CAST(recurse.emp_title ||

' > ' ||

h1.emp_title

AS VARCHAR(50)),

h1.emp_id

FROM hier h1, recurse

WHERE h1.boss_id =

recurse.emp_id

)

SELECT emp_title emp_tree

FROM recurse;

462

Chapter 15

W
o

r
k

i
n

g
 w

i
t

h
 H

i
e

r
a

r
c

h
i
e

s

Listing 15.62 Show the full hierarchal relationship of
every employee. See Figure 15.46 for the result.

SELECT chain AS chains_of_command

FROM

(SELECT emp_title as chain

FROM hier

WHERE boss_id IS NULL

UNION

SELECT

h1.emp_title || ' > ' ||

h2.emp_title

FROM hier h1

INNER JOIN hier h2

ON (h1.emp_id = h2.boss_id)

WHERE h1.boss_id IS NULL

UNION

SELECT

h1.emp_title || ' > ' ||

h2.emp_title || ' > ' ||

h3.emp_title

FROM hier h1

INNER JOIN hier h2

ON (h1.emp_id = h2.boss_id)

LEFT OUTER JOIN hier h3

ON (h2.emp_id = h3.boss_id)

WHERE h1.emp_title = 'CEO'

UNION

SELECT

h1.emp_title || ' > ' ||

h2.emp_title || ' > ' ||

h3.emp_title || ' > ' ||

h4.emp_title

FROM hier h1

INNER JOIN hier h2

ON (h1.emp_id = h2.boss_id)

INNER JOIN hier h3

ON (h2.emp_id = h3.boss_id)

LEFT OUTER JOIN hier h4

ON (h3.emp_id = h4.boss_id)

WHERE h1.emp_title = 'CEO'

) chains

WHERE chain IS NOT NULL

ORDER BY chain;

Listing

In Oracle 10g or later, use the (nonstan-

dard) CONNECT BY syntax to traverse a

hierarchy. The following query is equiva-

lent to Listing 15.62:

SELECT ltrim(SYS_CONNECT_BY_PATH(

emp_title, ' > '),' > ')

AS chains_of_command

FROM hier

START WITH boss_id IS NULL

CONNECT BY PRIOR emp_id = boss_id;

463

SQL Tricks

W
o

r
k

i
n

g
 w

i
t

h
 H

i
e

r
a

r
c

h
i
e

s

chains_of_command

CEO

CEO > VP1

CEO > VP1 > DIR1

CEO > VP1 > DIR1 > WS1

CEO > VP1 > DIR1 > WS2

CEO > VP1 > DIR1 > WS3

CEO > VP1 > DIR2

CEO > VP2

CEO > VP2 > DIR3

CEO > VP2 > DIR3 > WS4

CEO > VP2 > DIR3 > WS5

Figure 15.46 Result of Listing 15.62.

Listing 15.63 uses scalar subqueries to

determine whether each node in the hierar-

chy is a root, branch, or leaf node. See

Figure 15.47 for the result. A zero in the

result denotes True; nonzero, False.

✔ Tip

■ To run Listing 15.63 in

Microsoft Access, change

each SIGN to SGN.

In Oracle 10g or later, use the (nonstan-

dard) CONNECT BY syntax to traverse a

hierarchy. The following query is equiva-

lent to Listing 15.63:

SELECT

emp_title,

(CASE CONNECT_BY_ROOT(emp_title)

WHEN emp_title THEN 1

ELSE 0 END)

AS root_node,

(SELECT COUNT(*)

FROM hier h1

WHERE h1.boss_id = hier.emp_id

AND hier.boss_id IS NOT NULL

AND rownum = 1)

AS branch_node,

CONNECT_BY_ISLEAF AS leaf_node

FROM hier

START WITH boss_id IS NULL

CONNECT BY PRIOR emp_id = boss_id

ORDER BY root_node DESC,

branch_node DESC;

464

Chapter 15

W
o

r
k

i
n

g
 w

i
t

h
 H

i
e

r
a

r
c

h
i
e

s

Listing 15.63 Determine whether each node is a root,
branch, or leaf node. See Figure 15.47 for the result.

SELECT h1.emp_title,

(SELECT SIGN(COUNT(*))

FROM hier h2

WHERE h1.emp_id = h2.emp_id

AND h2.boss_id IS NULL)

AS root_node,

(SELECT SIGN(COUNT(*))

FROM hier h2

WHERE h1.emp_id = h2.boss_id

AND h1.boss_id IS NOT NULL)

AS branch_node,

(SELECT SIGN(COUNT(*))

FROM hier h2

WHERE 0 =

(SELECT COUNT(*)

FROM hier h3

WHERE h1.emp_id = h3.boss_id))

AS leaf_node

FROM hier h1;

Listing

emp_title root_node branch_node leaf_node

--------- --------- ----------- ---------

CEO 1 0 0

VP1 0 1 0

VP2 0 1 0

DIR1 0 1 0

DIR2 0 0 1

DIR3 0 1 0

WS1 0 0 1

WS2 0 0 1

WS3 0 0 1

WS4 0 0 1

WS5 0 0 1

Figure 15.47 Result of Listing 15.63.

A
about this book

arrow indicating breaks in code, xvi

audience for book, xv–xvi

companion website for, xiv

knowledge needed by reader, xiv

requirements for using book, xviii

syntax conventions used, xvi, xvii

typographic conventions used, xvi

vendor-specific modifications of SQL, xvii

absolute pathnames, 3

Access. See Microsoft Access

ACID acronym, 403

addition operator (+), 130, 131–132

aggregate functions, 169–192

AVG(), 170, 175–176

COUNT(), 170, 175, 176, 177, 178, 185

creating, 171

DISTINCT(), 179–182

filtering groups with HAVING, 169, 190–192

GROUP BY clauses with, 169, 183–189

inner join combined with GROUP BY and,

215, 217

listing of, 170

MAX(), 170, 173

MIN(), 170, 172

returning single values with subqueries, 276

SUM(), 170, 174

ALL keyword, 94, 288–290

ALTER TABLE statement, 337, 373–375

ALTER VIEW statement, 389

alternate keys, 39

Symbols
+ (addition operator), 130, 131–132

\ (backslash), 3

[] (brackets), 67, 117

/* */ (bracketed comments), 64

^ (caret), 117

/ (division operator), 130, 131–132

\\ (double backslash), 3

" (double quotes), xvi, 63

= (equal to operator), 101, 110

> (greater than operator), 101

>= (greater than or equal to operator), 101

< (less than operator), 101

<= (less than or equal to operator), 101

* (multiplication operator), 130, 131–132

<> (not equal to operator), 101

() (parentheses), 63, 106

% (percent sign) operator, 114

; (semicolon), 62, 63

' (single quotes), xvi, 70, 71

/ (slash), 3

– (subtraction operator), 130, 131–132

_ (underscore) operator, 114

|| (concatenate operator), 134–136

465

Index
i

I
n

d
e

x

AND operator

combining with NOT and OR operators, 109

using, 105, 106

ANSI (American National Standards

Institute)

about, xii, xiii

ANSI-89 vs. ANSI-92 syntax mode (Access),

5

ANY keyword

comparing equivalent subqueries using,

301–302

subquery comparisons using, 291–293

approximate numeric types, 75

arguments, 127

arithmetic operators

listing of, 130

order of evaluation of, 133

types of operations using, 127

arrows in code listings, xvi

AS clauses

creating column aliases with, 91–92, 170

table alias creation with, 196–197

ASC clause, 422–428

ASCII encoding, 71

atomic values, 46, 47, 403

authors

author/publisher queries using UNION
operations, 304–307

books written (by publisher), 223–224

books written (by title), 221

calculating greatest number of titles

written

by, 273

comparing values in subqueries with ALL,

289–290

creating table of unpublished, 244, 295

earned royalties by book and, 226–229

finding number of books by, 243, 272

finding pairs by location, 251–252

grouping names of coauthors and sole, 286

join listing cities of publisher and, 238

listed by above-average sales, 278

listing books by, 211

listing by latest date of publications, 272

listing by volume of book sales and, 245

living in different city from publisher, 297,

312

living in publisher’s city, 296, 310

names of sole, 285

outer joins listing all rows with nulls, 239

querying names of co-authors, 284, 285

residing in publisher’s city/state, 213

residing same state as publisher, 276–277

royalty comparisons with subqueries, 279

sorting by genre of writing, 284

sorting by specific location, 249

subquery comparisons using ANY, 292

total book royalties paid by publisher,

233–234

unpublished, 282, 283

using equivalent queries on, 301

writing different genres of books, 298

writing three or more books, 297

authors table

adding new rows to and listing, 321–322

creating views of, 388, 389

deleting rows from, 334

structure of, 51, 52

author_title_names table, 370

autocommit mode, 404

averages

moving, 407

running, 406

AVG() aggregate function, 170, 175–176

B
backslash (\), 3

balanced trees (B-trees), 382

batch files, 2

batch mode, 2

BETWEEN condition, 118–120

binary table operations, 36

BLOB (binary large object) data types, 72

books

advances by genre, 216–217

authors writing three or more, 297

by author and listed by publisher, 223–224

calculating running sum and average for,

406

changing prices by genre, 328

comparing values in subqueries with ALL,

289–290

computing running sum of sales, 273

466

Index

I
n

d
e

x

books (continued)

filtering books written by author’s name,

221

finding authors who haven’t written, 282,

283

genres listed by greater sales volume, 250

greatest number written by authors, 273

having above-average sales, 277

listed by sales volume and author, 245

listing authors by latest published, 272

listing by authors, 211

listing number by author, 243, 272

names and IDs of publisher and, 212

place of publication, 214

priced greater than highest price genre, 278

revenues greater than advance, 220

sale prices compared by genre, 280

subqueries listing publishers by genre,

254–255

subquery comparisons using ANY, 292, 293

total royalties for all, 225

types of published by several publishers,

286, 287

updating table values for, 329–330

books sample database. See also specific tables

about, 51

authors table for, 51, 52

creating sample, 57

listing of books_standard.sql script,

57–60

publishers table, 51, 53

royalties table of, 56

title_authors table, 55

titles table of, 54

books_standard.sql script, 57–60

Boolean types, 76

Boyce-Codd normal form (BCNF), 50

bracketed comments (/* */), 64

brackets ([])

filter patterns using, 117

using around identifiers, 67

branch nodes, 458

C
calculating statistics

mode, 177

medians, 451–452

overview, 177

running statistics, 406–408, 454–455

sum of set’s values, 174, 179–182

trimmed mean, 432

calendar tables, 414

candidate keys, 39

caret (^), 117

CASE expression

correlated subqueries vs., 274

evaluating conditional values with, 161–164

case sensitivity

changing, 140–141

comparisons and, 140, 173

keyword and identifier, 63

SQL and, xvi

CAST(), 157–160

catalogs, 439

character strings. See also substrings

case sensitivity of comparisons, 140–141,

173

comparison operators with, 101

concatenating, 134–136

example of string operations, 127

extracting substrings, 137–139

finding length of, 147–148

trimming characters from, 142–146

types of, 70–71

CHARACTER_LENGTH() function, 147–148

CHECK constraints, 339, 363–365

clauses. See also specific clauses

about, 62, 63, 64

clients, xv

closure property for tables, 36

clustered indexes, 382

COALESCE() expression, 161, 165, 170, 427, 438

Codd, E. F., 33, 34, 38

collating sequence, 96

column aliases

creating, 91–92

sorting by, 99

WHERE clauses and, 104

columns

about, 34, 35, 37

adding UNIQUE constraints to, 359–362

comparing from similar domains, 199

constraints for, 339–340

creating aliases with AS clauses, 91–92

467

Index

I
n

d
e

x

columns (continued)

DEFAULT values for, 346–349

defining constraints for, 363–365

derived, 128–129

displaying table definitions for, 316–318

grouping, 171, 183, 184

inserting rows in, 320–322

joining unequal values in, 220

modifying with ALTER TABLE, 373–374

nullability in, 343–345

order in composite indexes, 379

qualifying column names, 194–195, 267

retrieving from SELECT and FROM clauses,

88–90

self-joins within, 247–252

sorting rows by, 95–96

specifying relative position for sorting, 97

subqueries vs. joins for working with, 261

two tables on, 211–212

unordered, 35

using simple FOREIGN KEY constraints,

355–356

when to use indexes for, 378

Command Center (IBM DB2 8.x), 21

Command Editor (IBM DB2 9.x), 22

command-line tools

IBM DB2 db2, 23–26

MySQL mysql, 27–29

Oracle sqlplus, 17–19

PostgreSQL psql, 30–32

SQL Server osql, 11, 12–13

SQL Server sqlcmd, 10, 15

using SQL with, 2, 3

comments, 62, 64

committing transactions

about, 400

using COMMIT statement, 335, 404

companion website, xiv

comparison operators

ALL modifications to, 288

ANY modifications to, 291

listing of, 101

using in subqueries, 275–280

comparisons

case sensitivity of, 140, 173

changing string case, 140–141

composite constraints

foreign key, 356–357

primary key, 352

unique, 361–362

composite indexes, 378, 379

concatenate operator (||), 134–136

concurrency transparency, 401

conditions

combining and negating, 105–109, 111–112

equivalent, 112–113

filtering lists with IN, 121–123

filtering with BETWEEN, 118–120

matching row patterns with LIKE, 114–117

re-expressing, 113

types of search, 101

consistency in transactions, 403

constant expressions, 128

constants. See literal values

constraints

altering or dropping, 375

check, 339, 363–365

column and table, 339–340

foreign key, 339, 353

nullability, 343

primary key, 339, 350

unique, 359–362

using CONSTRAINT clauses, 339–340

converting data types, 157–160

correlated subqueries. See also subqueries

comparing author’s royalties with

subqueries, 279

computing running sum of book sales, 273

GROUP BY clauses vs., 280

including null values in list of books and

authors, 272

listing data in spreadsheet fashion with, 271

qualifying column names in, 272

simple vs., 266

correlation variables, 263

COUNT() aggregate function

about, 170

comparing equivalent subqueries using,

301–302

COUNT(expr) vs. COUNT(*), 185

creating inner joins with GROUP BY clause

and, 215, 230–232

DISTINCT() with, 179

468

Index

I
n

d
e

x

forms of, 178

listing with duplicate rows with, 436

nulls and, 170, 176

statistics using, 177

CREATE INDEX statement

creating index with, 378–382

unique indexes vs. unique constraints, 362

CREATE TABLE AS statement, 337, 369–372

CREATE TABLE statement

adding UNIQUE constraints to columns, 360

defined, 337

defining foreign-key constraint in, 353

table creation with, 337, 338, 341–342

CREATE TEMPORARY TABLE statement, 337,

366–368

CREATE VIEW statement, 386–390

cross joins

accidentally turning inner to, 210

creating, 204–205

defined, 198

curly quotes, xvi

current date and time, 154–155

CURRENT_DATE() function, 154–155

CURRENT_TIME() function, 154–155

CURRENT_USER() function, 156

cursors, 99

D
data control language (DCL) statement, xiii

data definition language (DDL) statement, xiii

data manipulation language (DML)

statement, xiii

data types

approximate numeric, 75

characteristics of, 68–69

comparing subquery values of same, 275

compatibility of for join columns, 199

converting with CAST(), 157–160

datetime, 77–79

exact numeric, 73–74

interval, 80–81

database management systems. See DBMSs;

DBMS-specific SQL features

databases. See also books sample database

books sample, 51

command and queries listing tables in, 318

DBMS vs., x

denormalizing, 50

learning to design, 38

picking random rows, 433–434

providing views of data, 386

recovering and restoring data, 401

renaming tables of, 375

rolling back transactions, 400, 403, 404

sample, xviii

dates

listing author and publications by latest,

272

sequence tables for incrementing, 413

using in queries, 445

datetime operations

data types for, 77–79

example of, 127

extracting part of, 152–153

formatting and, 90

sequence tables for, 412, 413

DB2 CLP windows, 23

db2 command-line tool

exiting, 26

interactive mode for, 24

script mode for, 25

showing options for, 26

starting, 23

DBMS icon, xvii

DBMSs (database management systems). See

also DBMS-specific SQL features

ANSI-89 vs. ANSI-92 syntax mode for

(Access), 5

command line for, 2

covered by book, xvii

databases vs., x

determining SQL Server version running, 10

issuing SQL commands to, xii

running in autocommit mode, 404

SQL servers vs. desktop, xv

support for SQL, ix

transactions in, 399–404

using SQL on, 2–3

using with book, xviii

working with indexes, 378–382

DBMS-specific SQL features. See also specific

database programs

Access versions, 5

aggregate functions, 171

469

Index

I
n

d
e

x

DBMS-specific SQL features (continued)

altering tables, 373, 375

approximate numeric types, 75

BLOB data types, 72

Boolean types, 76

calculating medians, 452

changing case of character strings, 141

character string types, 71

column aliases, 91

comparing values in subqueries with ALL,

290

concatenating strings, 136, 309

converting data types, 159–160

CREATE TEMPORARY TABLE support, 368

CREATE VIEW statement, 390

creating aliases with AS clauses, 91–92

cross joins, 205

dates, 445–450

datetime data types, 79

defining check constraints, 365

DELETE and TRUNCATE statements, 336

derived columns, 129

determining order of operator evaluation,

133

displaying table definitions, 316–318

DISTINCT() aggregate functions, 181

dropped tables, 376

dropping views, 398

duplicate rows, 437

evaluating conditional values with CASE
expression, 164

exact numeric data types, 73–74

EXCEPT operations, 313

extracting part of datetime or interval, 153

extracting substrings, 138–139

filtering ranges, 120

finding rows with extreme values, 453

generating sequences, 410, 414

getting current date and time, 154–155

handling sorting, 98

hierarchies, 459, 461, 462–463, 464

IBM DB2 versions, 20

identifiers, 66, 67

indexes, 380, 382

INSERT statements, 326

inserting column values with DEFAULT
clause, 348–349

INTERSECT operations, 311

interval data types, 80–81

joins with WHERE and JOIN clauses, 202

length of character strings, 148

limiting number of returned rows, 421–429

lists filtered with IN condition, 121–123

making new table from existing one,

371–372

metadata retrieval, 439–444

Microsoft SQL Server versions, 10

midstream changes to running statistics,

455

modifications with CREATE TABLE listings,

342

modifying row values with UPDATE, 331–332

nulls, 84–85, 98, 126, 167, 345

number and datetime formatting, 90

operators and functions for, 131, 132

Oracle versions, 17

ORDER BY clause for columns in, 100

OUTER JOIN syntax, 237, 239, 240, 241–242,

246

pattern matching, 114–117

pivoting tables, 456–457

POSITION() function for finding

substrings, 151

PostgreSQL versions, 30

PRIMARY KEY constraints, 352

printing current user, 156

qualifying column names, 195, 267

randomization, 433–434

ranking data, 431

retrieving data through views, 392

row comparisons, 104

running statistics calculations, 408

SELECT * with EXISTS subqueries, 299–300

specifying foreign key constraints, 358

string comparisons, 172

subqueries and, 255, 261, 266, 269, 274, 287

SUM() aggregate functions, 174

table alias creation with AS clauses, 197

timing and measuring query execution, 302

transactions, 402, 404

trimmed mean calculations, 432

trimming function, 145–146

UNION operations, 309

unique identifiers, 82

470

Index

I
n

d
e

x

user-defined types, 83

using inner joins, 211, 222, 224, 226, 229,

232, 234

working with UNIQUE constraints, 362

DCL (data control language) statement, xiii

DDL (data definition language) statement, xiii

debugging WHERE clauses, 110

declarative programming languages, xi

DEFAULT clause, 346–349

DELETE statement

limiting number of rows affected by, 421

removing rows with, 315, 333–336

using updateable views in, 394

deleting

duplicate rows, 93–94, 436–437

row through view, 397

delimited identifiers, 66

denormalization, 50

dependencies

dependency-preserving decomposition, 45

fully functional, 47–48

multivalued, 50

partial functional, 47–48

transitive, 49

DESC clause, 422–428

desktop DBMS, xv

directories, 3

DISTINCT() aggregate function

aggregating values with, 178, 179–182

eliminating duplicate values, 93

division (/)

arithmetic operator for, 130

avoiding divide-by-zero errors, 166

performing, 131–132

DML (data manipulation language)

statement, xiii

domains

column’s, 35

comparing columns of similar, 199

double backslash (\\), 3

double quotes (")

common errors with, 63

straight, xvi

DROP INDEX statement, 383–384

DROP TABLE statement

defined, 337

deleting base tables with, 366

using, 342, 376

DROP VIEW statement, 398

duplicate rows

deleting, 93–94, 436–437

handling, 435–437

listing, 435–436

duplicate value tests, 298–299

durability in transactions, 403

E
embedded SQL, xii

employees table, 458

empty strings, 71, 84, 126

in Oracle, 85

encoding, 71

end nodes, 458

equal to operator (=), 101, 110

equivalent conditions, 112–113

escaped and unescaped patterns, 116

exact numeric types, 73–74

EXCEPT operation

finding different rows, 312–313

function of, 303

precedence of INTERSECT with, 311

updateable views with, 394

EXISTS keyword

comparing equivalent subqueries using,

301–302

testing subqueries with, 294–300

exiting

db2 command-line tool, 26

mysql command-line tool, 27–29

osql command-line tool, 13

psql command-line tool, 31

sqlcmd command-line tool, 15

sqlplus command-line tool, 19

expressions

constant, 128

operands as, 127

returning null for equivalent, 167

sorting by query results of, 100

types of SQL, 64

using subqueries as, 253, 278

471

Index

I
n

d
e

x

F
fields, datetime, 78

fifth normal form (5NF), 50

FileMaker Pro, 4

files, script, 2

filtering. See also INNER JOIN clause; joins

books by place of publication, 214

groups with HAVING, 190–192

lists with IN condition, 121–123

patterns, 117

ranges, 118–120

rows by matching patterns, 115

rows with WHERE clause, 101–104

Firebird, 4

first normal form (1NF), 45, 46

FOREIGN KEY constraint, 353–358

composite, 356–357

defining in CREATE TABLE statements, 353

function of, 339

simple, 355–356

foreign keys. See also FOREIGN KEY constraint

characteristics of, 40–41

joins and, 198

one-to-many relationships and, 43

one-to-one relationships and, 42

primary and, 41

self-joins and, 247

fourth normal form (4NF), 50

FROM clause, 88–90

FROM keyword, 336

full outer joins

creating, 236

defined, 198, 235

including all rows in table regardless of

column match, 241

fully functional dependency, 47–48

functions. See aggregate functions; operators

and functions; and specific functions

further reading

advanced SQL books, 405, 458

database design, 38

relational model, 33

resources for, xiv

on runs, regions, and sequences, 415

transaction theory, 403

G
global temporary tables, 366, 367, 370

greater than operator (>), 101

greater than or equal to operator (>=), 101

GROUP BY clause

adding to INNER JOIN syntax, 215, 217

aggregate functions with, 169

calculating royalty totals by publisher with,

230–232

comparing subquery values using, 278

correlated subquery vs., 280

COUNT(expr) vs. COUNT(*) in, 185

execution sequences with, 201

grouping rows with, 183–189

sequence with WHERE and HAVING clauses,

190

using with UNION operations, 304

grouping columns

inner joins using, 233

using, 171, 183, 184

GUID (Globally Unique Identifier), 82

H
HAVING clause

comparing subquery values using, 278, 279

creating inner joins with, 219, 233–234

execution sequences with, 201

filtering groups with, 169, 190–192

logical operators with, 191

sequence with WHERE and GROUP BY clauses,

190

using with UNION operations, 304

hexadecimal format, 72

hier table, 458

hierarchies, 458–464

about, 458

listing parent-child relationships, 459

hosts, 1

I
IBM DB2, 20–26. See also DBMS-specific SQL

features

Command Center (v. 8), 21

Command Editor (v. 9), 22

db2 command-line tool for, 23–26

472

Index

I
n

d
e

x

displaying table definitions for, 317

dropping indexes, 383, 384

limiting number of returned rows, 426

retrieving metadata, 439, 442

running SQL with, 2–3

versions of, 20

working with dates in, 448

IBM DB2 Express-C, 20

identifiers

about, 62, 66–67

case for, 63

IN keyword

comparing equivalent subqueries using,

301–302

filtering lists with, 121–123

testing set membership with, 281–287

incrementing dates, 413

indexes, 377–384

clustered and nonclustered, 382

composite, 378, 379

creating for columns grouped frequently,

188

creating with CREATE INDEX, 378–382

dropping, 383–384

function of, 377

keys vs., 381

simple, 380

unique, 379, 381

INNER JOIN clause

calculating total royalties for all books with,

225

comparing results of OUTER JOIN and,

238–241

creating, 210–234

creating self-joins, 248

defined, 198, 210

equivalent subquery comparisons using,

301–302

four-table joins with, 223

HAVING clause with, 219, 233–234

joining unequal values in columns, 220

OUTER JOIN clause with, 245–246

subqueries vs., 257–258

three-table joins, 210, 221–222, 226

using aggregate functions with GROUP BY,

215, 217, 230–232

using subqueries with, 254, 255

WHERE conditions with, 214, 216

inner queries. See subqueries

INSERT statement

adding default values to table in, 347

adding rows with, 315, 319–326

displaying table definitions when using,

316–318

populating new table with, 342

specifying column’s default values in, 346

using updateable views in, 394

instances, 37

interactive mode

db2 command-line tool, 24

defined, 2

mysql command-line tool, 27

osql, 12

psql command-line tool, 30

sqlcmd command-line tool, 15

sqlplus command-line tool, 18

INTERSECT operation, 303, 310–311

interval operations, 80–81, 152–153

ISO (International Organization for

Standardization), xii

isolation in transactions, 403

J
JOIN clause

creating joins with, 200–202

execution sequences with, 201

replicating natural joins with, 208

joins, 193–252. See also specific join clauses

creating cross, 204–205

defined, 193

inner vs. outer, 235

natural, 206–209

query execution sequences for, 201

self, 198, 247–252

subqueries vs., 257–261

types defining updateable views, 394

using, 198–199

with USING clause, 203

using JOIN syntax for, 200, 202

WHERE syntax for, 201, 202

junction tables, 44

473

Index

I
n

d
e

x

K
keys. See also foreign keys; primary keys

candidate and alternate, 39

foreign, 40–41

indexes vs., 381

joins and, 198

primary, 36, 38–39

keywords. See also specific keywords

case for, 63

defined, 62

keywords (continued)

defining foreign-key constraint with, 353

reserved and non-reserved, 66, 67

SELECT statements using reserved, 92

L
leaf nodes, 458

LEFT [OUTER] JOIN clauses

creating, 236

creating phone list with COALESCE(), 438

defined, 198, 235

including all rows of table in results, 239

listing number of books by author, 243, 272

subqueries vs., 259

less than operator (<), 101

less than or equal to operator (<=), 101

level of conformance, 65

LIKE condition, 114–117

LIMIT clause, 428, 429

listing

duplicate rows, 435–436

phone numbers with COALESCE(), 438

literal values

datetime, 78

interval, 81

storing, 69

local temporary tables, 366, 367

logical operators

applying HAVING clause with, 191

combining in compound conditions, 109

defined, 105

lossless decomposition, 45

LOWER() function, 140–141

M
many-to-many relationships, 44, 55

MAX() aggregate function, 170, 173, 177

means

calculating trimmed, 432

finding arithmetic, 175–176

medians vs., 451

medians, 451–452

metadata

defined, 36

retrieving, 439–444

Microsoft Access. See also DBMS-specific SQL

features

displaying existing queries in, 9

dropping indexes, 383–384

limiting number of returned rows, 422

pivoting tables, 457

retrieving metadata, 439, 440

running SQL with, 2–3, 6–7, 8

table definitions for, 316

turning on ANSI-92 SQL syntax for, 5–6

using statements with 2007 version, 8

version used in book, 5

working with dates in, 445

Microsoft SQL Server. See also DBMS-specific

SQL features

calculating medians, 451–452

conformance to SQL standards, 65

connecting to remote computer, 13, 16

displaying table definitions for, 317

dropping indexes, 383, 384

limiting number of returned rows, 423–424

osql command-line tool for, 12–13

other types of SQL servers than, xv

retrieving metadata, 439, 440

running programs for 2000 version, 11–12

running SQL with, 2–3

sqlcmd command-line tool for, 15–16

SQL Server Management Studio for

2005/2008 versions, 14–16

using Access as front-end for, 5

versions of, 10

working with dates in, 446

MIN() aggregate function, 170, 172, 177

474

Index

I
n

d
e

x

moving averages, 407

multiple column selection, 88

multiplication operator (*), 130, 131–132

multivalued dependencies (MVD), 50

MySQL. See also DBMS-specific SQL features

about, 27

command-line tool in interactive mode, 27

conformance to SQL standards, 65

displaying table definitions for, 318

dropping indexes, 383–384

illustrated, 27

limiting number of returned rows, 427–428

mysql command-line tool for, 27–29

retrieving metadata, 439, 443

running SQL with, 2–3

terminating statements with semicolon, 27

working with dates in, 449

mysql command-line tool, 27–29

N
names

inserting rows using column, 321–322

naming constraints, 340

qualifying column, 194–195, 267, 272

rules for identifier, 66, 67

natural joins

creating inner join using, 213

defined, 198

Navigation pane (Access), 9

nesting

subqueries, 284, 329

views, 387

new_publishers table, 323–326

nodes, 458

nonclustered indexes, 382

normalization. See also normal forms

avoiding table anomalies with, 45

defined, 45

first normal form, 45, 46

other types of normal forms, 50

second normal form, 45, 47–48

sequence tables for, 412, 413

third normal form, 45, 49

not equal to operator (<>), 101

NOT EXISTS keyword, 294–300

NOT IN keyword, 281, 283

NOT NULL constraint, 339, 343–345

NOT operator, 105, 108, 109

NULLIF() expression, 161, 166–167, 176

nulls

aggregate functions and, 176

allowing in foreign-key column, 41

characteristics of, 84–85

checking for with COALESCE() expression,

165, 170

comparing, 102

counting rows including, 178

eliminating in tables, 85

empty strings vs., 84, 85

forbidding in columns, 343–345

joins and, 199

OR operator with, 107

outer joins listing results with, 239, 240, 244

returning for equivalent expressions, 167

sorting and, 98

subqueries and, 268–269

testing for in SELECT statements, 124–126

UNIQUE columns and, 359

numbers

changing sign of, 130

formatting in specific databases, 90

O
object references, 37

ON DELETE clause, 357, 358

ON UPDATE clause, 357, 358

one-to-many relationships, 43

one-to-one relationships, 42, 56

operands, 127

operators and functions, 127–167. See also

specific operators and functions

about, 127

arithmetic operations, 130–132

built-in SQL functions for statistics, 177

checking for nulls, 165

comparing expressions, 166–167

comparison operators, 101

concatenating strings, 134–136

converting data types, 157–160

creating derived columns with, 128–129

evaluating conditional values with CASE,

161–164

475

Index

I
n

d
e

x

operators and functions (continued)

extracting and finding substrings, 137–139,

149–151

finding string lengths, 147–148

operator evaluation order, 133

overloading, 152

performing datetime and interval

arithmetic, 152–153

printing current user, 156

retrieving current date and time, 154–155

trimming characters, 142–146

wildcard operators, 114, 116

working with dates, 445–450

options for command-line tool

db2, 26

mysql, 29

osql, 13

psql, 32

sqlcmd, 15

sqlplus, 19

OR operator

combining with NOT and AND operators, 109

using, 105, 107

Oracle. See also DBMS-specific SQL features

about, 17

displaying table definitions for, 317

dropping indexes, 383, 384

empty strings and nulls in, 85, 126

limiting number of returned rows, 425

retrieving metadata, 439, 441

running SQL with, 2–3

sqlplus command-line tool for, 18–19

versions of, 17

working with dates in, 447

Oracle Express Edition, 17

ORDER BY clause

execution sequences with, 201

limiting number of rows returned, 421–429

restricted use in UNION operations, 304

sorting rows with, 95–97, 99–100

speed of sorting and, 98

in statements with GROUP BY clause, 184,

186, 188

osql command-line tool, 11, 12–13

OUTER JOIN clause, 235–246

combining with INNER JOIN, 245–246

comparing results of INNER JOIN and,

238–241

creating left, right, and full outer joins,

236–237, 239–241, 243

INNER JOIN vs., 235

returning single values with subqueries, 276

testing and listing nulls, 244

types of, 198, 235

using subqueries vs., 259

outer queries

about, 254

correlated subqueries and, 262, 265

overloading operators and functions, 152

P
parent tables, 353, 354

parent-child relationships, 458, 459

parentheses (), 63, 106

partial functional dependency, 47–48

paths and pathnames, 3

percent sign (%) operator, 114

performance

combining conditions for query, 111

creating fastest comparisons, 103

queries ranking data, 431

simple subqueries and, 266

speed of sorting, 98

tuning statements for, 302

POSITION() function, 149–151

PostgreSQL, 20–26. See also DBMS-specific

SQL features

about, 30

conformance to SQL standards, 65

displaying table definitions for, 318

dropping indexes, 383, 384

limiting number of returned rows, 428–429

psql command-line tool for, 30–32

retrieving metadata, 439, 444

running SQL with, 2–3

working with dates in, 450

precedence rules

arithmetic operators, 133

combining logical operators in compound

conditions, 109

476

Index

I
n

d
e

x

INTERSECT with EXCEPT and UNION
operations, 311

PRIMARY KEY constraint

about, 339, 350

can’t be used with nullable columns, 343

composite, 352

simple, 351

specifying for table, 339, 350–352

UNIQUE vs., 359

primary keys. See also PRIMARY KEY constraint

characteristics of, 36, 38–39

joins and, 198

many-to-many relationships and, 44

one-to-many relationships and, 43

one-to-one relationships and, 42

optional vs. mandatory, 62

self-joins and, 247

simple, 351

using in tables, 41

programming languages

making common errors in, 63

procedural vs. declarative, xi

SQL as, x

projections, 90

properties, closure, 36

psql command-line tool, 30–32

exiting, 31

interactive mode for, 30

options for, 32

script mode for, 31

publishers

author/publisher queries using UNION
operations, 304–307

authors in same city/state as, 213

authors living in different city from, 297,

312

authors living in same city as, 296, 310

books by author and listed by, 223–224

calculating royalty totals by, 230–232

inner join listing cities of authors and, 238

listing book types published by more than

one,

286, 287

listing name and ID of books and, 212

merging titles of two, 330

outer joins listing all results with nulls, 240

with sales exceeding overall average, 279

subqueries listing by genre, 254–255, 295

total royalties paid authors for all books,

233–234

publishers table, 51, 53, 324–325, 370

publishers2 table, 370

Q
qualifying column names

in tables, 194–195

using in correlated subqueries, 267, 272

queries. See also subqueries

aggregate functions in, 169

calculating arithmetic mean, 175–176

calculating sum of set, 174

combining conditions for performance, 111

counting rows, 178

defining sequence generators, 409–414

displaying list of existing, 9

execution sequences for joins, 201

finding rows with extreme values, 453

finding trimmed mean, 432

functions for dates in, 445–450

GROUP BY, 186, 188

handling duplicate rows, 435–437

hierarchies and, 458–464

limiting number of rows returned, 421–429

MAX(), 173

median calculations with, 451–452

MIN(), 172

nesting subqueries in, 284

performance with denormalization, 50

picking random rows, 433–434

pivoting tables with, 456–457

ranking data, 431

retrieving metadata, 439–444

running statistics calculations with,

406–408

sorting results of expressions, 100

timing and measuring execution of, 302

types defining updateable views, 394

UNION for combining resulting rows,

304–309

using with views, 385, 391–393

Query Design (Access), 8

quoted identifiers, 66, 67

477

Index

I
n

d
e

x

R
randomization, 433–434

range filtering, 118–120

ranking data, 430–431

RDBMS. See DBMSs

recovering data, 401

re-creating and repopulating tables, 374–375

re-expressing conditions, 113

referenced tables, 353

referential integrity, 353, 354

reflexive relationships, 247, 248

regions, 415–420

relational model, 33–60

columns, 34, 35

denormalization, 50

many-to-many, 44

natural joins in SQL standard vs., 209

normalization, 45–50

one-to-many, 43

one-to-one relationships, 42

primary keys, 36, 38–39, 41

rows, 34, 36

set theory and, 33

SQL differences from, 61

tables, 34

relationships

defined, 193

many-to-many, 44, 55

one-to-many, 43

one-to-one, 42, 56

reflexive, 247, 248

relative pathnames, 3

remote computers, 13, 16

renaming tables, 375

repeating groups, 46

restoring data, 401

restrictions, 104

retrieving metadata, 439–444

right outer joins

creating, 236

defined, 198, 235

including all rows in table regardless of

column match, 240

rolling back transactions, 400, 403, 404

row subqueries, 256

rows

about, 34, 36–37

adding, 315, 319–326

applying aggregate functions to, 169

calculating differences between successive,

408

changing values of, 315, 327–332

combining, 304–309

counting, 178

deleting through view, 397

duplicate, 93–94, 298–299, 435–437

filtering, 101–104, 115, 190–192

finding common, 310–311

grouping, 183–189

having highest and lowest values, 453

inserting through view, 395

limiting number returned, 421–429

listing with outer joins, 235, 239, 240, 241

locating different, 312–313

matching patterns with LIKE conditions,

114–117

nulls inserted into, 345

orphan, 354

picking random, 433–434

removing, 315, 333–336

skipping table, 428, 429

sorting, 95–97, 99–100

unordered, 35

updating, 396

royalties

calculating total book, 225

earned by author and book, 226–229

listing advances by genre, 216–217

total paid by publisher for all author’s

books, 233–234

using inner join to calculate total, 230–232

royalties table, 56, 334

running statistics, 406–408

runs, 415–420

478

Index

I
n

d
e

x

S
sample database, xviii

SAS, 4

scalar aggregates, 188

scalar subqueries, 256

schemas, 37

scope of identifier, 66

script files, 2

script mode

db2 command-line tool, 25

defined, 2

mysql command-line tool, 28

osql command-line tool, 12

psql command-line tool, 31

sqlcmd command-line tool, 15

sqlplus command-line tool, 18

search conditions, 101

searched CASE expression, 163–164

second normal form (2NF), 45, 47–48

security of table views, 386

SELECT clause

GROUP BY expressions in, 184

results of DISTINCT() in aggregate

functions

and, 180, 181–182

retrieving columns with, 88–90

using aggregate functions in, 171

using CREATE TABLE AS with, 369

using SELECT * with EXISTS subqueries,

299–300

SELECT INTO statement, 371

SELECT statement

ALL keyword in, 94

combining and negating conditions in,

105–109, 111–112

creating column aliases, 91–92

debugging WHERE clauses, 110

deleting duplicate rows, 93–94

displaying, 9

filtering rows, 101–104

list filtering, 121–123

matching patterns with LIKE, 114–117

occurrence order in UNION operations, 308

range filtering in, 118–120

set operations with, 303

simple subquery processing in, 262–263

sorting rows, 95–97, 99–100

syntax for, 87

testing for nulls in, 124–126

views as, 385

selecting nth row, 434

self-joins

creating, 248

defined, 198, 247

listing parent-child relationships, 459, 460

using, 247–252

writing subqueries as, 260

self-referencing tables, 40

semantics, SQL and, x

semicolon (;), 62, 63

sequence tables, 411–412

sequences

defining sequence generators, 409–414

detecting breaks in, 417

finding start/end positions and length of,

416

runs, regions, and, 415–420

servers, xv

sets, 304–313

about, 33

combining rows, 304–309

determining maximum value, 170, 173

finding different rows, 312–313

finding minimum value, 172

locating common rows, 310–311

queries calculating sum of, 174

summing distinct values, 179–182

testing membership for, 281–287

Show Table dialog, 8

simple primary keys, 351

simple subqueries

about, 262–263

correlated vs., 266

single quotes ('), 70, 71

slash (/), 3

sorting

based on conditional logic, 99

collation and, 96

nulls and, 98

rows with ORDER BY clause, 95–97, 99–100

speed of, 98

Soundex, 437

spreadsheets, 37

479

Index

I
n

d
e

x

SQL. See also further reading; SQL statements

about, x–xiii

advantages as declarative language, xi

approximate numeric types, 75

based on relational model, 61

BLOB data types, 72

books on advanced, 405, 458

Boolean types, 76

case insensitivity of, xvi

character string types, 70–71

common programming errors in, 63

comparison operators, 101

creating legal aggregate functions, 171

data types, 68–69

datetime types, 77–79

defined, ix

exact numeric types, 73–74

identifiers, 62, 66–67

interactive or embedded statements in, xii

interval types, 80–81

meaning of, xiii

nulls, 84–85

other data types in, 83

performance tuning for statements, 302

programs for, 2–3

standards for, xii–xiii, 65

statement types in, xiii

syntax of, 62–64

types of expressions, 64

unique identifiers, 82

user-defined types, 83

vendor-specific modifications of, xvii

working with statistics in, 177

SQL Query Analyzer, 10, 11

SQL server. See also Microsoft SQL Server

SQL Server vs., xv

SQL Server Express Edition, 10, 14

SQL Server Management Studio, 14–16

SQL Server Management Studio Express, 10,

14

SQL Server Studio Query Editor, about, 10

SQL statements. See also specific clauses

clauses of, 62, 63, 64

defined, 62

syntax of, 62–64

transactions, 399–404

SQL View (Access), 8

sqlcmd command-line tool, 10, 15

SQLite, 4

sqlplus command-line tool, 18, 19

standards

ANSI, xii, xiii

ISO, xii

natural joins in relational model vs., 209

SQL, xii–xiii, 65

statistics in SQL

built-in SQL functions for, 177

changing in midstream, 454–455

using running statistics, 406–408

string comparisons, 275

strings. See character strings

subqueries, 253–302

categories of, 256

comparing subquery values, 275–280

comparing values with ALL, 288–290

comparisons using ANY, 291–293

correlated, 262, 263–266

defined, 253

existence tests with, 294–300

inner and outer, 254

joins vs., 257–261

nesting, 284, 329

nulls in, 268–269

qualifying column names in, 267

simple, 262–263, 266

syntax for, 256

terminology for, 254, 255

testing set membership with IN, 281–287

types of, 262

using as column expression, 270–274

using equivalent, 301–302

substrings

extracting with SUBSTRING(), 137–139

finding with POSITION(), 149–151

sorting data by, 97

subtraction operator (–), 130, 131–132

SUM() aggregate function, 170, 174

Sybase, 4

syntax

ANSI-89 vs. ANSI-92 mode (Access), 5

conventions used in this book, xvi, xvii

SQL and, x

SQL statement, 62–64

system catalog, 36

system tables, 36, 440

480

Index

I
n

d
e

x

T
table aliases, 196–197

table definitions, 316–318

table scan, 382

table subqueries, 256

tables. See also joins; normalization;

temporary tables; views; and specific

tables

about, 34

adding rows with INSERT, 315, 319–326

altering, 373–375

base, 366

calendar, 414

changing values in existing rows, 327–332

check constraints for, 339, 363–365

column aliases, 91–92

constraining, 339–340

creating sequence of consecutive integers,

411

creating table aliases, 196–197

DEFAULT column values specified for,

346–349

deleting duplicate rows, 93–94

dropping, 337, 366, 376

dropping views, 398

eliminating nulls in, 85

empty, 34

filtering rows with WHERE clause, 101–104

forbidding nulls in columns, 343–345

foreign key constraints in, 353–358

foreign keys, 40–41

fully and partially functionally dependent,

47–48

inserting rows from one table to another,

323–326

joining three or more, 210

joining two tables on column, 211–212

junction, 44

making new tables from existing, 369–372

many-to-many relationships between, 44,

55

matching row patterns in, 114–117

modifying data with SQL statements, 315

one-to-many relationships between, 43

one-to-one relationships between, 42

pivoting, 456–457

populating with INSERT statement, 342

primary key for, 350–352

qualified column names in, 194–195

reason for indexing, 377

re-creating and repopulating, 374–375

renaming, 375

selecting columns from, 88–90

self-referencing, 40

sequence, 411–412

skipping rows with LIMIT clause, 428, 429

specifying in outer joins, 235

spreadsheets vs., 37

statements creating, 337, 338, 341–342

temporary, 366–368

transitive dependency of, 49

truncating, 336

user and system, 36

using primary keys in, 38–39, 41

temporary tables, 366–368

defined, 366

global, 367, 370

local, 367

views vs., 389

temps table, 416–418

Teradata, 4

testing

before inserting rows in table, 325

existence for subqueries, 294–300

for nulls, 124–126

set membership with IN, 281–287

SQL code against standards, 65

text editors, xviii

theta joins, 198

third normal form (3NF), 45, 49

three-value logic (3VL), 105

timestamps, 78

title_authors table, 55, 335, 341

title_name table, 360

titles2 table, 370

titles table, 54, 330, 341, 347, 364, 388–389

tools suppressing data variation, 437

transaction logs, 400, 401

transactions, 399–404

ACID acronym, 403

committing, 335, 400, 404

implicit or explicit starts to, 402

rolling back, 400, 403, 404

481

Index

I
n

d
e

x

transitive dependency, 49

TRIM() function, 135, 142–146

trimmed mean, 432

TRUNCATE statement, 336

two-value logic (2VL), 105

typographic conventions, xvi, 87

U
unary table operations, 36

underscore (_) operator, 114

unicode, 71

union joins, 237

UNION operations

combining rows with, 305–309

function of, 303

order of SELECT statements in, 308

precedence of INTERSECT with, 311

restrictions on, 304

updateable views with, 394

UNIQUE constraints, 359–362

unique indexes

unique constraints vs., 362

using, 379, 381

uniqueness tests, 298

UPDATE statement

changing values in rows with, 315, 327–332

limiting number of rows affected by, 421

performing and rolling back, 402, 403

updating tables

avoiding anomalies with normalization, 45

using views for, 386, 394, 396

UPPER() function, 140–141

user tables, 36

USING clause

joins with, 203

replicating natural joins with, 208

UUID (Universally Unique Identifier), 82

V
values

calculating sum of set, 174, 179–182

changing in table with UPDATE, 327–332

comparing subquery, 275–280

defined, 34

finding rows with highest and lowest, 453

joining unequal column, 220

maximum set of, 170, 173

minimum set of, 172

subqueries comparing with ALL, 288–290

testing for duplicates with EXISTS, 298–299

vector aggregates, 188

vendor-specific modifications of SQL, xvii

Venn diagram, 33

viewing path, 3

views, 385–398

considerations before creating, 387

creating, 386–390

data updates through, 394

defined, 385

deleting row through, 397

dropping, 398

inserting row through, 395

retrieving data through, 391–393

temporary tables vs., 389

updating rows through, 396

Visual Basic, xi

W
website for book, xiv

WHERE clause

aggregate expressions and, 171

comparing equivalent subqueries using,

301–302

comparing subquery values using, 276–278

comparing values in subqueries with ALL,

289

creating joins with, 200–202

debugging, 110

execution sequences with, 201

filtering rows with, 101–104

joining tables using, 210–220

list filtering with IN condition, 121–123

misspecifying or omitting for DELETE, 333

482

Index

I
n

d
e

x

in query containing GROUP BY clause, 184,

186, 188

replicating natural joins with, 207

sequence with GROUP BY and HAVING clause,

190

sorting authors by specific location, 249

specifying for UPDATE statement, 327

testing subqueries with EXISTS, 294–300

using for joins, 201

using with column aliases, 104

WHERE conditions, 214, 216

wildcard operators

listing of, 114

matching, 116

483

Index

I
n

d
e

x

	Table of Contents
	Introduction
	About SQL
	About This Book
	What You’ll Need
	Chapter 1: DBMS Specifics
	Running SQL Programs
	Microsoft Access
	Microsoft SQL Server
	Oracle
	IBM DB2
	MySQL
	PostgreSQL

	Chapter 2: The Relational Model
	Tables, Columns, and Rows
	Primary Keys
	Foreign Keys
	Relationships
	Normalization
	The Sample Database
	Creating the Sample Database

	Chapter 3: SQL Basics
	SQL Syntax
	SQL Standards and Conformance
	Identifiers
	Data Types
	Character String Types
	Binary Large Object Type
	Exact Numeric Types
	Approximate Numeric Types
	Boolean Type
	Datetime Types
	Interval Types
	Unique Identifiers
	Other Data Types
	Nulls

	Chapter 4: Retrieving Data from a Table
	Retrieving Columns with SELECT and FROM
	Creating Column Aliases with AS
	Eliminating Duplicate Rows with DISTINCT
	Sorting Rows with ORDER BY
	Filtering Rows with WHERE
	Combining and Negating Conditions with AND, OR, and NOT
	Matching Patterns with LIKE
	Range Filtering with BETWEEN
	List Filtering with IN
	Testing for Nulls with IS NULL

	Chapter 5: Operators and Functions
	Creating Derived Columns
	Performing Arithmetic Operations
	Determining the Order of Evaluation
	Concatenating Strings with ||
	Extracting a Substring with SUBSTRING()
	Changing String Case with UPPER() and LOWER()
	Trimming Characters with TRIM()
	Finding the Length of a String with CHARACTER_LENGTH()
	Finding Substrings with POSITION()
	Performing Datetime and Interval Arithmetic
	Getting the Current Date and Time
	Getting User Information
	Converting Data Types with CAST()
	Evaluating Conditional Values with CASE
	Checking for Nulls with COALESCE()
	Comparing Expressions with NULLIF()

	Chapter 6: Summarizing and Grouping Data
	Using Aggregate Functions
	Creating Aggregate Expressions
	Finding a Minimum with MIN()
	Finding a Maximum with MAX()
	Calculating a Sum with SUM()
	Calculating an Average with AVG()
	Counting Rows with COUNT()
	Aggregating Distinct Values with DISTINCT
	Grouping Rows with GROUP BY
	Filtering Groups with HAVING

	Chapter 7: Joins
	Qualifying Column Names
	Creating Table Aliases with AS
	Using Joins
	Creating Joins with JOIN or WHERE
	Creating a Cross Join with CROSS JOIN
	Creating a Natural Join with NATURAL JOIN
	Creating an Inner Join with INNER JOIN
	Creating Outer Joins with OUTER JOIN
	Creating a Self-Join

	Chapter 8: Subqueries
	Understanding Subqueries
	Subquery Syntax
	Subqueries vs. Joins
	Simple and Correlated Subqueries
	Qualifying Column Names in Subqueries
	Nulls in Subqueries
	Using Subqueries as Column Expressions
	Comparing a Subquery Value by Using a Comparison Operator
	Testing Set Membership with IN
	Comparing All Subquery Values with ALL
	Comparing Some Subquery Values with ANY
	Testing Existence with EXISTS
	Comparing Equivalent Queries

	Chapter 9: Set Operations
	Combining Rows with UNION
	Finding Common Rows with INTERSECT
	Finding Different Rows with EXCEPT

	Chapter 10: Inserting, Updating, and Deleting Rows
	Displaying Table Definitions
	Inserting Rows with INSERT
	Updating Rows with UPDATE
	Deleting Rows with DELETE

	Chapter 11: Creating, Altering, and Dropping Tables
	Creating Tables
	Understanding Constraints
	Creating a New Table with CREATE TABLE
	Forbidding Nulls with NOT NULL
	Specifying a Default Value with DEFAULT
	Specifying a Primary Key with PRIMARY KEY
	Specifying a Foreign Key with FOREIGN KEY
	Forcing Unique Values with UNIQUE
	Adding a Check Constraint with CHECK
	Creating a Temporary Table with CREATE TEMPORARY TABLE
	Creating a New Table from an Existing One with CREATE TABLE AS
	Altering a Table with ALTER TABLE
	Dropping a Table with DROP TABLE

	Chapter 12: Indexes
	Creating an Index with CREATE INDEX
	Dropping an Index with DROP INDEX

	Chapter 13: Views
	Creating a View with CREATE VIEW
	Retrieving Data Through a View
	Updating Data Through a View
	Dropping a View with DROP VIEW

	Chapter 14: Transactions
	Executing a Transaction

	Chapter 15: SQL Tricks
	Calculating Running Statistics
	Generating Sequences
	Finding Sequences, Runs, and Regions
	Limiting the Number of Rows Returned
	Assigning Ranks
	Calculating a Trimmed Mean
	Picking Random Rows
	Handling Duplicates
	Creating a Telephone List
	Retrieving Metadata
	Working with Dates
	Calculating a Median
	Finding Extreme Values
	Changing Running Statistics Midstream
	Pivoting Results
	Working with Hierarchies

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

