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Responses to Questions

1. Since the process is isothermal, there is no change in the internal energy of the gas. Thus
0 ,U Q W Q W      so the heat absorbed by the gas is equal to the work done by the gas. Thus

3700 J of heat was added to the gas.

2. Mechanical energy can be transformed completely into heat. When a moving object slides across a
rough level floor and eventually stops, the mechanical energy of the moving object has been
transformed completely into heat. Also, if a moving object were to be used to compress a frictionless
piston containing an insulated gas, the kinetic energy of the object would become internal energy of
the gas. A gas that expands adiabatically (without heat transfer) transforms internal energy into
mechanical energy, by doing work on its surroundings at the expense of its internal energy. Of course,
that is an ideal (reversible) process. In any nonideal process, only a fraction of the internal energy can
be changed into mechanical energy. Some of the internal energy might also be changed into heat.

3. It is possible for temperature (and thus internal energy) to remain constant in a system even though
there is heat flow into or out of the system. By the first law of thermodynamics, there must be an equal
amount of work done on or by the system, so that 0U Q W Q W       The isothermal
expansion or compression of a gas is an example of this situation. A change of state (melting, freezing,
boiling, condensing, evaporating) is another example of heat transfer without a corresponding
temperature change.

4. If the gas is compressed adiabatically, then no heat enters or leaves from the gas. The compression
means that work was done ON the gas. By the first law of thermodynamics, ,  U Q W since

0,Q then   U W2 The change in internal energy is equal to the opposite of the work done by the
gas or is equal to the work done on the gas. Since positive work was done on the gas, the internal
energy of the gas increased, and that corresponds to an increase in temperature. This is conservation of
energy—the work done on the gas becomes internal energy of the gas particles, and the temperature
increases accordingly.
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5. ∆U is proportional to the change in temperature. The
change in the internal energy is zero for the isothermal
process, greatest for the isobaric process, and least
(negative) for the adiabatic process. The work done, W,
is the area under the curve and is greatest for the
isobaric process and least for the adiabatic process.
From the first law of thermodynamics, Q is the sum of
∆U and W and is zero for the adiabatic process and a
maximum for the isobaric process.

6. (a) When the lid is removed, the chlorine gas mixes
with the air in the room around the bottle so that eventually both the room and the bottle contain
a mixture of air and chlorine.

(b) The reverse process, in which the individual chlorine particles reorganize so that they are all in
the bottle, violates the second law of thermodynamics and does not occur naturally. It would
require a spontaneous decrease in entropy.

(c) Adding a drop of food coloring to a glass of water is another example of an irreversible process;
the food coloring will eventually disperse throughout the water but will not ever gather into a
drop again. The toppling of buildings during an earthquake is another example. The toppled
building will not ever become “reconstructed” by another earthquake.

7. No. The definition of heat engine efficiency as L/e W Q does not account for H ,Q the energy needed
to produce the work. Efficiency should relate the input energy and the output work. This definition of
efficiency is also not useful because if the exhaust heat LQ is less than the work done W (which is
possible), the “efficiency” would exceed unity.

8. (a) In an internal combustion engine, the high-temperature reservoir is the ignited gas–air mixture in
the cylinder. The low-temperature reservoir is the “outside” air. The burned gases leave through
the exhaust pipe.

(b) In the steam engine, the high-temperature reservoir is the heated, high-pressure steam from the
boiler. The low-temperature reservoir is the condensed water in the condenser.

In the cases of both these engines, these areas are not technically heat “reservoirs,” because each one is
not at a constant temperature.

9. To utilize thermal energy from the ocean, a heat engine would need to be developed that operated
between two different temperatures. If surface temperature water was to be both the source and the
exhaust, then no work could be extracted. If the temperature difference between surface and deep
ocean waters were to be used, then there would be considerable engineering obstacles, high expense,
and potential environmental difficulties involved in having a heat engine that connected surface water
and deep ocean water. Likewise, if the difference in temperature between tropical water and arctic
water were to be used, then major difficulties would be involved because of the large distances
involved.

10. It is possible to warm the kitchen in the winter by having the oven door open. The oven heating
elements radiate heat energy into the oven cavity, and if the oven door is open, then the oven is just
heating a bigger volume than usual. There is no thermodynamic cycle involved here. However, you
cannot cool the kitchen by having the refrigerator door open. The refrigerator exhausts more heat than
it removes from the refrigerated volume, so the room actually gets warmer with the refrigerator door
open because of the work done by the refrigerator compressor. If you could have the refrigerator
exhaust into some other room, then the refrigerator would be similar to an air conditioner, and it could
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cool the kitchen, while heating up some other space. Or you could unplug the refrigerator and open the
door. That would cool the room somewhat, but would heat up the contents of the refrigerator, which is
probably not a desired outcome!

11. For a refrigerator, LCOP / Q W That definition makes sense because we are interested in removing
heat from the low-temperature reservoir (the interior of the refrigerator). The more heat that can be
removed per amount of input work, the better (more efficient) the refrigerator is.

For a heat pump, HCOP / . Q W The objective of the heat pump is to heat (deliver H )Q rather than
cool (remove L )Q It is the heat delivered to the house that is important now. The more heat that can
be delivered to the house per amount of input work, the better the heat pump is.

12. Any air conditioner-type heat engine will remove heat from the room L( theQ  low-temperature
input). Work ( )W is input to the device to enable it to remove heat from the low-temperature region.
By the second law of thermodynamics (conservation of energy), there must be a high-temperature
exhaust heat HQ which is larger than L .Q Perhaps the inventor has come up with some clever method
of having that exhaust heat move into a well-insulated heat “sink,” like a container of water. But
eventually the addition of that heat to the device will cause the device to become warmer than the
room itself, and then heat will be transferred to the room. One very simple device that could do what is
described in the question would be a fan blowing over a large block of ice. Heat from the room will
enter the ice; cool air from near the surface of the ice will be blown by the fan. But after the ice melts,
the fan motor would again heat the air.

13. Some processes that would obey the first law of thermodynamics but not the second, if they actually
occurred, include:
• a cup of tea warms itself by gaining thermal energy from the cooler air molecules around it;
• a ball sitting on a soccer field gathers energy from its surroundings and begins to roll;
• a bowl of popcorn placed in the refrigerator “un-pops” as it cools;
• an empty perfume bottle is placed in a room containing perfume molecules, and all of the

perfume molecules move into the bottle from various directions at the same time;
• water on the sidewalk coalesces into droplets that are propelled upward and rise into the air;
• a house gets warmer in the winter while the outdoors gets colder, due to heat moving from the

outdoors to inside the house.

14. While the state of the papers has changed from disorder to order, they did not do so spontaneously. An
outside source (you) caused the increase in order. You had to provide energy to do this (through your
metabolic processes), and in doing so, your entropy increased more than the entropy of the papers
decreased. The overall effect is that the entropy of the universe increased, satisfying the second law of
thermodynamics.

15. The first statement, “You can’t get something for nothing,” is a whimsical way of saying that energy is
conserved. For instance, one way to write the first law is .W Q U   This says that work done by a
system must have a source—either heat is input to the system or the internal energy of the system is
lowered. It “costs” energy—either heat energy or internal energy—to get work done. Another way to
say this is that no heat engine can be built which puts out more energy in the form of work than it
extracts in the form of heat or internal energy.
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The second statement, “You can’t even break even,” reflects the fact that a consequence of the second
law is that there is no heat engine that is 100% efficient. Even though the first law is satisfied by an
engine that takes in 100 J of heat and outputs 100 J of work, the second law says that that is impossible.
If 100 J of heat were taken in, then less than 100 J of work will be output from the heat engine, even if
it is an ideal heat engine. Some energy will be “lost” as exhaust energy.

16. (a) If a gas expands adiabatically, then 0,Q so 0 S by Eq. 15–8, /S Q T  

(b) If a gas expands isothermally, then there is no change in its internal energy, and the gas does
work on its surroundings. Thus by the first law of thermodynamics, there must be heat flow into
the gas, so 0 the  S entropy of the gas increases.

17. One kilogram of liquid iron will have greater entropy, since it is less ordered than solid iron and its
molecules have more thermal motion. In addition, heat must be added to solid iron to melt it; the
addition of heat will increase the entropy of the iron.

18. (a) The erosion of soil due to water flow over the ground.
(b) The oxidation of various metals (copper, zinc, iron, etc.) when left exposed to the air.
(c) Fallen leaves decaying in the woods.
(d) A pile of compost decomposing.
(e) A landslide.

The reverse of these processes is not observed.

19. In an action movie, you might see a building or car changing from an exploded state to an unexploded
state, or a bullet that was fired going backward into the gun and the gunpowder “unexploding.” In a
movie with vehicle crashes, you might observe two collided vehicles separating from each other,
becoming unwrecked as they separate, or someone “unwrite” something on a piece of paper—moving
a pen over paper, taking away written marks as the pen moves.

20. The synthesis of complex molecules from simple molecules does involve a decrease in entropy of the
constituent molecules, since they have become more “structured” or “ordered.” However, the
molecules are not a closed system. This process does not occur spontaneously or in isolation. The
living organism in which the synthesis process occurs is part of the environment that must be
considered for the overall change in entropy. The “living organism and environment” combination will
have an increase in entropy that is larger than the decrease in entropy of the molecules, so overall, the
second law is still satisfied, and the entropy of the entire system will increase.

Responses to MisConceptual Questions

1. (d) An isobaric process is one in which the pressure is kept constant. In a compression the volume of
the gas decreases. By Eq. 15–3, the work done by the gas is negative, so an external force had to
do work on the gas. In isobaric processes heat is allowed to flow into or out of the system and
the internal energy changes.

2. (c) According to the second law of thermodynamics, it is impossible for heat to be entirely
converted into work in a cycle or a heat engine. However, the question does not specify that we
must consider a complete cycle. In an isothermal process .Q W In an isothermal compression
work is entirely converted into heat, and in an isothermal expansion heat is entirely converted
into work.
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3. (c) A common misconception is that the work done in
moving an object between two states is
independent of the path followed. In the graph
shown, the work done in going from point A to B
to C by the isobaric and isovolumetric processes is
equal to the area under the AB line. The work
done by the isothermal process is the area under
the curved line. Since the AC line includes all of
the area under the AB line as well as the area
between the AB and AC lines, more work is done
on the gas in the isothermal process.

4. (d) In an isothermal process the internal energy remains constant ( 0)  U In an expansion the gas
does work on the surroundings ( 0) W Since the internal energy is constant and the work is
positive, the first law of thermodynamics requires the heat absorbed also be positive ( 0) Q

5. (d) Students may misunderstand the difference between isothermal (temperature remains constant so
0)U  and adiabatic ( 0) Q In an isothermal process heat can be absorbed, as long as an

equal amount of work is done, so statement (i) is not true. For an ideal gas the temperature is
proportional to the internal energy of the gas, statements (ii) and (iii) are equivalent, and both are
true.

6. (b) As the gas expands, its volume increases and it does work on the surroundings. Since no heat is
absorbed while the gas does this work, the first law of thermodynamics says that the internal
energy and temperature of the gas must decrease. For the volume to increase as the temperature
decreases, the ideal gas law requires that the pressure also decrease.

7. (d) A frequent misconception made in calculating the efficiency of an engine is to leave the
temperatures in degrees Celsius, which would imply an efficiency of 50%. However, when the
temperatures are properly converted to kelvins, Eq. 15–5 gives the efficiency as only about 34%.

8. (d) A common misconception in this situation is not realizing that a heat cycle running in reverse,
like a refrigerator, must have a high-temperature exhaust. Furthermore, that high-temperature
exhaust is the sum of the heat removed from the inside of the refrigerator and the work done by
the refrigerator’s compressor.

9. (a, c) The maximum efficiency of an engine is given by Eq. 15–5, which can be written in the form
H C H( )/e T T T   Increasing the temperature difference, as in (a), results in a higher efficiency.

In (b) the temperature difference remains the same, while the hot temperature increases, which
results in a lower efficiency. In (c) the efficiency increases as the temperature difference remains
the same, but HT decreases. In (d) the temperature difference decreases, which lowers the
efficiency.

10. (a) The text states that “real engines that are well designed reach 60 to 80% of the Carnot
efficiency.” The cooling system of the engine keeps the high temperature at about 120C (400 K)
and the exhaust is about room temperature (300 K). The maximum efficiency would then be
around 25%. Eighty percent of this maximum would be closest to 20% efficient. Any of the
other choices for this question are not reasonable.

11. (b) Heat must be added to the ice cube to melt it. The change in entropy is the ratio of the heat added
to the temperature of the ice cube. Since heat is absorbed in the process, the entropy increases.

Isobaric
A

C

B

Iso-
volumetric

Isothermal

Volume

Pressure
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Solutions to Problems

In solving these problems, the authors did not always follow the rules of significant figures rigidly. We tended
to take quoted temperatures as correct to the number of digits shown, especially where other values might
indicate that.

1. Use the first law of thermodynamics, Eq. 15–1, and the definition of internal energy, Eq. 14–1. Since
the work is done by the gas, it is positive.
(a) The temperature does not change, so 0 .U 

(b) 3 30 4 30 10 J 4 30 10 J             U Q W Q U W

2. For the drawing of the graph, the pressure is given relative to the
starting pressure, which is taken to be 0 P

Segment A is the cooling at constant pressure.

Segment B is the isothermal expansion.

3. Segment A is the compression at constant pressure. Since
the process is at a constant pressure, the path on the
diagram is horizontal from 2.5 L to 1.0 L.
Segment B is the isothermal expansion. Since the
temperature is constant, the ideal gas law says that the
product PV is constant. Since the volume is increased by a
factor of 2.5, the pressure must be divided by 2.5, so the
final point on this segment is at a pressure of 1 atm/2 5 0 4 atm    The path is a piece of a hyperbola.

Segment C is the pressure increase at constant volume. Since the process is at a constant volume, the
path on the diagram is vertical from 0.4 atm to 1.0 atm.

4. (a) The work done by a gas at constant pressure is found from Eq. 15–3.
5

3 3 5 51 01 10 Pa(1 atm) (16 2 m 12 0 m ) 4 242 10 J 4 2 10 J
1 atm

  
             

 
W P V

(b) The change in internal energy is calculated from the first law of thermodynamics.
5 54186 J(254 kcal) 4 242 10 J 6 4 10 J

1 kcal
 

          
 

U Q W

5. The pressure must be converted to absolute pressure in
order to use the ideal gas equation, so the initial
pressure is 4.5 atm absolute pressure, and the lower
pressure is 2.0 atm absolute pressure. Segment A is the
isothermal expansion. The temperature and the amount
of gas are constant, so PV nRT is constant. Since
the pressure is reduced by a factor of 2.25, the volume
increases by a factor of 2.25, to a final volume of 2.25 L.
Segment B is the compression at constant pressure, and segment C is the pressure increase at constant
volume.

0P P

 LV

A

B
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6. (a) Since the container has rigid walls, there is no change in volume.

0W P V  

(b) Use the first law of thermodynamics to find the change in internal energy.

( 465 kJ) 0 465 kJU Q W       

7. (a) Since the process is adiabatic, 0Q  

(b) Use the first law of thermodynamics to find the change in internal energy.

0 ( 2630 J) 2630 JU Q W      

(c) Since the internal energy is proportional to the temperature, a rise in internal energy means a
rise in temperature.

8. A graph of the process is shown. The expansion process is
the horizontal line, and the constant-volume process is the
vertical line. The dashed line is an isotherm starting from
the original state.

(a) Work is only done in the expansion at constant
pressure, since there must be a volume change in
order for there to be work done.

W P V 

5 3 31 01 10 Pa 1 10 m(3 0 atm) (0 28 L) 85 J
1 atm 1 L

   
     

 

(b) Use the first law of thermodynamics to find the heat flow. Notice that the temperature change
over the entire process is 0, so there is no change in internal energy.

0 85 JU Q W Q W      

9. Since the expansion is adiabatic, there is no heat flow into or out of the gas. Use the first law of
thermodynamics to calculate the temperature change.

3
2

2
3

0

2(8300 J) 78 3 K 78 K
3(8 5 mol)(8 314 J/mol K)

U Q W nR T W

WT
nR

       

         
  

10. (a) No work is done during the first step, since the volume is constant. The work in the second step
is given by W P V  

5 3 31 01 10 Pa 1 10 m(1 4 atm) (9 3 L 5 9 L) 480 J
1 atm 1 L

W P V
     

             
   

2

(b) Since there is no overall change in temperature, 0U  

(c) The heat flow can be found from the first law of thermodynamics.

 0 480 J 480 J into the gas         U Q W Q U W
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11. (a) Since the gas is well insulated, no heat can flow into or out of the gas. When the gas is
compressed, work is done on that gas. Thus the gas gains energy. That energy manifests as an
increase in the average kinetic energy of the gas particles, so the temperature of the gas increases.

(b) When the gas expands, the opposite effect occurs. The gas does work on the piston during the
expansion. To accomplish that work, the energy of the gas decreases. Since the gas is well
insulated, no heat can flow into the gas to compensate for that lost work, so the average kinetic
energy of the gas particles decreases, and thus there is a decrease in temperature.

12. (a) See the diagram. The isobaric expansion is just a
horizontal line on the graph.

(b) The work done is found from Eq. 15–3.

2 3 3   (425 N/m )(8 00 m 2 00 m ) 2550 J

 

    

W P V

The change in internal energy depends on the
temperature change, which can be related to the ideal
gas law, PV nRT 

3 3
2 12 2

3 3 3 3
2 12 2 2 2

( )

       [( ) ( ) ] (2550 J) 3830 J

    

      

U nR T nRT nRT

PV PV P V W

(c) For the isothermal expansion, since the volume expands by a factor of 4, the pressure drops by a
factor of 4 to 2106 N/m . See the diagram.

(d) The change in internal energy only depends on the initial and final temperatures. Since those
temperatures are the same for process B as they are for process A, the internal energy change is
the same for process B as for process A, 3830 J 

13. For the path ac, use the first law of thermodynamics to find the change in internal energy.

ac ac ac 63 J ( 35 J) 28 JU Q W        

Since internal energy only depends on the initial and final temperatures, this U

 applies to any path

that starts at a and ends at c. And for any path that starts at c and ends at a, ca ac 28 JU U    2

(a) Use the first law of thermodynamics to find abc .Q

abc abc abc abc abc abc 28 J ( 54 J) 82 JU Q W Q U W            

(b) Since the work along path bc is 0, abc ab b ab b b a( ).    W W P V P V V Also note that the work
along path da is 0.

1 1 1
cda cd c cd c d c b a b abc2 2 2( ) ( ) ( 54 J) 27 JW W P V P V V P V V W            

(c) Use the first law of thermodynamics to find abcQ 

cda cda cda cda cda cda 28 J 27 J 55 JU Q W Q U W         

(d) As found above, c a ca ac 28 J      U U U U

A

B B
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(e) d c d c12 J 12 JU U U U     

da a d a c ca12 J 12 J 28 J 12 J 16 J           U U U U U U

Use the first law of thermodynamics to find da.Q

da da da da da da 16 J 0 16 J         U Q W Q U W

14. In Example 15–7, the total energy transformed was 71 15 10 J   We will subtract the energy for 1
hour of desk work and add the energy for 1 hour of running.

 7 7Energy 1 15 10 J 115 J s 1150 J s (3600 s h) 1 52 10 J 364 0 Cal         / / /

15. Follow the pattern set in Example 15–7. Find the average rate by dividing the total energy for the day
by 24 hours.

(8 0 h)(70 J/s) (6 0 h)(115 J/s) (6 0 h)(230 J/s)
Avg energy 24 h 172 W 170 W

(2.0 h)(115 J/s) (1.5 h)(460 J/s) (0.5 h)(1150 J /s)
     

       

16. From Table 15–2, the change in metabolic rate if one hour of sleeping is exchanged for light activity is
an addition of 230 watts 70 watts 160 watts.  Note that this increased rate is only applicable for one
hour per day.

7
J 3600 s 1 h 365 day 1 kg fat 2 20 lb160 5 256 kg 5 3 kg 12 1b
s 1 h day 1 y 1 kg4 10 J

                                 

17. (a) The person runs seven times per week, 30 minutes each time. We use Table 15–2.

7 7J 60 s 30 min 7 runs1150 1 449 10 J/week 1 4 10 J in one week
s 1 min run 1 week

                  
      

(b) Convert the energy used to run from joules to Calories.

7
3

1 Cal1 449 10 J 3462 Cal 3500 Cal
4 186 10 J

 
       

18. The efficiency of a heat engine is given by Eq. 15–4a.

H L

2600 J 0 24 24%
2600 J 8200 J

W We
Q W Q

     
 

19. The maximum (or Carnot) efficiency is given by Eq. 15–5, with temperatures in kelvins.

L

H

(345 273) K1 1 0 258 25 8%
(560 273) K

T
e

T


       


We assume that both temperatures are measured to the same precision—the nearest degree.

20. The Carnot efficiency is given by Eq. 15–5, with temperatures in kelvins.

L L
H

H

(230 273) K1 762 K 489 C 490 C
1 1 0 34


         

  
T T

e T
T e
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21. The efficiency of a heat engine is given by Eq. 15–4a.

H

9200 J 0 0879 8 8
(25 0 kcal)(4186 J/kcal)

     


We
Q

,

22. Calculate the Carnot efficiency for the given temperatures, using Eq. 15–5.

L
ideal

H

77 K1 1 0 7372 74
293 K

      
T

e
T

,

23. A 10°C decrease in the low-temperature reservoir will give a greater improvement in the efficiency of
a Carnot engine. By definition, LT is less than H T so a 10°C change will be a larger percentage
change in LT than in H ,T yielding a greater improvement in efficiency. As an example, we use the
values from Problem 22 above.

L

H

L
lower

H

L
higher

H

67 K1 1 0 7713 compared to 0 7372
293 K

77 K1 1 0 7458 compared to 0 7372
303 K

T

T

T
e

T

T
e

T

      

      

We see that the decrease in the lower temperature was more effective. Here is a more rigorous proof.
Note that we never multiply by a negative value, so the original ordering of

L

lower
T
e on the left of the

comparison and
H

higher
T
e on the right of the comparison is preserved. We use the sign  to mean

“compare to.”

L H

L 0 L
lower higher

H H 0

L 0 L 0 L 0L L L

H H 0 H H 0 H 0 H

L H L 0 H 0 0 H 0 0 L 0 H 0 L

1 ; 1

1 1 ; ; ;

( )( ); ;

T T

T T T
e e

T T T

T T T T T TT T T
T T T T T T T T T

T T T T T T T T T T T T T T T


   



  
      

  

      

Since the left-hand side of this last expression is larger than the right-hand side,
L H

lower higher .
T T
e e Thus

in general, a change in the low-temperature reservoir has a larger effect on the efficiency than the
same change in the high-temperature reservoir.

24. The efficiency of a heat engine is given by Eq. 15–4a.

L
H L

L

(1/ 1)

/ / (1/ 1) (580 MW)(1/0 32 1) 1232 MW 1200 MW

     


      

W We Q W e
Q W Q

Q t W t e

25. The maximum (or Carnot) efficiency is given by Eq. 15–5, with temperatures in kelvins.

L

H

(330 273) K1 1 0 3537
(660 273) K


     


T

e
T

Thus the total power generated can be found as follows.
Actual power (Total power)(max eff )(operatin g eff )    
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9 13 13

Actual power 1.4 GWTotal power 6.089 GW
(max. eff.)(operating eff.) (0.3537)(0.65)

Exhaust power Total power Actual power 6.089 GW 1.4 GW 4.689 GW

(4.689 10 J/s)(3600 s/h) 1.688 10 J/h 1.7 10 J/h

  

    

     

26. Find the intake temperature from the original Carnot efficiency, and then recalculate the exhaust
temperature for the new Carnot efficiency, using the same intake temperature.

L1 L1
1 H

H 1

(340 273) K1 958 K
1 1 0 36


     

  
T T

e T
T e

L2
2 L2 H 2

H
1 (1 ) (958 K)(1 0 42) 556 K 283 C 280 C            
T

e T T e
T

27. This is a perfect Carnot engine, so its efficiency is given by Eqs. 15–4a and 15–5. Use these two
expressions to solve for the rate of heat output.

L
L

H H L

L

(45 273)K1 1 0 3416 (1/ 1)
(210 273)K

/ / (1/ 1) (910 W)(1/0.3416 1) 1754 W 1800 W

T W We e Q W e
T Q W Q

Q t W t e


           

 

     

28. Find the exhaust temperature from the original Carnot efficiency, and then recalculate the intake
temperature for the new Carnot efficiency, using the same exhaust temperature. Use Eq. 15–5.

1 L H1 L H1

L
2 L H2 H2

2

1 / (1 ) [(580 273) K](1 0 22) 665 3 K
665 3 K1 / 1147 K 874 C 870 C

1 1 0 42

          


         

  

e T T T T e
T

e T T T
e

29. We calculate both the energy per second (power) delivered by the gasoline and the energy per second
(power) needed to overcome the drag forces. The ratio of these is the efficiency, as given by Eq. 15–4a.

output
(to move

car)

mi 1609 m 1 h(350 N) 55 8604 W
h 1 mi 3600 s

W P Fv
t

         
    

7H
input
(from
gasoline)

output
(to move

car)

H input
(from
gasoline)

J 3 8 L 1 gal mi 1 h3 2 10 55 58056 W
L 1 gal 32 mi h 3600 s

8604 W 0 148 0 15
58056 W

Q
P

t

P

We
Q P

                  
       

      

30. The ideal coefficient of performance is given by Eq. 15–6c.

L
ideal

H L

(273 2 5) KCOP 14 13 14
(22 2 5) K

 
    

  
T

T T

31. The coefficient of performance for a refrigerator is given by Eq. 15–6c, using absolute temperatures.
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L

H L

( 8 273) KCOP 6 463 6 5
(33 273) K ( 8 273) K

 
     

    
T

T T

32. The coefficient of performance for a refrigerator is given by Eq. 15–6c, using absolute temperatures.

L
L H

H L

COP 7 0COP [(22 273) K] 258 1 K 14 9 C 15 C
1 COP 8 0

T
T T

T T
                        

33. We initially assume a COP of 3.0. For a heat pump the COP is given by Eq. 15–7.

(a) 3H H 3100 JCOP 1033 J 1 0 10 J
COP 3 0

Q Q
W

W
       



(b) The calculation doesn’t depend on the outdoor temperature, so 31 0 10 J .  W

(c) The efficiency of a perfect Carnot engine is given by Eqs. 15–4a and 15–5. Equate these two
expressions to solve for the work required.

L L L
H

H H H H H
1 ; 1 1

T T TW We e W Q
T Q T Q T

 
         

 

L
H

H

0 2731 3100 J 1 230 J
22 273

            

T
W Q

T

L
H

H

15 2731 3100 J 1 390 J
22 273

             

T
W Q

T

34. The COP for an ideal heat pump is given by Eq. 15–7.

(a) H H H

H L H L

(24 273) KCOP 16 5 17
18 K


      
 

Q Q T
W Q Q T T

(b) 7 7H
HCOP ( / )( )(COP) (1200 W)(3600 s)(16 5) 7 128 10 J 7 1 10 J          

Q
Q W t t

W

35. The $2000 worth of heat provided by the electric heater is the same amount of heat that the heat pump
would need to provide, so this HQ costs $2,000. The amount of energy required to run the heat pump
to deliver that same amount of heat is found from the coefficient of performance.

H H HCOP
COP 2 9

Q Q Q
W

W
    



So if the cost for HQ is divided by 2.9, we get the cost of running the heat pump to deliver the needed
heat. Subtract that from the total cost to get the savings.

$2 000Savings $2 000 $1310
2 9
,,  


Divide the cost of the heat pump by the annual savings to find the break-even time.
$15,000 11 45 years 11 years

$1310/year
  

The total savings over 20 years is the savings in heating costs minus the price of the heat pump.

Total savings ($1310/year)(20 years) $15,000 $11, 200 $11,000   
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36. Heat energy is taken away from the water, so the change in entropy will be negative. The heat transfer
is the mass of the steam times the latent heat of vaporization.

5
V (0 320 kg)(22 6 10 J/kg) 1939 J/K 1900 J/K

(273 100) K
  

         


mLQS
T T

37. The heat added to the water is found from Eq. 14–2, Q mc T    Use the average temperature of
50 C in Eq. 15–8 for entropy.

(1 0 kg)(4186 J/kg C )(100 C ) 1296 J/K 1300 J/K
(273 50) K

    
     


Q mc TS
T T

38. Energy has been made “unavailable” in the frictional stopping of the sliding box. We take that “lost”
kinetic energy as the heat term of the entropy calculation, Eq. 15–8.

2 21 1
02 2 (5 8 kg)(4 0 m/s)

0 1584 J/K 0 16 J/K
293 K

mQS
T T

  
       

Since this is a decrease in “availability,” the entropy of the universe has increased.

39. There are three terms of entropy to consider. First, there is a loss of entropy from the water for the
freezing process, 1 S Second, there is a loss of entropy from that newly formed ice as it cools to

28 0 C,    S That process has an “average” temperature of 4 0 C    Finally, there is a gain of entropy
by the “great deal of ice,” 3 ,S as the heat lost from the original mass of water in steps 1 and 2 goes
into that great deal of ice. Since it is a large quantity of ice, we assume that its temperature does not
change during the processes. The density of water is 1000 kg per cubic meter.

3 5
61 F

1
1 1

3
4ice 22

2
2 2

(1 00 10 kg)(3 33 10 J/kg) 1 2198 10 J/K
273 K

(1 00 10 kg)(2100 J/kg C )(8 0 C ) 6 2453 10 J/K
( 4 273) K

   
        

      
        

 

Q mL
S

T T

mc TQ
S

T T

2

2

3 F ice 21 2
3

3 3 3
3 5

6(1.00 10 kg)[(3.33 10 J/kg) (2100 J/kg C )(8 C )] 1.32 10 J/K
( 8 273) K

Q mL mc TQ Q
S

T T T
  

   

     
  

 

40. The same amount of heat that leaves the high-temperature heat source enters the low-temperature body
of water.

1 2
high low low high

low high

2

1 1

1 1 4 186 J 1 1(8 40 cal/s)
1 cal (22 273) K (225 273) K

J/K      4 86 10
s



 
            

 
     

              

  

Q QS S S Q
T T T T

S Q
t t T T



15-14   Chapter 15

© Copyright 2015 Pearson Education, Ltd. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

41. Take the energy transfer to use as the initial kinetic energy of the rock, because this energy becomes
“unusable” after the collision—it is transferred to the environment. We assume that the rock and the
environment are both at temperature 0 .T

KE 0/ /S Q T S T    

42. The same amount of heat that leaves the high-temperature water will enter the low-temperature water.
Since the two masses of water are the same, the equilibrium temperature will be the midpoint between
the two initial temperatures, 40 C . The average temperature of the cool water is
(35 C 40 C)/2 37 5 C,      and the average temperature of the warm water is
(45 C 40 C)/2 42 5 C.     

1 2
high low low high

1 1

1 1(1 0 kg)(4186 J/kg C )(5 C ) 1 068 J/K 1 1 J/K
(37 5 273) K (42 5 273) K

Q QS S S mc T
T T T T

 
           

 
 

              

2

43. (a) actual H ideal L H/ 550 J/2500 J 0 22; 1 / 1 650 K/970 K 0 330         e W Q e T T

Thus actual ideal/ 0 220/0 330 0 667 67 of ideal      e e ,

(b) The heat reservoirs do not change temperature during the operation of the engine. There is an
entropy loss from the input reservoir, because it loses heat, and an entropy gain for the output
reservoir, because it gains heat. Note that L H 2500 J 550 J 1950 J     Q Q W

H L
input output

H L

2500 J 1950 J 0 42 J/K
970 K 650 K

            
Q Q

S S S
T T

(c) For the Carnot engine, the exhaust energy will be L H Carnot H L H(1 ) /Q Q e Q T T   

H L H H L H H H
input output

H L H L H H

/
0

Q Q Q Q T T Q Q
S S S

T T T T T T
              

A numeric calculation might give a very small number due to not keeping all digits in the
calculation.

44. When throwing two dice, there are 36 possible microstates.
(a) The possible microstates that give a total of 4 are (1)(3), (2)(2), and (3)(1). Thus the probability

of getting a 5 is 3/36 1/12 

(b) The possible microstates that give a total of 10 are (4)(6), (5)(5), and (6)(4). Thus the probability
of getting a 10 is 3/36 1/12 
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45. From the table below, we see that there are a total of 62 64 microstates.

Macrostate Possible Micostates (H heads, T tails)  Number of
Microstates

6 heads, 0 tails H H H H H H 1
5 heads, 1 tails H H H H H T H H H H T H H H H T H H H H T H H H H T H H H H T H H H H H 6
4 heads, 2 tails H H H H T T H H H T H T H H T H H T H T H H H T T H H H H T

15H H H T T H H H T H T H H T H H T H T H H H T H HHTTH H
H T H T H H T H H T H H H T T H H H T H T H H H T T H H H H

3 heads, 3 tails H H H T T T H H T H T T H T H H T T T H H H T T H H T T H T

20
H T H T H T T H H T H T H T T H H T T H T H H T T T H H H T
T T T H T H T T H T H H T H T T H H H T T T H H T T H H T H
T H T H T H H T T H T H T H H T T H H T H T T H H H T T TH

2 heads, 4 tails T T T T H H T T T H T H T T H T T H T H T T T H H T T T T H
15T T T H H T T T H T H T T H T T H T H T T T H T T T H H T T

T H T H T T H T T H T T T H H T T T H T H T T T H H T T T T
1 heads, 5 tails T T T T T H T T T T H T T T T H T T T T H T T T T H T T T T H T T T T T 6
0 heads, 6 tails T T T T T T 1

(a) The probability of obtaining three heads and three tails is 20/64 or 5/16 

(b) The probability of obtaining six heads is 1/64 

46. (a) From the table below, we see that there are 10 macrostates and a total of 27 microstates.

Macrostate Macrostate (r red, o orange, g green)   Number of
Microstates

3 red, 0 orange, 10 0 green r r r 1
2 red, 1 orange, 10 0 green r r o r o r o r r 3
2 red, 0 orange, 10 1 green r r g r g r g r r 3
1 red, 2 orange, 10 0 green r o o o r o o o r 3
1 red, 0 orange, 10 2 green r g g g r g g g r 3
1 red, 1 orange, 10 1 green r o g

o g r
r g o
g r o

o r g
g o r

6

0 red, 3 orange, 10 0 green o o o 1
0 red, 2 orange, 10 1 green g o o o g o o o g 3
0 red, 1 orange, 10 2 green o g g g o g g g o 3
0 red, 0 orange, 10 3 green g g g 1

(b) The probability of obtaining all 3 beans red is 1/27 

(c) The probability of obtaining 2 greens and 1 orange is 3/27 or 1/19 

47. The required area is
3 2

2 210 W h 1 day 1 m24 66 7 m 70 m .
day 9 h Sun 40 W

    
             

A small house with 1000

2ft of floor space and a roof tilted at 30° would have a roof area of
2

2 21 1 m(1000 ft ) 110 m ,
cos 30 3 28 ft

  
     

which is about 50% larger than the area needed, so the cells



15-16   Chapter 15

© Copyright 2015 Pearson Education, Ltd. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

would fit on the house . But not all parts of the roof would have 9 hours of sunlight, so more than the
minimum number of cells would be needed.

48. (a) Assume that there are no dissipative forces present, so the energy required to pump the water to
the lake is just the gravitational potential energy of the water.

5 2 9PEgrav

6

(1 00 10 kg/s)(10 0 h)(9 80 m/s )(115 m) 1 127 10 W h

1 13 10 kW h

mgh         

   

(b)
6

4(1 127 10 kW h)(0 75) 6 0 10 kW 60 MW
14 h

   
   

49. We assume that the electrical energy comes from the 100% effective conversion of the gravitational
potential energy of the water.

3 3 3 2

7

(1 00 10 kg/m )(32 m /s)(9 80 m/s )(48 m)

1 5 10 W 15 MW

W mgh
W m VP gh gh
t t t



 

      

   

50. (a) The work done at constant pressure is Eq. 15–3, .W P V 

5 3 3

5 5

   (1 00 atm)(1 01 10 Pa/atm)(4 1 m 1 9 m )

   2 22 10 J 2 2 10 J

 

      

     

W P V

(b) Use the first law of thermodynamics, Eq. 15–1.
5 5 55 80 10 J 2 22 10 J 3 6 10 J           U Q W

(c) See the adjacent graph.

51. The coefficient of performance for an ideal refrigerator is given by Eq. 15–6c, with temperatures in
kelvins. Use that expression to find the temperature inside the refrigerator.

L
L H

H L

COP 4 6COP [(32 273) K] 251 K 22 C
1 COP 5 6


        

  
T

T T
T T

52. The minimum value for HT would occur if the engine were a Carnot engine. We calculate the
efficiency of the engine from the given data and use this as a Carnot efficiency to calculate HT 

7H
output input
(to move (from

car) gasoline)

J 1 L 21 8 m7000 W; 3 2 10 41,035 W
L 17,000 m 1 s

QW P P
t t

            
    

output
(to move

car) L L
H

H input H
(from
gasoline)

7000 W (273 25) K1 359 K 86 C
41 035 W (1 ) 7000 W1

41 035 W

P

T TWe T
Q P , T e

,


          

  
 

 
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53. (a) The heat that must be removed from the water L( )Q is found in three parts—that from cooling
the liquid water to the freezing point, freezing the liquid water, and then cooling the ice to the
final temperatures.

L liquid liquid F ice ice

5
5

( )

(4186 J/kg C )(25 C ) (3 33 10 J/kg)(0 65 kg) 3 077 10 J
(2100 J/kg C )(17 C )

    

           
     

Q m c T L c T

The Carnot efficiency can be used to find the work done by the refrigerator.

L

H H L
1

T W We
T Q W Q

    


5 4 4H
L

L

(25 273) K1 (3 077 10 J) 1 5 048 10 J 5 0 10 J
( 17 273) K

   
                 

T
W Q

T

(b) Use the compressor wattage to calculate the time. The compressor power can be expressed as
one-fourth of the nominal power, since it only runs 25% of the time.

4/ / 5 048 10 J/[(105 W) 0 25] 1923 s 32 min        P W t t W P

54. (a) Calculate the Carnot efficiency for an engine operated between the given temperatures.

L
ideal

H

(273 4) K1 1 0 077 7 7%
(273 27) K

T
e

T


       


(b) Such an engine might be feasible in spite of the low efficiency because of the large volume of
“fuel” (ocean water) available. Ocean water would appear to be an almost inexhaustible source
of heat energy.

(c) The pumping of water between radically different depths would probably move smaller sea-
dwelling creatures from their natural location, perhaps killing them in the transport process. This
might affect the food chain of other local sea-dwelling creatures. Mixing the water at different
temperatures will also disturb the environment of sea-dwelling creatures. There is a significant
dynamic of energy exchange between the ocean and the atmosphere, so any changing of surface
temperature water might affect at least the local climate, and perhaps also cause larger-scale
climate changes.

55. We start with Eq. 15–6a for the COP of a refrigerator. The heat involved is the latent heat of fusion for
water.

L L

5
8L

ideal

COP
COP

/ 5 tons 5(909 kg/d)(3 33 10 J/kg)/ 3 705 10 J/d
COP 0 18 COP 273 K 22 K0 18

13 K

   

 
     

  
  

 

Q Q
W

W
Q t

W t

8
6

1 d 1 kWh $0 10cost/h (3 705 10 J/d) $0 43/h
24 h kWh3 600 10 J

                   

56. Take the energy transfer to use as the initial kinetic energy of the cars, because this energy becomes
“unusable” after the collision—it is transferred to the environment.
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2

21
02

1 m/s(1100 kg) (85 km/h)
2( ) 3 6 km/h

2093 J/K 2100 J/K
(20 273) K

mQS
T T


  
         



57. (a) The equilibrium temperature is found using calorimetry, from Chapter 14. The heat lost by the
water is equal to the heat gained by the aluminum.

2 2 2H O H O iH O f A1 A1 f iA1( ) ( )m c T T m c T T   

2 2 2

2 2

A1 A1 iA1 H O H O iH O
f

A1 A1 H O H O

(0.11 kg)(900 J/kg C )(35 C) (0.15 kg)(4186 J/kg C )(45 C) 43.64 C 44 C
(0.11 kg)(900 J/kg C )+(0.15 kg)(4186 J/kg C )

m c T m c T
T

m c m c





      
    

   

(b) The amount of heat lost by the aluminum, and gained by the water, is

2 2 2H O H O i H O f( ) (0 15 kg)(4186 J/kg C )(45 C 43 64 C) 853 9 J           Q m c T T

In calculating the entropy change, we need to use estimates for the temperatures of the water and
the aluminum since their temperatures are not constant. We will use their average temperatures.

2H O Al
avgavg

(45 C 43 64 C)/2 44 32 C; (35 C 43 64 C)/2 39 32 CT T               

2
2

Al H O
H O Al

avgavg

1 1(853 9 J)
(39 32 273) K (44 32 273) K

0 0431 J/K 0 043 J/K

Q QS S S
T T

 
               

   

58. The efficiency is given by Eq. 15–4a, H
H

// ,
/

 
W te W Q
Q t

so the input power H( / )Q t and the useful

power ( / )W t are needed.
4

4
4

H

4

4
H

/ (25 hp)(746 W/hp) 1.865 10 J/s

3.0 10 kcal 1 gal 110 km 4186 J 1 h/ 9.359 10 J/s
1 gal 41 km 1 h 1 kcal 3600 s

/ 1.865 10 J/s 0.199 20%
/ 9.359 10 J/s

W t

Q t

W te
Q t

  

      
               


   



59. Find the original intake temperature H1T from the original Carnot efficiency and then recalculate the
intake temperature for the new Carnot efficiency, H2 ,T using the same exhaust temperature. Use
Eq. 15–5 for the Carnot efficiency.

L L L L
1 H1 2 H2

H1 1 H2 2

H2 H1 L
2 1

1 1
1 1

1 1 1 1(273 K 20 K) 60 10 K 60 K
1 1 1 0 35 1 0 25

T T T T
e T e T

T e T e

T T T
e e

       
 

                     
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60. Note that there is NO work done as the gas goes from state A to
state B or state D to state C, because there is no volume change.
In general, the work done can be found from the area under the
PV curve representing the process under consideration.

(a) ADC A C A( ) W P V V

(b) ABC C C A( ) W P V V

(c) 1
AC C A C A2 ( )( )  W P P V V

(Use the formula for the area of a trapezoid.)
61. (a) The exhaust heating rate is found from the delivered power and the efficiency. Use the output

energy with Eq. 14–2, ,   Q mc T Vc T to calculate the volume of air that is heated. The
efficiency is given by Eq. 15–4a.

H L L/( )  (1 1)      e W/Q W Q W Q W /e
8 9

L

L
L L

/ ( )(1/ 1) (8 5 10 W)(1/0 38 1) 1 387 10 W
( / )

/ 


         

 
      



Q t W/t e
Q tmc T Vc TQ mc T Q t V/t

t t c T

The change in air temperature is 7 0 C .  The heated air is at a constant pressure of 1 atm.
9 4

L
3 3

9 3
10 3 3 3

3

( ) (1 387 10 W)(8 64 10 s day)/
(1 3 kg m )(1 0 10 J kg C )(7 0 C )

10 km     1 317 10 m /day 13 17 km /day 13 km /day
1 m




   
 

       

 
       

 

Q /t t /V t
c T / /

This could affect the local climate around the power plant.
(b) If the air is 180 m thick, find the area by dividing the volume by the thickness.

3
2Volume 13 17 km 73 km

thickness 0 18 km


  


A

This would be a square of approximately 8.5 km or 5.3 miles to a side. Thus the local climate for
a few miles around the power plant might be heated significantly.

62. (a) The exhaust heating rate can be found from the delivered power P and the Carnot efficiency.
Then use Eq. 14–2, , Q mc T to calculate the temperature change of the cooling water. Eqs.
15–4 and 15–5 for efficiency are also used.

L L L L
L L

H H L H L H L H L

L L

1 / /

/ 

        
   

      

T T T TW We Q W Q t W t P
T Q Q W T T T T T T

m VQ mc T Q t c T c T
t t

Equate the two expressions for L / ,Q t and solve for .T

L L

H L H L

8

3 3 3
8 8 10 W 285 K 4 763 K 4 8 C

(625 K 285 K)(1 0 10 kg/m )(37 m /s)(4186 J/kg C )




 
        

 
     

   

T TV PP c T T
VT T t T Tc
t
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(b) The addition of heat per kilogram for the downstream water is L / . Q t c T We use the

“average” temperature of the river water for the calculation: 1
0 2 .  T T T Now the entropy

increase can be calculated using Eq. 15–8.

1 1
0 2 2

(4186 J/kg C )(4 763 K) 69 38 J/kg K 69 J/kg K
[285 (4 763)] K

Q c TS
T T T

   
        

   

63. The net force on the piston must be 0, so the weight of the piston must be equal to the net force exerted
by the gas pressures on both sides of the piston. See the free-body diagram.

inside outside inside outside
air air

2
5

inside outside 2

5

0 0

Pa (0 15 kg)(9 8 m/s )(1 0 atm) 1 01 10
atm 0 080 m

1 0102 10 Pa 1 atm

F F F mg P A P A mg

mgP P
A

       

         
  

   



We see that the weight of the piston is negligible compared to the pressure
forces.

When the gas is heated, we assume that the inside pressure does not change. Since the weight of the
piston does not change, and the outside air pressure does not change, the inside air pressure cannot
change. Thus the expansion is at a constant pressure, so the work done can be calculated. Use this with
the first law of thermodynamics to find the heat required for the process.

3 3 3
2 2 2

5 2 23 5 5
2 2 2

2

2 5(1 01 10 Pa)(0 080 m )(1 0 10 m)

   202 J 2 0 10 J



       

                 

   

U nRT PV U P V Q W

Q U W P V P V P V PA y

64. (a) Multiply the power, the time, and the mass per joule relationship for the fat.
7(95 J/s)(3600 s/h)(24 h/d)(1 0 kg fat/3 7 10 J) 0 2 218 kg/d 0 22 kg/d      

(b) 1 0 kg(1 d/0 2218 kg) 4 5 days   

65. (a) For each engine, the efficiency is given by Carnot0 65 .e e  Thus

L1
1 C 1

H1

L2
2 C 2

H2

(440 273) K0 65 0 65 1 0 65 1 0 197
(750 273) K

(270 273) K0 65 0 65 1 0 65 1 0 137
(415 273) K

T
e e

T

T
e e

T





   
              

   
              

For the first engine, the input heat is from the coal.

1 1 H1 1 coal L1 H1 1 1 coaland (1 )     W e Q e Q Q Q W e Q

For the second engine, the input heat is the output heat from the first engine.

2 2 H2 2 L1 2 1 coal(1 )   W e Q e Q e e Q

Add the two work expressions together and solve for coal .Q

mg

outside
air
F


inside
air
F

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1 2 1 coal 2 1 coal 1 2 1 2 coal

1 2 1 2
coal coal

1 2 1 2 1 2 1 2

(1 ) ( )
( )/

/

      

 
  

   

W W e Q e e Q e e e e Q
W W W W t

Q Q t
e e e e e e e e

Calculate the rate of coal use from the required rate of input energy, coal / .Q t

6
9

coal

9
7

950 10 W/ 3 094 10 J/s
0 197 0 137 (0 197)(0 137)

1 kg(3 094 10 J/s) 110 5 kg/s 110 kg/s
2 8 10 J


   

     

 
        

Q t

(b) The heat exhausted into the water will make the water temperature rise according to Eq. 14–2.
The heat exhausted into water is the heat from the coal minus the useful work.

2 2 2 2
2 2 2 2

exhaust coal
exhaust coal exhaust H O H O H O H O

H O H O H O H O
;

Q Q W
Q Q W Q m c T m

c T c T


      
 

2

2 2

9 8
H O 5coal

H O H O

3
5 8

3 3

( / ) ( / ) (3.094 10 J/s) 9.50 10 J/s 1.13 10 kg/s
(4186 J/kg C )(4.5 C )

kg s 1 m 1 L 1 gal1.138 10 3600 1.1 10 gal/h
s h 1000 kg 3.785 L10 m

m Q t W t
t c T



     
   

   

                          

66. According to Table 15–2, riding a bicycle at a racing pace requires an input of 1270 watts. That value
is used to calculate the work input to the heat pump. The coefficient of performance equation, Eq. 15–7,
is then used to calculate the heat delivered by the heat pump.

6 6H
H

JCOP (COP) 1270 (1800 s)(2 0) 4 572 10 J 4 6 10 J
s

            
 

Q
Q W

W

67. The radiant energy that enters the room is the heat to be removed at the low temperature. It can be
related to the work necessary to remove it through the ideal efficiency, Eq. 15–5. We then subtract the
two rates of doing work to find the savings.

L H H
L L

H H L L L
1 1 / / 1

   
                

T T TW We W Q W t Q t
T Q W Q T T

H H
4800 500

L L
( / ) (4800 W) 1 ( / ) (500 W) 1

T T
W t W t

T T
   

      
   

savings 4800 500
(273 32) K( ) ( / ) ( / ) (4800 W 500 W) 1 160 9 W 160 W
(273 21) K

 
         

W/t W t W t

68. (a) The total rate of adding heat to the house by the heat pump must equal the rate of heat loss by
conduction.

L
in out(650 W/C )( )

Q W
T T

t


  


Since the heat pump is ideal, we have the following from the efficiency.
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outside insideL L
L

inside H L L inside outside
1 1 1        

  
T TQ Q W Q W W
T Q Q W Q W T T

Combine these two expressions and solve for out .T

outside inside

insideL
inside outside

inside outside

2 inside
inside outside

inside

650 W/C

295 K

( )( )
( )

( )
(650 W/C )

295 K(1500 W) 269 K C
(650 W/C ) (650 W/C )

T T

TQ W WT T
t t T T

TWT T
t

TW
t






   

  

  
 

     
  

(b) If the outside temperature is 8 C, then the rate of heat loss by conduction is found to be
(650 W/C )(14 C ) 9100 W.   The heat pump must provide this much power to the house in
order for the house to stay at a constant temperature. That total power is L( )/Q W t   Use this
to solve for the rate at which the pump must do work.

inside
L

inside outside

inside outside

inside

( )/ 9100 W

14 K9100 W 9100 W 432 W
295 K

TWQ W t
t T T

T TW
t T

 
       

   
        

Since the maximum power the pump can provide is 1500 W, the pump must work
432 W 0 29

1500 W
  or 29% of the time.

Solutions to Search and Learn Problems

1. If water vapor condenses on the outside of a cold glass of water, the internal energy of the water vapor
has decreased, by an amount equal to the heat of vaporization of the water vapor times the mass of
water that has condensed. Heat energy left the water vapor, causing it to condense, and heat energy
entered the glass of water and the air, causing them to get slightly warmer. No work is done, but heat is
exchanged.

2. The first step is an isothermal expansion—the volume increases and the
pressure decreases as the temperature stays constant. It is represented by
the line from A to B on the diagram. The second step must be at a
constant volume since no work is done, so is a vertical line. It is
represented by the line from B to C on the diagram. The third step is
adiabatic and must be a compression since the work done is negative. It
is represented by the line from C to A on the diagram.

3. To find the mass of water removed, find the energy that is removed from the low-temperature reservoir
from the work input and the Carnot efficiency. Then use the latent heat of vaporization to determine
the mass of water from the energy required for the condensation. Note that the heat of vaporization
used is that given in Chapter 14 for evaporation at 20°C.
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4. The energy necessary to heat the water can be obtained using Eq. 14–2. The specific heat of the water
is 4186 J/kg C . 

5(1 0 kg)(4186 J/kg C )(95 C 25 C) 2 9302 10 JQ mc T           

The intensity of sunlight at the Earth’s surface is 21000 W/m . The photovoltaic panel can therefore
produce energy at this rate.

2 2(1000 W/m )(1 5 m )(0 20) 300 J/sQ
t
   

Dividing the energy needed to heat the water by the rate at which energy is available will give the time
required to heat the water using the photovoltaic cell.

52 9302 10 J 977 s 16 minutes
/ 300 J/s
Qt
Q t

 
   

Using the curved mirror allows all of the energy in the sunlight 2 2[(1000 W/m )(1 5 m ) 1500 J/s]  to
go into heating the water.

52 9302 10 J 195 s 3 minutes
/ 1500 J/s
Qt
Q t

 
   


