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12-1

Responses to Questions

1. Sound exhibits several phenomena that give evidence that it is a wave. Interference is a wave
phenomenon, and sound produces interference (such as beats). Diffraction is a wave phenomenon, and
sound can be diffracted (such as sound being heard around corners). Refraction is a wave phenomenon,
and sound exhibits refraction when passing obliquely from one medium to another. Sound also
requires a medium, a characteristic of mechanical waves.

2. Evidence that sound is a form of energy is found in the fact that sound can do work. A sound wave
created in one location can cause the mechanical vibration of an object at a different location. For
example, sound can set eardrums in motion, make windows rattle, or even shatter a glass. See
Fig. 11–19 for a photograph of a goblet shattering from the sound of a trumpet.

3. The child speaking into a cup creates sound waves that cause the bottom of the cup to vibrate. Since
the string is tightly attached to the bottom of the cup, the vibrations of the cup are transmitted to
longitudinal waves in the string. These waves travel down the string and cause the bottom of the
receiver’s cup to vibrate back and forth. This relatively large vibrating surface moves the adjacent air
and generates sound waves from the bottom of the cup that travel up into the cup. These waves are
incident on the receiver’s ear, and the receiver hears the sound from the speaker.

4. If the frequency were to change, the two media could not stay in contact with each other. If the two
media vibrated with different frequencies, then particles from the two media initially in contact could
not stay in contact with each other. But particles must be in contact in order for the wave to be
transmitted from one medium to the other, so the frequency does not change. Since the wave speed
changes in passing from air into water and the frequency does not change, we expect the wavelength to
change. Sound waves travel about four times faster in water than in air, so we expect the wavelength in
water to be about four times longer than it is in air.

5. If the speed of sound in air depended significantly on frequency, then the sounds that we hear would be
separated in time according to frequency. For example, if a chord were played by an orchestra, then we
would hear the high notes at one time, the middle notes at another, and the lower notes at still another.
This effect is not heard for a large range of distances, indicating that the speed of sound in air does not
depend significantly on frequency.
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6. The sound-producing anatomy of a person includes various resonating cavities, such as the throat. The
relatively fixed geometry of these cavities determines the relatively fixed wavelengths of sound that a
person can produce. Those wavelengths have associated frequencies given by / .f   The speed of
sound is determined by the gas that is filling the resonant cavities. If the person has inhaled helium,
then the speed of sound will be much higher than normal, since the speed of sound waves in helium is
about 3 times that in air. Thus, the person’s frequencies will go up by about a factor of 3. This is about
a 1.5-octave shift, so the person’s voice sounds very high pitched.

7. The basic equation determining the pitch of the organ pipe is either closed , odd integer,
4
nf n

 


for a

closed pipe, or open , integer,
2
nf n

 


for an open pipe. In each case, the frequency is proportional to

the speed of sound in air. Since the speed is a function of temperature, and the length of any particular
pipe is very nearly constant over the relatively small range of temperatures in a room, the frequency is
also a function of temperature. Thus, when the temperature changes, the resonant frequencies of the
organ pipes change. Since the speed of sound increases with temperature, as the temperature increases,
the pitch of the pipes increases as well.

8. A tube of a given length will resonate (permit standing waves) at certain frequencies. When a mix of
frequencies is input to the tube, only those frequencies close to resonant frequencies will produce
sound that persists, because standing waves are created for those frequencies. Frequencies far from
resonant frequencies will not persist very long at all—they will “die out” quickly. If, for example, two
adjacent resonances of a tube are at 100 Hz and 200 Hz, then sound input near one of those frequencies
will persist and sound relatively loud. A sound input near 150 Hz would fade out quickly and thus
have a reduced amplitude as compared to the resonant frequencies. The length of the tube can therefore
be chosen to “filter” certain frequencies, if those filtered frequencies are not close to resonant
frequencies.

9. For a string with fixed ends, the fundamental frequency is given by ,
2

f 



so the length of string for

a given frequency is .
2 f


 For a string, if the tension is not changed while fretting, the speed of

sound waves will be constant. Thus, for two frequencies 1 2 ,f f the spacing between the frets
corresponding to those frequencies is given as follows:

1 2
1 2 1 2

1 1
2 2 2f f f f
    

     
 

 

Now see Table 12–3. Each note there corresponds to one fret on the guitar neck. Notice that as the
adjacent frequencies increase, the interfrequency spacing also increases. The change from C to #C is
15 Hz, while the change from G to #G is 23 Hz. Thus, their reciprocals get closer together, so from
the above formula, the length spacing gets closer together. Consider a numerical example.

4 4
C GC G

G G

C C

1 1 1 1(2.07 10 ) (1.41 10 )
2 262 277 2 2 392 415 2

0.68

   
 





                
   






   

 

 

The G to #G spacing is only about 68% of the C to #C spacing.
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10. When you first hear the truck, you cannot see it. There is no straight-line path from the truck to you.
The sound waves that you are hearing are therefore arriving at your location due to diffraction. Long
wavelengths are diffracted more than short wavelengths, so you are initially only hearing sound with
long wavelengths, which are low-frequency sounds. After you can see the truck, you are able to
receive all frequencies being emitted by the truck, not just the lower frequencies. Thus, the sound
“brightens” due to your hearing more high-frequency components.

11. The wave pattern created by standing waves does not “travel” from one place to another. The node
locations are fixed in space. Any one point in the medium has the same amplitude at all times. Thus,
the interference can be described as “interference in space”—moving the observation point from one
location to another changes the interference from constructive (antinode) to destructive (node). To
experience the full range from node to antinode, the position of observation must change, but all
observations could be made at the same time by a group of observers.

The wave pattern created by beats does travel from one place to another. Any one point in the medium
will at one time have a 0 amplitude (node) and half a beat period later, have a maximum amplitude
(antinode). Thus, the interference can be described as “interference in time.” To experience the full
range from constructive interference to destructive interference, the time of observation must change,
but all observations could be made at the same position.

12. If the frequency of the speakers is lowered, then the wavelength will be increased. Each circle in the
diagram will be larger, so the points C and D will move farther apart.

13. Active noise reduction devices work on the principle of destructive interference. If the electronics are
fast enough to detect the noise, invert it, and create the opposite wave (180° out of phase with the
original) in significantly less time than one period of the components of the noise, then the original
noise and the created noise will be approximately in a destructive interference relationship. The person
wearing the headphones will then hear a net sound signal that is very low in intensity.

14. For the two waves shown, the frequency of beating is higher in wave (a)—the beats occur more
frequently. The beat frequency is the difference between the two component frequencies, so since (a)
has a higher beat frequency, the component frequencies are farther apart in (a).

15. There is no Doppler shift if the source and observer move in the same direction, with the same velocity.
Doppler shift is caused by relative motion between source and observer, and if both source and
observer move in the same direction with the same velocity, there is no relative motion.

16. If the wind is blowing but the listener is at rest with respect to the source, the listener will not hear a
Doppler effect. We analyze the case of the wind blowing from the source toward the listener. The
moving air (wind) has the same effect as if the speed of sound had been increased by an amount equal
to the wind speed. The wavelength of the sound waves (distance that a wave travels during one period
of time) will be increased by the same percentage that the wind speed is relative to the still-air speed of
sound. Since the frequency is the speed divided by the wavelength, the frequency does not change, so
there is no Doppler effect to hear. Alternatively, the wind has the same effect as if the air were not
moving but the source and listener were moving at the same speed in the same direction. See Question 15
for a discussion of that situation. Finally, since there is no relative motion between the source and the
listener, there is no Doppler shift.

17. The highest frequency of sound will be heard at position C, while the child is swinging forward.
Assuming the child is moving with SHM, the highest speed is at the equilibrium point, point C. And to
have an increased pitch, the relative motion of the source and detector must be toward each other. The
child would also hear the lowest frequency of sound at point C, while swinging backward.
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Responses to MisConceptual Questions

1. (a) Students may answer that the speed of sound is the same, if they do not understand that the speed
of sound is not constant, but depends upon the temperature of the air. When it is hotter, the speed
of sound is greater, so it takes less time for the echo to return.

2. (d) Sound waves are longitudinal waves, so (a) is incorrect. The sound waves can be characterized
either by the longitudinal displacement of the air molecules or by the pressure differences that
cause the displacements.

3. (b) A common misconception is to treat the sound intensity level as a linear scale instead of a
logarithmic scale. If the sound intensity doubles, the intensity level increases by about 3 dB, so
the correct answer is 73 dB.

4. (e) Students often think that the sound intensity is the same as loudness and therefore mistakenly
answer that doubling the intensity will double the loudness. However, the ear interprets loudness
on a logarithmic scale. For something to sound twice as loud, it must have an intensity that is
10 times as great.

5. (b) The octave is a measure of musical frequency, not loudness. Raising a note by one octave
requires doubling the frequency. Therefore, raising a note by two octaves is doubling the
frequency twice, which is the same as quadrupling the frequency.

6. (e) In a string or open tube the lowest vibration mode is equal to half of a wavelength. In a tube
closed at one end the lowest vibration mode is equal to a quarter of a wavelength. Therefore,
none of the listed objects have a lowest vibration mode equal to a wavelength.

7. (e) A common misconception is that the frequency of a sound changes as it passes from air to water.
The frequency is the number of wave crests that pass a certain point per unit time. If this value
were to change as it entered the water, then wave crests would build up or be depleted over time.
This would make the interface an energy source or sink, which it is not. The speed of sound in
water is greater than in air, so the speed of the wave changes. Since the frequency cannot change,
the increase in speed results in an increase in wavelength.

8. (e) As the string oscillates, it causes the air to vibrate at the same frequency. Therefore, the sound
wave will have the same frequency as the guitar string, so answers (b) and (c) are incorrect. The
speed of sound in air at 20C is 343 m/s. The speed of sound in the string is the product of the
wavelength and frequency, 462 m/s, so the sound waves in air have a shorter wavelength than
the waves on the string.

9. (c) Pushing the string straight down onto a fret does not affect the tension a significant amount, due
to the fret being so close to the string. The amplitude of the wave is determined by how hard the
string is plucked, not by pushing the string onto the frets. When the string is pushed down, its
effective length is shortened, which shortens the wavelength and thus increases the oscillation
frequency. (The wave speed on the string doesn’t change due to fretting the string.)

10. (a) The fundamental wavelength of an open-ended organ pipe is twice the length of the pipe. If one
end is closed, then the fundamental wavelength is four times the length of the pipe. Since the
wavelength doubles when one end of the pipe is closed off, and the speed of sound remains
constant, the fundamental frequency is cut in half.
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11. (c) The two speakers create sound waves that interact as described by the principle of superposition.
When the waves overlap, the frequency remains the same; it does not double. If the speakers
occupied the same location so that each point in the room were equidistant from the speakers,
then the intensity would double everywhere. However, the speakers are separated by a distance
of 10 m. Since the path lengths from each speaker to different locations around the room are not
the same, at some points in the room the path difference will be an odd integer number of half
wavelengths, so the sounds will destructively interfere. At other locations in the room the
speakers will be equidistant, or the path difference will be an integral number of whole
wavelengths, and the sounds will constructively interfere. This results in dead spots and loud
spots in the room.

12. (c) A common misconception is that since the cars are moving there must be a Doppler shift. In this
situation, however, there is no relative motion between the two vehicles. The two vehicles travel
in the same direction at the same speed. Since the distance between them does not change, you
and your sister will hear the horn sound at the same frequency.

13. (e) As the string vibrates, each part of the string (other than the nodes) oscillates at the same
frequency, so answer (a) is true. This oscillation excites the air to vibrate at that frequency, so
answer (c) is true. The wave relationships in answers (b) and (d) are true for any wave, so both
are true in this case as well. However, the speed of the wave on the string is determined by the
tension and mass of the string, and the speed of sound in the air is determined by the temperature,
pressure, and density of the air. The two speeds are not necessarily the same. Since the sound
wave and wave on the string have the same frequencies, but not necessarily the same wave
speeds, they do not necessarily have the same wavelengths. Thus, (e) is not true.

Solutions to Problems

In solving these problems, the authors did not always follow the rules of significant figures rigidly. We tended
to take quoted frequencies as correct to the number of digits shown, especially where other values might
indicate that. For example, in Problem 49, values of 350 Hz and 355 Hz are used. We took both of those
values to have 3 significant figures.

1. The round-trip time for sound is 2.5 seconds, so the time for sound to travel the length of the lake is
1.25 seconds. Use the time and the speed of sound to determine the length of the lake.

(343 m/s)(1.25 s) 429 m 430 md t   

2. The round-trip time for sound is 2.0 seconds, so the time for sound to travel the length of the lake is
1.0 seconds. Use the time and the speed of sound in water to determine the depth of the lake.

(1560 m/s)(1.0 s) 1560 m 1600 md t   

3. (a) 2
20 Hz 20 kHz 4

343 m/s 343 m/s17 m 1.7 10 m
20 Hz 2.0 10 Hzf f

         


The range is from 1.7 cm to 17 m.

(b) 5
6

343 m/s 1.9 10 m
18 10 Hzf

    

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4. The distance that the sound travels is the same on both days and is equal to the speed of sound times
the elapsed time. Use the temperature-dependent relationship for the speed of sound in air.

1 1 2 2 2

2

[(331 0.6(31)) m/s](4.80 s) [(331 0 6( )) m/s](5 .20 s)

14 C

d t t T

T

        

  

5. (a) For the fish, the speed of sound in sea water must be used.
1550 m 0.994 s

1560 m/s
dd t t


    

(b) For the fishermen, the speed of sound in air must be used.
1550 m 4.52 s
343 m/s

dd t t


    

6. The two sound waves travel the same distance. The sound will travel faster in the concrete and thus
take a shorter time.

concrete
air air concrete concrete concrete air air

concrete air

concrete
air air air

concrete air

( 0.80s) (0.80 s)

(0.80 s)

d t t t t

d t


  

 


 

 

     


 
    

The speed of sound in concrete is obtained from Eq. 11–14a, Table 9–1, and Table 10–1.
9 2

concrete 3 3
20 10 N/m 2949 m/s
2.3 10 kg/m

E



  



air air
2949 m/s(343 m/s) (0.80 s) 310.5 m 310 m

2949 m/s 343 m/s
d t

 
     

7. The total time T is the time for the stone to fall down( )t plus the time for the sound to come back to the
top of the cliff up up down( ): .t T t t  Use constant-acceleration relationships for an object dropped

from rest that falls a distance h in order to find down ,t with down as the positive direction. Use the
constant speed of sound to find upt for the sound to travel a distance h.

2 21 1
0 0 down down down snd up up2 2

snd
2

2 2 2 2 2snd1 1 1
down up snd snd2 2 2

snd

down: up:

( ) 2 0

hy y t at h gt h t t

hh gt g T t g T h T h T
g

 



 



       

   
            

  

This is a quadratic equation for the height. This can be solved with the quadratic formula, but be sure
to keep several significant digits in the calculations.

2 2 2
2

2 5 2

343 m/s2(343 m/s) 2.7 s (2.7 s) (343 m/s) 0
9.80 m/s

25862 25796(25862 m) 8.5766 10 m 0 25,829 m, 33 m
2

h h

h h h

 
      

 


      

The larger root is impossible since it takes more than 2.7 s for the rock to fall that distance, so
33 m .h 
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8. 12 12 12 2 2120
120 0

0
120 dB 10 log 10 10 (1.0 10 W/m ) 1.0 W/m

I
I I

I
     

2 2 12 2 10 220
20 0

0
20 dB 10 log 10 10 (1.0 10 W/m ) 1.0 10 W/m

I
I I

I
       

The pain level is 1010 times more intense than the whisper.

9.
6 2

12 2
0

1.5 10 W/m10 log 10 log 61.76 dB 62 dB
1.0 10 W/m

I
I







   


10. Compare the two power output ratings using the definition of decibels.

150

100

120 W10 log 10 log 2.0 dB
75 W

P
P

   

This would barely be perceptible.

11. From Example 12–4, we see that a sound level decrease of 3 dB corresponds to a halving of intensity.
Thus, the sound level for one firecracker will be 85 dB 3 dB 82 dB . 

12. From Example 12–4, we see that a sound level decrease of 3 dB corresponds to a halving of intensity.
Thus, if two engines are shut down, the intensity will be cut in half, and the sound level will be 137 dB.
Then, if one more engine is shut down, the intensity will be cut in half again, and the sound level will
drop by 3 more dB, to a final value of 134 dB .

13. For the 82-dB device: 8.2 8
signal noise tape signal noise tape82 dB 10 log ( / ) ( / ) 10 1.6 10 .I I I I    

For the 98-dB device: 9.8 9
signal noise tape signal noise tape98 dB 10 log ( / ) ( / ) 10 6.3 10 .I I I I    

14. (a) The energy absorbed per second is the power of the wave, which is the intensity times the area.

5.5 5.5 12 2 7 2
0

0

7 2 5 2 11 11

55 dB 10 log 10 10 (1.0 10 W/m ) 3.162 10 W/m

(3.162 10 W/m )(5.0 10 m ) 1.581 10 W 1.6 10 J/s

I I I
I

P IA

 

   

      

       

(b) 3
11 7

1 s 1 yr1.0 J 2001 yr 2.0 10 yr
1.581 10 J 3.16 10 s

  
         

15. (a) Find the intensity from the 130-dB value, and then find the power output corresponding to that
intensity at that distance from the speaker.

2.8 m 13 13 12 2 2
2.8 m 0

0
130 dB 10 log 10 10 (1.0 10 W/m ) 10 W/m

I
I I

I
       

2 2 24 4 (2.5 m) (10 W/m ) 785.4 W 790 WP IA r I     
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(b) Find the intensity from the 85-dB value, and then from the power output, find the distance
corresponding to that intensity.

8.5 8.5 12 2 4 2
0

0

2
4 2

85 dB 10 log 10 10 (1.0 10 W/m ) 3.162 10 W/m

785.4 W4 444.6 m 440 m
4 4 (3.162 10 W/m )

I I I
I

PP r I r
I




 

 



       

     


16. The first person is a distance of 1 100mr  from the explosion, while the second person is a distance

2 5(100 m)r  from the explosion. The intensity detected away from the explosion is inversely
proportional to the square of the distance from the explosion.

22
1 2 1

2
2 21

5(100 m) 5; 10 log 10 log 5 6.99 dB 7 dB
100 m

I r I
I Ir


 

       
 

17. (a) The intensity is proportional to the square of the amplitude, so if the amplitude is 3.5 times

greater, the intensity will 2increase by a factor of 3.5 12.25 12 . 

(b) 010 log / 10 log12.25 10.88 dB 11 dBI I    

18. The intensity is given by Eq. 11–18, 2 2 22 .I f A If the only difference in two sound waves is
their frequencies, then the ratio of the intensities is the ratio of the square of the frequencies.

2
2

2
(2.2 ) 4.8f

f

I f
I f

 

19. The intensity is given by Eq. 11–18, 2 2 22 ,I f A  using the density of air (from Table 10–1) and
the speed of sound in air.

2 2 2 3 2 2 4 2 2

2

12 2
0

2 2(1.29 kg/m )(343 m/s) (440 Hz) (1.3 10 m) 28.57 6 W/m

28.576 W/m10 log 10 log 134.56 dB 130 dB
1.0 10 W/m

I f A

I
I

 







   

   


Note that according to Fig. 12–6, this is above the threshold of pain at that frequency.

20. (a) According to Table 12–2, the intensity of normal conversation, at a distance of about 50 cm from
the speaker, is about 6 23 10 W/m . The intensity is the power output per unit area, so the
power output can be found. The area to use is the surface area of a sphere.

2 6 2 2 6 6(4 ) (3 10 W/m )4 (0.50 m) 9.425 10 W 9.4 10 WPI P IA I r
A

            

(b) 6
6

1 person60 W 6.37 10 6 million people
9.425 10 W

 
     
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21. The intensity of the sound is defined to be the power per unit area. We assume that the sound spreads
out spherically from the loudspeaker.

(a) 2 2
220 452 2

220 W 45 W1.429 W/m 0.292 W/m
4 (3.5 m) 4 (3.5 m)

I I
 

   

2
220

220 12 2
0

2
45

45 12 2
0

1.429 W/m10 log 10 log 121.55 dB 122 dB
1.0 10 W/m

0.292 W/m10 log 10 log 114.66 dB 115 dB
1.0 10 W/m

I
I

I
I









   


   


(b) According to the textbook, for a sound to be perceived as twice as loud as another, the intensities
need to differ by a factor of 10, or differ by 10 dB. They differ by only about 7 dB.
The expensive amp will not sound twice a s loud as the cheaper one

22. From Fig. 12–6, a 100-Hz tone at 50 dB has a loudness of about 20 phons. At 5000 Hz, 20 phons
corresponds to about 20 dB . Answers may vary due to estimation in the reading of the graph.

23. From Fig. 12–6, at 40 dB the low-frequency threshold of hearing is about 70 80 Hz . There is no

intersection of the threshold of hearing with the 40-dB level on the high-frequency side of the chart, so
we assume that a 40-dB signal can be heard all the way up to the highest frequency that a human can
hear, 20,000 Hz . Answers may vary due to estimation in the reading of the graph.

24. (a) From Fig. 12–6, at 100 Hz, the threshold of hearing (the lowest detectable intensity by the ear) is
approximately 9 25 10 W/m . The threshold of pain is about 25 W/m . The ratio of highest to

lowest intensity is thus
2

9
9 2

5 W/m 10 .
5 10 W/m




(b) At 5000 Hz, the threshold of hearing is about 13 210 W/m , and the threshold of pain is about

1 210 W/m . The ratio of highest to lowest intensity is
1 2

12
13 2

10 W/m 10 .
10 W/m






Answers may vary due to estimation in the reading of the graph.

25. Each octave is a doubling of frequency. The number of octaves, n, can be found from the following:

20,000 Hz 2 (20 Hz) 1000 2 log 1000  log 2
log1000 9.97 10 octaves

log 2

n n n

n

     

  

26. For a closed tube, Fig. 12–12 indicates that 1 .
4

f 



We assume the bass clarinet is at room

temperature.

1
1

343 m/s 1.2 m
4 4 4(69 Hz)

f
f

 
    


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27. For a vibrating string, the frequency of the fundamental mode is given by Eq. 11–19b combined with
Eq. 11–13.

2 2 4T T
T

1 1 4 4(0 32 m)(440 Hz) (3.5 10 kg) 87 N
2 2 2 /

F F
f F f m

m



        

   

28. (a) If the pipe is closed at one end, only the odd harmonic frequencies are present.

1 1

3 1 5 1 7 1

343 m/s, 1, 3, 5, 73.9 Hz
4 4 4(1.16 m)

3 222 Hz  5 370 Hz  7 517 Hz

n
nf nf n f

f f f f f f


      

     




 

(b) If the pipe is open at both ends, then all the harmonic frequencies are present.

1 1

2 1 3 1 4 1

343 m/s, 1, 3, 5, 148 Hz
2 2 2(1.16 m)

2 296 Hz 3 444 Hz 4 591 Hz

n
nf nf n f

f f f f f f

 
      

     


 

29. (a) The length of the tube is one-fourth of a wavelength for this (one end closed) tube, so the
wavelength is four times the length of the tube.

343 m/s 360 Hz
4(0.24 m)

f 


  

(b) If the bottle is one-third full, then the effective length of the air column is reduced to 12 cm.
343 m/s 540 Hz

4(0.16 m)
f 


  

30. For a pipe open at both ends, the fundamental frequency is given by 1 ,
2

f 



so the length for a given

fundamental frequency is
1

.
2 f




3
20 Hz 20 kHz

343 m/s 343 m/s8.6 m 8.6 10 m
2(20 Hz) 2(20,000 Hz)

     

31. For a fixed string, the frequency of the nth harmonic is given by 1.nf nf Thus, the fundamental for
this string is 1 3 /3 540 Hz/3 180 Hz.f f   When the string is fingered, it has a new length of 70% of

the original length. The fundamental frequency of the vibrating string is also given by 1 ,
2

f 



and

 is constant for the string, assuming its tension is not changed.

1 1
fingered fingered

1 180 Hz 260 Hz
2 2(0 70) 0.70 0 70

f f 
    

  

32. We approximate the shell as a closed tube of length 15 cm and calculate the fundamental frequency.
343 m/s 572 Hz 570 Hz

4 4(0.15 m)
f 
   


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33. (a) We assume that the speed of waves on the guitar string does not change when the string is fretted.

The fundamental frequency is given by ,
2

f 



so the frequency is inversely proportional to the

length.
1 constantf f  


E
E E A A A E

A

330 Hz(0.68 m) 0.51 m
440 Hz

f
f f

f
 

     
 

   

The string should be fretted a distance 0.68 m 0.51 m 0.17 m  from the tuning nut of the

guitar: (at the right-hand node in Fig. 12–8a of the textbook).
(b) The string is fixed at both ends and is vibrating in its fundamental mode. Thus, the wavelength is

twice the length of the string (see Fig. 12–7).

2 2(0.51 m) 1.02 m   

(c) The frequency of the sound will be the same as that of the string, 440 Hz . The wavelength is
given by the following:

343 m/s 0.78 m
440 Hzf

   

34. (a) At 18 C,T   the speed of sound is given by (331 0 60(18)) m/s 341.8 m/s.     For an open

pipe, the fundamental frequency is given by .
2

f 




341.8 m/s 0.652 m
2 2 2(262 Hz)

f
f

 
    



(b) The frequency of the standing wave in the tube is 262 Hz . The wavelength is twice the length

of the pipe, 1.30 m .

(c) The wavelength and frequency are the same in the air, because it is air that is resonating in the
organ pipe. The frequency is 262 Hz and the wavelength is 1.30 m .

35. The speed of sound will change as the temperature changes, and that will change the frequency of the
organ. Assume that the length of the pipe (and thus the resonant wavelength) does not change.

22 0 11 22 011
22 0 11 11 22.0

11 22 0
211

22 0 22.0

331 0.60(11)1 1 1.92 10 1.9%
331 0.60(22.0)

f f f f f

f
f

  
  

 


 


 








     


 

         
v

36. A flute is a tube that is open at both ends, so the fundamental frequency is given by ,
2

f 



where 

is the distance from the mouthpiece (antinode) to the first open side hole in the flute tube (antinode).
343 m/s 0.491 m

2 2 2(349 Hz)
f

f
 

    

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37. (a) At 22 C,T   the speed of sound is (331 0 60(22)) m/s 344.2 m/s.    v For an open pipe, the

fundamental frequency is given by .
2

f 




344.2 m/s 0.58537 m 0.585 m
2 2 2(294 Hz)

f
f

 
     



(b) The speed of sound in helium is given in Table 12–1 as 1005 m/s. Use this and the pipe’s length
to find the pipe’s fundamental frequency.

1005 m/s 858.43 Hz 858 Hz
2 2(0.58537 m)

f 
   



38. (a) The difference between successive overtones for this pipe is 176 Hz. The difference between
successive overtones for an open pipe is the fundamental frequency, and each overtone is an
integer multiple of the fundamental. Since 264 Hz is not a multiple of 176 Hz, 176 Hz cannot be
the fundamental, so the pipe cannot be open. Thus, it must be a closed pipe.

(b) For a closed pipe, the successive overtones differ by twice the fundamental frequency. Thus, 176 Hz
must be twice the fundamental, so the fundamental is 88 Hz . This is verified since 264 Hz is

three times the fundamental, 440 Hz is five times the fundamental, and 616 Hz is seven times the
fundamental.

39. (a) The harmonics for the open pipe are .
2n
nf 




To be audible, they must be below 20 kHz.

4
4 2(2.18 m)(2 10 Hz)2 10 Hz 254.2

2 343 m/s
n n 

    


Since there are 254 harmonics, there are 253 overtones 

(b) The harmonics for the closed pipe are ,
4n
nf 




n odd. Again, they must be below 20 kHz.

4
4 4(2.18 m)(2 10 Hz)2 10 Hz 508.5

4 343 m/s
n n 

    


The values of n must be odd, so n = 1, 3, 5, …, 507. There are 254 harmonics, so there are
253 overtones 

40. A tube closed at both ends will have standing waves with displacement nodes at each end, so it has the
same harmonic structure as a string that is fastened at both ends. Thus, the wavelength of the
fundamental frequency is twice the length of the hallway, 1 2 18 m.  

1 2 1
1

343 m/s 19.056 Hz 19 Hz ; 2 38 Hz
18 m

f f f


     

41. The tension and mass density of the string do not change, so the wave speed is constant. The frequency

ratio for two adjacent notes is to be 1/122 . The frequency is given by .
2

f 



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1st 1st
fret fret unfingered1/12

1st 1/12 1/12
fretunfingered

unfingered

1st
fret unfingered unfingered

2nd th th unfingerd th unf1/12 2/12 /12
fret fret fret fret

2
75.0 cm2 70.79 cm

2 2 2
2

;
2 2 2

n n nn

f
f

f

x






       

      










 

     /12
ingered

1/12 2/12
1 2

3/12 4/12
3 4

5/12 6/12
5 6

(1 2 )

(75.0 cm)(1 2 ) 4.2 cm ; (75.0 cm)(1 2 ) 8.2 cm

(75.0 cm)(1 2 ) 11.9 cm ; (75.0 cm)(1 2 ) 15.5 cm

(75.0 cm)(1 2 ) 18.8 cm ; (75.0 cm)(1 2 ) 22.0 cm

n

x x

x x

x x



 

 

 



     

     

     

42. The ear canal can be modeled as a closed pipe of length 2.5 cm. The resonant frequencies are given by

,  odd.
4n
nf n




The first several frequencies are calculated here.

2

1 3 5

(343 m/s) (3430 Hz),  odd
4 4(2.5 10 m)

3430 Hz 10,300 Hz 17,200 Hz

n
n nf n n

f f f




  


  



In the graph, the most sensitive frequency is between 3000 and 4000 Hz. This corresponds to the
fundamental resonant frequency of the ear canal. The sensitivity decrease above 4000 Hz, but is seen
to “flatten out” around 10,000 Hz again, indicating higher sensitivity near 10,000 Hz than at
surrounding frequencies. This 10,000-Hz relatively sensitive region corresponds to the first overtone
resonant frequency of the ear canal.

43. From Eq. 11–18, the intensity is proportional to the square of the amplitude and the square of the

frequency. From Fig. 12–15, the relative amplitudes are 2

1
0.4

A
A

 and 3

1
0.15.

A
A



2 22 2 2 2 2
2 2 2 2 22 2 2 2 2 2 2

2 2 2 2 2
1 1 11 1 1 1

2 2
2 23 3 3

1 1 1

32
2 1 3 1

1 1

2
2 2 (0.4) 0.64

2

3 (0.15) 0.20

10 log 10 log 0.64 2 dB ; 10 log 10 log 0.24 7 dB

I f A f A f A
I f A

I f Af A f A

I f A
I f A

II
I I

 
 

 

  

   
         

   

   
     
   

       

Answers may vary due to the reading of the figure.

44. The beat period is 2.0 seconds, so the beat frequency is the reciprocal of that, 0.50 Hz. Thus, the other
string is off in frequency by 0.50 Hz . The beating does not tell the tuner whether the second string is

too high or too low.

45. The 5000-Hz shrill whine is the beat frequency generated by the combination of the two sounds. This
means that the brand X whistle is either 5000 Hz higher or 5000 Hz lower than the known-frequency
whistle. If it were 5000 Hz lower, then it would just barely be in the audible range for humans. Since
humans cannot hear it, the brand X whistle must be 5000 Hz higher than the known frequency whistle.
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Thus, the brand X frequency is 23.5 kHz 5 kHz 28.5 kHz .  Since the original frequencies are good

to 0.1 KHz, we assume that the 5000-Hz value is 5.0 kHz.

46. The beat frequency is the difference in the two frequencies, or 277 Hz 262 Hz 15 Hz .  If both

frequencies are reduced by a factor of 4, then the difference between the two frequencies will also be
reduced by a factor of 4, so the beat frequency will be 1

4 (15 Hz) 3.75 Hz 3.8 Hz . 

47. Since there are 3 beats/s when sounded with the 350-Hz tuning fork, the guitar string must have a
frequency of either 347 Hz or 353 Hz. Since there are 8 beats/s when sounded with the 355-Hz tuning
fork, the guitar string must have a frequency of either 347 Hz or 363 Hz. The common value is
347 Hz .

48. The fundamental frequency of the violin string is given by T1 294 Hz.
2 2

F
f 


  

 
Change the

tension to find the new frequency and then subtract the two frequencies to find the beat frequency.

T T(0.975)1 10.975 0.975
2 2

(1 0.975) (294 Hz)(1 0.975) 3.7 Hz

F F
f f

f f f f

 
   

        

 

49. The beat frequency is 3 beats per 2.5 seconds, or 1.2 Hz. We assume the strings are the same length
and the same mass density.

(a) The other string is either 220.0 Hz 1.2 Hz 218.8 Hz  or 220.0 Hz 1.2 Hz 221.2 Hz . 

(b) Since T1 ,
2 2

F
f 


 

 
we have

2

T T T
T T

.f f ff F F F
fF F

          

To change 218.8 Hz to 220.0 Hz:
2

T T
220.0 1.011 , 1 1% increase .
218.8

F F F     
 

To change 221.2 Hz to 220.0 Hz:
2

T T
220.0 0.9892 , 1.1% decrease .
221.2

F F F    
 

50. (a) For destructive interference, the smallest path difference must be one-half wavelength. Thus, the
wavelength in this situation must be twice the path difference, or 1.00 m.

343 m/s 343 Hz
1.00 m

f 


  

(b) There will also be destructive interference if the path difference is 1.5 wavelengths, 2.5
wavelengths, etc.

0.50 m 343 m/s1.5 0.333 m 1029 Hz 1000 Hz
1.5 0.33 m

0.50 m 343 m/s2.5 0.20 m 1715 Hz 1700 Hz
2.5 0.20 m

f

f


 




 


         

         





51. (a) The microphone must be moved to the right until the difference d

l

x

d2 d 1
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in distances from the two sources is half a wavelength. See the diagram. We square the
expression, collect terms, isolate the remaining square root, and square again.

   

   

1
2 1 2

2 22 21 1 1
2 2 2

2 22 21 1 1
2 2 2

d d

d x d x

d x d x







  

      

      

 

 

       

   

2 2 22 2 2 21 1 1 1 1
2 4 2 2 2

2 22 2 2 2 2 4 2 21 1 1 1 1
4 2 4 16 2

2

2 4 2(2 )

d x d x d x

dx d x d x dx d x

 

    

         

            

  

 

 2 2 21 1
4 162 2 2 4 2 2 2 2 2 2 21 1

16 4 2 24
(4 )

d
d x dx d dx x x

d


      



 
       






The values are 3.00 m, 3.20 m,d   and / (343 m/s)/(474 Hz) 0.7236 m.f   

2 2 21 1
4 16

2 2

(3.00 m) (3 20 m) (0.7236 m)
(0.7236 m) 0.429 m

4(3.00 m) (0.7236 m)
x

  
 



(b) When the speakers are exactly out of phase, the maxima and minima will be interchanged. The
intensity maxima are 0.429 m to the left or right of the midpoint, and the intensity minimum is
at the midpoint.

52. (a) Observer moving toward stationary source:

obs

snd

30.0 m/s1 1 (1650 Hz) 1790 Hz
343 m/s

f f



   
         

  

(b) Observer moving away from stationary source:

obs

snd

30.0 m/s1 1 (1650 Hz) 1510 Hz
343 m/s

f f



   
         

  

53. The moving object can be treated as a moving “observer” for calculating the frequency it receives and
reflects. The bat (the source) is stationary.

object
object bat

snd
1f f




 

   
 

Then the object can be treated as a moving source emitting the frequency objectf  and the bat as a

stationary observer.
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object

object snd objectsnd
bat bat bat

object object snd object

snd snd

4 4

1
( )
( )

1 1

343 m/s 27.0 m/s(5.00 10 Hz) 4.27 10 Hz
343 m/s 27.0 m/s

f
f f f


 

   
 

 
      

   
    

   
 

     

54. The frequency received by the stationary car is higher than the frequency emitted by the stationary car,
by 4.5 Hz.f 

source
obs source

source

snd

snd
source

source

1

343 m/s1 (4.5 Hz) 1 81.25 Hz 81 Hz
18 m/s

f
f f f

f f







     
 
 

 
   

         
  

55. The wall can be treated as a stationary “observer” for calculating the frequency it receives. The bat is
flying toward the wall.

wall bat
bat

snd

1

1
f f




 
 
 

 

Then the wall can be treated as a stationary source emitting the frequency wallf  and the bat as a
moving observer, flying toward the wall.

bat bat snd bat
bat wall bat bat

snd snd snd batbat

snd

4 4

( )11 1
( )

1

343 m/s 6.0 m/s(3.00 10 Hz) 3.11 10 Hz
343 m/s 6.0 m/s

f f f f
   
   



    
               

 


   


56. The ocean wave has 44 m  and 18 m/s  relative to the ocean floor. The frequency of the ocean

wave is then 18 m/s 0.4091 Hz.
44 m

f 


  


(a) For the boat traveling west, the boat will encounter a Doppler shifted frequency, for an observer
moving toward a stationary source. The speed 18 m/s  represents the speed of the waves in
the stationary medium, so it corresponds to the speed of sound in the Doppler formula. The time
between encountering waves is the period of the Doppler shifted frequency.

obs
observer
moving snd

14 m/s1 1 (0.4091 Hz) 0.7273 Hz
18 m/s

1 1 1.375 s 1.4 s
0.7273 Hz

f f

T
f




   
         

  

   

(b) For the boat traveling east, the boat will encounter a Doppler shifted frequency, for an observer
moving away from a stationary source.
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obs
observer
moving snd

14 m/s1 1 (0.4091 Hz) 0.09091 Hz
18 m/s

1 1 11 s
0.09091 Hz

f f

T
f




   
         

  

  

57. (a) The observer is stationary, and the source is moving. First the source is approaching, and then
the source is receding.

source
moving src
toward

snd

source
moving src
away

snd

1 m/s120.0 km/h 33.33 m/s
3.6 km/h

1 1(1580 Hz) 1750 Hz
33 33 m/s11
343 m/s

1 1(1580 Hz) 1440 Hz
33.33 m/s11
343 m/s

f f

f f







 
 

 

   
   

   
  

   
   

   
  

(b) Both the observer and the source are moving, so use Eq. 12–4.

1 m/s90.0 km/h 25 m/s
3.6 km/h

 
 

 

snd obs
approaching

snd src

snd obs
receding

snd src

( ) (343 m/s 25 m/s)(1580 Hz) 1880 Hz
( ) (343 m/s 33.33 m/s)

( ) (343 m/s 25 m/s)(1580 Hz) 1340 Hz
( ) (343 m/s 33.33 m/s)

f f

f f

 
 

 
 

    
 

    
 

(c) Both the observer and the source are moving, so again use Eq. 12–4.

snd obs
police
car snd src
approaching

snd obs
police
car snd src
receding

1 m/s
80.0 km/h 22.22 m/s

3.6 km/h

343 m/s 22.22 m/s
 (1580 Hz) 1640 Hz

343 m/s 33.33 m/s

( )

( ) ( )
( ) ( )

( ) (343 m/s 22.22 m/s1580 Hz
( )

f f

f f

 



 









    
 


  



 
 
 


1530 Hz

)
(343 m/s 33.33 m/s)




58. The maximum Doppler shift occurs when the heart has its maximum velocity. Assume that the heart is
moving away from the original source of sound. The beats arise from the combining of the original
2.25-MHz frequency with the reflected signal which has been Doppler shifted. There are two Doppler
shifts—one for the heart receiving the original signal (observer moving away from stationary source)
and one for the detector receiving the reflected signal (source moving away from stationary observer).
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heart

sndheart heart snd heart
heart original detector original original

snd snd heartheart heart

snd snd

original detector original original

1
( )

1 ;
( )

1 1

(

f
f f f f f

f f f f f


  

   
 

 
                    

   

     snd blood blood
original

snd blood snd blood

) 2
( ) ( )

f
  
   


 

 

3
blood snd 6

original

240 Hz(1.54 10 m/s) 0.0821 m/s
2 2(2.25 10 Hz) 240 Hz

f
f f

  
   

   

If instead we had assumed that the heart was moving toward the original source of sound, we would

get blood snd
original

.
2

f
f f

  


 
Since the beat frequency is much smaller than the original frequency,

the f term in the denominator does not significantly affect the answer.

59. The speed is found from Eq. 12–5.
wave wave

obj
obj

2.2 km/hsin 10.58 km/h 11 km/h
sin sin 12

 
 

 
     



60. (a) The angle of the shock wave front relative to the direction of motion is given by Eq. 12–5.
1snd snd

obj snd

1 1sin sin 28.44 28
2.1 2.1 2.1

 
 

 
        

(b) The displacement of the plane obj( )t from the time

it passes overhead to the time the shock wave
reaches the observer is shown, along with the shock
wave front. From the displacement and height of the
plane, the time is found.

obj
tan h

t



 

obj

6500 m 18 44 s 18 s
tan (2 1)(310 m/s) tan 28.44
ht

 
   

 

61. From Eq. 12–7, snd

obj
sin .





 The speed of sound in the ocean is taken from Table 12–1.

(a) 1 1snd

obj

343 m/ssin sin 2.1
9200 m/s





    

(b) 1 1snd

obj

1560 m/ssin sin 9.8
9200 m/s





    

62. (a) The displacement of the plane from the time it passes overhead to the time the shock wave
reaches the listener is shown, along with the shock wave front. From the displacement and height of
the plane, the angle of the shock wave front relative to the direction of motion can be found.

objtv

h


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11.45 km 1.45tan tan 35.94 36
2.0 km 2.0

        

(b) The speed and Mach number are found from Eq. 12–5.

snd
obj

obj

snd

330 m/s 562.2 m/s 560 m/s
sin sin 35.94

1 1 1.7
sin sin 35.94

M







 

   


   


63. Find the angle of the shock wave, then the distance the plane
has traveled when the shock wave reaches the observer. Use Eq.
12–5.

1 1 1snd snd

obj snd

1sin sin sin 30
2.0 2.0

9500 m 9500 mtan 16,454 m 16 km
tan 30

D
D

 


 



      

    


64. The minimum time between pulses would be the time for a pulse to travel from the boat to the
maximum distance and back again. The total distance traveled by the pulse will be 170 m at the speed
of sound in fresh water, 1440 m/s.

170 m 0.12 s
1440 m/s

dd t t


    

65. The single mosquito creates a sound intensity of 12 2
0 1 10 W/m .I   Thus, 200 mosquitoes will

create a sound intensity of 200 times that of a single mosquito.

0
0

0

200
100 10 log 10 log 200 23 dB

I
I I

I
   

66. The two sound level values must be converted to intensities; then the intensities are added and
converted back to sound level.

8.1 881
82 81 0 0

0

8.7 887
87 87 0 0

0
8

total 82 87 0
8

80
total

0

: 81 dB 10 log 10 1.259 10

: 87 dB 10 log 10 5.012 10

(6.271 10 )

6.271 10
10 log 10 log 6.597 10 87.97 88 dB

I
I I I I

I
I

I I I I
I

I I I I

I
I



    

    

    


    

67. The power output is found from the intensity, which is the power radiated per unit area.

11.5 11.5 12 2 1 2
0

0
115 dB 10 log 10 10 (1.0 10 W/m ) 3.162 10 W/mI I I

I
       

2 2 1 2
2 4 4 (8 25 m) (3.162 10 W/m ) 270.45W 270 W

4
P PI P r I
A r

 


        

The answer has 3 significant figures.

2.0 km

1.45 km



D

9500m


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68. Relative to the 1000-Hz output, the 15-kHz output is –12 dB.

15 kHz 15 kHz 15 kHz1.2

1.2
15 kHz

12 dB 10 log 1.2 log 10
225 W 225 W 225 W

(225 W)(10 ) 14 W

P P P

P





       

 

69. The 130-dB level is used to find the intensity, and the intensity is used to find the power. It is assumed
that the jet airplane engine radiates equally in all directions.

13 13 12 2 1 2
0

0
2 1 2 2 2

130 dB 10 log 10 10 (1.0 10 W/m ) 1.0 10 W/m

(1.0 10 W/m ) (2.0 10 ) 0.013 W

I I I
I

P IA I r



 





       

     

70. (a) The gain is given by out
3

in

135 W10 log 10 log 51 dB .
1.0 10 W

P
P




  


(b) We solve the gain equation for the noise power level.

signal signal 9
noise /10 93/10

noise

10 W10 log 5 10 W
10 10

P P
P

P       

71. The strings are both tuned to the same frequency, and they have the same length. The mass per unit
length is the density times the cross-sectional area. The frequency is related to the tension by
Eqs. 11–13 and 11–19b.

2 2 2T T T
T2

22 22 2 2 1
T high high high high2

2 2 2 1
T low low lowlow 2

1 1; 4
2 2 2

4 0.724 mm 1.07
0.699 mm4

F F F
f f F f r

r

F f r r d
F r df r

   
  

 



       

    
              


  





72. The apparatus is a closed tube. The water level is the closed end, so it is a node of air displacement. As
the water level lowers, the distance from one resonance level to the next corresponds to the distance
between adjacent nodes, which is one-half wavelength.

1
2 2 2(0.395 m 0.125 m) 0.540 m

343 m/s 635 Hz
0.540 m

f

 




       

  

 

73. We combine the expression for the frequency in a closed tube with the Doppler shift for a source
moving away from a stationary observer, Eq. 12–2b.

snd
1

snd1

2source source

snd snd

4
343 m/s 1127 Hz 1130 Hz

25 m/s4(7.10 10 m) 11 4 1
343 m/s

f

f
f




 
 





     
     

       
    





74. The effective length of the tube is 1 1
eff 3 30.55 m (0.030 m) 0.56 m.D     
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Uncorrected frequencies: (2 1) , 1, 2, 3,
4n
nf n

  


1 4
343 m/s(2 1) 156 Hz, 468 Hz, 770 Hz, 1090 Hz

4(0.55 m)
f n   

Corrected frequencies:
eff

(2 1) , 1, 2, 3,
4n
nf n

  


1 4
343 m/s(2 1) 153 Hz, 459 Hz, 766 Hz, 1070 Hz

4(0.56 m)

     150 Hz, 460 Hz, 770 Hz, 1100 Hz

f n   



75. As the train approaches, the observed frequency is given by approach
train

snd

.
1

ff



 
 
 

 

As the train

recedes, the observed frequency is given by recede
train

snd

.
1

ff



 
 
 

 

Solve each expression for ,f

equate them, and then solve for train .

train train
approach recede

snd snd

approach recede
train snd

approach recede

1 1

( ) (565 Hz 486 Hz)(343 m/s) 26 m/s
( ) (565 Hz 486 Hz)

f f

f f
f f

 
 

 

   
       

   
  

  
  

76. The Doppler shift is 3.5 Hz, and the emitted frequency from both trains is 508 Hz. Thus, the frequency
received by the conductor on the stationary train is 511.5 Hz. Use this to find the moving train’s speed.

snd
source snd

snd source

508 Hz1 1 (343 m/s) 2.35 m/s
( ) 511.5 Hz

ff f
f


 

 
  

               

77. (a) Since both speakers are moving toward the observer at the same speed, both frequencies have the
same Doppler shift, and the observer hears no beats.

(b) The observer will detect an increased frequency from the speaker moving toward him and a
decreased frequency from the speaker moving away. The difference in those two frequencies
will be the beat frequency that is heard.

towards away
train train

snd snd

snd snd
towards away

snd train snd traintrain train

snd snd

1 1

1 1

1 1
( ) ( )

1 1

343 m/s 343 m/s(348 Hz)
343 m/s 12.0 m/s (343 m/s

f f f f

f f f f f

 
 

 
    

 

  
   
    

   
 

                
   


 

24.38 Hz 24 Hz
12.0 m/s)

 
  

 

(c) Since both speakers are moving away from the observer at the same speed, both frequencies
have the same Doppler shift, and the observer hears no beats.
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78. For each pipe, the fundamental frequency is given by .
2

f 



Find the frequency of the shortest pipe.

343 m/s 71.46 Hz
2 2 (2.40 m)

f 
  



The longer pipe has a lower frequency. Since the beat frequency is 6.0 Hz, the frequency of the longer
pipe must be 65.46 Hz. Use that frequency to find the length of the longer pipe.

343 m/s 2.62 m
2 2 2(65.46 Hz)

f
f

 
    



79. It is 70.0 ms from the start of one chirp to the start of the next. Since the chirp itself is 3.0 ms long, it is
67.0 ms from the end of a chirp to the start of the next. Thus, the time for the pulse to travel to the
moth and back again is 67.0 ms. The distance to the moth is half the distance that the sound can travel
in 67.0 ms, since the sound must reach the moth and return during the 67.0 ms.

31
snd 2(343 m/s) (67.0 10 s) 11.5 md t     

80. The ratio of sound intensity passing through the door to the original sound intensity is a 30-dB decrease.
3

0 0 010 log / 30 log / 3 10I I I I I I        

Only 1/1000 of the sound intensity passes through the door.

81. The alpenhorn can be modeled as an open tube, so the fundamental frequency is ,
2

f 



and the

overtones are given by , 1, 2, 3, .
2n
nf n

  


1

1 F

343 m/s 50.44 Hz 50 Hz
2 2(3.4 m)

370(50.44 Hz) 370 Hz 7.34
50.44n

f

f nf f n n





   

      



Thus, the 7th harmonic, which is the 6th overtone, is close to F#.

82. The walls of the room must be air displacement nodes, so the dimensions of the room between two parallel

boundaries correspond to a half wavelength of sound. Fundamental frequencies are then given by .
2

f 




343 m/s 343 m/sLength:  36 Hz Width:  48 Hz
2 2(4.7 m) 2 2(3.6 m)

343 m/sHeight:  61 Hz
2 2(2.8 m)

f f

f

 



     

  

 



83. Equation 11–18 gives the relationship between intensity and the displacement amplitude:
2 2 22 ,I f A  where A is the displacement amplitude. Thus, 2 ,I A or .A I Since the

intensity increased by a factor of 1210 , the amplitude would increase by a factor of the square root of

the intensity increase, or 610 .
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84. The beats arise from the combining of the original 3.5-MHz frequency with the reflected signal, which
has been Doppler shifted. There are two Doppler shifts—one for the blood cells receiving the original
signal (observer moving away from stationary source) and one for the detector receiving the reflected
signal (source moving away from stationary observer).

blood

sndblood blood snd blood
blood original detector original original
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Solutions to Search and Learn Problems

1. The intensity can be found from the sound level in decibels.

/10 12 12 2 2
0

0
10 log 10 10 (10 W/m ) 1.0 W/mI I I

I
     

Consider a square perpendicular to the direction of travel of the sound wave. The intensity is the
energy transported by the wave across a unit area perpendicular to the direction of travel, per unit time.

So ,EI
S t





where S is the area of the square. Since the energy is “moving” with the wave, the

“speed” of the energy is  the wave speed. In a time ,t a volume equal to V S t   would
contain all of the energy that had been transported across the area S. Combine these relationships to
find the energy in the volume.

2 3
9(1.0 W/m )(0.010 m) 2.9 10 J

343 m/s
E I VI E IS t

S t 
 

        


2. As the car approaches, the frequency of the sound from the engine is Doppler shifted up, as given by
Eq. 12–2a. As the car moves away, the frequency of the engine sound is Doppler shifted down, as given by Eq.
12–2b. Since the frequency shift is exactly an octave, we know that toward away2 .f f  We then solve for the

car’s speed.
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3. The Doppler effect occurs only when there is relative motion of the source and the observer along the
line connecting them. In the first four parts of this problem, the whistle and the observer are not
moving relative to each other, so there is no Doppler shift. The wind speed increases (or decreases) the
velocity of the waves in the direction of the wind, as if the speed of sound were different, but the
frequency of the waves doesn’t change. We do a detailed analysis of this claim in part (a).
(a) The wind velocity is a movement of the medium, so it adds or subtracts from the speed of sound

in the medium. Because the wind is blowing away from the observer, the effective speed of
sound is snd wind .  The wavelength of the waves traveling toward the observer is

snd wind 0( )/ ,a f    where 0f is the frequency of the sound emitted by the factory whistle.
This wavelength approaches the observer at a relative speed of snd wind .  Thus, the observer
hears the frequency calculated here.

snd wind snd wind
0

snd wind

0

770 Hza
a

f f

f
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  
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   
 
 
 

(b) Because the wind is blowing toward the observer, the effective speed of sound is snd wind . 

The same kind of analysis as applied in part (a) gives 770 Hz .bf 

(c) Because the wind is blowing perpendicular to the line toward the observer, the effective speed of
sound along that line is snd . Since there is no relative motion of the whistle and observer, there

will be no change in frequency, so 770 Hz .cf 

(d) This is just like part (c), so 770 Hz .df 

(e) Because the wind is blowing toward the cyclist, the effective speed of sound is snd wind .  The
wavelength traveling toward the cyclist is snd wind 0( )/e f    and approaches the cyclist at a
relative speed of snd wind cycle .    The cyclist will hear the following frequency:

snd wind cycle snd wind cycle
0

snd wind

( ) ( ) (343 15.0 12.0)m/s (770 Hz)
( ) (343 15.0)

796 Hz

e
e

f f
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 



(f) Since the wind is not changing the speed of the sound waves moving toward the cyclist, the
speed of sound is 343 m/s. The observer is moving toward a stationary source at 12.0 m/s.
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