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Responses to Questions

1. If the object has a net force on it of zero, then its center of mass does not accelerate. But since it is not
in equilibrium, it must have a net torque and therefore an angular acceleration. Some examples are:

• A compact disk in a player as it comes up to speed, after it has just been inserted.
• A hard drive on a computer when the computer is first turned on.
• A window fan immediately after the power to it has been shut off.
• The drum of a washing machine while it is speeding up or slowing down.

2. The bungee jumper is not in equilibrium, because the net force on the jumper is not zero. If the jumper
were at rest and the net force were zero, then the jumper would stay at rest by Newton’s first law. The
jumper has a net upward force when at the bottom of the dive, and that is why the jumper is then
pulled back upward.

3. The meter stick is originally supported by both fingers. As you start to slide your fingers together,
more of the weight of the meter stick is supported by the finger that is closest to the center of gravity,
so the torques produced by the fingers are equal and the stick is in equilibrium. The other finger feels a
smaller normal force, and therefore a smaller frictional force, so the stick slides more easily and moves
closer to the center of gravity. The roles switch back and forth between the fingers as they alternately
move closer to the center of gravity. Your fingers will eventually meet at the center of gravity.

4. Like almost any beam balance, the movable weights are connected to the fulcrum point by relatively
long lever arms, while the platform on which you stand is connected to the fulcrum point by a very
short lever arm. The scale “balances” when the torque provided by your weight (large mass, small
lever arm) is equal to that provided by the sliding weights (small mass, large lever arm).

5. (a) If we assume that the pivot point of rotation is the lower left corner of the wall in the picture,
then the gravity force acting through the CM provides the torque to keep the wall upright. Note
that the gravity force would have a relatively small lever arm (about half the width of the wall).
Thus, the sideways force would not have to be particularly large to start to move the wall.

(b) With the horizontal extension, there are factors that make the wall less likely to overturn:
• The mass of the second wall is larger, so the torque caused by gravity (helping to keep

the wall upright) will be larger for the second wall.
• The center of gravity of the second wall is farther to the right of the pivot point, so

gravity exerts a larger torque to counteract the torque due to .F


• The weight of the ground above the new part of the wall provides a large clockwise
torque that helps counteract the torque due to .F


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6. If the sum of the forces on an object is not zero, then the CM of the object will accelerate in the
direction of the net force. If the sum of the torques on the object is zero, then the object has no angular
acceleration. Some examples are:

• A satellite in a circular orbit around the Earth.
• A block sliding down an inclined plane.
• An object that is in projectile motion but not rotating.
• The startup motion of an elevator, changing from rest to having a nonzero velocity.

7. When the person stands near the top, the ladder is more likely to slip.
In the accompanying diagram, the force of the person pushing down
on the ladder ( )M g causes a clockwise torque about the contact
point with the ground, with lever arm .xd The only force causing a
counterclockwise torque about that same point is the reaction force
of the wall on the ladder, W .F


While the ladder is in equilibrium,

WF


will be the same magnitude as the frictional force at the ground,

G .xF


Since GxF


has a maximum value, WF


will have the same

maximum value, and WF


will have a maximum counterclockwise
torque that it can exert. As the person climbs the ladder, his lever
arm gets longer, so the torque due to his weight gets larger.
Eventually, if the torque caused by the person is larger than the maximum torque caused by W ,F


the

ladder will start to slip—it will not stay in equilibrium.

8. The mass of the meter stick is equal to the mass of the rock. Since the meter stick is uniform, its center
of mass is at the 50-cm mark. In terms of rotational motion about a pivot at the 25-cm mark, we can
treat the stick as though its entire mass is concentrated at the center of mass. The meter stick’s mass at
the 50-cm mark (25 cm from the pivot) balances the rock at the 0 mark (also 25 cm from the pivot), so
the masses must be equal.

9. You lean backward in order to keep your center of mass over your feet. If, due to the heavy load, your
center of mass is in front of your feet, you will fall forward.

10. (a) The cone will be in stable equilibrium if it is placed flat on its base. If it is tilted slightly from
this position and then released, it will return to the original position.

(b) The cone will be in unstable equilibrium if it is balanced on its tip. A slight displacement in this
case will cause the cone to topple over.

(c) If the cone is placed on its side, it will be in neutral equilibrium. If the cone is displaced slightly
while on its side, it will remain in its new position.

stable unstable neutral
equilib. equilib. equilib.

dy

x
y

Ly

dx

mg

Mg

WF


G xF


G yF

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11. When you rise on your tiptoes, your CM shifts forward. Since you are already standing with your nose
and abdomen against the door, your CM cannot shift forward. Thus gravity exerts a torque on you and
you are unable to stay on your tiptoes—you will return to being flat-footed on the floor.

12. When you start to stand up from a normal sitting position, your CM is not over your point of support
(your feet), so gravity will exert a torque about your feet that rotates you back down into the chair. You
must lean forward in order that your CM is over your feet so that you can stand up.

13. While you are doing a sit-up, your abdomen muscles provide a torque to rotate you up away from the
floor. The force of gravity on your upper half-body tends to pull you back down to the floor, which
makes doing sit-ups difficult. The force of gravity on your lower half-body provides a torque that opposes
the torque caused by the force of gravity on your upper half-body, making the sit-up a little easier. When
your legs are bent, the lever arm for the lower half-body is shorter, so less counter-torque is available.

14. For rotating the upper half-body, the pivot point is near the waist and hips. In that
position, the arms have a relatively small torque, even when extended, due to their
smaller mass. The more massive trunk–head combination has a very short lever arm,
so it also has a relatively small torque. Thus, the force of gravity on the upper body
causes relatively little torque about the hips, tending to rotate you forward, and the
back muscles need to produce little torque to keep you from rotating forward. The
force on the upper half-body due to the back muscles is small, so the (partially rightward) force at the
base of the spinal column (not shown in the diagram), to keep the spine in equilibrium, will be small.

When you stand and bend over, the lever arm for the upper body is much larger
than while you are sitting, which causes a much larger torque. The CM of the arms
is also farther from the support point and causes more torque. The back muscles,
assumed to act at the center of the back, do not have a very long lever arm. Thus the
back muscles will have to exert a large force to cause a counter-torque that keeps
you from falling over. Accordingly, there will have to be a large force (mostly to
the right, and not drawn in the diagram) at the base of the spine to keep the spine in equilibrium.

15. Configuration (b) is more likely to be stable. In configuration (a), the CG of the bottom brick is at the
edge of the table, and the CG of the top brick is to the right of the edge of the table. Thus the CG of the
two-brick system is not above the base of support, and gravity will exert a torque to roll the bricks
clockwise off the table. Another way to see this is that more than 50% of the brick mass is not above
the base of support—50% of the bottom brick and 75% of the top brick are to the right of the edge of
the table. It is not in equilibrium.

In configuration (b), exactly half of the mass (75% of the top brick and 25% of the bottom brick) is over
the edge of the table. Thus the CG of the pair is at the edge of the table—it is in unstable equilibrium.

16. A is a point of unstable equilibrium, B is a point of stable equilibrium, and C is a point of neutral
equilibrium.

17. The Young’s modulus for a bungee cord is much smaller than that for ordinary rope. We know that a

bungee cord stretches more easily than ordinary rope. From Eq. 9–4, we have
0

/ .
/

F AE 
 

The value

of Young’s modulus is inversely proportional to the change in length of a material under a tension.
Since the change in length of a bungee cord is much larger than that of an ordinary rope if other
conditions are identical (stressing force, unstretched length, cross-sectional area of rope or cord), it
must have a smaller Young’s modulus.
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18. An object under shear stress has equal and opposite forces applied across its opposite faces. This is
exactly what happens with a pair of scissors. One blade of the scissors pushes down on the cardboard,
while the other blade pushes up with an equal and opposite force, at a slight displacement. This
produces a shear stress in the cardboard, which causes it to fail.

19. Concrete or stone should definitely not be used for the support on the left. The left-hand support pulls
downward on the beam, so the beam must pull upward on the support. Therefore, the support will be
under tension and should not be made of ordinary concrete or stone, since these materials are weak
under tension. The right-hand support pushes up on the beam, so the beam pushes down on it; it will
therefore be under a compression force. Making this support of concrete or stone would be acceptable.

Responses to MisConceptual Questions

1. (d) In attempting to solve this problem, students frequently try to divide the beam into multiple parts
to calculate the torque due to the weight of the beam. The beam should be considered as a single
object with its weight acting at its center of mass 1

4(  from the pivot). Since the woman is on the

opposite side of the pivot and at the same distance as the beam’s center of mass, their forces of
gravity and masses must be equal.

2. (d) A common misconception is that a nonrotating object has an axis of rotation. If an object is not
rotating, it is not rotating about any arbitrary point. When solving an equilibrium problem with
no rotation, the student can select any axis for the torques that facilitates solving the problem.

3. (a) Students might think that for the net force on the beam to be zero, the tension would equal the
weight of the beam. However, this does not take into account the force that the wall exerts on the
hinged end. Students might assume that the tension is equal to half of the beam’s weight.
However, this does not take into account the vector nature of the tension. The vertical
component of the tension is equal to half of the weight, but there is also a horizontal component.
Adding these two components yields a tension at least half of the weight of the beam.

4. (c) Drawing a free-body diagram for this problem will resolve student misconceptions. When the
ball is pulled to the side, there are three forces acting on the ball: the vertical weight, the
horizontal applied force, and the tension along the direction of the cable. Resolving the tension
into horizontal and vertical parts and applying Newton’s second law in equilibrium, we can see
that the applied force is equal to the horizontal component of the tension.

5. (a) As the child leans forward, her center of mass moves closer to the pivot point, which decreases
her lever arm. The seesaw is no longer in equilibrium. Since the torque on her side has decreased,
she will rise.

6. (c) A common misconception is that each cord will support one-half of the weight regardless of the
angle. An analysis of the forces using Newton’s second law in equilibrium shows that the
horizontal components of the tension are equal. Since cord A makes a larger angle with the
horizontal, it has a greater total tension and therefore supports more than half the suspended
weight.

7. (c) The applied force is proportional to the stress, so increasing the force will affect the stress. The
strain is how the rope responds to the stress. Increasing the force will then affect the strain.
Young’s modulus is the constant of proportionality between the stress and strain. It is determined
by the properties of the material, so it is not affected by pulling on the rope.
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8. (e) Students may consider the tension equal to the woman’s weight, or half of the woman’s weight,
if they do not consider the vector nature of the forces. A free-body diagram for the point at the
bottom of the woman’s foot shows three forces acting: the weight of the woman and the diagonal
tensions in the wire on each side of her foot. Applying Newton’s second law in equilibrium in
the vertical direction shows that the vertical component of the tension must equal half of her
weight. Since vertical displacement is small compared to the horizontal length of the wire, the
total tension is much greater than the vertical component of the tension.

9. (d) When the length, width, and number of floors are doubled, the weight of the garage increases by
a factor of eight. To keep the stress on the columns unchanged, the area of the columns should
also increase by a factor of eight.

10. (d) The stress (applied force) is proportional to the strain (change in length). Doubling the stress will
cause the strain to double also.

Solutions to Problems

1. If the tree is not accelerating, then the net force in all directions is 0.

A B C

C A B

B C

C B

cos 105 0
cos 105 385 N (475 N) cos 105 262 1 N

sin 105 0

sin 105 (475 N) sin 105 458 8 N

x x

x

y y

y

F F F F
F F F
F F F

F F

     

          

    

        





2 2 2 2
C C C

C1 1

C

( 262 1 N) ( 458 8 N) 528 4 N 528 N

458 8 Ntan tan 60 3 , 180 60 3 120
262 1 N

x y

y

x

F F F

F
F

  

          

 
           

 

So CF


is 528 N, at an angle of 120 clockwise from A F


The angle has 3 significant figures.

2. Because the mass m is stationary, the tension in the rope
pulling up on the sling must be mg, and the force of the
sling on the leg must be mg, upward. Calculate torques
about the hip joint, with counterclockwise torque taken as
positive. See the free-body diagram for the leg. Note that
the forces on the leg exerted by the hip joint are not drawn,
because they do not exert a torque about the hip joint.

1
2 1

2

(35 0 cm)0 (15 0 kg) 6 73 kg
(78 0 cm)

x
mgx Mgx m M

x


         


3. (a) See the free-body diagram. Calculate torques about the
pivot point P labeled in the diagram. The upward force at
the pivot will not have any torque. The total torque is zero,
since the crane is in equilibrium.

0Mgx mgd    
(2800 kg)(7 7 m) 2 3 m

(9500 kg)
mdx
M


   

BF


CF


AF





105

x1

x2 mg

M g

PF


mg

x

Mg

d

P
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(b) Again, we sum torques about the pivot point. Mass m is the unknown in this case, and the
counterweight is at its maximum distance from the pivot.

max
max max max

(9500 kg)(3 4 m)0 4200 kg
(7 7 kg)

Mx
Mgx m gd m

d


       


4. Her torque is her weight times the distance x between the diver and the left support post.

2
1800 m N 46 kg

(9 80 m/s )(4 0 m)
mgx m

gx
 

    
 

5. (a) Let m = 0. Calculate the net torque about the left end of the
diving board, with counterclockwise torques positive. Since
the board is in equilibrium, the net torque is zero.

B
2

B

3

(1 0 m) (4 0 m) 0

4 4(52 kg)(9 80 m/s ) 2038 N

2 0 10 N, up

F Mg

F Mg

      

   

  



Use Newton’s second law in the vertical direction to find AF 

B A

2
A B

0

4 3 3(52 kg)(9 80 m/s ) 1529 N 1500 N, down

yF F Mg F

F F Mg Mg Mg Mg

    

        



(b) Repeat the basic process, but with m = 28 kg. The weight of the board will add more clockwise
torque.

B
2

B

B A

A B
2

(1 0 m) (2.0 m) (4 0 m) 0

4 2 [4(52 kg) 2(28 kg)](9 80 m/s ) 2587 N 2600 N, up

4 2 3

[3(52 kg) 28 kg](9.80 m/s ) 1803 N 1800 N, down

y

F mg Mg

F Mg mg

F F Mg mg F

F F Mg mg Mg mg Mg mg Mg mg

       

      

    

        

   





6. Since each half of the forceps is in equilibrium, the net torque on each
half of the forceps is zero. Calculate torques with respect to an axis
perpendicular to the plane of the forceps, through point
P, counterclockwise being positive. Consider a force diagram for one-
half of the forceps. 1F


is the force on the half-forceps due to the plastic

rod, and force PF


is the force on the half-forceps from the pin joint.
PF


exerts no torque about point P.
T

T T 1 1 1 T
1

8 50 cmcos cos 0 (11 0 N) 34 6 N
2 70 cm

d
F d F d F F

d
   
        


The force that the forceps exerts on the rod is the opposite of 1,F


so it is also 34 6 N .

7. Write Newton’s second law for the junction, in both the x and y directions.
B A cos 45 0xF F F   

From this, we see that A B .F F Thus set A 1660 N.F 

A

A

sin 45 0

sin 45 (1660 N)sin 45 1174 N 1200 N

yF F mg

mg F

   

     





mg

AF


BF


AF


BF


mg Mg1.0 m

2.0 m
4.0 m

TF




1F


Td

1d

PF

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8. Since the backpack is midway between the two trees, the angles in the
diagram are equal. Write Newton’s second law for the vertical direction
for the point at which the backpack is attached to the cord, with the
weight of the backpack being the downward vertical force. The angle is
determined by the distance between the trees and the amount of sag at the
midpoint, as illustrated in the second diagram.

(a) 1 1 1 5 mtan tan 24 4
/2 3 3 m
y   

    


T 1

2

T
1

2 sin 0

(19 kg)(9 80 m/s ) 225 4 N 230 N
2 sin 2 sin 24 4

yF F mg

mgF





   


    

 



(b) 1 1 0 15 mtan tan 2 60
/2 3 3 m
y   

    


2

T
1

(19 kg)(9 80 m/s ) 2052 N 2100 N
2 sin 2 sin 2 60
mgF




   
 

9. Let m be the mass of the beam, and M be the mass of the piano.
Calculate torques about the left end of the beam, with
counterclockwise torques positive. The conditions of equilibrium for
the beam are used to find the forces that the support exerts on the
beam.

   
 

1 1
R 2 4

21 1 1 1
R 2 4 2 4

0

(110 kg) (320 kg) (9 80 m/s ) 1320 N

F mg Mg

F m M g

    

       

   

L R

2 3
L R

0

( ) (430 kg)(9 80 m/s ) 1 32 10 N 2890 N

yF F F mg Mg

F m M g F

    

        



The forces on the supports are equal in magnitude and opposite in direction to the above two results.

R 1300 N downF  L 2900 N downF 

10. Calculate torques about the left end of the beam, with counterclockwise
torques positive. The conditions of equilibrium for the beam are used to
find the forces that the support exerts on the beam.

B

2 4
B

(20 0 m) (25 0 m) 0
25 0 (1 25)(1200 kg)(9 80 m/s ) 1 5 10 N
20 0

F mg

F mg

      


      





A B

2
A B

0

1 25 0 25 (0 25)(1200 kg)(9 80 m/s ) 2900 N

yF F F mg

F mg F mg mg mg

   

             



Notice that AF


points down.

mg
TF


TF







y

l/4
l

mgM gLF


RF


AF


BF


mg
20.0 m

25.0 m
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11. The pivot should be placed so that the net torque on the board
is zero. We calculate torques about the pivot point, with
counterclockwise torques positive. The upward force PF


at

the pivot point is shown, but it exerts no torque about the
pivot point. The mass of the child is m, the mass of the adult
is M, the mass of the board is B ,m and the center of gravity is
at the middle of the board.
(a) Ignore the force B .m g

( ) 0
(25 kg) (9 0 m) 2 25 m 2 3 m from adult

(25 kg 75 kg)

Mgx mg x
mx

m M

     

      
 

 



(b) Include the force Bm g

B

B

B

( ) ( /2 ) 0
( /2) (25 kg 7 5 kg) (9 0 m) 2 54 m 2 5 m from adult

( ) (75 kg 25 kg 15 kg)

Mgx mg x m g x
m m

x
M m m

      

  
      

   

  



12. Using the free-body diagram, write Newton’s second law for both
the horizontal and vertical directions, with net forces of zero.

T2 T1 T2 T1

T1 T1

cos 0    cos

sin 0    
sin

x

y

F F F F F
mgF F mg F

 




    

    




2

T2 T1

2

T1

(190 kg)(9 80 m/s )cos cos 2867 N 2900 N
sin tan tan 33

(190 kg)(9 80 m/s ) 3418 N 3400 N
sin sin 33

mg mgF F

mgF

 
 




     




   



13. Draw a free-body diagram of the junction of the three wires.
The tensions can be found from the conditions for force
equilibrium.

T1 T2 T2 T1

T1 T2

cos 37cos 37 cos 53 0    
cos 53

sin 37 sin 53 0

x

y

F F F F F

F F F mg


      



     





T1 T1
cos 37sin 37 sin 53 0  
cos 53

F F mg
     



2

T1
(33 kg)(9 80 m/s ) 194 6 N 190 N

cos 37sin 37 sin 53
cos 53

F 
   


  



2
T2 T1

cos 37 cos 37 (1 946 10 N) 258 3 N 260 N
cos 53 cos 53

F F 
      

 

14. The table is symmetric, so the person can sit near either edge

l/2 – x

mg
Bm gMg

PF


  x x


mg
T2F




T1F


T1F


T2F


mg

3753

mg M g

x0.60 m

NF

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and the same distance will result. We assume that the person (mass M) is on the right side of the table
and that the table
(mass m) is on the verge of tipping, so that the left leg is on the verge of lifting off the floor. There will
then be no normal force between the left leg of the table and the floor. Calculate torques about the right
leg of the table such that the normal force between the table and the floor causes no torque.
Counterclockwise torques are taken to be positive. The conditions of equilibrium for the table are used
to find the person’s location.

24 0 kg(0 60 m) 0    (0 60 m) (0 60 m) 0 218 m
66 0 kg

mmg Mgx x
M

 
          


Thus the distance from the edge of the table is 0 50 m 0 218 m 0 28 m     

15. The bottle opener will pull upward on the cork with a force of magnitude cork ,F so there is a
downward force on the opener of magnitude corkF  We assume that there is no net torque on the
opener, so it has no angular acceleration. Calculate torques about the rim of the bottle where the
opener is resting on the rim.

cork

cork

(79 mm) (9 mm) 0  
9 9 9(200 N) to (400 N) 22 8 N to 45 6 N 20 N to 50 N
70 79 79

F F

F F

    

     



16. The beam is in equilibrium, so both the net torque and net
force on it must be zero. From the free-body diagram,
calculate the net torque about the center of the left support,
with counterclockwise torques as positive. Calculate the
net force, with upward as positive. Use those two
equations to find AF and BF 

B 1 2 3 4 1 1 2 1 2 3 1 2 3 5

1 1 2 1 2 3 1 2 3 5
B

1 2 3 4

( ) ( ) ( )
( ) ( )

( )

F x x x x F x F x x F x x x mgx
F x F x x F x x x mgx

F
x x x x

           

     


  



2(4300 N)(2 0 m) (3100 N)(6 0 m) (2200 N)(9 0 m) (280 kg)(9 80 m/s )(5 0 m)
10 0 m

6072 N 6100 N

       




 

A B 1 2 3
2

A 1 2 3 B

0

9600 N (280 kg)(9 80 m/s ) 6072 N 6272 N 6300 N

F F F F F F mg

F F F F mg F

      

          



17. From the free-body diagram, the conditions of equilibrium
are used to find the location of the girl (mass Cm ). The
45-kg boy is represented by Am and the 35-kg boy by

Bm  Calculate torques about the center of the seesaw, and
take counterclockwise torques to be positive. The upward
force of the fulcrum on the seesaw ( )F


causes no torque about the center.

   
 

1 1
A C B2 2

A B 1 1
2 2

C

0

( ) (45 kg 35 kg) (3.2 m) 0.64 m
25 kg

m g m gx m g

m m
x

m

    

 
  

  



18. The beam is in equilibrium. Use the conditions of equilibrium to calculate

x1 x2 x3 x4

m g

AF


BF


1F


2F


3F


5  x

Cm gAm g
Bm gF



  

  x

1m g

TF



HF


1 2

2  

1  

2m g
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the tension in the wire and the forces at the hinge. Calculate torques about the hinge, and take
counterclockwise torques to be positive.

T 2 1 1 2 1
1 1

1 1 2 12 2
T

2

( sin ) /2 0  

(155 N)(1 70 m) (215 N)(1 70 m)
sin (1 35 m)(sin 35 0 )

642 2 N 642 N

F m g m g

m g m g
F

 



    

   
 

  

  

   

 



H T H Tcos 0    cos (642 2 N)cos 35 0 526 1 N 526 Nx x xF F F F F            
H T 1 2

H 1 2 T

sin 0  

sin 155 N 215 N (642 2 N)sin 35 0 1 649 N 2 N

y y

y

F F F m g m g

F m g m g F





     

           



19. (a) The pole is in equilibrium, so the net torque on it must be
zero. From the free-body diagram, calculate the net torque
about the lower end of the pole, with counterclockwise
torques as positive. Use that calculation to find the tension
in the cable. The length of the pole is .

T

T

( /2) cos cos 0
( /2 ) cos
F h mg Mg
m M gF

h

  



   




  



2(6 0 kg 21 5 kg)(9 80 m/s )(7 20 m) cos 37 407 8 N 410 N
3 80 m

     
   



(b) The net force on the pole is also zero since it is in equilibrium. Write Newton’s second law in
both the x and y directions to solve for the forces at the pivot.

P T P T0    410 Nx x xF F F F F     
2

P P0    ( ) (33 5 kg)(9 80 m/s ) 328 Ny y yF F mg Mg F m M g          
20. The center of gravity of each beam is at its geometric center. Calculate torques about the left end of the

beam, and take counterclockwise torques to be positive. The
conditions of equilibrium for the beam are used to find the forces
that the support exerts on the beam.

1
B 2

25 5
B 8 8

( /2) ( /4) 0  

(940 kg)(9 80 m/s ) 5758 N 5800 N

F Mg Mg

F Mg

     

    

   

1
A B 2

23 7 7
A B2 8 8

0  

(940 kg)(9 80 m/s ) 8061 N 8100 N

yF F F Mg Mg

F Mg F Mg

     

      



21. To find the normal force exerted on the road by the trailer tires, take the
torques about point B, with counterclockwise torques as positive.

A(5 5 m) (8 0 m) 0  mg F      
2

A

4

5 5 m 5 5 m(2500 kg)(9 80 m/s ) 16,844 N
8 0 m 8 0 m

    1 7 10 N

F mg
    

          

  

The net force in the vertical direction must be zero.

AF


BF
1

2 Mg

M g4



2

mg

AF


BF


2.5 m 5.5 m





x

ymg

M gTF


P xF


P yF


h

cos
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B A

2 3
B A

0  

(2500 kg)(9 80 m/s ) 16,844 N 7656 N 7 7 10 N

yF F F mg

F mg F

    

        



22. (a) For the extreme case of the beam being ready to
tip, there would be no normal force at point A
from the support. Use the free-body diagram to
write the equation of rotational equilibrium under
that condition to find the weight of the person,
with A 0F   Take torques about the location of

support B, and call counterclockwise torques positive. W


is the weight of the person, and Bm is
the mass of the beam.

B

B

(5.0 m) (5.0 m) 0

650 N

m g W

W m g

    

 



(b) With the person standing at point D, we have already assumed that A 0 .F  The net force in the

vertical direction must also be zero.
3

A B B B B0 650 N 650 N 1.30 10 NyF F F m g W F m g W           
(c) The person moves to a different spot, so the free-

body diagram changes again as shown. Again use
the net torque about support B and then use the net
vertical force.

B A

B
A

A B B B B A

(5.0 m) (10.0 m) (12.0 m) 0
(5.0 m) (10.0 m) (650 N)(5.0 m) (650 N)(10.0 m) 810 N

12.0 m 12.0 m
0 1300 N 810 N 490 Ny

m g W F
m g W

F

F F F m g W F m g W F

    

 
  

           





23. Draw the free-body diagram for the sheet, and write
Newton’s second law for the vertical direction. Note that
the tension is the same in both parts of the clothesline.

T T

2

T

sin 3.5 sin 3.5 0

(0.75 kg)(9.80 m/s )
2(sin 3.5 ) 2 (sin 3.5 )

60 N  (2 significant figures)

yF F F mg

mgF

      

 
 





The 60-N tension is much higher than the ~7.5-N weight of the sheet because of the small angle. Only
the vertical components of the tension are supporting the sheet. Since the angle is small, the tension
has to be large to have a large enough vertical component to hold up the sheet.

24. The person is in equilibrium, so both the net torque and net force
must be zero. From the free-body diagram, calculate the net torque
about the center of gravity, with counterclockwise torques as positive.
Use that calculation to find the location of the center of gravity, a
distance x from the feet.

TF


TF


mg

3.53.5

3.0 m 7.0 m 5.0 m 5.0 m

AF


BF


W


Bm g

C A B D

3.0 m 5.0 m 5.0 m

2.0 m

AF
 BF



W


Bm g

C A B D

 –x x

mg
AF


BF

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mg

W


hinge
horiz
F


ropeF


hinge
vert
F






d



x
y

  

B A

1A A A

A B A B A B

( ) 0

35.1 kg (1.72 m) 9.05 10  m
31.6 kg 35.1 kg

F x F x
F m g m

x
F F m g m g m m





   

     
   

 

  

The center of gravity is about 90.5 cm from the feet.

25. (a) The man is in equilibrium, so the net force and the net torque on him must
be zero. We use half of his weight and then consider the force just on one
hand and one foot, assuming that he is symmetrical. Take torques about the
point where the foot touches the ground, with counterclockwise as positive.

1
2 h 1 22

2
2

h
1 2

( ) 0

(68 kg)(9.80 m/s )(0.95 m) 231 N 230 N
2( ) 2(1.37 m)

mgd F d d

mgd
F

d d

    

   




(b) Use Newton’s second law for vertical forces to find the force on the feet.

h f

21 1
f h2 2

2 2 0

(68 kg)(9.80 m/s ) 231 N 103 N 100 N

yF F F mg

F mg F

   

     



The value of 100 N has 2 significant figures.

26. First consider the triangle made by the pole and one of the wires (first
diagram). It has a vertical leg of 2.6 m and a horizontal leg of 2.0 m. The angle
that the tension (along the wire) makes with the vertical is

1 2.0tan 37.6 .
2.6

    The part of the tension that is parallel to the ground is

therefore T h T sin .F F 

Now consider a top view of the pole, showing only force parallel to the
ground (second diagram). The horizontal parts of the tension lie as the sides of
an equilateral triangle, so each makes a 30° angle with the tension force of the net. Write the
equilibrium equation for the forces along the direction of the tension in the net.

net T h

net T

2 cos30 0

2 sin cos 30 2(115 N) sin 37.6 cos 30 121.5 N 120 N

F F F

F F 

    

      



27. (a) Choose the coordinates as shown in the free-body diagram.
(b) Write the equilibrium conditions for the horizontal and vertical forces.

rope hinge
horiz

hinge rope
horiz

sin 0

sin (85 N) sin 37 51 N

xF F F

F F





   

   



rope hinge
vert

2
hinge rope
vert

cos 0

cos (3.8 kg)(9.80 m/s )

22 N (85 N) cos 37 8.6 N 9 N

yF F F mg W

F mg W F





     

   

      



So the vertical hinge force actually points downward.

2.6 m

2.0 m



o30 o30

netF


T hF


T hF


d1 d2

1
2 mg



hF


fF

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(c) We take torques about the hinge point, with clockwise torques as positive.

 
 

1
rope2

1
rope 2

sin sin sin ( ) 0

sin ( ) sin

sin

Wd mg F

F mg
d

W

    

  



     

 


  

 

2(85 N)(5.0 m) sin 16 (3.8 kg)(9.80 m/s )(2.5  m) sin 53 2.436 m 2.4 m
(22 N) sin 53

  
  



28. See the free-body diagram. Take torques about the pivot point,
with clockwise torques as positive. The plank is in
equilibrium. Let m represent the mass of the plank and M
represent the mass of the person. The minimum nail force
would occur if there was no normal force pushing up on the
left end of the board.

nails

nails

2

(0.75 m) cos (2.25 m) cos
(0.75 m) cos 0

(0.75 m) (2.25 m) 3
(0.75 m)

       (45 kg 3 (65 kg))(9.80 m/s ) 2352 N 2400 N

mg Mg
F
mg MgF mg Mg

  



  

 


  

   



29. The forces on the door are due to gravity and the hinges. Since the door is
in equilibrium, the net torque and net force must be zero. Write the three
equations of equilibrium. Calculate torques about the bottom hinge, with
counterclockwise torques as positive. From the statement of the problem,

1
A B 2 .y yF F mg 

A

2

A

A B B A
21 1

A B A B 2 2

( 2 ) 0
2

(13.0 kg)(9.80 m/s )(1.30 m) 55.2 N
2( 2 ) 2(2.30 m 0.80 m)

0 55.2 N

0 (13.0 kg)(9.80 m/s ) 63.7 N

x

x

x x x x x

y y y y y

wmg F h d

mgwF
h d

F F F F F

F F F mg F F mg

    

  
 

     

        






30. The arm is in equilibrium. Take torques about the elbow joint
(the dot in the free-body diagram), so that the force at the elbow
joint does not enter the calculation. Counterclockwise torques are
positive. The mass of the lower arm is 2.0 kg,m  and the mass
of the load is .M

It is given that M 450 N.F 

mg MgJF


MF


1d

2  d
3  d

pivotF



mg

Mg

nailsF


0.75 m 0.75 m 1.50 m

d

h

w
d

x
y

m g

B xF


B yF


A xF


A yF

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d

mg Mg
MF


  
D

M 1 2 3
2

M 1 2
2

3

0

(450 N)(0.060 m) (2.0 kg)(9.80 m/s )(0.15 m) 7.0 kg
(9.80 m/s )(0.35 m)

F d mgd Mgd

F d mgd
M

gd

     

 
  



31. Calculate the torques about the elbow joint (the dot in the free-body diagram). The arm is in
equilibrium. Counterclockwise torques are positive.

M 0F d mgD Mg     

M

2(2.3 kg)(0.12 m) (7.3 kg)(0.300 m) (9.80 m/s ) 970 N
0.025 m

mD MF g
d




    



32. (a) Calculate the torques about the elbow joint (the dot in the
free-body diagram). The arm is in equilibrium. Take
counterclockwise torques as positive.

M
2

M

( sin ) 0  

(3 3 kg)(9 80 m/s )(0 24 m) 249 9 N
sin (0 12 m)sin 15

    250 N

F d mgD

mgDF
d

 



   

  
   

 





(b) To find the components of J ,F write Newton’s second law for both the x and y directions. Then
combine them to find the magnitude.

J M J M

M J

2
J M

2 2 2 2
J J J

cos 0    cos (249 9 N)cos 15 241 4 N

sin 0  

sin (249 9 N)sin15 (3 3 kg)(9 80 m/s ) 32 3 N

F (241 4 N) (32 3 N) 243 6 N 240 N

x x x

y y

y

x y

F F F F F

F F mg F

F F mg

F F

 





         

    

         

        




33. Calculate the torques about the shoulder joint, which is at the left end of
the free-body diagram of the arm. Since the arm is in equilibrium, the sum of
the torques will be zero. Take counterclockwise torques to be positive. The
force due to the shoulder joint is drawn, but it exerts no torque about the
shoulder joint.

M sin 0F d mgD Mg     

2
M

(3 3 kg)(0 24 cm) (8 5 kg)(0 52 m) (9 80 m/s ) 1600 N
sin (0 12 m)sin 15

mD MLF g
d 
     

   
 

34. Take torques about the elbow joint. Let clockwise torques be positive. Since the arm is in equilibrium,
the total torque will be 0.

mg M g

MF


JF




d
D

l

mg

MF


JF




D
d
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max

max

(2 0 kg) (0 15 m) 25 kg (0 35 m) (0 050 m) sin 105 0    
(2 0 kg) (0 15 m) (25 kg) (0 35 m) 1836 N 1800 N

(0 050 m) sin 105

g g F
g gF

            

   
  

 



35. From Section 9–4: “An object whose CG is above its base of support will be stable
if a vertical line projected downward from the CG falls within the base of
support.” For the tower, the base of support is a circle of radius 7.7 m. If the top is
4.5 m off center, then the CG will be 2.25 m off center, and a vertical line
downward from the CG will be 2.25 m from the center of the base. As long as that
vertical line is less than 7.7 m from the center of the base, the tower will be in
stable equilibrium . To be unstable, the CG has to be more than 7.7 m off center,

so the top must be more than 2 × (7.7 m) = 15.4 m off center. Thus the top will
have to lean 15.4 m – 4.5 m = 10 9 m farther to reach the verge of instability.

36. (a) The maximum distance for brick #1 to remain on brick #2 will be reached
when the CM of brick #1 is directly over the edge of brick #2.
Thus brick #1 will overhang brick #2 by 1 /2.x  

The maximum distance for the top two bricks to remain on
brick #3 will be reached when the center of mass of the top
two bricks is directly over the edge of brick #3. The CM of the
top two bricks is (obviously) at the point labeled X on brick #2,
a distance of /4 from the right edge of brick #2. Thus

2 /4.x  
The maximum distance for the top three bricks to remain on brick #4 will be reached when the
center of mass of the top three bricks is directly over the
edge of brick #4. The CM of the top three bricks is at the
point labeled X on brick #3 and is found relative to the

center of brick # 3 by CM
(0) 2 ( /2) /3,

3
m m

m


 


 or /6

from the right edge of brick #3. Thus 3 /6.x  

The maximum distance for the four bricks to remain on
a tabletop will be reached when the center of mass of the
four bricks is directly over the edge of the table. The CM
of all four bricks is at the point labeled X on brick #4
and is found relative to the center of brick #4 by

CM
(0) 3 ( /2) 3 /8,

4
m m

m


 


 or /8 from the right edge

of brick #4. Thus 4 /8.x  

(b) From the last diagram, the distance from the edge of the tabletop to the right edge of brick #1 is

4 3 2 1 /8 ( /6) ( /4) ( /2) 25 /24x x x x               

Since this distance is greater than , the answer is yes, the first brick is completely beyond the
edge of the table.

(c) From the work in part (a), we see that the general formula for the total distance spanned by n
bricks is



1x
#1

# 2


#1

1xx# 2
#3 2x



1x
#1

#2
#3 2xx

# 4 3x



1x
#1

# 2
#3 2x

# 4 3x
4x

x

Vertical Ready to fall
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1 2 3
1

( /2) ( /4) ( /6) ( /2 )
2

n

n
i

x x x x n
i

          
   g g

(d) The arch is to span 1.0 m, so the span from one side will be 0.50 m. Thus, we must solve

1

0 30 m 0 50 m.
2

n

i i


  Evaluation of this expression for various values of n shows that 15 bricks

will span a distance of 0.498 m and that 16 bricks will span a distance of 0.507 m. Thus, it takes
16 bricks for each half-span, plus 1 brick on top and 1 brick as the base on each side (as in
Fig. 9–67b), for a total of 35 bricks .

37. The amount of stretch can be found using the elastic modulus in Eq. 9–4.
2

0 9 2 4 2
1 1 275 N (0 300 m) 3 50 10 m

3 10 N/m (5 00 10 )
F

E A 



      

  
 

38. (a)
2

2 5 2
2

(25,000 kg)(9 80 m/s )stress 175,000 N/m 1 8 10 N/m
1 4 m

F mg
A A


      



(b)
5 2

6
9 2

stress 175,000 10 N/mstrain 3 5 10
Young’s modulus 50 10 N/m


    



39. The change in length is found from the strain.

6 5
0

0
strain     (strain) (8 6 m)(3 5 10 ) 3 0 10 m 

          


 


40. (a)
2

6 2 6 2
2

(1700 kg)(9 80 m/s )stress 1 388 10 N/m 1 4 10 N/m
0 012 m

F mg
A A


        



(b)
6 2

6 6
9 2

stress 1 388 10 N/mstrain 6 94 10 6 9 10
Young’s modulus 200 10 N/m

  
       



(c) 6 5 5
0(strain)( ) (6 94 10 )(9 50 m) 6 593 10 m 6 6 10 m              

41. The change in volume is given by Eq. 9–7. We assume the original pressure is atmospheric pressure,
5 21 0 10 N/m . 

6 2 5 2
3 3

0 9 2

3 3 3
0

(2 6 10 N/m 1 0 10 N/m )(1000 cm ) 2 5 cm
1 0 10 N/m

1000 cm 2 5 cm 997 5 cm

PV V
B

V V V

     
       

 

       

42. The relationship between pressure change and volume change is given by Eq. 9–7.

2 9 2 7 2
0

0
7 2

2
5 2

atm

    (0 10 10 )(90 10 N/m ) 9 0 10 N/m

9 0 10 N/m 9 0 10 , or 900 atmospheres
1 0 10 N/m

P VV V P B
B V

P
P

 
              

  
   

 

43. The Young’s modulus is the stress divided by the strain.
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 231
2

6 2
3 2

0

(13 4 N)/ 8 5 10 m
stress /Young’s modulus 9 6 10 N/m
strain / (3 7 10 m)/(15 10 m)

F A
 

            
    

2

44. The mass can be calculated from the equation for the relationship between stress and strain. The force
causing the strain is the weight of the mass suspended from the wire. Use Eq. 9–4.

3 2
9 2

2
0 0

1 (1 15 10 m) 0 030    (200 10 N/m ) 25 kg
100(9 80 m/s )

F mg EAm
E A EA g

     
      



 

 

45. The percentage change in volume is found by multiplying the relative change in volume by 100. The
change in pressure is 199 times atmospheric pressure, since it increases from atmospheric pressure to
200 times atmospheric pressure. Use Eq. 9–7.

5 2
2

9 2
0

199(1 0 10 N/m )100 100 100 2 10
90 10 N/m

V P
V B

   
      


,

The negative sign indicates that the interior space got smaller.

46. Set the compressive strength of the bone equal to the stress of the bone.

6 2 4 2 4max
maxcompressive strength     (170 10 N/m )(3 0 10 m ) 5 1 10 N

F
F

A
        

47. (a) The maximum tension can be found from the ultimate tensile strength of the material.
max

6 2 4 2
max

tensile strength   

(tensile strength) (500 10 N/m ) (5 00 10 m) 393 N

F
A

F A  

 

     

(b) To prevent breakage, thicker strings should be used, which will increase the cross-sectional area
of the strings and thus increase the maximum force. Breakage occurs because when the strings
are hit by the ball, they stretch, increasing the tension. The strings are reasonably tight in the
normal racket configuration, so when the tension is increased by a particularly hard hit, the
tension may exceed the maximum force.

48. (a) The area can be found from the ultimate tensile strength of the material.

2 5 2 5 2
6 2

tensile strength safety factor      
safety factor tensile strength

7 0(270 kg)(9 80 m/s ) 3 704 10 m 3 7 10 m
500 10 N/m

F A F
A

A  

 
    

 


       


(b) The change in length can be found from the stress-strain relationship, Eq. 9–4.
2

30
5 2 9 2

0

(7 5 m)(320 kg)(9 80 m/s )    2 7 10 m
(3 704 10 m )(200 10 N/m )

FF E
A AE




  
       

  






49. For each support, to find the minimum cross-sectional area with a

safety factor means that strength ,
safety factor

F
A
 where either the tensile or

compressive strength is used, as appropriate for each force. To find the
force on each support, use the conditions of equilibrium for the beam.

AF


BF


mg20.0 m

25.0 m
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Take torques about the left end of the beam, calling counterclockwise torques positive, and also sum
the vertical forces, taking upward forces as positive.

B B

A B A B

25.0(20.0 m) (25.0 m) 0 1.25
20.0

0 1.25 0.25y

F mg F mg mg

F F F mg F mg F mg mg mg

      

          




Notice that the forces on the supports are the opposite of AF


and B .F


So the force on support A is
directed upward, which means that support A is in tension. The force on support B is directed
downward, so support B is in compression.

A

A
3 2

3 2
A 6 2

tensile strength
9.0

(0.25 ) (0.25)(2.9 10 kg)(9.80 m/s )9.0 9.0 1.6 10 m
tensile strength 40 10 N/m

F
A

mgA 

 


   



B

B
3 2

3 2
B 6 2

compressive strength
9.0

(1.25 ) (1.25)(2.9 10 kg)(9.80 m/s )9.0 9.0 9.1 10 m
compressive strength 35 10 N/m

F
A

mgA 

 


   



50. The maximum shear stress is to be 1/7th of the shear strength for iron. The maximum stress will occur
for the minimum area and thus the minimum diameter.

 21
max 1 2

min

2
6 2

shear strength 7.0stress
7 0 shear strength

4(7.0) 28(3300 N) 1.3 10 m 1 3 cm
(shear strength) (170 10 N/m )

F FA d
A

Fd



 


     


     


51. From the free-body diagram, write Newton’s second law for the vertical direction. Solve
for the maximum tension required in the cable, which will occur for an upward acceleration.

T T ( )yF F mg ma F m g a     
The maximum stress is to be 1/8th of the tensile strength for steel. The maximum stress
will occur for the minimum area and thus the minimum diameter.

 2T T1
max 1 2

min

8.0tensile strengthstress
8.0 tensile strength

F F
A d

A
     

2
2

6 2
4(8.0) ( ) 32(3100 kg)(11.6 m/s ) 2.71 10  m 2.7 cm
(tensile strength) (500 10  N/m )

m g ad
 


    



52. Draw free-body diagrams similar to Figs. 9–31a and 9–31b for the
forces on the right half of a round arch and a pointed arch. The load
force is placed at the same horizontal position on each arch. For each
half-arch, take torques about the lower right-hand corner, with
counterclockwise as positive.

For the round arch:

mg

TF


H
round
F


H
round
F


VF


LoadF


R

R

x
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Load H H Load
round round

( ) 0 R xF R x F R F F
R

 
     

For the pointed arch:

Load H H Load
pointed pointed

( ) 0 R xF R x F y F F
y

 
     

Solve for ,y given that 1
H H3
pointed round

.F F

 

1 1
H H Load Load3 3
pointed round

1
23 3 8.0 m 12 m

R x R xF F F F
y R

y R

 
   

  

53. Write Newton’s second law for the horizontal direction.

2 1 2 1cos cos 0xF F F F F     
Thus the two forces are the same size. Now write Newton’s second law
for the vertical direction.

5
6Buttress

1 1 Buttress 1
4.2 10 Nsin sin 0 2.4 10 N

2 sin 2 (sin 5 )y
F

F F F θ F F



        



54. (a) The pole will exert a downward force and a
clockwise torque about the woman’s right hand.
Thus there must be an upward force exerted by
the left hand to cause a counterclockwise torque
for the pole to have a net torque of zero about
the right hand. The force exerted by the right
hand is then of such a magnitude and direction for the net vertical force on the pole to be zero.

Left

Left

Left Right

Right Left

2

2

0

1.0 m (10.0 kg)(9.80 m/s )
306.25 N 310 N, upward

0.32 m 0.32

0

306.25 N 208.25 N 210 N, downward

(0.32 m) (1.0 m)

(10.0 kg)(9.80 m/s )

y

F mg

F mg

F F F mg

F F mg

    

   

    

     

 
 
 





(b) We see that the force due to the left hand is larger
than the force due to the right hand, since both the
right hand and gravity are downward. Set the left
hand force equal to 150 N and calculate the
location of the left hand by setting the net torque
equal to zero.

Left
Left

98.0 N(1.0 m) 0 (1.0 m) (1.0 m) 0.65 m
150 N

mgF x mg x
F

       
As a check, calculate the force due to the right hand.

2F


1F


ButtressF




mg
x

LeftF


RightF


1.0 m

mg
0.32 m

LeftF


RightF


1.0 m

H
pointed
F


HF


VF


LoadF


R

y

x

pointed
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Right Left 150 N 98.0 N 52 N OKF F mg    

(c) Follow the same procedure, setting the left-hand force equal to 85 N:

Left
Left

98.0 N(1.0 m) 0 (1.0 m) (1.0 m) 1.153 m 1.2 m
85 N

mgF x mg x
F

        

Right Left 85 N 98.0 N 13 N OKF F mg     

Note that now the force due to the right hand must be pulling upward, because the left hand is on the
opposite side of the center of the pole.

55. If the block is on the verge of tipping, the normal force will be acting at the
lower right-hand corner of the block, as shown in the free-body diagram.
The block will begin to rotate when the torque caused by the pulling force
is larger than the torque caused by gravity. For the block to be able to slide,
the pulling force must be as large as the maximum static frictional force.
Write the equations of equilibrium for forces in the x and y directions and
for torque with the conditions as stated above.

N N

fr fr s N s

s

0

0

0
2 2

y

x

F F mg F mg

F F F F F F mg
mgmg Fh Fh mgh

 

 

    

      

     



  

Solve for the coefficient of friction in this limiting case, to find s .
2h

 


(a) If s /2 ,h   then sliding will happen before tipping.

(b) If s /2 ,h   then tipping will happen before sliding.

56. Assume that the building has just begun to tip, so that it is essentially
vertical, but that all of the force on the building due to contact with the
Earth is at the lower left-hand corner, as shown in the figure. Take
torques about that corner, with counterclockwise torques as positive.

A
2

7 2 9

(90.0 m) (23.0 m)

      [(950 N/m )(180.0 m)(76.0 m)] (90.0 m)

(1.8 10  kg)(9.80 m/s )(23.0 m) 2.9 10  m N

F mg  



     



Since this is a negative torque, the building will tend to rotate
clockwise, which means it will rotate back down to the ground. Thus the building will not topple 

57. (a) The meter stick is in equilibrium, so both the net torque and
the net force are zero. From the force diagram, write an
expression for the net torque about the 90-cm mark, with
counterclockwise torques as positive.

h

l/2

mg
frF


NF


F


mg

T0F


T90F


0.90 m

0.50 m

mg
AF


90.0 m

23.0 m

E xF


E yF

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0 /2


0

2
  

T0

2
T0

(0.40 m) (0.90 m) 0
0.40 0.40(0.180 kg)(9.80 m/s ) 0.78 N
0.90 0.90

mg F

F mg

    

  



(b) Write Newton’s second law for the vertical direction with a net force of 0 to find the other
tension.

T0 T90

2
T90 T0

0

(0.180 kg)(9.80 m/s ) 0.78 N 0.98 N

yF F F mg

F mg F

    

    



58. The maximum compressive force in a column will occur at the bottom. The bottom layer supports the
entire weight of the column, so the compressive force on that layer is .mg For the column to be on
the verge of buckling, the weight divided by the area of the column will be the compressive strength
of the material. The mass of the column is its volume (area height) times its density.

compressive strengthcompressive strengthmg hA g h
A A g




   

Note that the area of the column cancels out of the expression, so the height does not depend on the
cross-sectional area of the column.

(a)
6 2

steel 3 3 2
compressive strength 500 10  N/m 6500 m

(7.8 10  kg/m )(9.80 m/s )
h

g


  


(b)
6 2

granite 3 3 2
compressive strength 170 10  N/m 6400 m

(2.7 10  kg/m )(9.80 m/s )
h

g


  


59. The radius of the wire can be determined from the
relationship between stress and strain, expressed by Eq. 9–5.

20 0

0

1FF FE A r r
A E E





     

 
 

  

Use the free-body diagram for the attachment point of the mass and wire to get the wire’s tension.
2

T T
(25 kg)(9.80 m/s )2 sin 0 589.2 N

2 sin 2 sin 12y
mgF F mg F


      



The fractional change in the length of the wire can be found from the geometry
of the problem, as seen in the second diagram.

20

0 0

/2 1 1cos 1 1 2.234 10
cos cos 12

2





       

  
 

  

Thus, the radius is

40T
9 2 2

1 1 589.2 N 1 3.5 10  m
70 10  N/m (2.234 10 )

F
r

E 



        





 

mg
TF


TF

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60. The limiting condition for the painter’s safety is the tension in the ropes. The ropes can exert only an
upward tension on the scaffold. The tension will be least
in the rope that is farther from the painter. The mass of
the pail is p ,m the mass of the scaffold is ,m and the
mass of the painter is .M

Find the distance to the right that the painter can walk
before the tension in the left rope becomes zero. Take
torques about the point where the right-side rope is
attached to the scaffold, so that its value need not be
known. Take counterclockwise torques as positive.

p(2.0 m) (3.0 m) 0mg m g Mgx     

p(2.0 m) (3.0 m) (25 kg)(2.0 m) (4.0 kg)(3.0 m) 0.9538 m 0.95 m
65.0 kg

m m
x

M
 

   

The painter can walk to within 5 cm of the right edge of the scaffold.

Now find the distance to the left that the painter can walk
before the tension in the right rope becomes zero. Take
torques about the point where the left-side tension is
attached to the scaffold, so that its value need not be
known. Take counterclockwise torques as positive.

p (1.0 m) (2.0 m) 0Mgx m g mg     
p(2.0 m) (1.0 m) (25 kg)(2.0 m) (4.0 kg)(1.0 m) 0.8308 m 0.83 m

65.0 kg
m m

x
M
 

   

The painter can walk to within 17 cm of the left edge of the scaffold. Both ends are dangerous.

61. See the free-body diagram. The ball is at rest, so it is in equilibrium. Write Newton’s
second law for the horizontal and vertical directions, and solve for the forces.

A
horiz B B A A B A

B

vert A A B B A A B B

A A
A A A B A A B

B B

sin
sin sin 0

sin
cos cos 0 cos cos

sin sin
cos cos cos cos

sin sin

F F F F F

F F F mg F F mg

F F mg F mg


 



   

 
   

 

    

       

 
      

 





2B B
A

A B A B B A

sin sin sin 53(15.0 kg)(9.80 m/s )
(cos sin sin cos ) sin ( ) sin 31

 228 N 230 N

F mg mg
 

     


  
  

 

A
B A

B

sin sin 22(228 N) 107 N 110 N
sin sin 53

F F




   



62. The number of supports can be found from the compressive strength of the wood. Since the wood will
be oriented longitudinally, the stress will be parallel to the grain.

1.0 m 2.0 m

left 0F


rightF


mg
1.0 m

pm g
1.0 m

1.0 m

Mg
x

A

B

AF


BF


mg

1.0 m

2.0 m

leftF


right 0F


mg
1.0 m

pm g
1.0 m 1.0 m

M g
x
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compressive strength load force on suppor ts weight of roof
safety factor area of supports (number of supports)(area per support)

weight of roof safety factor(number of supports)
(area per support) compressi

 



4 2

6 2

ve strength

(1.36 10  kg)(9.80 m/s ) 12
12.69 supports

(0.040 m)(0.090 m) (35 10  N/m )
                   






Since there are to be more than 12 supports, and to have the same number of supports on each side,
there will be 14 supports, or 7 supports on each side . That means there will be 6 support-to-support

spans, each of which would be given by 10.0 mspacing 1.66 m/gap .
6 gaps

 

63. Since the backpack is midway between the two trees, the angles in the
free-body diagram are equal. Write Newton’s second law for the vertical
direction for the point at which the backpack is attached to the cord, with
the weight of the backpack being the original downward vertical force.

T0 0 T0
0

2 sin 0
2 siny
mgF F mg F


    

Now assume the bear pulls down with an additional force, bear .F The force equation would be
modified as follows:

T final final bear

bear T final final T0 final final
0

final

0

2

2 sin 0

2 sin 2(2 ) sin 4 sin
2 sin

2 sin 2 sin 27
       1 1 565.3 N 570 N

sin sin 15
(23.0 kg)(9.80 m/s )

yF F mg F

mg
F F mg F mg mg

mg



  






    

     


     



 
 
 

   
   

  



64. Draw a free-body diagram for one of the beams. By Newton’s third law, if
the right beam pushes down on the left beam, then the left beam pushes up
on the right beam. But the geometry is symmetric for the two beams, so the
beam contact force must be horizontal. For the beam to be in equilibrium,

N ,F mg and fr s NF F mg   is the maximum friction force. Take

torques about the top of the beam, so that beamF


exerts no torque. Let
clockwise torques be positive.

 1
N fr2

1 1

s

cos cos sin 0

1 1tan tan 45
2 2(0.5)

F mg F   




 

    

   

   

65. (a) The fractional decrease in the rod’s length is the strain. Use Eq. 9–4. The force applied is the
weight of the man.

2
8 6

2 2 9 2
0

(65 kg)(9.80 m/s ) 4.506 10 (4.5 10 )%
(0.15) (200 10  N/m )

F mg
AE r E 

 
      







mg
T0F


T0F


00

mg

beamF




NF


frF


cos

sin
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(b) The fractional change is the same for the atoms as for the macroscopic material. Let d represent
the interatomic spacing.

8

0 0

8 8 10 18
0

4.506 10

(4.506 10 ) (4.506 10 )(2.0 10  m) 9.0 10  m

d
d

d d



   

 
   

       





66. Consider the free-body diagram for the box. The box is assumed to be in
equilibrium, but just on the verge of both sliding and tipping. Since it is
on the verge of sliding, the static frictional force is at its maximum value.
Use the equations of equilibrium. Take torques about the lower right-hand
corner where the box touches the floor, and take clockwise torques as
positive. We assume that the box is just barely tipped up on its corner, so
that the forces are still parallel and perpendicular to the edges of the box.

N N

fr fr

0

0 (0.60)(250 N) 150 N

y

x

F F W F W

F F F F F W

    

       




250 N(0.5 m) 0 (0.5 m) (0.5 m) 0.83 m
150 N

WFh W h
F

       

67. From the free-body diagram (not to scale), write the
force equilibrium condition for the vertical direction.

T2 sin 0yF F mg  
2

T
(60.0 kg)(9.80 m/s )

2 sin 2 tan 2.1 m2
18 m

2500 N

mg mgF
 

  
 
 
 



Note that the angle is small enough (about 7°) that we have made the substitution sin tan . 

It is not possible to increase the tension so that there is no sag  There must always be a vertical

component of the tension to balance the gravity force. The larger the tension gets, the smaller the sag
angle will be, however.

68. Assume a constant acceleration as the person is brought to rest, with up as the positive
direction. Use Eq. 2–11c to find the acceleration. From the acceleration, find the average
force of the snow on the person, and compare the force per area with the strength of body
tissue. From the free-body diagram, we have snow snow ( ).F mg ma F m a g    

2 2 2
2 2 20

0 0
0

2 2
5 2snow

2

5 2snow

0 (55 m/s)2 ( ) 1513 m/s
2( ) 2( 1.0 m)

( ) (75 kg)(1513 m/s 9.80 m/s ) 3.81 10  N/m
0.30 m

tissue strength 5 10  N/m

a x x a
x x

F m a h
A A

F
A

 
 

 
      

 

 
   

  

Since the average force on the person is less than the strength of body tissue, the person may escape
serious injury. Certain parts of the body, such as the legs if landing feet first, may get more than the
average force, though, and still sustain injury.

2.1 m

18 m

 

mg
TF


TF


mg

snowF


F


W
 NF



frF


h

1.0 m

h

2.0 m
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69. The force in the left vertical support column is 44,100 N, in compression. We want a steel column that
can handle three times that, or 132,300 N. Steel has a compressive strength of 6 2500 10  N/m . Use
this to find the area.

6 2 4 2 4 2
6 2

132,300 N 132,300 N500 10  N/m 2.646 10 m 2.6 10 m
500 10 N/m

F A
A A

          


If the column were square, each side would be 1.6 cm. If the column were cylindrical, the radius would
be 9.2 mm.

70. Each crossbar in the mobile is in equilibrium, so the net torque about the suspension point for each
crossbar must be 0. Counterclockwise torques will be taken as positive. The suspension point is used so
that the tension in the suspension string need not be known initially. The net vertical force must also be 0.

The bottom bar:

D D C C

D
C D D D

C

CD C D CD C D D

0

17.50 cm 3.50
5.00 cm

0 ( ) 4.50y

m gx m gx
x

m m m m
x

F F m g m g F m m g m g

    

  

       




The middle bar:

B B
CD CD B B CD B D B

CD CD

2B B
D

CD

0 4.50

(0.748 kg)(5.00 cm) 0.05541 5.54 10  kg
4.50 (4.50)(15.00 cm)

x x
F x m gx F m g m g m g

x x
m x

m
x





      

    



C D

BCD CD B BCD CD B D B

3.50 (3.50)(0.05541 kg) 0.194 kg

0 (4.50 )y

m m

F F F c m g F F m g m m g

  

        
The top bar:

A A BCD BCD

D B BCD BCD
A D B

A A

0
(4.50 )

(4.50 )

7.50 cm[(4.50)(0.05541 kg) 0.748 kg] 0.249 kg
30.00 cm

m gx F x
m m gx x

m m m
gx x

    


  

  



71. (a) The weight of the shelf exerts a downward force and a
clockwise torque about the point where the shelf
touches the wall. Thus, there must be an upward force
and a counterclockwise torque exerted by the slot for
the shelf to be in equilibrium. Since any force exerted
by the slot will have a short lever arm relative to the
point where the shelf touches the wall, the upward
force must be larger than the gravity force. Accordingly, there then must be a downward force
exerted by the slot at its left edge, exerting no torque, but balancing the vertical forces.

(b) Calculate the values of the three forces by first taking torques about the left end of the shelf, with
the net torque being zero, and then sum the vertical forces, with the sum being zero.

Cm g
Dm g

CxDx

CDF


Bm g

BxCDx

BCDF


CDF


Am g
BCDxAx

ABCDF


BCDF


mg

32.0cmLeftF


RightF


2.0cm
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right

right

right left

left right

2

2

2

(0.020 m) (0.170 m)

(6.6 kg)(9.80 m/s )

0

0.170 m(6.6 kg)(9.80 m/s ) 549.8 N 550 N
0.020 m

549.8 N (6.6 kg)(9.80 m/s ) 490 N

65 N

y

F mg

F

F F F mg

F F mg

mg



 
  
 

   

  

   

    

 





(c) The torque exerted by the support about the left end of the rod is
2 2

right (2.0 10 m) (549.8 N)(2.0 10 m) 11 m NF       

72. See the free-body diagram for the crate on the verge of tipping. From
Fig. 9–16 and the associated discussion, if a vertical line projected
downward from the center of gravity falls outside the base of support,
then the object will topple. So the limiting case is for the vertical line
to intersect the edge of the base of support. Any more tilting and the
gravity force would cause the block to tip over, with the axis of
rotation through the lower corner of the crate.

11.00 1.00tan tan 40 (2 significant figures)
1.18 1.18

      

The other forces on the block, the normal force and the frictional force, would act at the lower corner.
They would cause no torque about the lower corner. The gravity force causes the tipping.

Solutions to Search and Learn Problems

1. (a) Use conservation of energy to determine the speed when the person reaches
the ground. Set the potential energy of the ground as zero ( 0).y 

21
1 1 2 2 1 2

2
1

KE PE KE PE 0 0

2 2(9.8 m/s )(3.0 m) 7.668 m/s 7.7 m/s

mgy m

gy





      

   

(b) When the person reaches the ground, two forces will act on him: the force of
gravity pulling down and the normal force of the ground pushing up. The
sum of these two forces provides the net decelerating force. The net work
done during deceleration is equal to the change in kinetic energy.

21
N 2

2 2
2

N

KE ( )( ) 0

(65 kg)(7.668 m/s)(65 kg)(9.8 m/s ) 4459 N 4500 N
2 2(0.50 m)

Fd mg F d m

mF mg
d





     

     



(c) Repeat the previous calculation for a stopping distance of 0.010 m.d 

2 2
2 5 5

N
(65 kg)(7.668 m/s)(65 kg)(9.8 m/s ) 1.917 10 N 1.9 10 N

2 2(0.010 m)
mF mg
d


       

mg 1.18m

1.00 m





N

  
  F

  
  
  mg
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(d) The force is evenly spread between each leg, so divide half of the force by the area of the tibia to
determine the stress. Then compare this stress to the compressive strength of the tibia given in
Table 9–2.

1
6 2 6 22

4 2

(4459 N)
7.4 10  N/m 170 10  N/m

3.0 10 m
F
A 
    



The stress is much less than the compressive strength, so it is unlikely that the tibia will break.
(e) Repeating the calculation for the distance of 0.010 m:

51
8 2 6 22

4 2

(1.917 10 N)
3.2 10  N/m 170 10  N/m

3.0 10 m
F
A 


    



The stress is greater than the compressive strength, so the tibia will likely break.

2. As the brick falls, its potential energy is converted into kinetic energy. When the brick hits the floor,
work is done on the brick to decelerate it to rest. The amount of work needed to decelerate the brick is
equal to the initial potential energy (mgh) and is also equal to the product of the average stopping force
(F) and the brick’s compression distance ( ). Use Eq. 9–4 to write the compression distance in terms
of the force.

0
1 Fmgh F F
E A

     
 

 

By replacing the strain ( / )F A with the ultimate strength of brick, the resulting equation can be solved
for the minimum height (h) necessary to break the brick when dropped.

2 6 2 2
0

2 9 2
(35 10  N/m ) (0.040 m)(0.150 m)(0.060 m) 2.7 m

(1 2 kg)(9.80 m/s )(14 10  N/m )
AFh

A mgE
    

   



3. The ladder is in equilibrium, so both the net force and net torque must
be zero. Because the ladder is on the verge of slipping, the static
frictional force at the ground, CxF is at its maximum value. Thus,

C s C .x yF F Torques are taken about the point of contact of the

ladder with the ground, and counterclockwise torques are taken as
positive. The three conditions of equilibrium are as follows:

C W C W0x x xF F F F F    

 

C

2
C

1
W 2

0

( ) (67.0 kg)(9.80 m/s ) 656.6 N

(4.0 m) (3.0 m) (2.1 m) 0

y y

y

F F Mg mg

F M m g

F mg Mg

    

   

   




Solve the torque equation for W .F

1
22

W
(12 0 kg)(3.0 m) (55.0 kg)(2.1 m)

(9.80 m/s ) 327.1 N
4.0 m

F
  

  
  

The coefficient of friction then is then found from the components of C .F
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C W
s

C C

327.1 N 0.50
656.6 N

x

y y

F F
F F

    


