ROTATIONAL MOTION

Responses to Questions

1. The reading on an odometer designed for 27-inch wheels increases by the circumference of a 27-inch
wheel (27z") for every revolution of the wheel. If a 24-inch wheel is used, the odometer will still

register (277z") for every revolution, but only 247" of linear distance will have been traveled. Thus

the odometer will read a distance that is farther than you actually traveled, by a factor of
27/24 =1.125. The odometer will read 12.5% too high.

2. (@) A point on the rim of a disk rotating with constant angular velocity has no tangential acceleration
since the tangential speed is constant. It does have radial acceleration. Although the point’s
speed is not changing, its velocity is, since the velocity vector is changing direction. The point
has a centripetal acceleration, which is directed radially inward.

(b) If'the disk’s angular velocity increases uniformly, the point on the rim will have both radial and
tangential acceleration, since it is both moving in a circle and speeding up.

(c)  The magnitude of the radial component of acceleration will increase in case (b), but the tangential
component will be constant. In case (a), neither component of linear acceleration will change.

Since the torque involves the product of a force times its lever arm, a small force can exert a greater
torque than a larger force if the small force has a large enough lever arm.

4.  When you do a sit-up from a laying-down position, torque from your abdominal muscles must rotate
the upper half of the body. The larger the moment of inertia of the upper half of the body, the more
torque is needed, and thus the harder the sit-up is to do. With the hands behind the head, the moment
of inertia of the upper half of the body is larger than with the hands out in front.

5. If the net force on a system is zero, the net torque need not be zero. Consider a
uniform object with two equal forces on it, as shown in the first diagram. The net
force on the object is zero (it would not start to translate under the action of these
forces), but there is a net counterclockwise torque about the center of the rod (it
would start to rotate under the action of these forces).

If the net torque on a system is zero, the net force need not be zero. Consider an

object with two equal forces on it, as shown in the second diagram. The net torque

on the object is zero (it would not start to rotate under the action of these forces), but

there is a net downward force on the rod (it would start to translate under the action o
of these forces).
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6. Running involves rotating the leg about the point where it is attached to the rest of the body. Therefore,
running fast requires the ability to change the leg’s rotation easily. The smaller the moment of inertia
of an object, the smaller the resistance to a change in its rotational motion. The closer the mass is to the
axis of rotation, the smaller the moment of inertia. Concentrating flesh and muscle high and close to
the body minimizes the moment of inertia and increases the angular acceleration possible for a given
torque, improving the ability to run fast.

7. Refer to the diagram of the book laying on a table. The moment of
inertia about the “starred” axis (the axis parallel to the longest
dimension of the book) will be the smallest. Relative to this axis, more
of the mass is concentrated close to the axis.

8. No, the mass cannot be considered as concentrated at the CM when
considering rotational motion. If all of the mass were at the CM, then the
object would have a rotational inertia of 0. That means it could not have any rotational kinetic energy
or angular momentum, for example. The distribution of the mass is fundamental when describing
rotational motion.

9. The moment of inertia will be larger when considering an axis through a point on the edge of the disk,
because most the mass of the disk will be farther from the axis of rotation than it was with the original
axis position.

10. Applying conservation of energy at the top and bottom of the incline, assuming that there is no work
done by friction, gives Ey,, = Epoom  —> Mgh =1M v*+ LIw®. Fora solid ball, 7 =2MR?. If the

ball rolls without slipping (no work done by friction) then @ =v/R, so
Mgh=SMv* +L2MR*0? IR* - v=10gh/7

This speed is independent of the angle of the incline, so both balls will have the same speed at the
bottom. The ball on the incline with the smaller angle will take more time to reach the bottom than the
ball on the incline with the larger angle.

11.  The two spheres have different rotational inertias. The sphere that is hollow will have a larger
rotational inertia than the solid sphere. If the two spheres are allowed to roll down an incline without
slipping, the sphere with the smaller moment of inertia (the solid one) will reach the bottom of the
ramp first. See Question 12 below for a detailed explanation of why this happens.

(a) The sphere will reach the bottom first because it has a smaller rotational inertial. A detailed
analysis of that is given below.

(b) The sphere will have the greater speed at the bottom, so it will have more translational kinetic
energy than the cylinder.

(c) Both will have the same energy at the bottom, because they both started with the same potential
energy at the top of the incline.

(d) The cylinder will have the greater rotational kinetic energy at the bottom, because it has less
translational kinetic energy than the sphere.

Here is a detailed analysis of the motion:

Applying conservation of energy at the top and bottom of the incline, assuming that there is no work

done by friction, gives Ey,, = Eygyom —> Mgh= %M v?+ %I w*. If the objects roll without slipping,
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2Mgh .
then w =v/R, so Mgh =Lpp? +ll(u/R)2 o v= |28 Forasolid ball, 7 =2MR?, and
2 2 M +1/R* >

for a cylinder, / =%MR2. Thus Ugypere =+/10g7/7 and vy =/4gh/3. Since Ugypere > gy, the

sphere has the greater speed at the bottom. That is true for any amount of height change, so the sphere
is always moving faster than the cylinder after they start to move. Thus the sphere will reach the
bottom first. Since both objects started with the same potential energy, both have the same total kinetic
energy at the bottom. But since both objects have the same mass and the cylinder is moving slower, the
cylinder has the smaller translational KE and thus the greater rotational KE. Since rotational kinetic

; 172 —2
energy is KE =5/, then KE.  =Z5mgh and KEy
sphere cylinder

_1
=3 mgh.

The long rod increases the rotational inertia of the walkers. If a walker gets off-center from the
tightrope, gravity will exert a torque on the walker, causing the walker to rotate with their feet as a
pivot point. With a larger rotational inertia, the angular acceleration caused by that gravitational torque
will be smaller, and the walker will therefore have more time to compensate.

The long rod also allows the walkers to make small shifts in their center of mass to bring themselves
back to being centered on the tightrope. It is much easier for a walker to move a long, narrow object
with the precision needed for small adjustments than a short, heavy object like a barbell.

14. Momentum and angular momentum are conserved for closed systems—systems in which there are no
external forces or torques applied to the system. Probably no macroscopic systems on Earth are truly
closed, so external forces and torques (like those applied by air friction, for example) affect the
systems over time.

15. In order to do a somersault, the diver needs some initial angular momentum when she leaves the diving
board, because angular momentum will be conserved during the free-fall motion of the dive. She
cannot exert a torque about her CM on herself in isolation, so if there is no angular momentum initially,
there will be no rotation during the rest of the dive.

16.  Once the motorcycle leaves the ground, there is no net torque on it and angular momentum must be
conserved. If the throttle is on, the rear wheel will spin faster as it leaves the ground because there is
no torque from the ground acting on it. The front of the motorcycle must rise up, or rotate in the
direction opposite the rear wheel, in order to conserve angular momentum.

17.  While in mid-air, the shortstop cannot exert a torque on himself, so his angular momentum will be
conserved. If the upper half of his body (including his hips) rotates in a certain direction during the
throwing motion, then to conserve angular momentum, the lower half of his body (including his legs)
will rotate in the opposite direction.

18.  See the diagram. To the left is west, the direction of the angular velocity. The direction
of the linear velocity of a point on the top of the wheel would be north, into the page. If
the angular acceleration is east, which is opposite the angular velocity, the wheel is
slowing down—its angular speed is decreasing. The tangential linear acceleration of
the point on top will be opposite to its linear velocity—it will point south.

Using the right-hand rule, point the fingers in the direction of the Earth’s rotation, from west to east.
Then the thumb points north. Thus the Earth’s angular velocity points along its axis of rotation, toward
the North Star.
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Consider a helicopter in the air with the rotor spinning. To change the rotor’s angular speed, a torque
must be applied to the rotor. That torque has to come from the helicopter. By Newton’s third law, an
equal and opposite torque will be applied by the rotor to the helicopter. Any change in rotor speed
would therefore cause the body of the helicopter to spin in a direction opposite to the change in the
rotor’s angular velocity.

Some large helicopters have two rotor systems, spinning in opposite directions. That makes any
change in the speed of the rotor pair require a net torque of zero, so the helicopter body would not tend
to spin. Smaller helicopters have a tail rotor that rotates in a vertical plane, causing a sideways force
(thrust) on the tail of the helicopter in the opposite direction of the tendency of the tail to spin.

Responses to MisConceptual Questions

1.

(©)

(b)

(b)

(©)

A common misconception is that if the riders complete the revolution at the same time, they
must have the same linear velocities. The time for a rotation is the same for both riders, but
Bonnie, at the outer edge, travels in a larger circle than Jill. Bonnie therefore has a greater linear
velocity.

Students may think that the rider would travel half the distance in half the time. This would be
true if the object had constant angular speed. However, it is accelerating, so it will travel a

shorter distance, %49, in the first half of the time.

A common error is to think that increasing the radius of the tires would increase the speed
measured by the speedometer. This is actually backward. Increasing the size of the tires will
cause the car to travel faster than it would with smaller tires, when the wheels have the same
angular speed. Therefore, the speed of the car will be greater than the speed measured by the
speedometer.

Torque is the product of the lever arm and the component of the force perpendicular to the arm.
Although the 1000-N force has the greatest magnitude, it acts at the pivot. Thus, the lever arm is zero,
and the torque is also zero. The 800-N force is parallel to the lever arm and also exerts no torque. Of
the three 500-N forces, (c) is both perpendicular to the lever arm and farthest from the pivot.

(c, e, f) Equations 810 show that there are three ways in which the torque can be written. It can be

(b)

(b)

the product of the force, the lever arm, and the sine of the angle between them as in answer (c). It
can be the product of the force and the component of the lever arm perpendicular to the force, as
in answer (e). It can also be written as the product of the lever arm and the force perpendicular to
the lever arm, as in answer (f). Doing the calculations shows that all three torques are equal.

The location of the mass is very important. Imagine taking the material from the solid sphere and
compressing it outward to turn the solid sphere into a hollow sphere of the same mass and radius.
As you do this, you would be moving mass farther from the axis of rotation, which would
increase the moment of inertia. Therefore, the hollow sphere has a greater moment of inertia than
the solid sphere.

If you don’t consider how the location of the mass affects the moment of inertia, you might think
that the two kinetic energies are nearly the same. However, a hollow cylinder has twice the
moment of inertia as a solid cylinder of the same mass and radius. The kinetic energy is
proportional to the moment of inertia, so at the same angular speed the wheel with the spokes
will have nearly double the kinetic energy of the solid cylinder. It is only “nearly double”
because some of the mass is in the spokes, so the moment of inertia is not exactly double.
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8. (b) Ittakes energy to rotate the ball. If some of the 1000 J goes into rotation, less is available for
linear kinetic energy, so the rotating ball will travel slower.

9. (b) Ifyou do not take into account the energy of rotation, you would answer that the two objects
would rise to the same height. Another common misconception is that the mass and/or diameter
of the objects will affect how high they travel. When using conservation of energy to relate the
total initial kinetic energy (translational and rotational) to the final potential energy, the mass and
radius of the objects cancel out. The thin hoop has a larger moment of inertia (for a given mass
and radius) than the solid sphere. It will therefore have a greater total initial kinetic energy and
will travel to a greater height on the ramp.

10. (a) Because there is no external torque, students might think that the angular speed would remain
constant. But with no external torque, the angular momentum must remain constant. The angular
momentum is the product of the moment of inertia and the angular speed. As the string is
shortened, the moment of inertia of the block decreases. Thus, the angular speed increases.

11. (a) Workis done on the object, so its kinetic energy increases. Thus the tangential velocity has to

increase. Another way to consider the problem is that KE = VI?/21. Asin Question 10, the
angular momentum is constant and the rotation inertial decreases. Thus the kinetic energy (and
the speed) has to increase.

12.  (a) No net torque acts on the Earth, so the angular momentum is conserved. As people move toward
the equator their distance from the Earth’s axis increases. This increases the moment of inertia of
the Earth. For angular momentum to be conserved, the angular speed must decrease, and it will
take longer for the Earth to complete a full rotation.

13. (¢) Students might mistakenly reason that since no net torque acts on you and your moment of
inertia decreases as the masses are released, your angular speed should increase. This reasoning
is erroneous because the angular momentum of the system of you and the masses is conserved.
As the masses fall, they carry angular momentum with them. If you consider you and the masses
as two separate systems, each with angular momentum from their moments of inertia and
angular speed, it is easy to see that by dropping the masses, no net external torque acts on you
and your moment of inertia does not change, so your angular speed will not change. The angular
momentum of the masses also does not change until they hit the ground and friction (external
torque) stops their motion.

Solutions to Problems

. (@) (45.0°)(27 rad/360°) = |7/4 rad |= 0.785 rad |

(b)  (60.0°)(27 rad/360°) = |z/3 rad |= [1.05 rad |

(©  (90.0°)(27 rad/360°) = |7/2 rad |= |57 rad |

(d)  (360.0°)(27 rad/360°) = [27 rad |= 6.283 rad |

()  (445°)(27 rad/360°) = [8977/36 rad |= [7.77 rad |
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2. The subtended angle (in radians) is the diameter of the Sun divided by the Earth—Sun distance.
0 - diameter of Sun

"Earth—Sun

radius of Sun =16 gy _sun = 3(0.5°) (Tgrgfj(l 5x10"m) =6.545x10%m ~

3. We find the diameter of the spot from the definition of radian angle measure.

0= _diameter —  diameter = 0 r, g wvoon = (1.4% 107 rad)(3.8x 108 m)=

"Earth—Moon

4.  The initial angular velocity is @, = (6500 re_v] (2” rad](l mmj =681 rad/s. Use the definition of

min 1rev 60 s

angular acceleration.

a_A_a)_ 0—-681rad/s _ 2170 radss?

At 40s

5. (a) We convert rpm to rad/s.

7200 rev |( 27 rad | 1 min
= = 75398 rad/s~ -750 rad/s

1 min lrev
(b) To find the speed, we use the radius of the reading head location along with Eq. 8—4.
v=reo=(300x1072 m)(753.98 rad/s) = 22.62 m/s ~ m

(c) We convert the speed of the point on the platter from m/s to bits/s, using the distance per bit.

(22.62 m/s) (“;”J —[4.5x107 bits/s

0.50x10~° m

6. The ball rolls 277 = zd of linear distance with each revolution.

12.0rev[jdmj:3.5m L NIIRE)
VT

rev

7. (a) We convert rpm to rad/s.

2200 rev | 27 rad |[ 1 min
= = 2304 rad/s~ |230 rad/
o[ 00w 2 10 2304 s

1 rev

(b) To find the speed and acceleration, we use the full radius of the wheel, along with Eqs. 8—4 and
8-6.

035m 1
v=owr=(2304rad/s)| —— |=|4.0x10" m/s
( )25 )= frox10ms]
o2 2 035m _ 2
ag = o r =(230.4 rad/s) (T = (9300 m/s

8. In each revolution, the wheel moves forward a distance equal to its circumference, 7d.

Ax 9200 m
Ax=N_ (td) > N=—=——"—=4300rev
rev (7) 7d  7(0.68 m)
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9. The angular velocity is expressed in radians per second. The second hand makes 1 revolution every
60 seconds, the minute hand makes 1 revolution every 60 minutes, and the hour hand makes
1 revolution every 12 hours.

(a) Second hand: @ = Lrey M = L@ 1.05x% 10_1ra_d
60s lrev 30 s s

Q

() Minute hand: wz( Lrev J{Zﬂradjﬂlmmj: z_rad ~ 1.75X10,3ra_d

60 min lrev 60s 1800 s S
(¢) Hourhand: w= Irev ) 27 rad Ih ==z rad ~ (1.45x 1074@—d
12h Irev ){ 3600s 21,600 s S

(d) The angular acceleration in each case is @, since the angular velocity is constant.

10.  The angular speed of the merry-go-round is 27 rad/4.0 s =1.57 rad/s.

(@) v=awr=(57radls)(1.2m)=

(b) The acceleration is radial. There is no tangential acceleration.

ag = o*r = (1.57 rad/s)2 (12m)= |3.0 m/s> toward the center

11.  Each location will have the same angular velocity (1 revolution per day), but the
radius of the circular path varies with the location. From the diagram, we see
r = Rcos @, where R is the radius of the Earth, and 7 is the radius at latitude 8.

2r 27 rad 1 day 6
a V=@r=—r= 6.38x10” m)= {464 m/s
@ T 86,400 sj( )

1 day

2r 27 rad 1 day 6
b) v=wr=—r= 6.38x10° m) cos 66.5° = [185 m/s
® T lday )\ 86,400 sj ( ) -

©) v=or= %’U - Zl’rdrad 8; j"g) j (638x 10° m) cos 42.0° = [345 m/s
ay ,400 s

12.  (a) The Earth makes one orbit around the Sun in one year.

Oorbit =%: [2ﬁ radj[ Lyear J= 1.99x 107 rad/s

lyear ){ 316x10" s

(b) The Earth makes one revolution about its axis in one day.

AGO 27 rad 1 day 5
Drotation = A_t = [ J[86,400 Sj =1727x107" rad/s

1 day

13.  The centripetal acceleration is given by ap = w*r. Solve for the angular velocity.

ag (100,000)(9.80 m/s2) rad [ lrev 60s 4
= |—= =3500—| ——— || —— |= 3.3x 10" rpm
g J Sosom

r s \2zrad {1 min
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14. Convert the rpm values to angular velocities.

wp = 120re—,vj 2mrad | Imin ) _ 4o o7 ads
min /| 1rev 60s

o=| 280V | 2Zrad ) Imin | o655 radss
min 1rev 60s

(a) The angular acceleration is found from Eq. 89a.

w—-wy 2932rad/s—12.57 rad/s 2 5
a= = = 4188 rad/s”“~ (4.2 rad/s
—

t

(b) To find the components of the acceleration, the instantaneous angular velocity is needed.

o=y +at=12.57 rad/s+ (4188 rad/sz)(2.0 s)=20.95 rad/s

The instantaneous radial acceleration is given by ap = o’r.

0.61 m
ag = 0°r = (20.95 rad/s)z( 5 j: 130 m/s>

The tangential acceleration is given by a,, = ar.
61
Qg = 0r = (4.188 rad/s2)(067mj =

15. (a) The angular acceleration can be found from Eq. 8-3a. The initial angular frequency is 0 and the
final frequency is 1 rpm.

(1 Orevj(Zﬂ rad][l.o min] 0
- " mi 1 60
a= @ ta’o = i eV 5 = 1.454x 107 rad/s®~ [1.5x 107 rad/s?
(12 min)| 398
1.0 min

(b) After 6.0 min (360 s), the angular speed is as follows:
o=y +at=0+(1454x10"* rad/s*)(360 s) = 5.234x 10~ rad/s

Find the components of the acceleration of a point on the outer skin from the angular speed and
the radius.

dyy = R = (1.454x 107 rad/s®)(4.25 m) = [6.2x 10~ my/s?
ag = ®°R = (5.234x107 rad/s)* (425 m) = [1.2x107 m/s’

16. The tangential speed of the turntable must be equal to the tangential speed of the roller, if there is no
slippage.

Ul :Uz e wlRl :a)sz —> (01/0)2 = R2 /Rl

17. (a) For constant angular acceleration:

_®—wy 1200 rev/min —3500 rev/min _ —2300 rev/min (2 zrad |(1min
t 25s 25s 60s

=-96.34 rad/s’ ~ |-96 rad/s>

a
1rev
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18.

19.

20.

21.

(b)

For the angular displacement, we assume constant angular acceleration.

0 = 3 (@ + @)t = 3(3500 rev/min +1200 rev/min)(2.5 s) (l6r(r)nn]: 08 rev
s

The angular displacement can be found from Eq. 8-9d.

(a)

(b)

(@)

(b)

6 = @t = L () + )t = L(0+15,000 rev/min)(240 s)(1 min/60 s) =

The angular acceleration can be found from Eq. 8-9b with @, =0.

> (1.0 min)?

The final angular speed can be found from 6 = %(a)o +w)t, with @, =0.

260 2(23 rev)
w=——-w,=—==|46 rpm
0= 0 min

t

The angular acceleration can be found from Eq. 8-9c.

22 _ . \2 . 2
o= o —ay _ 0— (850 rev/min) _ (—289 rev ] 2rrad |1 min _ —O.SOra—d
20 2(1250 rev) minZ )\ lrev 60s 2

The time to come to a stop can be found from 6 = %(a)o +o)t.

20 2(1250 rev) ( 60's J: 1765 s

- @y +o ~ 850 rev/min | 1 min

Use Eq. 8-9d combined with Eq. 8-2a.

_®+ay 240 rpm +360 rpm
2 2

O=wt= (300“’—.VJ 1min ) ¢ gs)= 34 rev
min /\ 60s

=300 rpm

Sl

Each revolution corresponds to a circumference of travel distance.

(a)

34 rev {M} =

v

The angular acceleration can be found from o’ = a)g + 206, with the angular velocities being

found from @ =v/r.

2
1m/s
55 km/h)? —(95 km/h)? || ————
ot —wy (VP -0y) [( o ) ](3.61@11)
- _ 00
20 2ro 2(0.40 m)3(75 rev)(z” rad}
Icv

=-3.070 rad/s’ ~
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(b) The time to stop can be found from @ = @, + ¢, with a final angular velocity of 0.

6 )[3 2T<an/hj
(=87 % 7% _ : 2= 12445~ [125]
a ra (0.40 m)(—3.070 rad/s )

(c) We first find the total angular displacement of the tires as they slow from 55 km/h to rest, and
then convert the angular displacement to a linear displacement, assuming that the tires are rolling
without slipping.

w* = a)g +20A0 —

2
. (Uojz {(SSkm/h)( 1 m/s H
202 T, 040m | 3.6 km/h
i ") __ = 2376 rad

2a 2a 2(=3.070 rad/s?)
Ax = rA6 = (0.40 m)(237.6 rad) =

For the total distance, add the distance moved during the time the car slows from 95 km/h to
55 km/h. The tires made 75 revolutions, so that distance is as follows:

AQ

2 radJ: 188 m
v

Ax =rA0 = (040 m)(75 rev)(
The total distance would be the sum of the two distances, 283 m.

23.  Since there is no slipping between the wheels, the tangential component of the linear acceleration of
each wheel must be the same.

(a) Atan = Qtan = ymallfsmall = alargerla.rge -
small large

arge = Asmall Fsmall _ (7.2 rad/sz)[ 27.00cm j: 0.5333 rad/s? ~ 0.53 rad/s>

farge 27.0 cm

(b) Assume the pottery wheel starts from rest. Convert the speed to an angular speed, and then use
Eq. 8-9a.

w:(6sfe_7j Zrrad (1 min ) _ 207 radss
min 1rev 60s

- 6.807 rad
w=wny+at —> 1=27% 7ra /S2:12.76sz
a 0.5333 rad/s

24. (a) The maximum torque will be exerted by the force of her weight, pushing tangential to the circle
in which the pedal moves.

r=r F =r.mg=(017m)(52kg)(9.80 m/s>)=86.6 m- N ~

(b)  She could exert more torque by pushing down harder with her legs, raising her center of mass.
She could also pull upward on the handle bars as she pedals, which will increase the downward
force of her legs.

Each force is oriented so that it is perpendicular to its lever arm. Call counterclockwise torques
positive. The torque due to the three applied forces is given by the following:

Tapplicd = (28 N)(0.24 m) — (18 N)(0.24 m) — (35 N)(012 m) =—1.8 m- N

forces
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Since this torque is clockwise, we assume the wheel is rotating clockwise, so the frictional torque is
counterclockwise. Thus the net torque is as follows:

Tt = (28 N)(0.24 m) — (18 N)(0.24 m)— (35 N)(012 m)+0.60 m: N=—12m- N

= |l.2 m-N, clockwise|

26. The torque is calculated by 7 = rF'siné. See the diagram, from the top view. 4------------ >

(a) For the first case, & =90°.
0
7 =rF sin 6 = (0.96 m)(42 N) sin 90° = 4032 m-N~ 4.0x10'm-N %

(b) For the second case, 8 = 60.0°.

7 =7F sin 0 = (0.96 m)(42 N) sin 60.0° =34.92 m-N ~

27. There is a counterclockwise torque due to the force of gravity on the left block and a clockwise torque
due to the force of gravity on the right block. Call clockwise the positive direction.

Zr =mgl,—mgl, = |mg(£2 —{,), clockwise

28.  The force required to produce the torque can be found from 7 =rF'sin@. The force is applied
perpendicularly to the wrench, so 8 =90°.

F:Z—M:B%Nz

r 028m

The net torque still must be 95 m- N. This is produced by six forces, one at v
each of the six points. We assume for our estimate that those forces are also
perpendicular to their lever arms. From the diagram, we estimate the lever arm
as follows, and then calculate the force at each point:

X

Leverarm:rz%h+x:15[ J J+ytan30°
cos 30°

1 -3
=y —————+tan 30° | = (7.5x 10" m)(1.15
y(200530° ] ( 1)

T 95m-N
Tnet = (OFpoind )™ = Fpoine = =18357 N~ 800 N

r o 6(7.5x107 m)(1.15)

29. For each torque, use Eq. 8—10c. Take counterclockwise torques to be positive.

(a) Each force has a lever arm of 1.0 m.

Zabour = —(1.0 m)(56 N)sin 32°+ (1.0 m)(52 N)sin 58° =14.42 m-N ~

C

(b) The force at C has a lever arm of 1.0 m, and the force at the top has a lever arm of 2.0 m.

Tabout = —(2.0 m)(56 N) sin 32°+ (1.0 m)(65 N) sin 45° = —1339 m- N =~

P
The negative sign indicates a clockwise torque.

30. For a sphere rotating about an axis through its center, the moment of inertia is as follows:

1=2MR* = 2(108 kg)(0.648 m)” = |81 kg-m”
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31. Since all of the significant mass is located at the same distance from the axis of rotation, the moment

of inertia is given by [ = MR?.
2
I=MR* = (1.1kg)(£(067 m))" = 012 kg-m’

The hub mass can be ignored because its distance from the axis of rotation is very small, so it has a
very small rotational inertia.

32. The torque required is equal to the angular acceleration times the moment of inertia. The angular
acceleration is found using Eq. 8—9a. Use the moment of inertia of a solid cylinder.

w=0y+at > a=olt

MR 0 m)*(0.
r:Ia:(%MROZ)(Q]: 0@ _ (31,000 kg)(7.0 m)~(0.68 rad/s): 1< 10" m N
2(34s)

t 2t

33. The oxygen molecule has a “dumbbell” geometry, as though it rotates about the !
dashed line shown in the diagram. If the total mass is M, then each atom has a O—}—O
mass of M/2. If the distance between them is d, then the distance from the axis of |
rotation to each atom is d/2. Treat each atom as a particle for calculating the '
moment of inertia.

I=(M/2)(d/2)" +(M/2)(d/2)* =2(M/2)(d/2)* = 1Mmd* —

d=~J4I/M = \/4(1.9><10_46 kg -m?)/(53x107% kg) = h.leo—10 m

34. (a) The moment of inertia of a cylinder is L MR”.

1=1MR* =1(0380kg)(0.0850 m)* =1373x10~ kg-m* ~ l1.37><10‘3 kg- m?

(b) The wheel slows down “on its own” from 1500 rpm to rest in 55.0 s. This is used to calculate the
frictional torque.

(0— 1500 rev/min)(2z rad/rev)(l1 min/60 s)
550s

A _
5 = oy = IA—‘;’z (1373x107 kg-m?)

=-3921x107 m-N
The net torque causing the angular acceleration is the applied torque plus the (negative) frictional
torque.
Aw
ZT = Tapplied Tt = I — Tapplied = la—75 =1 A_t_ Tt
(1750 rev/min)(2 7 rad/rev)(1 min/60 s)

(-3921x10° m-N)
500s

=(1373x107> kg-m?)

=1542x102 m-N

35. (a) The torque gives angular acceleration to the ball only, since the arm is considered massless. The
angular acceleration of the ball is found from the given tangential acceleration.

7 =1a = MR*>a = MR? "%: MRa,, = (3.6 kg)(0.31 m)(7.0 m/s*)

=7812 m-Nz
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(b) The triceps muscle must produce the torque required, but with a lever arm of only 2.5 cm,
perpendicular to the triceps muscle force.

r=Fr, — F=t/r =7812m-N/(25x107 m)=
36. (a) The angular acceleration can be found from the following:

Ao o v/r (85m/s)/(031m) 2 2
a=—=—=—-= = 7216rad/s”~ |72 rad/s
iy o

t t

(b) The force required can be found from the torque, since 7 = Frsin@. In this situation the force is
perpendicular to the lever arm, so € = 90°. The torque is also given by 7 = /ar, where [ is the

moment of inertia of the arm—ball combination. Equate the two expressions for the torque, and
solve for the force.

Frsinf=I1a
2 1 2
po la _ Mol + 3 Marm Larm
rsin @ rsin90°

_ (1.00 kg)(031 m)® +1(3.7kg)(031 m)?

(7216 1ad/s ) =6195 N ~ p20 N
(0.025 m) N )

37. The torque is calculated from 7 = Ia. The rotational inertia of a rod about its end is [ = %M 02

Aw (2.6 rev/s)(2r rad/rev)
r=1Ila=L1M0*===10090kg)(095 m) =2212m-N~ P2m-N
FM 12 =2 = 1090 kg)(0.95 m) 30

38. (a) The small ball can be treated as a particle for calculating its moment of inertia.

I =MR? = (0350 kg)(1.2 m)*> = 0.504 kg-m? ~ [0.50 kg - m?

(b) To keep a constant angular velocity, the net torque must be zero, so the torque needed is the
same magnitude as the torque caused by friction.

Zz’ = Tapplied ~Tfr =0 = Tyapplied = T = Fr 7= (0.020 N)(1.2 m) = 2.4x10 “m-N

39. (a) To calculate the moment of inertia about the y axis (vertical), use the following:

I=> MR}, =m(050 m)* + M (0.50 m)” +m(1.00 m)* + M (1.00 m)

= (m+00)[ (050 m)* +(1.00 m)* | = (5.6 ke)[ (0.50 m)? +(1.00 m)* | =

(b) To calculate the moment of inertia about the x axis (horizontal), use the following:

I=7 MR, = (2m+2M)(0.25 m)” = 2(5.6 kg)(0.25 m)* = 0.70 kg- m’

(c) Because of the larger / value, it is ten times harder to accelerate the array about the .

40. (a) The torque exerted by the frictional force is 7 = rFj; sin 8. The force direction of

of friction is assumed to be tangential to the clay, so 8 =90°. rotation
Tiowl = Fir in0 = (£(0.090 m) )(1.5 N) sin 90° = 0.0675 m- N /

[0 m N

=l

fr
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(b) The time to stop is found from @ = @, +at, with a final angular velocity of 0. The angular
acceleration can be found from 7., = /a. The net torque (and angular acceleration) is negative
since the object is slowing.

. 0-0, 0-0, _ 0-(l.orev/s)2x rad/rev)2 — 1638 s~
a T/l (-0.0675 m-N)/(0.11kg-m~)

41. The torque supplied is equal to the angular acceleration times the moment of inertia. The angular
acceleration is found by using Eq. 8-9b, with @, = 0. Use the moment of inertia of a sphere.

2 20 2\( 26
6’=a)0+%at - a:t_z; T:Iaz(g—Mro )[7 -

2 2
M= 52'; _ 5108 m 2N)(lS.O s) — 2331kg~ [23 kg
4r7;60  4(036 m)” (3207 rad)

42. (a) The moment of inertia of a thin rod, rotating about its end, is %M ¢%. There are three blades to

add together.

Lo =3(3M 2) = M 2% = (135 kg)(3.75 m)? = 1898 kg - m” ~ 1.90x10° kg-m? |

otal =

(b) The torque required is the rotational inertia times the angular acceleration, assumed constant.

- . 2
7= T = Ll @: (1898 kg m?) 807V Sé(of rad’reV) _ €600 m- N

43. The firing force of the rockets will create a net torque but no net force. Since each rocket fires
tangentially, each force has a lever arm equal to the radius of the satellite, and each force is
perpendicular to the lever arm. Thus, 7, = 4FR. This torque will cause an angular acceleration
according to 7 =/a, where [ = %MR2 +4mR?, combining a cylinder of mass M and radius R with

four point masses of mass m and lever arm R each. The angular acceleration can be found from the
JiY0)

kinematics by & = ——. Equating the two expressions for the torque and substituting enables us to
solve for the force.
1
4FR=1la=(iM +4m)Rzi—a) > F= M
T 4At
~ (% (3600 kg) +4(250 kg) )(4.0 m)(32 rev/min)(2 7z rad/r ev)(1 min/60 s) 318N
4(5.0 min)(60 s/min)

~(31N

44. (a) The free-body diagrams are shown. Note that only the forces
producing torque are shown on the pulley. There would also be a
gravity force on the pulley (since it has mass) and a normal force
from the pulley’s suspension, but they are not shown since they do
not enter into the solution.

(b) Write Newton’s second law for the two blocks, taking the positive
x direction as shown in the free-body diagrams.
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- (8.0 kg) [(9.80 m/s2) sin 32°+1.00 m/sz} ~49.55N

~ (2 significant figures)
my: ZFX =mgg sin g —Frg =mga —
Frg =mg (g sin O —a)
= (10.0 kg) [(9.80 m/s?) sin 61°—1.00 m/sﬂ =75.71N

.
(¢)  The net torque on the pulley is caused by the two tensions. We take clockwise torques as positive.

> 7= (Frp — Fra) R= (7571 N-49.55 N)(0.15m) =3.924 m-N ~

Use Newton’s second law to find the rotational inertia of the pulley. The tangential acceleration
of the pulley’s rim is the same as the linear acceleration of the blocks, assuming that the string
doesn’t slip.

Sr=Ia =1%= (Frg—Fra)R —

In (Frg —Fra)R _ (7571 N —49.55 N)(0.15 m) — 059 ke- m2

a 1.00 m/s?

45. (a) Since mg >my, , mg will accelerate down, m, will accelerate up,

and the pulley will accelerate clockwise. Call the direction of +0 //'-\
acceleration the positive direction for each object. The masses will [ R

have the same acceleration since they are connected by a cord. The i ~
rim of the pulley has that same acceleration since the cord makes it TA |

rotate, SO ap,ey = @/R. From the free-body diagrams, we have the

following: = F

ollowing P F,
ZFyA =Fpp—mpyg=mpya — Fpy=mpg+mpa T |
szB =mpg—Frg=mga — Frg=mpg—mga Ty My |+

ZTzFTBr—FTAr=Ia=I% |

We have to assume that the tensions are unequal in order to have a
net torque to accelerate the pulley. Substitute the expressions for the tensions into the torque
equation, and solve for the acceleration.

(mg —my) _ (mg —my)

(my +mg +1/R?) (mA +mpy + LmpR*/R” )

- (Pke-6Ske) ] (980 m/s%) = 0.6853 m/s* ~

[75kg+65kg+1(6.0kg)
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(b) If the moment of inertia is ignored, then from the torque equation we see that Frg = Fr,, and
the acceleration will be a;_ = "B —"8) 5 - T5ke=65K) g0 12 07000 mis?. We
(my +mp) 75 kg +65 kg

calculate the percent difference, which is small because of the relatively small mass of the pulley.

2 2
 error | 07000 s 0.68253 s |00 = 2.145% ~ %]
0.6853 m/s

46. Work can be expressed in rotational quantities as W =7 A8, so power can be expressed in rotational

. W A6
quantities as P =—=7—=10.
A At
P= o= (265m-N)| 3350 7Y |[ 272rad | 1min }f Thp | poe
min I rev 60s )\ 746 W

47. The energy required to bring the rotor up to speed from rest is equal to the final rotational kinetic
energy of the rotor.

. 2
KE, =1 10% = 1(3.25x107 kg-mz){87501(2”radj(lgglsnﬂ _ [36x10% 7

min\| 1rev

48. Apply conservation of mechanical energy. Take the bottom of the incline to be the zero location for
gravitational potential energy. The energy at the top of the incline is then all gravitational potential
energy, and at the bottom of the incline, there is both rotational and translational kinetic energy. Since
the cylinder rolls without slipping, the angular velocity is given by @ = v/R.

2
_ _ 1,21 2_1ar,2,  Llam2 U _ 33,2
EtOp = Ebottom —> Mgh = EMU + EICMCO = EMU + izMR F— 4—MU —>

o=\t gh= £ 080 m/s?)(7.20 m) =

49. The total kinetic energy is the sum of the translational and rotational kinetic energies. Since the ball is
rolling without slipping, the angular velocity is given by @ = v/R. The rotational inertia of a sphere

about an axis through its center is / = %mRz.

2
1,2, 17, 2_1_.2 12, p2\Y _ 7 2
ot = 7M0°+ 10" = Smo +2(5mR )—

=0.7(7.25 kg)(3.10 m/s)> = [48.8

KE{ota] = KE{rans +KE

50.  Maintaining a constant angular speed @y,q, Will require a torque 7. to oppose the frictional

motor

torque. The power required by the motor is P = Timotor Psteady = ~friction Psteady -
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_ _ 12| %
Thiction = { Xfriction =5 MR (—t -

2
{(3.8 rev/s)(zﬂ radﬂ
rev

16

—1.186x10° W

P

motor

Wy —
=%MR2( 0 t f jwsteady=%(220 kg)(5.5 m)>

_ 5 lhp _ -
=1.186x10 W(746W =158.9 hp = {160 hp

51. The work required is the change in rotational kinetic energy. The initial angular velocity is 0.

W = AKEgy = L0} LIw}= ;—(I—MRz)a)f— L (1440 kg)(7.50 m)? [Z”O;adJ - 1.63x 10" J
. S

52.  Use conservation of mechanical energy to equate the energy at points A
and B. Call the zero level for gravitational potential energy the lowest R
point on which the ball rolls. Since the ball rolls without slipping, N P
® =v/r. > y C
y=0"

mgR =mgr+%mué +%Ia)é

7

2
v
:mgr+%mué+l—(;mr2)(—8j - vg= 17—0g03—r)

53.  The only force doing work in this system is gravity, so mechanical energy is —
conserved. The initial state of the system is the configuration with m, on the /,
ground and all objects at rest. The final state of the system has mp just T, !
reaching the ground and all objects in motion. Call the zero level of \\ /
gravitational potential energy the ground level. Both masses will have the same -
speed since they are connected by the rope. Assuming that the rope does not
slip on the pulley, the angular speed of the pulley is related to the speed of the
masses by @ =uv/r. All objects have an initial speed of 0.

Mg

- o

-

E. :Ef RN s

1

1 2.1 1 1
> MpU; +2mBU += Ia) +mpAg Vi +MBE Voi = mAUf+ mBz)f+ Ia)f

2
Tmag Vir Mg Vor

2
mthz—mAUf+ mBUf (1MR2){R ]+mAgh

2(mg —my)gh 2(38.0 kg ~32.0 kg)(9.80 m/s*)(2.5 m) _
Uf = 1 = 20I1']/
(mp +mg+1M) (38.0 kg+320kg+(1)31 kg)

54. Since the lower end of the pole does not slip on the ground, the friction does no work, and mechanical
energy is conserved. The initial energy is the potential energy, treating all the mass as though it were at
the cM. The final energy is rotational kinetic energy, for rotation about the point of contact with the
ground. The linear velocity of the falling tip of the rod is its angular velocity divided by the length.
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Veng =38! = \/3(9.80 m/s?)(1.80 m) = [7.27 mis |

55.  The angular momentum is given by Eq. 8-18.

L=1Iw=MR*®=(0270kg)(1.35 m)*(10.4 rad/s) = [5.12 kg- m*/s

56. (a) The angular momentum is given by Eq. 8-18.

L=Io=L1MR* = 1 (28 kg)(0.28 m)* HBOOTWJ[” rad}(l mmﬂ

1 min 1rev 60s
=1494 kg~m2/s ~ |15 kg~m2/s

(b) The torque required is the change in angular momentum per unit time. The final angular
momentum is zero.

L-L, 0-1494kg-m%/s
T= = =[-25m-N
60+

At

1y 2 1(1,, 2 2
E'ntial = Eﬁnal =  PEinitial = KEfinal — mgh = Elw - mgl/2= 5(?’}’1 l )(Uend /f) -

The negative sign indicates that the torque is used to oppose the initial angular momentum.

57.(a) Consider the person and platform a system for angular momentum analysis. Since the force and torque
to raise and/or lower the arms are internal to the system, the raising or lowering of the arms will cause no

change in the total angular momentum of the system. However, the rotational inertia increases when the arms
are raised. |Since angular momentum is conserved, an increase in rotational inertia must be accompanied by a |

|decrease in angular Velocity.|

: 0.90 rev/
b) L=L - Lo=Lko — Ileiﬂ:]iﬂ:
TN 0.60 rev/s

The rotational inertia has increased by a factor of .

58.  Since there are no external torques on the system, the angular momentum of the two-disk system is
conserved. The two disks have the same final angular velocity.

Li:Lf —> 10)"1‘1(0):21(0{: —> a)f:%a)

59. There is no net torque on the diver, because the only external force (gravity) passes through the center
of mass of the diver. Thus the angular momentum of the diver is conserved. Subscript 1 refers to the
tuck position, and subscript 2 refers to the straight position.

I 2rev | 1
=L, > Lo=I - =@ —= — |= [0.38 rev/s
L=l 19 =42% @2 =0 1 (13}(35)

60. The skater’s angular momentum is constant, since no external torques are applied to her.

;

x 2.5rev/s

She accomplishes this by starting with her arms extended (initial angular velocity) and then
pulling her arms in to the center of her body| (final angular velocity).
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61. (a) The angular momentum is the moment of inertia (modeling the skater as a cylinder) times the
angular velocity.

L=1lo=1MR%»=1(48kg)(0.15 m)’ (3.0 gj(h rad]: 1018 kg- m* /s
S 1rev

~[1.0x10" kg-m?/s

(b) If'the rotational inertia does not change, then the change in angular momentum is strictly due to a
change in angular velocity.

AL Twgyy —Iw, 0-1018kg-m?/s
T=—0= = =25m N
0t

At At

The negative sign indicates that the torque is in the opposite direction as the initial angular
momentum.

62. Since the person is walking radially, no torques will be exerted on the person—platform system, and
angular momentum will be conserved. The person is treated as a point mass. Since the person is
initially at the center, they have no initial rotational inertia.

(a) Li = Lf - Iplatform @ = (]platform + ]person )a)f

I om?
wp = —PRtom 820 kg-m (0.95 rad/s)= 0.5211 rad/s~ [0.52 rad/s

I +mR2 ' 820 kg m? + (75 kg)(3.0 m)>

platform
(b)  KE; =1/ pma’ = 1820 kg-m?)(0.95 rad/s)* =

_1 2_ 1 2 2
KEf - E([ platform +1 person ) o = 2_(1 platform + Mperson’} person) 23

=1[820 kg-m” + (75 kg)(3.0 m)*](0.521 1 rad/s)” = 203 T ~ .0 10° J

63. (a) The angular momentum of the combination of merry-go-round (abbreviate mgr) and people will
be conserved, because there are no external torques on the combination. This situation is a totally
inelastic collision in which the final angular velocity is the same for both the merry-go-round
and the people. Subscript 1 represents before the collision, and subscript 2 represents after the
collision. The people have no initial angular momentum.

S NP
L g +eopic Lngr +4M oo R?

mgr
2
1360 kg -m j| =0.4341rad/s = .43 rad/s

=(0.80 rad/s)

1360 kg -m? +4(65 kg)(2.1 m)?

(b) If'the people jump off the merry-go-round radially, then they exert no torque on the merry-go-
round and thus cannot change the angular momentum of the merry-go-round. The merry-go-

round would continue to rotate at |0.80 rad/s|.

64. All parts of the object have the same angular velocity. The moment of inertia is the sum of the rod’s
moment of inertia and the mass’s moment of inertia.

L=Io= [%Mﬁ +2m (%z)z}oz é—(é—M+m)€2a)
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65. The angular momentum of the disk—rod combination will be conserved, because there are no external
torques on the combination. This situation is a totally inelastic collision, in which the final angular
velocity is the same for both the disk and the rod. Subscript 1 represents before the collision, and
subscript 2 represents after the collision. The rod has no initial angular momentum.

1 1/p2
1 1 MR
) =, —11 = disk __ _ [ 2 ]z (3 3 rev/s) (%}: 2.0 rev/s
2

Tgisk +1rod L MR* + L M(2R)

66. Angular momentum will be conserved in the Earth—asteroid system, since all forces and torques are
internal to the system. The initial angular velocity of the satellite, just before collision, can be found

from @,geroi d/Rearn - Assuming the asteroid becomes imbedded in the Earth at the surface,

the Earth and the asteroid will have the same angular velocity after the collision. We model the Earth
as a uniform sphere and the asteroid as a point mass.

d = Uasteroi

Li=Lr = Tgarh Oparth + Lasteroid @asteroid = LBarth T Lasteroi Q¢

The moment of inertia of the satellite can be ignored relative to that of the Earth on the right side of the
above equation, so the percent change in Earth’s angular velocity is found as follows:

(wf B a)Earth) _ ]asteroid Wasteroid
@Earth I Earth  @Earth

Tarth @Barth + Lasteroid Pasteroid = TEarth @p
Dasteroid

2
% change — (wf _a)Earth) (1 00) — Mysteroid REarth REarth _ Mysteroid Dasteroid (1 00)

2 2
Oarth Mg Rien, @Rarth 5 MEarth @arth Beartn

5 4
_ (1.0x10° kg)(3.5x10* m/s) (100) = 32210 9%

27 rad
0.4)(5.97x10%* k)| === 1(6.38x10° m
(0.4)( g)(86’4008j( )

67. The angular momentum of the person—turntable system will be conserved. Call the direction of the
person’s motion the positive rotation direction. Relative to the ground, the person’s speed will be
v+ur, where v is the person’s speed relative to the turntable, and vy is the speed of the rim of the

turntable with respect to the ground. The turntable’s angular speed is @y = v /R, and the person’s

v+or
R

angular speed relative to the ground is wp = = %4‘ oy . The person is treated as a point particle

for calculation of the moment of inertia.

L=L — O:ITa)r+1Pa)P:IT(or+mR2(a)r+%j -

op ———mR0____ (OSke)@ISmIAOMS) ) 3054 radise 031 radss

I +mR® 1850 kg- m> + (65 kg)(2.75 m)>

67.Angular momentum is conserved in the interaction between the child and the merry-go-round.

2
Linitial :Lﬁna] - LO = Lf +Lf - [mgr @Q = (]mgr +Ichild )a): (Imgr +mchildngr )a) -
mgr child mgr

I g (@) — @) _ (1260 kg -m?)(0.35 rad/s) _ 5207 kgw
il TR 4 (2.5 m)* (135 rad/s) '

mgr

© Copyright 2015 Pearson Education, Ltd. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Rotational Motion 8-21

68.

69.

70.

71.

72.

73.
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The torque is found from 7 = /a. The angular acceleration can be found from @ = @, + af, and the

initial angular velocity is 0. The rotational inertia is that of a cylinder.

- 24 rev/s)(2x rad/rev)
v = T = LR 2290 )2 0,5(1.6 ke)(0.20 m) & - 080m N
b (| 05006 k020 my? GG

The linear speed is related to the angular velocity by v = @R, and the angular velocity (rad/s) is
related to the frequency (rev/s) by @ =2z f. Combine these relationships to find values for the
frequency.

v v v 1.25m/s 60s
o=2rf=— - = ; = = = %80 rpm
I =% S5 27R,  27(0.025 m) (1 min j

v 1.25m/s 60s
= = = [210 rpm
/2 27R, 27(0.058 m)( ]

1 min

As discussed in Section 83 of the textbook, from the reference frame of the axle of the wheel, the
points on the wheel are all moving with the same speed of v = r@, where v is the speed of the axle of

the wheel relative to the ground. The top of the tire has a velocity of v to the right relative to the axle,
so it has a velocity of 2v to the right relative to the ground.

Vioprel = Vioprel T Veenterrel = (U to the right)+ (v to the right) = 2v to the right

ground center ground
Vioprel =20 = 2(0y +at) = 2at = 2(1.00 m/s *)(2.255) =
ground

Assume that the angular acceleration is uniform. Then the torque required to whirl the rock is the
moment of inertia of the rock (treated as a particle) times the angular acceleration.

— 60 kg)(1.5 m)* d i
T:Iaz(mrz)(w ta)o): (0.60 5gz)(ISSm) |:(75 %J(Zﬂ'ra j(l;)n: ]:|:

rev

That torque comes from the arm swinging the sling and is generated by the arm muscles.

(a) The linear speed of the chain must be the same as it passes over both sprockets. The linear speed
is related to the angular speed by v = @R, so wg Ry = @pRg. If the spacing of the teeth on the

sprockets is a distance d, then the number of teeth on a sprocket times the spacing distance must
give the circumference of the sprocket.

Nd =27R so RzN—d.Thusa)R =op—— o |

Npd Ngpd @R  Ng
2 2 2 op Ny |

() |og /op =52/13=4.0|

(©) |og/op =42/28=15]

H
The mass of a hydrogen atom is 1.01 atomic mass units. The atomic mass unit is ﬁ
1
1

1.66x107%7 kg. Since the axis passes through the oxygen atom, the oxygen atom Y
will have no rotational inertia.

(a) If'the axis is perpendicular to the plane of the molecule, then each hydrogen
atom is a distance ¢ from the axis of rotation. 0
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Lnerp = 2myg 0% =2(1.01)(1.66x 107 kg)(0.096x10~ m)*

=(3.1x10™" kg-m?
(b) If'the axis is in the plane of the molecule, bisecting the H—O—H bonds, each hydrogen atom is
a distance of £, =/ sin 6 = (9.6x 107! m) sin 52° = 7.564 x 107" m. Thus the moment of inertia

is as follows:

I

plane

= 2myy 0% = 2(1.01)(1.66x10 77 kg)(7.564x1071 m)* = 1.9x10* kg-m” |

74. (a) Assuming that there are no dissipative forces doing work,
conservation of mechanical energy may be used to find the final
height 4 of the hoop. Take the bottom of the incline to be the zero
level of gravitational potential energy. We assume that the hoop is O 7

rolling without sliding, so that @ = v/R. Relate the conditions at the
bottom of the incline to the conditions at the top by conservation of energy. The hoop has both
translational and rotational kinetic energy at the bottom, and the rotational inertia of the hoop is

given by [ = mR?.

2
2 2 2 2 L
Epottom = Erop = %mU +%ICU =mgh — é—mU +é—mR Fzmgh -
2 2
h:U—ZMZO.9184m
g 9.80m/s

. . h 0.9184
The distance along the plane is given by d = ——= —m =3.548 m=
sind  sin15°
(b) The time can be found from the constant acceleration of the linear motion.
2Ax  2(3.548 m)
v+y, 0+3.0nVs

This is the time to go up the plane. The time to come back down the plane is the same, so the

total time is .

75. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular
frequency of one revolution per day.

=2365s

Ax=L(+v))t — 1=

_ (202
Laity = 1 @gaity = (EMREmh )a’daily

= 2(5.98x10% kg)(6.38x10° m)?| [ 221 |14y )b og,10% kg m2ss
3 1 day )\ 86,400 s

(b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency
of one revolution per year.

_ B 2
Lyaity =1 @gaity = (MRSun- Ja)daily
Earth

_ (59810 ke)(1.496x 10" m)? || 2214 |[ _1day }i_ 0.67x10% kg-m>/s
365 day )\ 86,400 s
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76. The wheel is rolling about the point of contact with the step, so all
torques are to be taken about that point. As soon as the wheel is off
the floor, there will be only two forces that can exert torques on the
wheel: the pulling force and the force of gravity. There will not be a
normal force of contact between the wheel and the floor once the
wheel is off the floor, and any force on the wheel from the point of the
step cannot exert a torque about that very point. Calculate the net
torque on the wheel, with clockwise torques positive. The minimum
force occurs when the net torque is 0.

> t=F(R-h)-mgyR*~(R—h)* =0
o Mg\JR® — (R —h)? _ MgN2Rh —h?

R—-h R-h

77. Each wheel supports % of the weight of the car. For rolling without slipping,
there will be static friction between the wheel and the pavement. For the wheel to
be on the verge of slipping, there must be an applied torque that is equal to the
torque supplied by the static frictional force. We take counterclockwise torques to
the right in the diagram. The bottom wheel would be moving to the left relative to
the pavement if it started to slip, so the frictional force is to the right. See the
free-body diagram.

1
Tapplied — Tstatic — RF; = Ry Fy = Ry M8

min friction

=1(0.33 m)(0.65)(1080 kg)(9.80 m/s %) =

78. (a) The kinetic energy of the system is the kinetic energy of the two masses, since the rod is treated

as massless. Let A represent the heavier mass and B the lighter mass.

_1 2 1 2 _ 1 2.2 1 2.2 1.2 2

=1(0.210 m)*(5.60 rad/s)*(7.00 kg) = [4.84 J

(b) The net force on each object produces centripetal motion so can be expressed as mra?.
Fy =myry o3 = (4.00 kg)(0.210 m)(5.60 rad/s)* = 26.3 N
Fy = mgrgop = (3.00 kg)(0.210 m)(5.60 rad/s)* = [19.8 N

These forces are exerted by the rod. Since they are unequal, there would be a net horizontal force
on the rod (and hence the axle) due to the masses. This horizontal force would have to be
counteracted by the mounting for the rod and axle in order for the rod not to move horizontally.
There is also a gravity force on each mass, balanced by a vertical force from the rod so that there
is no net vertical force on either mass.

79. Note the similarity between this problem and MisConceptual Questions 10 and 11. There is no torque
applied to the block, so its angular momentum would remain constant. The angular velocity is the
speed of the block divided by the radius of the string. The moment of inertia of the block about the

center of its motion is %mrz.
_ 1,20 _ 12U _
Loy =lo, — Fmpy —Egmn s o =hy o
i b}
7 0.80 m
vy = U = (2.4 m/s) = (4.0 m/s
r 0.48m
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80. (a) The force of gravity acting through the CM will cause a clockwise torque, which produces an
angular acceleration. At the moment of release, the force of gravity is perpendicular to the lever
arm from the hinge to the CM™.

Toravity _ Mg€/2 _ 3_g
Irod about end % Méz 20

r=Ila —> a=

(b) Atthe end of the rod, there is a tangential acceleration equal to the angular acceleration times the
distance from the hinge. There is no radial acceleration, because at the moment of release, the
speed of the end of the rod is 0. Thus, the tangential acceleration is the entire linear acceleration.

_ _ _ |3
Yinear = %an = al=

Note that this is bigger than the free-fall acceleration of g.

81. (a) We assume that no angular momentum is in the thrown-off mass, so the final angular momentum
of the neutron star is equal to the angular momentum before collapse.

Ly=Ly — lyy=lop — [%(&OMSun RSt }a’b = |:§_(¢1T8'0M5un )Rf2:|a)f -
|:% (8'OMSun)RS2un:| on = 4R82un
[2(180Mg, )RE] " R

1 day 4
= (1.495%10° rev/day)| ———=— |=1.730 x10* rev/s ~ 17,000 rev/s
( o)

(b) Now we assume that the final angular momentum of the neutron star is only % of the angular

4(6.96x10% m)? ( 1.0 rev )
(,UO =

(12x10° m)*> | 9.0 days

momentum before collapse. Since the rotation speed is directly proportional to angular
momentum, the final rotation speed will be ]7 of that found in part (a).

wp = %(1.730>< 104 rev/s) = |4300 rev/s

82.  Since the spool rolls without slipping, each point on the edge of the spool moves with a speed of
L =rw =g, relative to the center of the spool, where v, is the speed of the center of the spool

relative to the ground. Since the spool is moving to the right relative to the ground, and the top of the
spool is moving to the right relative to the center of the spool, the top of the spool is moving with a
speed of 2u,, relative to the ground. This is the speed of the rope, assuming it is unrolling without

slipping and is at the outer edge of the spool. The speed of the rope is the same as the speed of the
person, since the person is holding the rope. So the person is walking with a speed of twice that of the
center of the spool. Thus if the person moves forward a distance 7, in the same time the center of the

spool, traveling with half the speed, moves forward a distance /2] The rope, to stay connected both
to the person and to the spool, must therefore unwind by an amount also.

83.  The spin angular momentum of the Moon can be calculated by Lgyi, = i @gpin = %MR,\%loon Ogpin -

The orbital angular momentum can be calculated by L : =1 Qorbic = MRozrbit Oy - Because the

same side of the Moon always faces the Earth, @y, = @iy -

2 2 2
Lspin _ %MRMoona)spin _ ;[RMoon j —0 4[1.74><106 mJ — [821x 10—6
5 ’ -

Lot MRfrbit Dorbit R it 3.84x10° m
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84. We calculate spin angular momentum for the Sun and orbital angular momentum for the planets,
treating them as particles relative to the size of their orbits. The angular velocities are calculated from

2
w=—:
T
2z 2r 1 day
Loy, =1 = 2Mg RE, ——=2(1.99x10* kg)(6.96x 10° m)?
Sun Sun @Sun 54" Sun“*Sun S 5( g)( ) (25 days) 86,400 s

=1.1217x10* kg-m/s

2z 25 9 2 27 1yr
Liviter =M junicer Rimiter ———= (190x 10%° kg)(778x 10° m)
upiter upiter Oligger TJupiter (11.9 yr) 3.156X107 s

=1.9240x10* kg-m/s

In a similar fashion, we calculate the other planetary orbital angular momenta.

2n
2 42
Lsatun =M satum RSatum ———= 7.806x10™ kg- m/s

orbit Saturn

2

2 U 42
Lranus =M Uranus RUranus 77— = 1.695x10™ kg- m/s

orbit Uranus
2 2 42
LNeptune =M NeptuneRNeptune ——=12492x10"" kg-m/s
orbit Neptune
L 19.240+7. 1. 2.492)x10* kg -
f= planets _ (19.240 +7.806 +1.695 +2.492) x10 ™ kg - m/s — 10965

Lyjanets +Lsun  (19.240+7.806+1.695 +2.492 +1.122) x10 ¥ kg -m/s

85. (a) The angular momentum delivered to the waterwheel is that lost by the water.

ALypeet = —ALyger = Linitial — Lfinat = MYR—mu R —
water water
AL R-— R R
Zheel - n Mol _ ’Z—(u1 — 0y) = (85 kg/s)(3.0 m)(3.2 m/s) = 816 kg m %/s 2
t t t

~|820 kg-mz/s2

(b) The torque is the rate of change of angular momentum, from Eq. 8-19.

AL
Ton =—3heel _ 816 kg-m?/s?=816m-N~ [820m-N

wheel At

(c) Poweris given by P =r7w. See the text immediately after Eq. 8—17.

P=10=(816 m-N)(Z;’;erz 930 W
DS

Solutions to Search and Learn Problems

1. The radian is defined as the ratio of the distance traveled along an arc divided by the radius of the arc.
When an angle in radians is multiplied by the radius the result is a distance. Therefore, when angular
speed (which is angular displacement divided by time) is multiplied by the radius the result is the
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displacement along the arc divided by time, which is a linear speed. Degrees and revolutions are not
defined in terms of arc lengths and cannot be used in the same way.

2. The angle in radians is the diameter of the object divided by the distance to the object.

2R . 3 -
Absy, = S _ 2(6.96x10" km) _ 9.30x 107> rad

TEarth—Sun 149.6x10° km

2R 2(1.74x10° k -
AbOypoon = — 100 — = (174107 km) _ {6 06 10 rad

"Barth—Moon 384 x1 03 km

Since these angles are practically the same (only a 2.6% difference), solar eclipses can occur. Based on
these values, the Sun would never be completely obscured. But since the orbits are not perfect circles
but are ellipses, the above values are just averages. Full (total) solar eclipses do occur.

3. (a) Weuse conservation of energy to determine the speed of each sphere as a function of position on
the incline. The sphere with the greater speed would reach the bottom of the incline first.
Potential energy will be zero at the base of the incline (v = 0) and the initial height will be H. We
take position 1 to be at the top of the incline and position 2 to be at a generic location along the
incline.

— 1,2 17,2
KE| +PE| =KEy +PE; —> 0+ mgH = Smv”™+ 310"+ mgy

2
v
mg(H —y) = %(mu2 +Lmr2e? )= 1—(mu2 +Zmr? —ZJz 1—(lmz)2 )—)
r

2 2 5 2
v= R g(H-y)

The velocity along the incline does not depend upon either the mass or the radius of the sphere.
Therefore, both spheres have the same speed at each point along the incline, and poth will reach

|the bottom of the incline at the same time.|

(b) As shown in part (a), both spheres will have the same speed at each point along the incline, so
fboth will have the same speed at the bottom of the incline.|

(c) By conservation of energy, the total kinetic energy at the bottom of the incline will equal the
potential energy at the top of the incline. The initial potential energy is proportional to the mass
of each sphere, so the more massive sphere will have the greater kinetic energy{. The total kinetic
energy is independent of the spheres’ radii.

4. Assume a mass of 50 kg, corresponding to a weight of about 110 Ib. From Table 71, we find that the
total arm and hand mass is about 12.5% of the total mass, so the rest of the body is about 87.5% of the

total mass. Model the skater as a cylinder of mass 44 kg, and model each arm as \

a thin rod of mass 3 kg. Estimate the body as 150 cm tall with a radius of 0 N

15 cm. Estimate the arm dimension as 70 cm long. '
150,cm

With the arms held tightly, we approximate that the arms are part of the body i

cylinder. A sketch of the skater in this configuration is then as shown in the first
diagram (not to scale). In this configuration, the rotational inertia is

I

m

— _1 2
=1 cylinder — EM total Rbody

body
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With the skater’s arms extended, the second diagram woodOem .
applies. In this configuration, the rotational inertia is L
| C |
2 2 i
Loy = Ibody + L yms = %Mbodbeody + 2(;_Marm )Larm ---__:__---"'} |
E 150icm
The forces and torques involved in changing the #---r i
configuration of the skater are internal to the skater, so the 15cm !
skater’s angular momentum is conserved during a ! H
configuration change. Thus, '“——{——""r
Ly =Ly = [in®y =loy @ —
1 2
2 M otal Rood 2
Oout _ T _ T hedy Y _ 1(50 kg)(0.15 m)
on Lo LM, R +2(lM )L2 L (44 kg)(0.15 m)* +2 (L )(3 kg)(0.70 m)?
n out 2 body “*body 3 arm )~arm 2 g)( . m) + 3 ( g)( . m)
=0.381~

Alternatively, we would have that @, /@y, = (0.381)"' =2.6, so the skater spins about 2.6 x faster

with the arms pulled in.

5. (a) The initial energy of the flywheel is used for two purposes: to give the car translational kinetic
energy 30 times, and to replace the energy lost due to friction, from air resistance and from braking. The
statement of the problem leads us to ignore any gravitational potential energy changes.

— _ 1 2
Wy = KEfinal = KEinitial — F Ax cos 180° = EMcar Qar ~ KEflywheel

— 1 2
KEﬂywheel - F;“rAx + EMcar Ccar

= (450 N)(3.5x10° m)+(30) (1100 kg) {(95 km/h) (ﬂﬂ

3.6 km/h
=1.690x10% T~ [1.7x10% J
2

8
w=\/2KE=\/ 2 KE =J 206901079 _ 5110 rad/s~ [2100 radss

%MﬂywheelRf%ywheel %(270 kg)(0.75 m)Z

. . . k
(¢) To find the time, use the relationship that power = g, where the work done by the motor

will be equal to the kinetic energy of the flywheel.

w w (1.690x10% J) 5 (1min .
P=— — t=—= =1.510x10"s ~ 25 min
t 0

P (150 hp)(746 W/hp)

Lp =0

A

jund#

6. When the person and the platform rotate, they do so about the vertical axis. Initially
there is no angular momentum pointing along the vertical axis, so any change that the
person—wheel—platform undergoes must result in no net angular momentum along the
vertical axis. The first diagram shows this condition.

A

(@) Now consider the next diagram. If the wheel is moved so that its angular Ly
momentum points upward, then the person and platform must get an equal but
opposite angular momentum, which will point downward. Write the angular <)
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momentum conservation condition for the vertical direction to solve for the angular velocity of

the platform.

I
L=L — O0=Ilyoy+lop — a)Pz—Ila)w
P

The negative sign means that the platform is rotating in the opposite direction of the
wheel. If the wheel is spinning counterclockwise when viewed from above, the
platform is spinning clockwise.

(b) Now consider the next diagram. If the wheel is pointing at a 60° angle to the
vertical, then the component of its angular momentum that is along the vertical
direction is Iy y cos60°. Also see the simple vector diagram below the adjacent

diagram. Write the angular momentum conservation condition for the vertical
direction to solve for the angular velocity of the platform.

W

?L

1 |
Li=L — 0=Iywycos60°+lpwp — a)P:—la)W !
2[P 1 600
Again, the negative sign means that the platform is rotating in the opposite |
. . ! Lw=1Iw ow
direction of the wheel. !

(¢) Consider the final diagram. If the wheel is moved so that its angular momentum
points downward, then the person and platform must get an equal but opposite angular
momentum, which will point upward. Write the angular momentum conservation condition for
the vertical direction to solve for the angular velocity of the platform.

The platform is again rotating in the opposite direction of the wheel. If the wheel is
now spinning clockwise when viewed from above, the platform is spinning
counterclockwise.

(d) Since the total angular momentum is 0, if the wheel is stopped from rotating, the
platform will also stop. Thus |@wp = 0|

/-V

5o
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