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Responses to Questions

1. For momentum to be conserved, the system under analysis must be “closed”—not have any forces on
it from outside the system. A coasting car has air friction and road friction on it, for example, which
are “outside” or “external” forces and thus reduce the momentum of the car. If the ground and the air
were considered part of the system and their velocities analyzed, then the momentum of the entire
system would be conserved, but not necessarily the momentum of any single component, like the car.

2. The momentum of an object can be expressed in terms of its kinetic energy, as follows:

 2 2 2 21 KE2( ) 2 2p m m m m m m m       

Thus if two objects have the same kinetic energy, then the one with more mass has the greater
momentum.

3. Consider this problem as a very light object hitting and sticking to a very heavy object. The large
object–small object combination (Earth jumper) would have some momentum after the collision,
but due to the very large mass of the Earth, the velocity of the combination is so small that it is not
measurable. Thus the jumper lands on the Earth, and nothing more happens.

4. When you release an inflated but untied balloon at rest, the gas inside the balloon (at high pressure) rushes
out the open end of the balloon. That escaping gas and the balloon form a closed system, so the momentum
of the system is conserved. The balloon and remaining gas acquire a momentum equal and opposite to the
momentum of the escaping gas, so they move in the opposite direction to the escaping gas.

5. As the fish swishes its tail back and forth, it moves some water backward, away from the fish. If we
consider the system to be the fish and the water, then, from conservation of momentum, the fish must
move forward.

6. (d) The girl moves in the opposite direction at 2.0 m/s. Since there are no external forces on the pair,
momentum is conserved. The initial momentum of the system (boy and girl) is zero. The final
momentum of the girl must be the same in magnitude and opposite in direction to the final momentum
of the boy so that the net final momentum is also zero.
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7. The air bag greatly increases the amount of time over which the stopping force acts on the driver. If a
hard object like a steering wheel or windshield is what stops the driver, then a large force is exerted
over a very short time. If a soft object like an air bag stops the driver, then a much smaller force is
exerted over a much longer time. For instance, if the air bag is able to increase the time of stopping by
a factor of 10, then the average force on the person will be decreased by a factor of 10. This greatly
reduces the possibility of serious injury or death.

8. Yes. In a perfectly elastic collision, kinetic energy is conserved. In the Earth–ball system, the kinetic
energy of the Earth after the collision is negligible, so the ball has the same kinetic energy leaving the
floor as it had hitting the floor. The height from which the ball is released determines its potential
energy, which is converted to kinetic energy as the ball falls. If it leaves the floor with this same
amount of kinetic energy and a velocity upward, it will rise to the same height as it originally had as
the kinetic energy is converted back into potential energy.

9. In order to conserve momentum, when the boy dives off the back of the rowboat the boat will move
forward.

10. He could have thrown the coins in the direction opposite the shore he was trying to reach. Since the
lake is frictionless, momentum would be conserved and he would “recoil” from the throw with a
momentum equal in magnitude and opposite in direction to the coins. Since his mass is greater than
the mass of the coins, his speed would be less than the speed of the coins, but, since there is no friction,
he would maintain this small speed until he hit the shore.

11. When the tennis ball rebounds from a stationary racket, it reverses its component of velocity
perpendicular to the racket with very little energy loss. If the ball is hit straight on, and the racket is
actually moving forward, the ball can be returned with an energy (and a speed) equal to (or even
greater than) the energy it had when it was served.

12. Yes. Impulse is the product of the force and the time over which it acts. A small force acting over a
longer time could impart a greater impulse than a large force acting over a shorter time.

13. The collision in which the two cars rebound would probably be more damaging. In the case of the
cars rebounding, the change in momentum of each car is greater than in the case in which they stick
together, because each car is not only brought to rest but also sent back in the direction from which it
came. A greater impulse results from a greater force, so most likely more damage would occur.

14. (a) The momentum of the ball is not conserved during any part of the process, because there is an
external force acting on the ball at all times—the force of gravity. And there is an upward force
on the ball during the collision. So considering the ball as the system, there are always external
forces on it, so its momentum is not conserved.

(b) With this definition of the system, all of the forces are internal, so the momentum of the
Earth–ball system is conserved during the entire process.

(c) For a piece of putty falling and sticking to a steel plate, if the system is the putty and the Earth,
momentum is conserved for the entire path.

15. “Crumple zones” are similar to air bags in that they increase the time of interaction during a collision,
and therefore lower the average force required for the change in momentum that the car undergoes in
the collision.
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16. For maximum power, the turbine blades should be designed so that the water rebounds. The water has
a greater change in momentum if it rebounds than if it just stops at the turbine blade. If the water
has a greater change in momentum, then, by conservation of momentum, the turbine blades also have a
greater change in momentum and will therefore spin faster.

17. (a) The direction of the change in momentum of the ball is perpendicular to the wall and away from
it, or to the left in the figure.

(b) Since the force on the wall is opposite that on the ball, the force on the wall is to the right.

18. From Eq. 7–7 for a 1-D elastic collision, A B B A .       Let A represent the bat, and let B
represent the ball. The positive direction will be the (assumed horizontal) direction that the bat is
moving when the ball is hit. We assume that the batter can swing the bat with equal strength in either
case, so that A is the same in both pitching situations. Because the bat is so much heavier than the
ball, we assume that A A   —the speed of the bat doesn’t change significantly during the collision.
Then the velocity of the baseball after being hit is B A A B A B2 .           If B 0,  the ball
tossed up into the air by the batter, then B A2   —the ball moves away with twice the speed of the
bat. But if B 0,  the pitched ball situation, we see that the magnitude of B A2 ,   so the ball
moves away with greater speed. If, for example, the pitching speed of the ball was about twice the
speed at which the batter could swing the bat, then we would have B A4 .   Thus the ball has greater
speed after being struck, so the ball will travel farther after being hit. This is similar to the
“gravitational slingshot” effect discussed in Search and Learn 4.

19. A perfectly inelastic collision between two objects that initially had momenta equal in magnitude but
opposite in direction would result in all the kinetic energy being lost. For instance, imagine sliding two
clay balls with equal masses and speeds toward each other across a frictionless surface. Since the
initial momentum of the system is zero, the final momentum must be zero as well. The balls stick
together, so the only way the final momentum can be zero is if they are brought to rest. In this case, all
the kinetic energy would be lost. A simpler situation is dropping a ball of clay onto the floor. The clay
doesn’t rebound after the collision with the floor, and all of the kinetic energy is lost.

20. Passengers may be told to sit in certain seats in order to balance the plane. If they move during the
flight, they could change the position of the center of mass of the plane and affect its stability in flight.

21. In order to maintain balance, your CM must be located directly above your feet. If you have a heavy
load in your arms, your CM will be out in front of your body and not above your feet. So you lean
backward to get your CM directly above your feet. Otherwise, you might fall over forward.

22. The 1-m length of pipe is uniform—it has the same density throughout, so its CM is at its geometric
center, which is its midpoint. The arm and leg are not uniform—they are more dense where there is
muscle, primarily in the parts that are closest to the body. Thus the CM of the arm or leg is closer to the
body than the geometric center. The CM is located closer to the more massive part of the arm or leg.

23. When a rocket expels gas in a given direction, it puts a force on that gas. The momentum of the
gas-rocket system stays constant, so if the gas is pushed to the left, the rocket will be pushed to the
right due to Newton’s third law. So the rocket must carry some kind of material to be ejected (it could
be exhaust from some kind of engine, or it could be compressed gas) in order to change direction.

24. Consider Bob, Jim, and the rope as a system. The center of mass of the system is closer to Bob,
because he has more mass. Because there is no net external force on the system, the center of mass will
stay stationary. As the two men pull hand-over-hand on the rope they will move toward each other,
eventually colliding at the center of mass. Since the CM is on Bob’s side of the midline, Jim will cross
the midline and lose.
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25. If there were only two particles as decay products, then by conservation of momentum, the momenta
of the two decay products would have to be equal in magnitude and opposite in direction, so that the
momenta would be required to lie along a line. If the momenta of the recoil nucleus and the electron do
not lie along a line, then some other particle (the neutrino) must have some of the momentum.

26. When you are lying flat on the floor, your CM is inside of the
volume of your body. When you sit up on the floor with your
legs extended, your CM is outside of the volume of your body.
The CM is higher when you sit up, and is slightly in front of
your midsection.

27. The engine does not directly accelerate the car. The engine puts a force on the driving wheels, making
them rotate. The wheels then push backward on the roadway as they spin. The Newton’s third law
reaction to this force is the forward pushing of the roadway on the wheels, which accelerates the car.
So it is the (external) road surface that accelerates the car.

28. The motion of the center of mass of the rocket will follow the original parabolic path, both before
and after explosion. Each individual piece of the rocket will follow a separate path after the explosion,
but since the explosion was internal to the system (consisting of the rocket), the center of mass of all
the exploded pieces will follow the original path.

Responses to MisConceptual Questions

1. (d) Students frequently have one of two common misconceptions. One idea is that since the truck
has more mass, it has more momentum and will have a greater momentum change. Alternatively,
some students think that since the smaller object has a greater change in speed, it will have the
greater change in momentum. In the absence of external net forces, momentum is a conserved
quantity. Therefore, momentum lost by one of the vehicles is gained by the other, and the
magnitude of the change in momentum is the same for both vehicles.

2. (b) A common misconception in this problem is the belief that since the sand is dropped onto the
boat, it does not exert a force on the boat and therefore does not accelerate the boat. However,
when dropped, the sand has no initial horizontal velocity. For the sand to be at rest on the deck
of the boat it must be accelerated from rest to the final speed of the boat. This acceleration is
provided by the force of friction between the boat and sand. By Newton’s third law, the sand
exerts an equal but opposite force on the boat, which will cause the boat to slow down.

3. (c) Students may have the misconception that by doubling the mass the final speed will decrease.
However, the momentum and kinetic energy are proportional to the mass. So, if each mass is
doubled, then every term in the conservation of momentum and conservation of kinetic energy
equations is doubled. This factor of two can be divided out to return to the initial equation.
Therefore, doubling the masses will have no effect on the final motion.

4. (a) Since the net momentum of the astronaut and wrench is zero, the only way for the astronaut to
move toward the space station is for the wrench to move away from the station. If the astronaut
throws the wrench in any other direction, the astronaut will move away from the wrench but not
toward the station. If the astronaut throws the wrench toward the station but does not let go of it,
neither the wrench nor the astronaut will move.

5. (a) Since the asteroid ends up in the shuttle storage bay, the asteroid and shuttle have the same final
speed. This is a completely inelastic collision, so only momentum is conserved.

CM
CM
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6. (a) A common error is to ignore the vector nature of momentum and impulse. The bean bag and golf
ball have the same momentum just before they hit the ground. The bean bag comes to rest when
it hits the ground, so the ground has exerted an upward impulse equal to the magnitude of bean
bag’s momentum. The golf ball rebounds upward with the same magnitude momentum, but in
the opposite direction. The ground therefore exerted an upward impulse equal to twice the
magnitude of the momentum.

7. (a) Students may consider that the superball and clay have the same momentum and as such would
be equally effective. However, since the clay and superball interact with the door differently, this
is incorrect. The clay sticks to the door, exerting an impulse on the door equal to its momentum.
The superball bounces off of the door, exerting an impulse about equal to twice its momentum.
Since the superball imparts a greater impulse to the door, it will be more effective.

8. (c) This problem requires the student to understand the vector nature of momentum. The ball
initially has a momentum toward the batter. If the ball is stopped by the catcher, the change in
momentum has the same magnitude as the initial momentum. If the ball is hit straight back to the
pitcher, the magnitude of the change in momentum is equal to twice the initial momentum. If the
ball is hit straight up at the same speed, the change in momentum has a horizontal and a vertical
vector component with the magnitude of each component equal to the initial momentum. Since
the two components are perpendicular to each other, the magnitude of the change in momentum
will be less than the sum of their magnitudes. As such, the greatest change in momentum occurs
when the ball is hit straight back toward the pitcher.

9. (d) To solve this question a student should understand the relationships between force, time,
momentum, work, and kinetic energy. Impulse is the product of the force and the time over
which the force acts. For an object starting at rest, the impulse is also equal to the final
momentum. Since the same force acts over the same time on both vehicles, they will have the
same momentum. The lighter vehicle will have the greater speed and will therefore have traveled
a greater distance in the same time. Since both vehicles start from rest with the same force acting
on them, the work-energy theorem shows that the vehicle that travels the greater distance will
have the greater final kinetic energy.

10. (e) Since the same force acts on both vehicles over the same distance, the work done on both
vehicles is the same. From the work-energy theorem both vehicles will have the same final
kinetic energy. The lighter vehicle will travel the distance in a shorter amount of time and will
therefore experience a smaller impulse and have a smaller final momentum.

11. (c) A common misconception is that as the milk drains from the tank car and its mass decreases, the
tank car’s speed increases. For the tank car’s speed to change, a horizontal force would have to
act on the car. As the milk drains, it falls vertically, so no horizontal force exits, and the tank car
travels at constant speed. As the mass of the tank car decreases, the momentum decreases
proportionately, as the milk carries its momentum with it.

12. (c) The height to which the bowling ball rises depends upon the impulse exerted on it by the putty
and by the rubber ball. The putty sticks to the bowling ball and therefore continues to move
forward at the new speed of the bowling ball ( 5.0 m/s).  The rubber bounces backward and
therefore has a greater change in velocity ( 10.0 m/s).  Since the putty and rubber have the
same mass, the rubber exerts a greater impulse onto the bowling ball, causing the bowling ball to
travel higher than when it is hit by the putty.
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Solutions to Problems

1. Momentum is defined in Eq. 7–1. We use the magnitude.

(0.028 kg) (8.4 m/s) 0.24 kg m/sp m   

2. From Eq. 7–2 for a single force, .t  p F
 For an object of constant mass, .m  p v  Equate the two

expressions for .p

tt m
m


     
FF v v


  

If the skier moves to the right, then the speed will decrease, because the friction force is to the left.

(25 N) (15 s) 5.8 m/s
65 kg

F t
m

 
      

The skier loses 7.7 m/s of speed.

3. Consider the horizontal motion of the objects. The momentum in the horizontal direction will be
conserved. Let A represent the car and B represent the load. The positive direction is the direction
of the original motion of the car.

initial final A A B B A B

A A B B

A B

( )
(7150 kg)(15.0 m/s) 0 10.2 m/s

7150 kg 3350 kg

p p m m m m
m m
m m

  
 



      

 
   

 

4. The tackle will be analyzed as a one-dimensional momentum-conserving situation. Let A represent the
halfback and B represent the tackler. We take the direction of the halfback to be the positive direction,
so A 0  and B 0. 

initial final A A B B A B

A A B B

A B

( )
(82 kg)(5.0 m/s) (110 kg)( 2.5 m/s) 0.703 m/s 0.70 m/s

82 kg 110 kg

p p m m m m
m m
m m

  
 



      

  
    

 

They will be moving it the direction that the halfback was running before the tackle.

5. The force on the gas can be found from its change in momentum. The speed of 1300 kg of the gas
changes from rest to 44.5 10  m/s, over the course of one second. Use Eq. 7–2.

4
gas

7

(4.5 10  m/s)(1300 kg/s)

5.9 10  N, in the direction of the velocit y of the gas

p m mF
t t t

  
     
  

 

The force on the rocket is the Newton’s third law pair (equal and opposite) to the force on the gas, so

the force on the rocket is 75.9 10 N in the opposite direction of the velocity of the gas .
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6. Consider the motion in one dimension, with the positive direction being the direction of motion of the
first car. Let A represent the first car and B represent the second car. Momentum will be conserved in
the collision. Note that B 0.  Use Eq. 7–3.

initial final A A B B A B

A A
B

( )
( ) (7700 kg)(14 m/s 5.0 m/s) 13,860 kg 14,000 kg

5.0 m/s

p p m m m m
m

m

  
 


      
 

   


7. The throwing of the package is a momentum-conserving action, if the water resistance is ignored. Let
A represent the boat and child together, and let B represent the package. Choose the direction that the
package is thrown as the positive direction. Apply conservation of momentum, with the initial velocity
of both objects being 0. Use Eq. 7–3 in one dimension.

initial final A B A A B B

B B
A

A

( ) 0
(5.30 kg)(10.0 m/s) 0.898 m/s
(24.0 kg 35.0 kg)

p p m m m m
m
m

  




       


     


2

The boat and child move in the opposite direction as the thrown package, as indicated by the negative
velocity.

8. Consider the motion in one dimension, with the positive direction being the direction of motion of
the alpha particle. Let A represent the alpha particle, with a mass of A ,m and let B represent the
daughter nucleus, with a mass of A57 .m The total momentum must be 0 since the nucleus decayed at
rest. Use Eq. 7–3, in one dimension.

initial final A A B B
5

A A A
B B

B A

0

(2.8 10  m/s)
| | 4900 m/s

57

p p m m

m m
m m

 


 

     

       

Note that the masses do not have to be converted to kg, since all masses are in the same units, and a
ratio of masses is what is significant.

9. Consider the motion in one dimension, with the positive direction being the direction of motion of
the original nucleus. Let A represent the alpha particle, with a mass of 4 u, and let B represent the
new nucleus, with a mass of 218 u. Use Eq. 7–3 for momentum conservation.

initial final A B A A B B

A B B B
A

A

( )
( ) (222 u)(320 m/s) (218 u)(280 m/s) 2500 m/s

4.0 u

p p m m m m
m m m

m

  
 



      
     

Note that the masses do not have to be converted to kg, since all masses are in the same units, and a
ratio of masses is what is significant.

10. Momentum will be conserved in one dimension in the explosion. Let A represent the fragment with
the larger kinetic energy. Use Eq. 7–3.

A A
initial final A A B B B

B
0

m
p p m m

m


  


        

 
2

2 2 A A A1 1KE KEA B A A B B B2 2
B B

12 2
2

m m
m m m

m m


 
 

        
 

The fragment with the larger kinetic energy has half the mass of the other fragment.
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11. Consider the motion in one dimension with the positive direction being the direction of motion of the
bullet. Let A represent the bullet and B represent the block. Since there is no net force outside of the
block–bullet system (like friction with the table), the momentum of the block and bullet combination is
conserved. Use Eq. 7–3, and note that B 0. 

initial final A A B B A A B B

A A A A
B

B

(0.022 kg)(240 m/s) (0.022 kg)(150 m/s) 0.99 m/s
2.0 kg

p p m m m m
m m

m

   
 



      
    

12. To find the average force, we use Eq. 7–2 and divide the change in
momentum by the time over which the momentum changes. Choose the
x direction to be the opposite of the baseball’s incoming direction, so to the
left in the diagram. The velocity with which the ball is moving after hitting
the bat can be found from conservation of energy and from knowing the
height to which the ball rises.

21KE PEinitial final after 2
collision

2

( )

2 2(9.80 m/s )(31.5 m) 24.85 m/s

m mg y

g y





    

    

The average force can be calculated from the change in momentum and the time of contact.

3

3

2 2 2 2

1 1

( ) (0.145 kg)(0 27.0 m/s)
1566 N

2.5 10 s

( ) (0.145 kg)(24.85 m/s 0)
1441 N

2.5 10 s

(1566 N) (1441 N) 2128 N 2100 N

1441
tan tan 42.6 43

1566

x x x
x

y y y
y

x y

y

x

p m
F

t t

p m
F

t t

F F F

F

F

 

 







 

   
   

  

  
   

  

     

     

13. The air is moving with an initial speed of 1 m/s120 km/h 33.33 m/s.
3.6 km/h

   
 

Thus, in one second, a

volume of air measuring 45 m 75 m 33.33 m  will have been brought to rest. By Newton’s third law,
the average force on the building will be equal in magnitude to the force causing the change in
momentum of the air. The mass of the stopped air is its volume times its density.

3

6

(45 m)(75 m)(33.33 m)(1.3 kg/m )(33.33 m/ s 0)
1 s

4.9 10 N

p m v VF
t t t

 


   
   
  

 

14. (a) Consider the motion in one dimension with the positive direction being the direction of motion
before the separation. Let A represent the upper stage (that moves away faster) and B represent
the lower stage. It is given that A B ,m m A B    , and B A rel .     Use Eq. 7–3 for
momentum conservation.

y

x

v
v
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initial final A A B B A A B

3 31
A B B rel 2

A
A B

3

3 3
B A rel

A B A rel

(725 kg)(6.60 10  m/s) (725 kg)(2.80 10  m/s)( )
725 kg

8.00 10  m/s, away from Earth

8.007 10 2.80 10

( ) ( )

 m/s  

p p m m m m

m m m
m m

m m

 


     

  

      

   
  



 

     

    

  35.20 10  m/s, away from Earthm/s  

(b) The change in kinetic energy was supplied by the explosion.

 2 2 21 1 1KE KE KEfinal initial A A B B A B2 2 2

3 2 3 2 3 21 1 1
2 2 2

8

( )

 [ (725 kg)][(8.00 10  m/s) (5.20 10  m/s) ] (72 5 kg)(6.60 10  m/s)

7.11 10 J

m m m m         

     

 

15. Choose the direction from the batter to the pitcher to be the positive direction. Calculate the average
force from the change in momentum of the ball.

3
46.0 m/s 31.0 m/s(0.145 kg) 2230 N, toward the pitcher

5.00 10 s

p F t m

F m
t






     

   
      

16. (a) The impulse is the change in momentum. The direction of travel of the struck ball is the positive
direction.

2(4.5 10  kg)(38 m/s 0) 1.71 kg m/s 1.7 kg m/sp m           

(b) The average force is the impulse divided by the interaction time.

3
1.71 kg m/s 490 N
3.5 10 s

pF
t 

 
  
 

17. (a) The impulse given to the nail is the opposite of the impulse given to the hammer. This is the
change in momentum. Call the direction of the initial velocity of the hammer the positive
direction.

1
nail hammer initial final hammer[ ] (12 kg)(7.5 m/s) 0 9.0 10  kg m/sp p m m          

(b) The average force is the impulse divided by the time of contact.
1

4
avg 3

9.0 10  kg m/s 1.1 10 N
8.0 10 s

pF
t 

  
   
 

18. The impulse given the ball is the change in the ball’s momentum. From the symmetry of the problem,
the vertical momentum of the ball does not change, so there is no vertical impulse. Call the direction
AWAY from the wall the positive direction for momentum perpendicular to the wall.

final initial

2

( sin 45 sin 45 ) 2 sin 45

2(6.0 10  km)(28 m/s) sin 45 2.4 kg m/s, to th e left

p m m m m    
  



        

    
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19. (a) The momentum of the astronaut–space capsule combination will be conserved since the only
forces are “internal” to that system. Let A represent the astronaut and B represent the space
capsule, and let the direction the astronaut moves be the positive direction. Due to the choice of
reference frame, A B 0.   We also have A 2.50 m/s. 

initial final A A B A A B B

A
B A

B

0
125 kg(2.50 m/s) 0.1645 m/s 0.16 m/s

1900 kg

Bp p m m m m
m
m

   

 

       

        

The negative sign indicates that the space capsule is moving in the opposite direction to the
astronaut.

(b) The average force on the astronaut is the astronaut’s change in momentum, divided by the time
of interaction.

A A
avg

( ) (125 kg)(2.50 m/s 0) 521 N
0.600 s

mpF
t t

   
   
 

(c) 2 21 1KE KEastronaut capsule2 2(125 kg)(2.50 m/s) 391 J ,  (1900 kg)( 0.1645  m/s) 26 J    

20. If the rain does not rebound, then the final speed of the rain is 0. By Newton’s third law, the force on
the pan due to the rain is equal in magnitude to the force on the rain due to the pan. The force on the
rain can be found from the change in momentum of the rain. The mass striking the pan is calculated as
volume times density.

f 0
avg f 0 0 0 0

2
3 3 2

( )
( )

(2.5 10  m) (1.00 10  kg/m )(1.0 m )(8.0 m/s) 0.056 N
3600 s1 h

1 h

m mp m V Ah hF A
t t t t t t

        




       
     


  

 
 
 

21. Call east the positive direction.

(a) original original
fullback fullback

(95 kg)(3.0 m/s) 285 kg m/s 290 kg m/s, to t he eastp m     

(b) The impulse on the fullback is the change in the fullback’s momentum.

fullback final final
fullback fullback

( ) (95 kg)(0 3.0 m/s) 285 kg m/s 290 kg m/sp m            

The negative sign indicates the impulse is to the west.
(c) The impulse on the tackler is the opposite of the impulse on the fullback.

290 kg m/s, to the east

(d) The average force on the tackler is the impulse on the tackler divided by the time of interaction.
285 kg m/s 340 N, to the east

0.85 s
pF
t

 
  


22. Impulse is the change of momentum, Eq. 7–5. This is a one-dimensional configuration.

final 0( ) (0.50 kg)(3.0 m/s) 1.5 kg m/sp m       

23. (a) The impulse given the ball is the area under the F vs. t graph. Approximate the area as a triangle
of “height” 250 N, and “width” 0.04 s.

1
2 (250 N)(0.04 s) 5 N sp   
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We could also count “boxes” under the graph, where each “box” has an “area” of
(50 N)(0.01 s) 0.5 N s.  There are almost seven whole boxes and the equivalent of about three

whole boxes in the partial boxes. Ten boxes would be about 5 N s .

(b) The velocity can be found from the change in momentum. Call the positive direction the
direction of the ball’s travel after being served.

f i f i 2
5 N s( ) 0 80 m/s

6.0 10  kg
pp m m
m

    


 
          



24. (a) The impulse is the change in momentum. Take upward to be the positive direction. The velocity
just before reaching the ground is found from conservation of mechanical energy.

21
initial final 2

2

f 0

2 2(9.80 m/s )(2.8 m) 7.408 m/s, down

( ) kg  m/s  kg m/s 410 kg m/s, upward

y

y

E E mgh m

gh

m





   

   

              J p v v
   

(b) The net force on the person is the sum of the upward force from the ground, plus the downward
force of gravity.

net ground

2 2 2
2f 0

ground

5

( ) 0 ( 7.408 m/s)( ) (55 kg) (9.80 m/s )
2 2( 0.010 m)

1.5 10 N, upward

F F mg ma

v v
F m g a m g

x

   

     
             

 

This is about 280 times the jumper’s weight.
(c) We do this the same as part (b), but for the longer distance.

2 2 2
2f 0

ground
( ) 0 ( 7.408 m/s)(55 kg) (9.80 m/s )

2 2( 0.5 m)

3557 N 4000 N, upward

F m g
x

      
           

 

This is about 6.5 times the jumper’s weight.

25. Let A represent the 0.440-kg ball and B represent the 0.220-kg ball. We have A 3.80 m/s  and

B 0.  Use Eq. 7–7 to obtain a relationship between the velocities.

A B A B B A A( )               

Substitute this relationship into the momentum conservation equation for the collision.

A A B B A A B B A A A A B

A B
A A

A B

B A A

A A( )
( ) 0.220 kg (3.80 m/s) 1.267 m/s 1.27 m/s (east)
( ) 0.660 kg

3.80 m/s 1.27 m/s 5.07 m/s (east)

m m m m m m m
m m
m m

       

  

 

   



 

      
   


    
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26. Let A represent the 0.450-kg puck, and let B represent the 0.900-kg puck. The initial direction of puck
A is the positive direction. We have A 5.80 m/s  and B 0.  Use Eq. 7–7 to obtain a relationship
between the velocities.

A B A B B A A( )               

Substitute this relationship into the momentum conservation equation for the collision.

A A B B A A B B A A A A A A

A B
A A

A B

B A A

( )
( ) 0.450 kg (5.80 m/s) 1.933 m/s 1.93 m/s (west)
( ) 1.350 kg

5.80 m/s 1.93 m/s 3.87 m/s (east)

m m m m m m m
m m
m m

      

 

  

       

      


     

27. Let A represent the 0.060-kg tennis ball, and let B represent the 0.090-kg ball. The initial direction of
the balls is the positive direction. We have A 5.50 m/s  and B 3.00 m/s.  Use Eq. 7–7 to obtain a
relationship between the velocities.

A B A B B A( ) 2.50 m/s              

Substitute this relationship into the momentum conservation equation for the collision.

A A B B A A B B A A B B A A B

A A B B
A

A B

B A

A

2.50 m/s (0.060 kg)(5.50 m/s) (0.090 kg)(3.00 m/s 2 .50 m/s)
0.150 kg

   2.50 m/s

2.50 m/s 5.00 m/s

(2.50 m/s )
( )

m m m m m m m m

m m
m m

 


       

 

       

     




  

   

 

Both balls move in the direction of the tennis ball’s initial motion.

28. Let A represent the ball moving at 2.00 m/s, and call that direction the positive direction. Let B
represent the ball moving at 3.60 m/s in the opposite direction. Thus, A 2.00 m/s  and

B 3.60 m/s.   Use Eq. 7–7 to obtain a relationship between the velocities.

A B A B B A( ) 5.60 m/s              

Substitute this relationship into the momentum conservation equation for the collision, noting that
A B .m m

A A B B A A B B A B A B

A A A A

B A

1.60 m/s ( 5.60 m/s) 2 7.20 m/s 3.60 m/s

5.60 m/s 2.00 m/s

m m m m       

   

 

          

            

   

The two balls have exchanged velocities. This will always be true for 1-D elastic collisions of objects
of equal mass.

29. Let A represent the incoming ball and B represent the target ball. We have B 0  and

A A0.450 .    Use Eq. 7–7 to obtain a relationship between the velocities.

A B A B B A A A( ) 0.550                 

Substitute this relationship into the momentum conservation equation for the collision.
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initial final A A A A B B

A A B A B A( 0.450 ) (0.550 ) 2.64

p p m m m

m m m m

  

 

    

    

30. Let A represent the moving ball, and let B represent the ball initially at rest. The initial direction of the
ball is the positive direction. We have A 5.5 m/s,  B 0,  and A 3.8 m/s.  

(a) Use Eq.7–7 to obtain a relationship between the velocities.

A B A B B A B A( ) 5.5 m/s 0 3.8 m/s 1.7 m/s                     

(b) Use momentum conservation to solve for the mass of the target ball.

A A B B A A B B

A A
B A

B B

( ) (5.5 m/s 3.8 m/s)(0.220 kg) 1.2 kg
( ) 1.7 m/s

m m m m

m m

   
 
 

    
  

  
 

31. The one-dimensional stationary target elastic collision is analyzed in Search and Learn 5.
The algebraic details can be found there, and also in Example 7–8. The kinetic energy lost by the
neutron is equal to the kinetic energy gained by the target particle. The fraction of kinetic energy
lost is found as follows:

2
A

B AKE KE KEA A B 21 A Binitial final final B B2 A B
2 2 21KE KEA A A A A A A B2initial initial

2

4
( )

mm
m mm m m

m m m m




 

            


(a) A B
2 2

A B

4 4(1.01)(1.01) 1.00
( ) (1.01 1.01)

m m
m m

 
 

All of the initial kinetic energy is lost by the neutron, as expected for the target mass equal to the
incoming mass.

(b) A B
2 2

A B

4 4(1.01)(2.01) 0.890
( ) (1.01 2.01)

m m
m m

 
 

(c) A B
2 2

A B

4 4(1.01)(12.00) 0.286
( ) (1.01 12.00)

m m
m m

 
 

(d) A B
2 2

A B

4 4(1.01)(208) 0.0192
( ) (1.01 208)

m m
m m

 
 

Since the target is quite heavy, almost no kinetic energy is lost. The incoming particle
“bounces off” the heavy target, much as a rubber ball bounces off a wall with approximately no
loss in speed.

32. From the analysis in Example 7–9, the initial projectile speed is given by 2 .m M gh
m

 


Compare the two speeds with the same masses.
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2 22 2
2 1

1 111

2 5 2 2 2
2 62

m M gh h hm
m M hhgh
m


 






      
 

33. (a) In Example 7–9, 21KEi 2 m and 21KEf 2 ( ) .m M   The speeds are related by

.m
m M

  


2
2

2 21 1
KE KEKE f i 2 2

2 21KE KEi i 2
2 2

2

2

( )( )

       1

mm M mm M m m M
m m

m m m Mm M
m M m Mm

  

 

 



        

    
 

(b) For the given values, 380 g 0.95.
398 g

M
m M
 

  


Thus 95% of the energy is lost.

34. From the analysis in the Example 7–9, we know the following:

22

2
1 1 (0.028 kg)(190 m/s)

2 0.028 kg 3.1 kg2(9.80 m/s )

0.1476 m 0.15 m

mh
g m M

           

 

From the diagram we see the following:

2 2 2

2 2 2 2

( )

( ) (2.8 m) (2.8 m 0.1476 m) 0.90 m

h x

x h

  

      

 

 

35. Use conservation of momentum in one dimension, since the particles will separate and travel in
opposite directions. Call the direction of the heavier particle’s motion the positive direction. Let A
represent the heavier particle and B represent the lighter particle. We have A B1.5 ,m m and

A B 0.  

B B 2
initial final A A B B A B3

A
0

m
p p m m

m


   


          2

The negative sign indicates direction. Since there was no mechanical energy before the explosion, the
kinetic energy of the particles after the explosion must equal the energy released.

2 2 2 2 5 51 1 1 1
released B A A B B B B B2 2 2 2 3 3

3
B A B5

22 1KE KE KEA B B B B3 2
3KE KE KEreleased released5

(1.5 )( ) ( )

(5500 J) J 5500 J J 2200 J

m m

E E

E m m m      

  

    

       

       

 

Thus KE KEA B2200 J; 3300 J .  

l

x

l – h


h
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36. Use conservation of momentum in one dimension. Call the direction of the sports car’s velocity the
positive x direction. Let A represent the sports car and B represent the SUV. We have 0B  and

A B .   Solve for A .

A B
initial final A A A B A A A

A
0 ( )

m m
p p m m m

m
   

       

The kinetic energy that the cars have immediately after the collision is lost due to negative work done
by friction. The work done by friction can also be calculated using the definition of work. We assume
the cars are on a level surface, so that the normal force is equal to the weight. The distance the cars
slide forward is .x Equate the two expressions for the work done by friction, solve for A , and use
that to find A .

21KE KEfr final initial after A B A2
collision

fr fr k A B
21

A B A k A B A k2

2A B A B
A A k

A A

( ) 0 ( )

cos 180 ( )

( ) ( ) 2

980 kg 2300 kg2 2(0.80)(9.80 m/s )(2.6 m)
980 kg

    21.3

W m m

W F x m m g x

m m m m g x g x

m m m m
g x

m m





   

  

    

      

         

     

 7 m/s 21 m/s

37. The impulse on the ball is its change in momentum. Call upward the positive direction, so that the final
velocity is positive and the initial velocity is negative. The speeds immediately before and immediately
after the collision can be found from conservation of energy. Take the floor to be the zero level for
gravitational potential energy.

   
 

bottom top
21KE PE down down down down2

21KE PEbottom top up up up up2

up down up down up down

2

Falling: 2

Rising: 2

Impulse ( ) 2 2 2

  (0.014 kg) 2(9.80 m/s ) 0.85 m 1.5 m 0.13 k

m mgh gh

m mgh gh

p m m m gh gh m g h h

 

 

  

   

    

          

  

 

g m/s

The direction of the impulse is upwards, so the complete specification of the impulse is
0.13 kg m/s, upward .

38.
2 21 1 2 2 2 2KE KE A A B Binitial final 2 2 A BKE 2 2 21KEinitial A A A2

(38 m/s) (15 m/s)Fraction  lost 0.84
(38 m/s)

m m

m

   
 

   
    

39. (a) Momentum is conserved in the one-dimensional collision. Let A represent the baseball and let B
represent the brick.

A A A A B B

A A B B
A

A

(0.144 kg)(28.0 m/s) (5.25 kg)(1.10 m/s) 12.10 m/s
0.144 kg

m m m
m m

m

  
 



   
     

So the baseball’s speed in the reverse direction is 12.1 m/s .

(b) 2 21 1KEbefore A A2 2 (0.144 kg)(28.0 m/s) 56.4 Jm   
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2 2 2 21 1 1 1KEafter A A A B2 2 2 2(0.144 kg)(1.21 m/s) (5.25 kg)(1.10 m/s) 1 3.7 Jm m      

40. The swinging motion will conserve mechanical energy. Take the zero level for gravitational potential
energy to be at the bottom of the arc. For the pendulum to swing exactly to the top of the arc, the
potential energy at the top of the arc must be equal to the kinetic energy at the bottom.

21KE PEbottom top bottom bottom2 ( ) ( ) (2 ) 2m M m M g L gL       

Momentum will be conserved in the totally inelastic collision at the bottom of the arc. We assume that
the pendulum does not move during the collision process.

initial final bottom bottom( ) 2m M m Mp p m m M gL
m m

    
      

41. (a) See the diagram.
A A A A A B B B

A A A B B B

: cos cos
: 0 sin sin
x

y

p m m m
p m m

    
   

    
    

(b) Solve the x equation for Bcos   and the y equation for Bsin ,  and then
find the angle from the tangent function.

A A A

B B B A A
B

A A A AB A A A

B B

sin
sin sin

tan
( cos )cos ( cos )

m
m

m
m

 
   


     



 
   

      


1 1sin (2.10 m/s) sin 30.0tan tan 46.9
cos 2.80 m/s (2.10 m/s) cos 30.0

A A
B

A A A

 


  
       

   
With the value of the angle, solve the y equation for the velocity.

A A A
B

B B

sin (0.120 kg)(2.10 m/s) sin 30.0 1.23 m/s
sin (0.140 kg) sin 46.9

m
m
 




     
 

42. Use this diagram for the momenta after the decay. Since there was no
momentum before the decay, the three momenta shown must add to 0 in both the
x and y directions.

nucleus neutrino nucleus electron

2 2 2 2
nucleus nucleus nucleus neutrino electron

23 2 23 2 22

nucleus1

nucleus

( ) ( )

( ) ( ) ( ) ( )

         (6.2 10  kg m/s) (9.6 10  kg m/s) 1.14 1 0  kg m/s

( )
tan t

( )

x y

x y

y

x

p p p p

p p p p p

p
p



  



 

   

        

 
23

1 1electron
23

neutrino

( ) (9.6 10  kg m/s)an tan 57
( ) (6.2 10  kg m/s)
p
p


 


 

  
 

The momentum of the second nucleus is directed 147° from the electron’s momentum and is directed
123° from the neutrino’s momentum.

Bv


Av


A 
Av


Am
Bm Bm

Am

B 



electronp

nucleusp

neutrinop
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43. Write momentum conservation in the x and y directions and KE conservation. Note that both masses
are the same. We allow Av

 to have both x and y components.

B A B A

A A B A A B

2 2 2 2 2 2 2 21 1 1 1KE A B A B A B A B2 2 2 2

:
:

:

x x x

y y y

p m m
p m m m

m m m m

   
     

       

   
       

         

Substitute the results from the momentum equations into the KE equation.
2 2 2 2 2 2 2 2 2 2

A B A A B A A B B A A B

2 2 2 2 2 2
A A B B A B A B A B

( ) ( ) 2

2 2 0 0 or 0

y x y y y

y y y

           

         

                     

                 

Since we are given that B 0,  we must have A 0.y  This means that the final direction of A is the

x direction. Put this result into the momentum equations to find the final speeds.

A A B B A3.7 m/s 2.0 m/sx          

44. (a) Let A represent the incoming nucleus and B represent the target particle.
Take the x direction to be in the direction of the initial velocity of mass
A (to the right in the diagram) and the y direction to be up in the diagram.
Momentum is conserved in two dimensions and gives the following
relationships:

A A B B B

A A B B A B

: cos 2 cos
: 0 sin 2 sin
x

y

p m m
p m m

     
     

   
      

The collision is elastic, so kinetic energy is also conserved.
2 2 2 2 2 2 2 2 21 1 1KE A A A A B B A B A B2 2 2: 2 2m m m                    

Square the two momentum equations and add them together.
2 2 2

B A B B
2 2 2 2 2 2

A B A B

2 cos ; 2 sin 4 cos ;

4 sin 4

        

     

      

      
Add these two results together and use them in the x momentum expression to find the angle.

2 2 2 2 2 2 2 2
A B A B B B

B

2 ; 4 2 6
3

3cos 30
2 22

3

        

  


            

     


(b) From above, we already have B .
3
  Use that in the y momentum equation.

A B A2 sin 2 sin 30
3 3
          

(c) The fraction transferred is the final energy of the target particle divided by the original kinetic
energy.

2 21 1KEtarget B A2 2
2 21 1KEoriginal A A A2 2

(2 )( /3) 2
3

Bm m

m m

 

 


  

Av




Av


Am
Bm

Am

Bm

Bv


Av


50.0  

55.6  
Av


Am
Bm

Am

Bm

Bv

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45. Choose the carbon atom as the origin of coordinates. Use Eq. 7–9a.
10

11C C O O
CM

C O

(12 u)(0) (16 u)(1.13 10 m) 6.5 10 m
12 u 16 u

m x m x
x

m m


  

   
 

from the C atom

46. Use Eq. 7–9a, extended to three particles.

A A B B C C
CM

A B C

(1.00 kg)(0) (1.50 kg)(0.50 m) (1.10 kg)(0 .75 m)
1.00 kg 1.50 kg 1.10 kg

0.438 m

m x m x m x
x

m m m
   

 
   



47. Find the CM relative to the front of the car. Use Eq. 7–9a.

car car front front back back
CM

car front back

(1250 kg)(2.40 m) 2(65.0 kg)(2.80 m) 3(65. 0 kg)(3.90 m) 2.62 m
1250 kg 5(65.0 kg)

m x m x m x
x

m m m
 


 

 
 



48. By the symmetry of the problem, since the centers of the cubes are along a straight line, the vertical
CM coordinate will be 0, and the depth CM coordinate will be 0. The only CM coordinate to calculate is
the one along the straight line joining the centers. The mass of each cube will be the volume times the
density, so 3 3 3

1 0 2 0 3 0( ) , (2 ) , (3 ) .m m m       Measuring from the left edge of the smallest

block, the locations of the CMs of the individual cubes are 1
1 0 2 0 3 02 , 2 , 4.5 .x x x    

Use Eq. 7–9a to calculate the CM of the system.

 3 3 31
0 0 0 0 0 021 1 2 2 3 3

CM 0 03 3 3
1 2 3 0 0 0

0

8 (2 ) 27 (4.5 ) 138 23
36 68 27

3.8  from the left edge of the smallest c ube

m x m x m x
x

m m m

  

  

  
   

   



     
 

  



49. Let each case have a mass M. A top view of the pallet is shown, with the total mass of
each stack listed. Take the origin to be the back left corner of the pallet. Use Eqs. 7–9a
and 7–9b.

CM

CM

(5 )( /2) (3 )(3 /2) (2 )(5 /2) 1.2
10

(7 )( /2) (2 )(3 /2) (1 )(5 /2) 0.9
10

M M Mx
M

M M My
M

 
 

 
 

  


  


50. Because the brace is uniform, the mass of each “leg” is proportional to its area. Since each “leg” has
the same width of 0.20 m, each leg’s mass is proportional to its length. We calculate the center of mass
relative to the origin of coordinates as given in the diagram. Let the total mass be M.

2M2M3M

M

M

M

x

y
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horizontal vertical
leg leg

horiz horiz vert vert
CM

horiz vert

horiz horiz vert vert
CM

horiz vert

2.06 1.480.5819 ; 0.4181
2.06 1.48 2.06 1.48

(0.5819 )(1.03 m) (0.4181 )(1.96 m) 1.42 m

(    

m M M m M M

m x m x M Mx
m m M

m y m y
y

m m

   
 

 
  




 


0.5819 )(0.10 m) (0.4181 )( 0.74 m) 0.25 mM M

M
 

 

51. Take the upper leg and lower leg together. Note that Table 7–1 gives the relative mass of BOTH legs,
so a factor of 1/2 is needed. Assume a person of mass 70 kg.

1
2

(21.5 9.6)(70 kg) 10.885 kg 11 kg
100


 

52. With the shoulder as the origin of coordinates for measuring the center of mass, we have the following
relative locations from Table 7–1 for the arm components, as percentages of the height. Down is positive.

upper lower hand
arm arm

81.2 71.7 9.5 81.2 55.3 25.9 81.2 43.1 38.1x x x        

To find the CM, we can also use relative mass percentages. Since the expression includes the total mass
in the denominator, there is no need to divide all masses by 2 to find single component masses. Simply
use the relative mass percentages given in the table.

upper upper lower lower hand hand
arm arm arm arm

CM
upper lower hand
arm arm

(9.5)(6.6) (25.9)(4.2) (38.1)(1.7)
6.6 4.2 1.7

     19% of the person’s height along th e line from the shoulder to the hand

x m x m x m

x
m m m

 
 

 
   



53. Take the shoulder to be the origin of coordinates. We assume that the arm is held
with the upper arm parallel to the floor and the lower arm and hand extended
upward. Measure x horizontally from the shoulder and y vertically. Since the
expression includes the total mass in the denominator, there is no need to divide all
masses by 2 to find single component masses. Use the relative mass percentages
given in the table.

upper upper lower lower hand hand
arm arm arm arm

CM
upper lower hand
arm arm

(81.2 71.7)(6.6) (81.2 62.2)(4.2 1.7)     14.0
6.6 4.2 1.7

x m x m x m
x

m m m

 


 

   
 

 

upper upper lower lower hand hand
arm arm arm arm

CM
upper lower hand
arm arm

(0)(6.6) (62.2 55.3)(4.2) (62.2 43.1)(1.7)     4.92
6.6 4.2 1.7

y m y m y m
y

m m m

 


 

   
 

 
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Convert the distance percentages to actual distance by using the person’s height.

CM CM(14.0%)(155 cm) 21.7 cm  (4.92%)(155 cm) 7. 6 cmx y   

54. See the diagram of the person. The head, trunk, neck, and
thighs are all lined up so that their CMs are on the torso’s
median line. Call down the positive y direction. The y
displacements of the CM of each body part from the
median line, in terms of percentage of full height, are
shown below, followed by the percentage each body part
is of the full body mass.

On median line: head (h): 0 6.9% body mass
trunk & neck (t n): 0 46.1% body mass
upper legs (u l): 0 21.5% body mass

From shoulder hinge point: upper arms (u a): 81.2 – 71.7 9.5 6.6% body mass
lower arms (l a): 81.2 – 55.3 25.9 4.2% body mass
hands (ha): 81.2 – 43.1 38.1 1.7% body mass

From knee hinge point: lower legs (l l): 28.5 –18.2 10.3 9.6% body mass
feet (f): 28.5 –1 .8 26.7 3.4% body mass

Using this data, calculate the vertical location of the CM.

h h t n t n u l u l u a u a l a l a ha ha l l l l f f
CM

full
body

0 0 0 (9.5)(6.6) (25.9)(4.2) (38.1)(1.7) (10.3 )(9.6) (26.7)(3.4)      
100

      4.2591 4.3

y m y m y m y m y m y m y m y m
y

m
      



      


 

So the center of mass is 4.3% of the full body height below the torso’s median line. For a person of
height 1.7 m, this is about 7.2 cm, which is less than 3 inches. That is most likely inside the body.

55. Based on Fig. 7–27, we place the upper legs parallel
to the bar, the lower legs and feet hanging vertically,
and the trunk and neck, head, arms, and hands all
tilted down by 15°. Call down the positive y direction.
The y distances of the CM of each body part from the
median line, in terms of percentage of full height, are
shown below, followed by the percentage each body
part is of the full body mass. The calculations for the
lower legs and feet are the same as for Problem 59.
Here are the calculations for the angled parts of the body.

Trunk & neck: Hip joint: 52.1% from the floor, center of trunk at 71.1%, difference = 19.0%. CM of
trunk & neck  19.0(sin 15.0 ) 4.92  

Head: Hip joint: 52.1%, center of head at 93.5%, difference = 41.4% CM of head
41.4(sin 15.0 ) 10.72  

Shoulder: Hip joint: 52.1%, shoulder at 81.2%, difference = 29.1%
29.1(sin 15.0 ) 7.53  

trunk & neck head

lower arms
hands

upper arms

upper legs

feet

lower legs

hands

trunk & neck

head

lower arms
upper arms

upper legs

feet

lower legs
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Upper arms: Shoulder: 81.2%, center of upper arms at 71.7%, difference = 9.5% CM of upper
arms = 7.53 (due to shoulder) 9.5(cos 15.0 ) 16.71  

Lower arms: Shoulder: 81.2%, center of lower arms at 55.3%, difference = 25.9% CM of lower
arms = 7.53 (due to shoulder) 25.9(cos  15 0 ) 32.55   

Hands: Shoulder: 81.2%, center of hands at 43.1%, difference = 38.1% CM of hands = 7.53
(due to shoulder) 38.1(cos 15.0 ) 44.33  

On horizontal line: upper legs (u l): 0 21.5% body mass
From waist hinge point: trunk & neck (t n): 4.92 46.1% body mass

head (h): 10.72 6.9% body mass
From shoulder hinge point: upper arms (u a): 16.71 6.6% body mass

lower arms (l a): 32.55 4.2% body mass
hands (ha): 44.33 1.7% body mass

From knee hinge point: lower legs (l l): 10.3 9.6% body mass
feet (f): 26.7 3.4% body mass

Using this data, calculate the vertical location of the CM.

h h t n t n u l u l u a u a l a l a ha ha l l l l f f
CM

full
body

 

10.72(6.9) 4.92(46.1) 0 (16.71)(6.6) (32.55) (4.2)

(44.33)(1.7) (10.3)(9.6) (26.7)(3.4)
      

100
      8.128 8.1

     

y m y m y m y m y m y m y m y m
y

m
      



   

  


 

 
 
 

Thus the center of mass is 8.1% of the full body height below the torso’s median line. For a person of
height 1.7 m, this is about 14 cm. That is about 5.5 inches, and it is most likely slightly outside the
body.

56. (a) Find the CM relative to the center of the Earth.

24 22 8
E E M

CM 24 22
E M

6

(5.98 10  kg)(0) (7.35 10  kg)(3.84 10  m)
5.98 10  kg 7.35 10  kg

4 66 10  m from the center of the Earth

Mm x m x
x

m m
    

 
   

  

This is actually inside the volume of the Earth, since 6
E 6.38 10  m.R  

(b) It is this Earth–Moon CM location that actually traces out the orbit, as discussed in Chapter 5.
The Earth and Moon will orbit about this location in (approximately) circular orbits. The motion
of the Moon, for example, around the Sun would then be a sum of two motions: (i) the motion of
the Moon about the Earth–Moon CM and (ii) the motion of the Earth–Moon CM about the Sun.
To an external observer, the Moon’s motion would appear to be a small radius, higher frequency
circular motion (motion about the Earth–Moon CM) combined with a large radius, lower
frequency circular motion (motion about the Sun).
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57. (a) Measure all distances from the original position of the woman.

W W M M
CM

W M

(52 kg)(0) (72 kg)(10.0 m) 5.806 m
124 kg

     5.8 m from the woman

m x m x
x

m m
 

  




(b) Since there is no force external to the man–woman system, the CM will not move, relative to the
original position of the woman. The woman’s distance will no longer be 0, and the man’s
distance has changed to 7.5 m.

W W M M W
CM

W M

W

M W

(52 kg) (72 kg)(7.5 m)
5.806 m

124 kg
(5.806 m)(124 kg) (72 kg)(7.5 m) 3.460 m

52 kg

7.5 m 3.460 m 4.040 m 4.0 m

m x m x x
x

m m

x

x x

 
   




 

    

(c) When the man collides with the woman, he will be at the original location of the center of mass.

M M
final initial

5.806 m 10.0 m 4.194 mx x    

He has moved 4.2 m from his original position.

58. The CM of the system will follow the same path regardless of the way the mass splits and will still be
2d from the launch point when the parts land. Assume that the explosion is designed so that Im still
is stopped in midair and falls straight down.

(a) I I II II I I II II 7
CM II 3

I II I

3 3
2

4 4
m x m x m d m x d x

x d x d
m m m

  
     



(b) I I II II II II II II
CM II

I II II

3 3
2 5

4 4
m x m x m d m x d x

x d x d
m m m

  
     



59. Calculate the CM relative to the 55-kg person’s seat, at one end of the
boat. See the first diagram. Be sure to include the boat’s mass.

A A B B C C
CM

A B C

(55 kg)(0) (58 kg)(1.5 m) (85 kg)(3.0 m) 1.727 m
198 kg

m x m x m x
x

m m m
 


 

 
 

Now, when the passengers exchange positions, the boat will move
some distance d as shown, but the CM will not move. We measure
the location of the CM from the same place as before, but now the
boat has moved relative to that origin.

85 kg 58 kg 55 kg
d

55 kg 58 kg 85 kg
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A A B B C C
CM

A B C

(85 kg)( ) (58 kg)(1.5 m ) (55 kg)(3.0 m ) 198  kg m 252 kg m1.727 m
218 kg 198 kg

(1.727 m)(198 kg) 252 kg m 0.4543 m
198 kg

m x m x m x
x

m m m
d d d d

d

 


 

      
 

 
 

Thus the boat will move 0 45 m toward the initial position of the  85-kg person .

60. Call the origin of coordinates the CM of the balloon, gondola, and passenger at rest. Since the CM is at
rest, the total momentum of the system relative to the ground is 0. The passenger sliding down the rope
cannot change the total momentum of the system, so the CM must stay at rest. Call the upward
direction positive. Then the velocity of the passenger with respect to the balloon is  . Call the
velocity of the balloon with respect to the ground BG . Then the velocity of the passenger with respect
to the ground is MG BG .     Apply Eq. 7–10.

MG BG BG BG BG0 ( ) , upwardmm M m M
m M

             


If the passenger stops, the balloon also stops, and the CM of the system remains at rest.

61. The only forces on the astronauts are internal to the two-astronaut system, so their CM will not change.
Call the CM location the origin of coordinates. That is also the initial location of the astronauts.

A A B B B
CM

A B

(55 kg)(12 m) (85 kg)
0 7.76 m

140 kg
m x m x x

x x
m m

 
     



Their distance apart is 1
A B 12 m ( 7.76 m) 2.0 10  m .x x     

62. This is a totally inelastic collision in one dimension. Call the direction of asteroid A the positive
direction, and use conservation of momentum.

initial final A A B B A B
12 13

A A B B
12 13

A B

( )

(7.5 10  kg)(3.3 km/s) (1.45 10  kg)( 1.4 km/s )
7.5 10  kg 1.45 10  kg

0.0203 km/s 0.2 km/s, in the original dir ection of asteroid A

p p m m m m

m m
m m

  

 


      

    
  

   

 

63. Consider conservation of energy during the rising and falling of the ball, between contacts with the
floor. The gravitational potential energy at the top of a path will be equal to the kinetic energy at the
start and the end of each rising-falling cycle. Thus 21

2mgh m for any particular bounce cycle. Thus

for an interaction with the floor, the ratio of the energies before and after the bounce is
KEafter

KEbefore

1.20 m 0.75.
1.60 m

mgh
mgh


   We assume that each bounce will further reduce the energy to 75%

of its pre-bounce amount. The number of bounces to lose 90% of the energy can be expressed as
follows:



7-24   Chapter 7

© Copyright 2015 Pearson Education, Ltd. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

log 0.1(0.75) 0.1 8.004
log 0.75

n n   

Thus after 8 bounces, 90% of the energy is lost.

As an alternate method, after each bounce, 75% of the available energy is left. So after 1 bounce, 75%
of the original energy is left. After the second bounce, only 75% of 75%, or 56%, is left. After the third
bounce, 42%. After the fourth bounce, 32%. After the fifth bounce, 24%. After the sixth bounce, 18%.
After the seventh bounce, 13%. After the eight bounce, 10%. So it takes 8 bounces.

64. Momentum will be conserved in the horizontal direction. Let A represent the railroad car and B
represent the snow. For the horizontal motion, B 0  and B A .   Momentum conservation in the
horizontal direction gives the following.

 

initial final A A A B A

A A
A

A B

( )
(4800 kg)(7.60 m/s) 7.255 m/s 7.3 m/s

3.80 kg4800 kg 60.0 min
min

p p m m m
m
m m

 




   

    
    

 

65. Let the original direction of the cars be the positive direction. We have A 4.50 m/s  and

B 3.70 m/s. 

(a) Use Eq. 7–7 to obtain a relationship between the velocities.

A B A B B A B A A( ) 0.80 m/s                     

Substitute this relationship into the momentum conservation equation for the collision.

A A B B A A B B A A B B A A B

A

A

A A B B
A

A B

B

(0.80 m/s )
( 0.80 m/s) (435 kg)(4.50 m/s) (495 kg)(2.90 m/s) 3.648 m/s

930 kg

3.65 m/s ; 0.80 m/s 4.448 m/s 4.45 m/s

m m
m m

m m m m m m m m       
 



 

   

     


     

       

(b) Calculate p p p    for each car.

A A A A A

B B B B B

(435 kg)(3.648 m/s 4.50 m/s) 370.62 kg m/s

      370 kg m/s

(495 kg)(4.448 m/s 3.70 m/s) 370.26 kg m/s

      370 kg m/s

p m m

p m m

 

 

       

  

      

 

The two changes are equal and opposite because momentum was conserved. The slight
difference is due to round-off error on the calculations.

66. This is a ballistic “pendulum” of sorts, similar to Example 7–9. The only difference is that the block
and bullet are moving vertically instead of horizontally. The collision is still totally inelastic and
conserves momentum, and the energy is still conserved in the rising of the block and embedded bullet
after the collision. So we simply quote the equation from that example.
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22

2

2

1 1 (0.0250 kg)(230 m/s) 0.8307 m 0.83 m
2 0.0250 kg 1.40 kg2(9.80 m/s )

m M gh
m

mh
g m M






 

           

67. We assume that all motion is along a single direction. The distance of sliding can be related to the
change in the kinetic energy of a car, as follows:

2 21KEfr f i fr fr k N k2
2 21

k f i2

( ) cos 180

( )

W m W F x F x mg x

g x

    

  

             

   

For post-collision sliding, f 0  and i is the speed immediately after the collision, . Use this
relationship to find the speed of each car immediately after the collision.

Car A: 2 21
k A A A k A2 2 2(0.60)(9.80 m/s )(18 m) 14.55 m/sg x g x              

Car B: 2 21
k B B B k B2 2 2(0.60)(9.80 m/s )(30 m) 18.78 m/sg x g x             2

During the collision, momentum is conserved in one dimension. Note that B 0. 

initial final A A A A B B

A A B B
A

A

(1500 kg)(14.55 m/s) (1100 kg)(18.78 m/s) 28.32 m/s
1500 kg

p p m m m
m m

m

  
 



    
  

  

For pre-collision sliding, again apply the friction–energy relationship, with f A  and i the speed
when the brakes were first applied.

2 2 2 2 21
k A A i A k A2 ( ) 2 (28.32 m/s) 2(0.60)(9.80 m/s )(15 m)

1 mi/h31.28 m/s 70 mi/h
0.447 m/s

ig x g x              

 
  

 

Car A was definitely over the speed limit.

68. (a) The meteor striking and coming to rest in the Earth is a totally inelastic collision. Let A represent
the Earth and B represent the meteor. Use the frame of reference in which the Earth is at rest
before the collision, so A 0.  Write momentum conservation for the collision.

B B B
8

4 13B
B 24 8

A B

13

( )

1.5 10  kg(2.5 10  m/s) 6.25 10  m/s
6.0 10  kg 1.5 10  kg

6.3 10  m/s

m m m

m
m m

 

 







   


     

   

 

(b) The fraction of the meteor’s KE transferred to the Earth is the final KE of the Earth divided by the
initial KE of the meteor.
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KEfinal 2 24 13 21 1
Earth 172 2

2 8 4 21 1KEinitial B B2 2meteor

(6.0 10  kg)(6.25 10  m/s)
2.5 10

(1.5 10  kg)(2.5 10  m/s)

m

m






   

   
 

(c) The Earth’s change in KE can be calculated directly.
2 24 13 21 1KE KE KEEarth final initial 2 2

Earth Earth
0 (6.0 10  kg)(6.25 10  m/s) 1.2 Jm  

         

69. This is a ballistic “pendulum” of sorts, similar to Example 7–9. The mass of the bullet is m, and the
mass of the block of wood is M. The speed of the bullet before the collision is , and the speed of the
combination after the collision is . Momentum is conserved in the totally inelastic collision, so

( ) .m m M    The kinetic energy present immediately after the collision is lost due to negative
work being done by friction.

2 21KEfr f i after fr fr k N k2
collision

2 2 21 1
k f i k2 2

( ) cos 180

( ) 2

W m W F x F x mg x

g x g x

    

     

             

         

Use this expression for  in the momentum equation in order to solve for .

k

2
k

( ) ( ) 2

0.028 kg 1.35 kg2 2(0.28)(9.80 m/s )(8.5 m) 340 m/s
0.028 kg

m m M m M g x

m M g x
m

  

 

      

        
   

70. (a) The average force is the momentum change divided by the elapsed time.

5 5
avg

1 m/s(1500 kg)(0 45 km/h)
3.6 km/h 1.25 10 N 1.3 10 N

0.15 s
p mF
t t


              

 
The negative sign indicates direction—that the force is in the opposite direction to the original
direction of motion.

(b) Use Newton’s second law. We use the absolute value of the force because the problem asked for
the deceleration.

5
avg 2

avg avg avg 2
1.25 10 N 183.33 m/s 8.5 ’s

1500 kg 9.80 m/s

F gF ma a g
m

        
 

71. For the swinging balls, their velocity at the bottom of the swing and the
height to which they rise are related by conservation of energy. If the zero of
gravitational potential energy is taken to be the lowest point of the swing,
then the kinetic energy at the low point is equal to the potential energy at the
highest point of the swing, where the speed is zero. Thus we have

21
bottom2 m mgh  for any swinging ball, so the relationship between speed

and height is 2
bottom 2 .gh  From the diagram we see that (1 cos ).h  

(a) Calculate the speed of the lighter ball at the bottom of its swing.
2

A A2 2(9.80 m/s )(0.35 m)(1 cos 66 ) 2.017 m/s 2.0  m/sgh      

cos

 1 cos


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(b) Assume that the collision is elastic, and use the results of Search and Learn 5. Take the direction
that ball A is moving just before the collision as the positive direction.

A B
A A

A B

A
B A

A B

( ) (0.045 kg 0.065 kg) (2.017 m/s) 0.3667 m/s 0.37 m/s
( ) (0.045 kg 0.065 kg)

2 2(0.045 kg) (2.017 m/s) 1.650 m/s 1.7 m/s
( ) (0.045 kg 0.065 kg)

m m
m m
m

m m

 

 

       
 

    
 

Notice that ball A has rebounded backward.
(c) After each collision, use the conservation of energy relationship again.

2 22 2
3 1A B

A B2 2
( 0.3667 m/s) (1.650 m/s)6.9 10 m 1.4 10 m

2 22(9.80 m/s ) 2(9.80 m/s )
h h

g g
           

72. (a) Momentum is conserved in the x direction. The initial x momentum is 0.
satellite  satellite shuttle  shuttle

before after

3satellite  satellite
 shuttle

shuttle

0

850 kg (0.30 m/s) 2.8 10  m/s
92,000 kg

x x x x

x
x

p p m m

m
m

 


 

    

     2

So the component in the minus x direction is 32.8 10  m/s .

(b) The average force is the change in momentum per unit time. The force on the satellite is in the
positive x direction.

avg
(850 kg)(0.30 m/s) 53 N

4.8 s
p mF
t t

 
   
 

73. (a) In the reference frame of the Earth, the final speed of the Earth–asteroid system is essentially 0,
because the mass of the Earth is so much greater than the mass of the asteroid. It is like throwing
a ball of mud at the wall of a large building—the smaller mass stops, and the larger mass doesn’t
move appreciably. Thus all of the asteroid’s original kinetic energy can be released as
destructive energy.

2 3 3 3 4 2 211 1 4KEorig 02 2 3

21

[(3200 kg/m ) (1.0 10 m) ](1.5 10 m/s) 1.507 10 J

1.5 10 J

m      

 

(b) 21
16

1 bomb1.507 10 J 38,000 bombs
4.0 10 J

 
    

74. The initial momentum of the astronaut and the gas in the jet pack is 0, so the final momentum of the
astronaut and the gas ejected from his jet pack must also be 0. We let A refer to the astronaut and B
refer to the gas. The velocity of the astronaut is taken to be the positive direction. We also assume that
gas is ejected very quickly, so that the 35 m/s is relative to the astronaut’s rest frame.

A A B B B B

B

0 (210 kg )(2.0 m/s) ( 35 m/s)
210 kg(2.0 m/s) 11.35 kg 11 kg

37 m/s

m m m m

m

        

  


75. (a) No, there is no net external force on the system. In particular, the spring force is internal to the
system.

(b) Use conservation of momentum to determine the ratio of speeds. Note that the two masses will
be moving in opposite directions. The initial momentum, when the masses are released, is 0.



7-28   Chapter 7

© Copyright 2015 Pearson Education, Ltd. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

initial later A A B B A B B A0 / /p p m m m m        

(c)
2 221

KE A AA 2 A A A B
B A21KEB B B B AB B2

/
m m m m

m m
m m mm

 


   
      

   

(d) The center of mass was initially at rest. Since there is no net external force on the system, the
center of mass does not move, and the system stays at rest.

76. Because all of the collisions are perfectly elastic, no energy is lost in the collisions. With each collision,
the horizontal velocity is constant, and the vertical velocity reverses direction. So, after each collision,
the ball rises again to the same height from which it dropped. Thus, after five bounces, the bounce
height will be 4.00 m, the same as the starting height.

77. In this interaction, energy is conserved (initial potential energy of mass–compressed spring system =
final kinetic energy of moving blocks) and momentum is conserved, since the net external force is 0.
Use these two relationships to find the final speeds.

initial final 3 3

springinitial final final
initial

2 2 2 2 2 21 1 1 1 1
2 2 2 2 23 3 3 3

2 21
32

PE KE

3

0 3 3

3 (3 3 6

6 ; 3
12 12

)

 

m m m m

m m m m m

m m m

m m
E E

kD m m m m m

k k
kD m D D

m m

p p    

    

  





  

    
  

    



Solutions to Search and Learn Problems

1. It is best to use ext 0F


and i f p p  when the system can be broken up into two or more
objects for which only the forces between the objects are significant. The principle of impulse,

ext ,t  F p
  is useful in cases where the time over which the force acts is known and when

examining the change in momentum of a single object due to external forces.

2. In each case, use momentum conservation. Let A represent the 6.0-kg object, and let B represent the
8.0-kg object. Then we have A A B6.0 kg, 6.5 m/s, 8.0 kg,m m    and B 4.0 m/s.  

(a) In this case, the objects stick together, so A B .  

A A B B A B A

A A B B
B A

A B

( )
(6.0 kg)(6.5 m/s) (8.0 kg)( 4.0 m/s) 0.5 m/s

14.0 kg

m m m m
m m
m m

  
 

 

   

      


(b) In this case, use Eq. 7–7 to find a relationship between the velocities.

A B B A B A

A A B B A A B B A A B A B A

A B A B B
A

A B

B A B A

A B

( )

( ) 2 ( 2.0 kg)(6.5 m/s) 2(8.0 kg)( 4.0 m/s)
5.5 m/s

14.0 kg

6.5 m/s 5.5 m/s 5.0 m/s

( )

( 4.0 m/s)

m m m m m m

m m m
m m

v v
       

 


     

   

      

          

        


      

   

  

(c) In this case, A 0. 
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A A B B B B

A A B B
B

B

(6.0 kg)(6.5 m/s) (8.0 kg)( 4.0 m/s) 0.875 m/s 0.9 m/s
8.0 kg

m m m
m m

m

  
 



  

      

To check for “reasonableness,” first note the final directions of motion. A has stopped, and B has
reversed direction. This is reasonable. Secondly, calculate the change in kinetic energy.

 2 2 21 1 1KE B B A A B B2 2 2

2 2 21 1 1
2 2 2(8.0 kg)(0.875 m/s) (6 0 kg)(6.5 m/s) (8.0 kg)( 4.0 m/s) 188 J

m m m     

        
Since the system has lost kinetic energy and the directions are possible, this interaction is
reasonable.

(d) In this case, B 0  .

A A B B A A

A A B B
A

A

(6.0 kg)(6.5 m/s) (8.0 kg)( 4.0 m/s) 1.167 m/s 1 m/s
6.0 kg

m m m
m m

m

  
 



  

      

This answer is not reasonable, because A continues to move in its original direction while B has
stopped. Thus A has somehow “passed through” B. If B has stopped, A should have rebounded
and would have had a negative velocity.

(e) In this case, A 4.0 m/s.  

A A B B A A B B

B
(6.0 kg)(6.5 m/s 4.0 m/s) (8.0 kg)( 4.0 m/s ) 3.875 m/s 4 m/s

8.0 kg

m m m m   



    

     

The directions are reasonable, in that each object rebounds. Since the speed of both objects is
smaller than in the perfectly elastic case (b), the system has lost kinetic energy. This interaction
is reasonable.

(f) As quoted above, the results for (c) and (e) are reasonable, but (d) is not reasonable.

3. (a) Use Eq. 7–7, along with 0,B  to obtain a relationship between the velocities.

A B A B B A A( )               
Substitute this relationship into the momentum conservation equation for the collision.

A A B B A A B B A A B A A A A B A B A

A B
A A B A A A B A A B A A B A A A

A B

( )
( )

( ) ( )
( )

m m m m m m m m m
m m

m m m m m m m m
m m

         

       

              

           


Substitute this result into the result of Eq. 7–7.

A B A B A B A
B A A A A A A A

A B A B A B A B

( ) ( ) ( ) 2
( ) ( ) ( ) ( )
m m m m m m m
m m m m m m m m

       
         
   

Thus we have A B
A A

A B

( )
( )
m m
m m

 
 


and A
B A

A B

2
.

( )
m

m m
  



(b) If A B ,m m then approximate A 0m  when added to or subtracted from B.m

A B B A A
A A A A B

A B B A B

( ) ( ) 2
0

( ) ( ) ( )
m m m m
m m m m m


    

       
  
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The result is A A B;  0 .      An example of this is a ball bouncing off of the floor. The

massive floor has no speed after the collision, and the velocity of the ball is reversed (if
dissipative forces are not present).

(c) If A B ,m m then approximate B 0m  when added to or subtracted from A .m

A B A A A A A
A A A A B A

A B A A B A

( ) ( ) 2 2
2

( ) ( ) ( ) ( )
m m m m m
m m m m m m

 
     

      
 

The result is A A B A; 2 .      An example of this would be a golf club hitting a golf ball.

The speed of the club immediately after the collision is essentially the same as its speed before
the collision, and the golf ball takes off with twice the speed of the club.

(d) If A B ,m m then set A B .m m m 

A A
A A B A

2 2( ) 0
( ) ( ) 2

m mm m
m m m m m

 
        

 

The result is A B A0;  .     An example of this is one billiard ball making a head-on

collision with another. The first ball stops, and the second ball takes off with the same speed that
the first one had.

4. The interaction between the planet and the spacecraft is elastic, because the force of gravity is
conservative. Thus kinetic energy is conserved in the interaction. Consider the problem a one-
dimensional collision, with A representing the spacecraft and B representing Saturn. Because the mass
of Saturn is so much bigger than the mass of the spacecraft, Saturn’s speed is not changed appreciably
during the interaction. Use Eq. 7–7, with A 10.4 km/s  and B B 9.6 km/s.   

A B A B A B A2 2( 9.6 km/s) 10.4 km/s 29.6 km/s                   

Thus there is almost a threefold increase in the spacecraft’s speed.


