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Responses to Questions

1. The three major “accelerators” are the accelerator pedal, the brake pedal, and the steering wheel. The
accelerator pedal (or gas pedal) can be used to increase speed (by depressing the pedal) or to decrease
speed in combination with friction (by releasing the pedal). The brake pedal can be used to decrease
speed by depressing it. The steering wheel is used to change direction, which also is an acceleration.
There are some other controls that could also be considered accelerators. The parking brake can be
used to decrease speed by depressing it. The gear shift lever can be used to decrease speed by
downshifting. If the car has a manual transmission, then the clutch can be used to decrease speed by
depressing it (friction will slow the car), or, if on a steep downward incline, depressing the clutch can
allow the car to increase speed. Finally, shutting the engine off can be used to decrease the car’s speed.
Any change in speed or direction means that an object is accelerating.

2. Yes, the centripetal acceleration will be greater when the speed is greater since centripetal acceleration

is proportional to the square of the speed (when the radius is constant):
2

R .a
r


 When the speed is

higher, the acceleration has a larger magnitude.

3. No, the acceleration will not be the same. The centripetal acceleration is inversely proportion to the

radius (when the speed is constant):
2

R .a
r


 Traveling around a sharp curve, with a smaller radius,

will require a larger centripetal acceleration than traveling around a gentle curve, with a larger radius.

4. The three main forces on the child are the downward force of gravity (the child’s weight), the normal
force up on the child from the horse, and the static frictional force on the child from the surface of the
horse. The frictional force provides the centripetal acceleration. If there are other forces, such as
contact forces between the child’s hands or legs and the horse, which have a radial component, they
will contribute to the centripetal acceleration.

5. On level ground, the normal force on the child would be the same magnitude as his weight. This is the
“typical” situation. But as the child and sled come over the crest of the hill, they are moving in a
curved path, which can at least be approximated by a circle. There must be a centripetal force, pointing
inward toward the center of the arc. The combination of gravity (acting downward) and the normal
force on his body (acting upward when the sled is at the top of the hill) provides this centripetal force,
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which must be greater than zero. At the top of the hill, if downward is the positive direction, Newton’s

second law says
2

N .yF mg F m
r


   Thus the normal force must be less than the child’s weight.

6. No. The barrel of the dryer provides a centripetal force on the clothes to keep them moving in a
circular path. A water droplet on the solid surface of the drum will also experience this centripetal
force and move in a circle. However, as soon as the water droplet is at the location of a hole in the
drum there will be no centripetal force on it and it will therefore continue moving in a path in the
direction of its tangential velocity, which will take it out of the drum. There is no centrifugal force
throwing the water outward; there is rather a lack of centripetal force to keep the water moving in a
circular path.

7. She should let go of the string at
the moment that the tangential
velocity vector is directed exactly
at the target. This would also be
when the string is perpendicular
to the desired direction of motion
of the ball. See the “top view”
diagram. Also see Fig. 5–6 in the
textbook.

8. At the top of the bucket’s arc, the gravitational force and normal forces from the bucket, both pointing
downward, must provide the centripetal force needed to keep the water moving in a circle. In the

limiting case of no normal force, Newton’s second law would give
2

net ,F mg m
r


  which means

that the bucket must be moving with a tangential speed of gr  or the water will spill out of the
bucket. At the top of the arc, the water has a horizontal velocity. As the bucket passes the top of the arc,
the velocity of the water develops a vertical component. But the bucket is traveling with the water,
with the same velocity, and contains the water as it falls through the rest of its path.

9. For objects (including astronauts) on the inner surface of the cylinder, the normal force provides a
centripetal force, which points inward toward the center of the cylinder. This normal force simulates
the normal force we feel when on the surface of Earth.
(a) Falling objects are not in contact with the floor, so when released they will continue to move

with constant velocity until they reach the shell. From the frame of reference of the astronaut
inside the cylinder, it will appear that the object “falls” in a curve, rather than straight down.

(b) The magnitude of the normal force on the astronaut’s feet will depend on the radius and speed of

the cylinder. If these are such that
2

g
r


 (so that
2

m mg
r


 for all objects), then the normal

force will feel just like it does on the surface of Earth.
(c) Because of the large size of Earth compared to humans, we cannot tell any difference between

the gravitational force at our heads and at our feet. In a rotating space colony, the difference in
the simulated gravity at different distances from the axis of rotation could be significant, perhaps
producing dizziness or other adverse effects. Also, playing “catch” with a ball could be difficult
since the normal parabolic paths as experienced on Earth would not occur in the rotating cylinder.

Target
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10. (a) The normal force on the car is largest at point C. In this case, the centripetal force keeping the
car in a circular path of radius R is directed upward, so the normal force must be greater than the
weight to provide this net upward force.

(b) The normal force is smallest at point A, the crest of the hill. At this point the centripetal force
must be directed downward (toward the center of the circle), so the normal force must be less
than the weight. (Notice that the normal force is equal to the weight at point B.)

(c) The driver will feel heaviest where the normal force is greatest, or at point C.
(d) The driver will feel lightest at point A, where the normal force is the least.

(e) At point A, the centripetal force is weight minus normal force, or
2

N .mmg F
R


  The point at

which the car just loses contact with the road corresponds to a normal force of zero, which is the

maximum speed without losing contact. Setting N 0F  gives
2
max

max .
m

mg Rg
R


  

11. Yes, a particle with constant speed can be accelerating. A particle traveling around a curve while
maintaining a constant speed is accelerating because its direction is changing. However, a particle with
a constant velocity cannot be accelerating, since the velocity is not changing in magnitude or direction,
and to have an acceleration the velocity must be changing.

12. When an airplane is in level flight, the downward force of gravity is
counteracted by the upward lift force, analogous to the upward normal force on
a car driving on a level road. The lift on an airplane is perpendicular to the plane
of the airplane’s wings, so when the airplane banks, the lift vector has both
vertical and horizontal components (similar to the vertical and horizontal
components of the normal force on a car on a banked turn). Assuming that the
plane has no vertical acceleration, then the vertical component of the lift
balances the weight and the horizontal component of the lift provides the
centripetal force. If LF is the total lift and   the banking angle, measured

from the vertical, then L cosF mg  and
2

L sin ,F m
r


  so 1 2tan ( / ).gr 

13. Whether the apple is (a) attached to a tree or (b) falling, it exerts a gravitational force on the Earth
equal to the force the Earth exerts on it, which is the weight of the apple (Newton’s third law). That
force is independent of the motion of the apple.

14. Since the Earth’s mass is much greater than the Moon’s mass, the point at which the net gravitational
pull on the spaceship is zero is closer to the Moon. It is shown in Problem 30 that this occurs at about
90% of the way from the Earth to the Moon. So, a spaceship traveling from the Earth toward the Moon
must therefore use fuel to overcome the net pull backward for 90% of the trip. Once it passes that point,
the Moon will exert a stronger pull than the Earth and accelerate the spacecraft toward the Moon.
However, when the spaceship is returning to the Earth, it reaches the zero point at only 10% of the way
from the Moon to the Earth. Therefore, for most of the trip toward the Earth, the spacecraft is “helped”
by the net gravitational pull in the direction of travel, so less fuel is used.

15. The satellite needs a certain speed with respect to the center of the Earth to achieve orbit. The Earth
rotates toward the east so it would require less speed (with respect to the Earth’s surface) to launch a
satellite (a) toward the east. Before launch, the satellite is moving with the surface of the Earth so
already has a “boost” in the right direction.

mg

LF



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16. If the antenna becomes detached from a satellite in orbit, the antenna will continue in orbit around the
Earth with the satellite. If the antenna were given a component of velocity toward the Earth (even a
very small one), it would eventually spiral in and hit the Earth. If the antenna were somehow slowed
down, it would also fall toward the Earth.

17. Yes, we are heavier at midnight. At noon, the gravitational force on a person due to the Sun and the
gravitational force due to the Earth are in the opposite directions. At midnight, the two forces point in
the same direction. Therefore, your apparent weight at midnight is greater than your apparent weight at
noon.

18. Your apparent weight will be greatest in case (b), when the elevator is accelerating upward. The scale
reading (your apparent weight) indicates your force on the scale, which, by Newton’s third law, is the
same as the normal force of the scale on you. If the elevator is accelerating upward, then the net force
must be upward, so the normal force (up) must be greater than your actual weight (down). When in an
elevator accelerating upward, you “feel heavy.”

Your apparent weight will be least in case (c), when the elevator is in free fall. In this situation your
apparent weight is zero since you and the elevator are both accelerating downward at the same rate and
the normal force is zero.

Your apparent weight will be the same as when you are on the ground in case (d), when the elevator is
moving upward at a constant speed. If the velocity is constant, acceleration is zero and N = mg. (Note
that it doesn’t matter if the elevator is moving up or down or even at rest, as long as the velocity is
constant.)

19. If the Earth were a perfect, nonrotating sphere, then the gravitational force on each droplet of water in
the Mississippi would be the same at the headwaters and at the outlet, and the river wouldn’t flow.
Since the Earth is rotating, the droplets of water experience a centripetal force provided by a part of the
component of the gravitational force perpendicular to the Earth’s axis of rotation. The centripetal force
is smaller for the headwaters, which are closer to the North Pole, than for the outlet, which is closer to
the equator. Since the centripetal force is equal to mg – N (apparent weight) for each droplet, N is
smaller at the outlet, and the river will flow. This effect is large enough to overcome smaller effects on
the flow of water due to the bulge of the Earth near the equator.

20. The satellite remains in orbit because it has a velocity. The instantaneous velocity of the satellite is
tangent to the orbit. The gravitational force provides the centripetal force needed to keep the satellite in
orbit, acting like the tension in a string when twirling a rock on a string. A force is not needed to keep
the satellite “up”; a force is needed to bend the velocity vector around in a circle. The satellite can’t
just have any speed at any radius, though. For a perfectly circular orbit, the speed is determined by the
orbit radius, or vice versa, through the relationship orbit ,rg  where r is the radius of the orbit and
g is the acceleration due to gravity at the orbit position.

21. The centripetal acceleration of Mars in its orbit around the Sun is smaller than that of the Earth. For
both planets, the centripetal force is provided by gravity, so the centripetal acceleration is inversely
proportional to the square of the distance from the planet to the Sun:

2
p s p

2

m Gm m
r r


 so

2
s

R 2
Gm

a
r r


 

Since Mars is at a greater distance from the Sun than is Earth, it has a smaller centripetal acceleration.
Note that the mass of the planet does not appear in the equation for the centripetal acceleration.
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22. For Pluto’s moon, we can equate the gravitational force from Pluto on the moon to the centripetal force
needed to keep the moon in orbit:

2 2 2 3
p mm

p2 2
4Gm mm r rm

r Gr GT
  

   

This allows us to solve for the mass of Pluto p( )m if we know G, the radius of the moon’s orbit, and

the velocity of the moon, which can be determined from the period T and orbital radius. Note that the
mass of the moon cancels out.

23. The Earth is closer to the Sun in January. See Fig. 5–29 and the
accompanying discussion about Kepler’s second law. The caption
in the textbook says: “Planets move fastest when closest to the Sun.”
So in the (greatly exaggerated) figure, the time between points
1 and 2 would be during January, and the time between points
3 and 4 would be July.

Responses to MisConceptual Questions

1. (b) As you turn, you feel the force between yourself and the car door. A common misconception is
that a centrifugal force is pushing you into the door (answer (a)). Actually, your inertia tries to
keep you moving in a straight line. As the car (and door) turn right, the door accelerates into you,
pushing you away from your straight-line motion and toward the right.

2. (e) In circular motion, the velocity is always perpendicular to the radius of the circle, so (b), (c), and
(d) are incorrect. The net force is always in the same direction as the acceleration, so if the
acceleration points toward the center, the net force must also. Therefore, (e) is a better choice
than (a).

3. (c) A common misconception is that the ball will continue to move in a curved path after it exits the
tube (answers (d) or (e)). However, for the ball to move in a curved path, a net force must be
acting on the ball. When it is inside the tube, the normal force from the tube wall provides the
centripetal force. After the ball exits the tube, there is no net force, so the ball must travel in a
straight-line path in the same direction it was traveling as it exited the tube.

4. (d) The phrase “steady speed” is not the same as “constant velocity,” as velocity also includes
direction. A common misconception is that if a car moves at steady speed, the acceleration and
net force are zero (answers (a) or (b)). However, since the path is circular, a radially inward
force must cause the centripetal acceleration. If this force (friction between the tires and road)
were not present, the car would move in a straight line. It would not accelerate outward.

5. (b) A common error in this problem is to ignore the contribution of gravity in the centripetal force.
At the top of the loop gravity assists the tension in providing the centripetal force, so the tension
is less than the centripetal force. At the bottom of the loop gravity opposes the tension, so the
tension is greater than the centripetal force. At all other points in the loop the tension is between
the maximum at the bottom and the minimum at the top.

6. (a) The forces acting on the child are gravity (downward), the normal force (away from the wall),
and the force of friction (parallel to the wall and in this case opposing gravity). In particular,
there is nothing “pushing” outward on the rider, so answers (b), (d), and (e) cannot be correct.
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7. (d) If the net force on the Moon were zero (answer (a)), the Moon would move in a straight line and
not orbit about the Earth. Gravity pulls the Moon away from the straight-line motion. The large
tangential velocity is what keeps the Moon from crashing into the Earth. The gravitational force
of the Sun also acts on the Moon, but this force causes the Earth and Moon to orbit the Sun.

8. (f) A common misconception is that since the Earth is more massive than the Moon, it must exert
more force. However, the force is an interaction between the Earth and Moon, so by Newton’s
third law, the forces must be equal. Since the Moon is less massive than the Earth and the forces
are equal, the Moon has the greater acceleration.

9. (c) The nonzero gravitational force on the ISS is responsible for it orbiting the Earth instead of
moving is a straight line through space. Astronauts aboard the ISS experience the same
centripetal acceleration (free fall toward the Earth) as the station and as a result do not
experience a normal force (apparent weightlessness).

10. (b) A common misconception is that the mass of an object affects its orbital speed. However, as with
all objects in free fall, when calculating the acceleration the object’s mass is divided out of the
gravitational force. All objects at the same radial distance from the Earth experience the same
centripetal acceleration, and by Eq. 5–1 they have the same orbital speed.

11. (c) Each of the incorrect answers assumes the presence of an external force to change the orbital
motion of the payload. When the payload is attached to the arm, it is orbiting the Earth at the
same distance and speed as the shuttle. When it is released, the only force acting on the payload
is the force of gravity, which due to the speed of the payload keeps it in orbital motion. For the
payload to fall straight down or to follow a curved path that hits the Earth, a force would need to
slow down the payload’s speed, but no such force is present. To drift out into deep space a force
would be needed to overcome the gravity that is keeping it in orbit, but no such force is present.

12. (d) Since the penny is rotating around the turntable it experiences a centripetal force toward the
center of the turntable, as in (c). The rotation is also slowing down, so the penny experiences a
decelerating force opposite its velocity, as in (a). These two forces are vectors and must be added
together to give a net force in the direction of (d).

Solutions to Problems

1. (a) Find the centripetal acceleration from Eq. 5–1.
2

2 2 2
R (1 10 m/s) /1 20 m 1 008 m/s 1 01 m/sa

r


       

(b) The net horizontal force is causing the centripetal motion, so it will be the centripetal force.
2

R R (22 5 kg)(1 008 m/s ) 22 68 N 22 7 NF ma       

2. Find the centripetal acceleration from Eq. 5–1.
2 2

2
3 2

(525 m/s) 1(53 00 m/s ) 5 41 's
5 20 10 m 9 80 m/s

R
ga g

r
  

          

3. Find the speed from Eq. 5–3.
2

R
R

(310 N)(0 90 m)    11 81 m/s 12 m/s
m 2 0 kg
F rmF

r
  

      

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4. To find the period, take the reciprocal of the rotational speed (in rev/min) to get min/rev, and then
convert to s/rev. Use the period to find the speed, and then the centripetal acceleration.

2 2
2 2

R

1 min 60 s s 2 2 (0.175 m)1.333 0.175 m 0.8249 m/s
45 rev 1 min rev 1.333 s

(0.8249 m/s) 3.888 m/s 3.9 m/s
0.175 m

rT r
T

a
r

 



  
       
  

   

5. The centripetal force that the tension provides is given by Eq. 5–3. Solve that for the speed.
2

R
R

(75 N)(1 3 m)    13 31 m/s 13 m/s
0 55 kg

F rmF
r m
  

      


6. The centripetal acceleration of a rotating object is given by Eq. 5–1. Solve that for the velocity.
5 5 2 2 2

R (1 25 10 ) (1 25 10 )(9 80 m/s )(7 00 10 m) 2 928 10 m/sa r g r             2

2 4
2

1 rev 60 s(2 928 10 m/s) 3 99 10 rpm
1 min2 (7 00 10 m)

   
            

2

7. A free-body diagram for the car is shown. Write Newton’s second law for
the car in the vertical direction, assuming that up is positive. The normal
force is twice the weight.

2

N

2

    2

(115 m)(9 80 m/s ) 33 57 m/s 34 m/s

F F mg ma mg mg m
r

rg





      

     



8. In the free-body diagram, the car is coming out of the page, and the center of
the circular path is to the right of the car, in the plane of the page. The
vertical forces (gravity and normal force) are of the same magnitude, because
the car is not accelerating vertically. We assume that friction is the force
causing the circular motion. At maximum speed, the car would be on the
verge of slipping, and static friction would be at its maximum value.

2

2 2

R fr s N s s 2

 1 m/s(95 km/h)
3 6 km/h

        0 57
(125 m)(9 80 m/s )

F F m F mg
r rg
   

  
            



Notice that the result is independent of the car’s mass.

9. A free-body diagram for the car at one instant is shown, as though the car is coming
out of the page. The center of the circular path is to the right of the car, in the plane
of the page. At maximum speed, the car would be on the verge of slipping, and
static friction would be at its maximum value. The vertical forces (gravity and
normal force) are of the same magnitude, because the car is not accelerating
vertically. We assume that friction is the force causing the circular motion.

2

R fr s N s

2
s

      

(0 65)(90 0 m)(9 80 m/s ) 23 94 m/s 24 m/s

F F m F mg
r

rg

  

 

    

       

Notice that the result is independent of the car’s mass .

mgNF


mg
frF
NF



mg

frF
NF


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10. (a) At the bottom of the motion, a free-body diagram of the bucket would be as
shown. Since the bucket is moving in a circle, there must be a net force on it
toward the center of the circle and a centripetal acceleration. Write
Newton’s second law for the bucket, Eq. 5–3, with up as the positive direction.

   

2
R T

2
T

/

1 20 m [25 0 N 2 00 kg (9 80 m/s )]( )
1 8 m/s

2 00 kg

F F mg ma m r

r F mg
m





    

    
   



 v

(b) A free-body diagram of the bucket at the top of the motion is shown. The
bucket is moving in a circle, so there must be a net force on it toward the
center of the circle, and a centripetal acceleration. Write Newton’s second law
for the bucket, Eq. 5–3, with down as the positive direction.

2
T

R T
( )r F mg

F F mg ma m
r m
 


     

If the tension is to be zero, then

2(0 ) (1 20 m)(9 80 m/s ) 3 43 m/sr mg rg
m

 
      

The bucket must move faster than 3.43 m/s in order for the rope not to go slack.

11. The free-body diagram for passengers at the top of a Ferris wheel is as shown.
NF is the normal force of the seat pushing up on the passengers. The sum of

the forces on the passengers is producing the centripetal motion and must be a
centripetal force. Call the downward direction positive, and write Newton’s
second law for the passengers, Eq. 5–3.

2

R NF mg F ma m
r


   

Since the passengers are to feel “weightless,” they must lose contact with their seat,
and the normal force will be 0. The diameter is 25 m, so the radius is 12.5 m.

2
2(9 80 m/s )(12 5 m) 11 07 m/smg m gr

r
        

  1 rev 60 s11 07 m/s 8 457 rpm 8 5 rpm
2 (12 5 m) 1 min

  
        

12. (a) See the free-body diagram for the pilot in the jet at the bottom of the loop.

We have
2

R 6 0 .a g
r


  

2

2 2

2

1 m/s(840 km/h)
3 6 km/h

6 0     925 9 m 930 m
6 0 6 0(9 80 m/s )

g r
r g
 

  
           

  

(b) The net force must be centripetal, to make the pilot go in a circle. Write Newton’s second law for
the vertical direction, with up as positive. The normal force is the apparent weight.

2

R NF F mg m
r


  

mgTF

mg

TF


mgNF

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The centripetal acceleration is to be
2

6 0g
r


  

2
2

N 7 7(78 kg)(9 80 m/s ) 5350 N 5400 NF mg m mg
r


      

(c) See the free-body diagram for the pilot at the top of the loop. The
normal force is down, because the pilot is upside down. Write
Newton’s second law in the vertical direction, with down as positive.

2
R N N/ 6     5 3800 NF F mg m r mg F mg      

13. To experience a gravity-type force, objects must be on the inside of the outer
wall of the tube, so that there can be a centripetal force to move the objects
in a circle. See the free-body diagram for an object on the inside of the outer
wall and a portion of the tube. The normal force of contact between the
object and the wall must be maintaining the circular motion. Write Newton’s
second law for the radial direction.

2

R NF F ma m
r


  

This is to have nearly the same effect as Earth gravity, with N 0 90F mg   Equate the two expressions
for normal force and solve for the speed.

2
2

N 0 90     0 90 (0 90)(9 80 m/s )(550 m) 69 65 m/s

1 rev 86,400 s(69.65 m/s) 1741 rev/day 1700 rev/day
2 (550 m) 1 day

F m mg gr
r
 



          

  
   

  

14. The radius of either skater’s motion is 0.80 m, and the period is 2.5 s. Thus their speed is given by
2 (0 80 m)2 / 2 0 m/s

2 5 s
r T   

    


Since each skater is moving in a circle, the net radial force on

each one is given by Eq. 5–3.
2 2

2
R

(55 0 kg)(2 0 m/s) 275 N 2 8 10 N
0 80 m

F m
r
  

     


15. The force of static friction is causing the circular motion—it is the centripetal
force. The coin slides off when the static frictional force is not large enough to
move the coin in a circle. The maximum static frictional force is the coefficient
of static friction times the normal force, and the normal force is equal to the
weight of the coin as seen in the free-body diagram, since there is no vertical
acceleration. In the free-body diagram, the coin is coming out of the page and
the center of the circle is to the right of the coin, in the plane of the page.

The rotational speed must be changed into a linear speed.
 

2 2 2

R fr s N s s 2

2 0 130 mrev  1 min38 0 0 5173 m/s
min 60 s 1 rev

(0 5173 m/s)        0 210
(0 130 m)(9 80 m/s )

F F m F mg
r rg




   

         
     


        

 

mg
NF


mg
frF


NF

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16. For the car to stay on the road, the normal force must be greater
than 0. See the free-body diagram, write the net radial force,
and solve for the radius.

2 2

R N
N

cos     
cos

m mF mg F r
r mg F
 


    



For the car to be on the verge of leaving the road, the normal

force would be 0, so
2 2

critical cos cos
mr

mg g
 

 
   This

expression gets larger as the angle increases, so we must
evaluate at the largest angle to find a radius that is good for all angles in the range.

2

2

critical 2
maximum max

1 m/s95 km/h
3 6 km/h

74 7 m 75 m
cos (9 80 m/s )cos18

r
g




  
        

 

17. If the masses are in line and both have the same frequency of
rotation, then they will always stay in line. Consider a free-
body diagram for both masses, from a side view, at the
instant that they are to the left of the post. Note that the same
tension that pulls inward on mass 2 pulls outward on mass 1,
by Newton’s third law. Also notice that since there is no
vertical acceleration, the normal force on each mass is equal
to its weight. Write Newton’s second law for the horizontal
direction for both masses, noting that they are in uniform circular motion.

2 2
A B

RA TA TB A A A RB TB B B B
A B

F F F m a m F F m a m
r r
 

       

The speeds can be expressed in terms of the frequency as follows: rev 2 2 .
s 1 rev

rf rf
      

  

2
2 2 2B

TB B B B B B B
B

2
2 2 2 2A

TA TB A B B A A A A A B B
A

(2 ) / 4

4 (2 ) / 4 ( )

F m m r f r m r f
r

F F m m r f m r f r f m r m r
r


 


  

  

     

18. A free-body diagram of Tarzan at the bottom of his swing is shown. The upward
tension force is created by his pulling down on the vine. Write Newton’s second
law in the vertical direction. Since he is moving in a circle, his acceleration will be
centripetal and will point upward when he is at the bottom.

2
T

T
( )

    
F mg r

F F mg ma m
r m
 


     

The maximum speed will be obtained with the maximum tension.

mAmB

Am gBm g

TBF


TBF


TAF
NBF


NAF


mg

TF

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2
T max

max
( ) [1150 N (78 kg)(9 80 m/s )](4 7 m) 4 8 m/s

78 kg
mg r

m


   
   

F


19. The speed is 50 km/h, the curve is unbanked, and the static friction coefficient for rubber on wet
concrete is 0.7. If the car is just at the point of slipping, the static frictional force, which is providing
the acceleration, would be at its maximum.

2

2 2

s 2
s

1 m/s50 km/h
3 6 km/h

28 12 m 30 m
(0 7)(9 80 m/s )

m mg r
r g
 



  
          

 

20. The fact that the pilot can withstand 8.0 g’s without blacking out, along with the
speed of the aircraft, will determine the radius of the circle that he must fly as he
pulls out of the dive. To just avoid crashing into the sea, he must begin to form that
circle (pull out of the dive) at a height equal to the radius of that circle.

2 2 2

R 2
(270 m/s)8 0     930 m

8 0 8 0(9 80 m/s )
a g r

r g
 

      
  

21. Since the curve is designed for 65 km/h, traveling at a higher speed with
the same radius means that more centripetal force will be required. That
extra centripetal force will be supplied by a force of static friction,
downward along the incline. See the free-body diagram for the car on
the incline. Note that from Example 5–7 in the textbook, the no-friction
banking angle is given by the following:

2

2
1 1

2

1 0 m/s(65 km/h)
3 6 km/h

tan tan 19 3
(95 m)(9 80 m/s )rg

  

  
        



Write Newton’s second law in both the x and y directions. The car will have no acceleration in the y
direction and centripetal acceleration in the x direction. We also assume that the car is on the verge of
skidding, so that the static frictional force has its maximum value of fr s NF F  Solve each equation
for the normal force.

N fr N s Ncos sin 0    cos sin   yF F mg F F F mg           

N
s(cos sin )

mgF
  




2 2

N fr R N s N

2

N
s

sin cos     sin cos   

/
(sin cos )

xF F F F m F F m
r r

m rF

     


  

        








y
x


mg

NF


frF

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Equate the two expressions for NF and solve for the coefficient of friction. The speed of rounding the

curve is given by 1 0 m/s(95 km/h) 26 39 m/s
3 6 km/h


 

     
2

s s

/   
(cos sin ) (sin cos )

mg m r
     

 
 

2 2 2
2

s 2 2 2
2

(26 39 m/s)cos sin tan (9 80 m/s ) tan19 3
95 m

0 32
(26 39 m/s)cos sin tan 9 80 m/s tan19 3

95 m

g g
r r

g g
r r

   


   

     
               

         
     

               
     

22. From Example 5–8, we are given that the track radius is 500 m (assumed to have two significant
figures), and the tangential acceleration is 23.2 m/s . Thus the tangential force is

2 3
tan tan (950 kg)(3 2 m/s ) 3040 N 3 0 10 NF ma      

The centripetal force is given by Eq. 5–3.
2

2
R (950 kg)(15 m/s) /(500 m) 427 5 N 430 NF m

r


    

23. The car has constant tangential acceleration, which is the acceleration that causes the speed to change.
Thus use constant-acceleration equations to calculate the tangential acceleration. The initial speed is 0,

the final speed is 1 0 m/s270 km/h 75 m/s,
3 6 km/h

 
  

and the distance traveled is one-half of a circular arc

of radius 220 m, so tan 220 m.x   Find the tangential acceleration using Eq. 2–11c.
2 2 2

2 2 2 2tan 0 tan
tan 0 tan tan tan tan

tan

(75 m/s)2     4 069 m/s 4 1 m/s
2 2(220 m)

a x a
x

 
 




         


With this tangential acceleration, we can find the speed that the car has halfway through the turn, using
Eq. 2–11c, and then calculate the radial acceleration.

2 2 2 2
tan 0 tan tan tan tan 0 tan tan tan

2 2
2 2

R

2     2 2(4 069 m/s )(110 m) 53 03 m/s

(53 03 m/s) 12 78 m/s 13 m/s
220 m

a x a x

a
r

    



          


    

The total acceleration is given by the Pythagorean combination of the tangential and centripetal

accelerations, 2 2
total R tan .a a a  If static friction is to provide the total acceleration, then

2 2
fr total R tan .F ma m a a   We assume that the car is on the verge of slipping and is on a level

surface, so the static frictional force has its maximum value of fr s N s .F F mg   If we equate these
two expressions for the frictional force, we can solve for the coefficient of static friction.

2 2
fr total R tan s

2 2 2 2 2 2
R tan

s 2

  

(12 78 m/s ) (4 069 m/s )
1 37 1 4

9 80 m/s

F ma m a a mg

a a
g





    

   
     


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This is an exceptionally large coefficient of friction, so the curve had better be banked.

24. In all cases, we draw a view from above, and the car is moving clockwise around the
circular path.
(a) In this case, the car is gaining speed, so it has a tangential acceleration in the

direction of its velocity, as well as a centripetal acceleration. The total
acceleration vector is somewhat “forward.”

(b) In this case, the car has a constant speed, so there is no tangential acceleration.
The total acceleration is equal to the radial acceleration.

(c) In this case, the car is slowing down, so its tangential acceleration is in the
opposite direction as the velocity. It also has a centripetal acceleration. The total
acceleration vector is somewhat “backward.”

25. We show a top view of the particle in circular motion, traveling clockwise.
Because the particle is in circular motion, there must be a radially inward
component of the acceleration.

(a)
2

R sin   a a
r


  

2 osin (1 05 m/s )(1 95 m)sin 25 0 0 930 m/sar       

(b) The particle’s speed change comes from the tangential acceleration, which
is given by tan cosa a   Since the tangential acceleration is constant,
we use Eq. 2–11a.

tan 0 tan tan
2

tan 0 tan tan

  

0 930 m/s (1 05 m/s )(cos 25 0 )(2 00 s) 2 83 m/s

a t

a t

 

 

  

          

26. The spacecraft is at 3.00 Earth radii from the center of the Earth, or three times as far from the Earth’s
center as when at the surface of the Earth. Therefore, since the force of gravity decreases as the square
of the distance, the force of gravity on the spacecraft will be one-ninth of its weight at the Earth’s
surface.

2
1

Earth's9
surface

(1850 kg)(9 80 m/s ) 2010 N
9GF mg 

  

This could also have been found using Eq. 5–4, Newton’s law of universal gravitation.

27. (a) Mass is independent of location, so the mass of the ball is 24.0 kg on both the Earth and the
planet.

(b) The weight is found by using W mg 


a

Ra


tana
a

Ra


tana

a

Ra


tana

Ra a  tan 0a
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2
Earth Earth (24 0 kg)(9 80 m/s ) 235 NW mg    

2
Planet Planet (24 0 kg)(12 0 m/s ) 288 NW mg    

28. For the net force to be zero means
that the gravitational force on the
spacecraft due to the Earth must be
the same as that due to the Moon.
Write the gravitational forces on the
spacecraft, equate them, and solve for
the distance x. We measure from the
center of the bodies.

Earth spacecraft Moon spacecraft
Earth- Moon2 2
spacecraft spacecraft

2 2
Earth spacecraft Moon spacecraft

2 2
Earth Moon Earth Moon

;
( )

( )
( )

M m M m
F G F G

x d x
M m M m x d x x d xG G

M M M Mx d x

 


 
    



   
24

Earth 8 8
22 24Moon Earth

5 97 10 kg
(3 84 10 m) 3 46 10 m

7 35 10 kg 5 97 10 kg

M
x d

M M

 
      

     

This is only about 22 Moon radii away from the Moon. Alternatively, it is about 90% of the distance
from the center of the Earth to the center of the Moon.

29. Assume that the two objects can be treated as point masses, with 1m m and 2 4 00 kgm m    The
gravitational force between the two masses is given by the following:

2
11 2 2 101 2

2 2 2
(4 00 ) 4 00(6 67 10 N m /kg ) 2 5 10 N

(0 25 m)
m m m m m mF G G
r r

    
        



This can be rearranged into a quadratic form of 2 4 00 0 234 0.m m     Use the quadratic formula to
solve for m, resulting in two values, which are the two masses.

1 23 94 kg, 0 06 kgm m   

30. The acceleration due to gravity at any location on or above the surface of a planet is given by
2

planet planet / ,g GM r where r is the distance from the center of the planet to the location in question.
2

2Planet Earth Earth
planet Earth2 2 2 2

Earth Earth

1 1 9 80 m/s 2 5 m/s
4 0 4 0(2 0 ) (2 0)

M M M
g G G G g

r R R


      
  

31. The force of gravity on an object at the surface of a planet is given by Newton’s law of universal
gravitation, Eq. 5–4, using the mass and radius of the planet. If that is the only force on an object, then
the acceleration of a freely falling object is acceleration due to gravity.

Moon
Moon2

Moon
  G

M m
F G mg

r
  

22
11 2 2 2Moon

Moon 2 6 2
Moon

(7 35 10 kg)(6 67 10 N m /kg ) 1 62 m/s
(1 74 10 m)

M
g G

r
 

      
 

2

d

spacecraft

Earth
Moon

d–xx
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32. The expression for the acceleration due to gravity at the surface of a body is body
body 2

body
,

M
g G

R
 where

bodyR is the radius of the body. For Mars, Mars Earth0 38 .g g 

Mars Earth
2 2
Mars Earth

2 2
24 23Mars

Mars Earth
Earth

0 38   

3400 km0 38 0 38(5 98 10 kg) 6 5 10 kg
R 6380 km

M M
G G
R R

R
M M

  

              
  

33. We assume that the distance from the Moon to the Sun is the same as the distance from the Earth to the Sun.
Moon Earth Moon Sun

ME MS2 2
Moon- Moon-
Earth Sun

          x y
M M M M

F F G F F G
r r

   

2 2 2 2

2 2 Moon Earth Moon Sun Earth Sun
net Moon2 2 2 2

Moon- Moon- Moon- Moon-
Earth Sun Earth Sun

24
11 2 2 22 (5.98 10 kg)(6.67 10 N m /kg )(7.35 10 kg)

(38

x y
M M M M M M

F F F G G GM
r r r r



       
       

            
              
       


   

2 230

6 2 9 2

20

(1.99 10 kg)
4 10 m) (149.6 10 m)

4.79 10 N

   
          

 

Moon Earth Earth
2 2 2
Moon- Moon- Moon-
Earth Earth Sun1 1 1 1 Earth

2
SunMoon-

EarthMoon Sun Sun
2 2
Moon- Moon-
Sun Sun

tan tan tan tan

ta

x

y

M M MG
r r r

F M
F Mr

M M MG
r r

    

   
   
   

                 
              
      
   


24 9 2 24 9 2

1 1
6 2 30 6 2 30

1

(5.98 10 kg) (149.6 10 m) (5.98 10 kg) (149.6 10 m)n tan
(384 10 m) (1.99 10 kg) (384 10 m) (1.99 10 kg)

tan 0.456 24.5

 



      
   

         

  

34. The acceleration due to gravity at any location at or above the surface of a planet is given by
2

planet Planet / ,g GM r where r is the distance from the center of the planet to the location in question.

2 2Planet Earth Earth
planet Earth2 2 2

Earth Earth

2 80
2 80 2 80 2 80(9 80 m/s ) 27 4 m/s

M M M
g G G G g

r R R

 
            

 

35. The acceleration due to gravity is determined by the mass of the Earth and the radius of the Earth.

0 new 0 0 2
0 new 092 2 2 2

0 new 0 0

2 2        
9(3 )

GM GM G M GM
g g g

r r r r
    

So g is multiplied by a factor of 2/9 .
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36. The acceleration due to gravity at any location at or above the surface of a planet is given by
2

planet Planet / ,g GM r where r is the distance from the center of the planet to the location in question.

For this problem, 24
Planet Earth 5 97 10 kgM M    

(a) 6
Earth 6400 m 6 38 10 m 6400 mr R     

24
11 2 2 2Earth

2 6 2
(5 98 10 kg)(6 67 10 N m /kg ) 9 78 m/s

(6 38 10 m 6400 m)
M

g G
r

 
      

  
2

(b)  6 6 6
Earth 6400 km 6 38 10 m 6 4 10 m 12 78 10 m 3 significant f iguresr R          

24
11 2 2 2Earth

2 6 2
(5 98 10 kg)(6 67 10 N m /kg ) 2 44 m/s
(12 78 10 m)

M
g G

r
 

      
 

2

37. We are to calculate the force on Earth, so we need the distance of each planet from Earth.
6 10 6 11

Earth Earth
Venus Jupiter

6 12
Earth
Saturn

(150 108) 10 km 4 2 10 m        (778 150) 10 km 6 28 10 m

(1430 150) 10 km 1 28 10 m

r r

r

           

     

Jupiter and Saturn will exert a rightward force, and Venus will exert a leftward force. Take the right
direction as positive.

Earth Jupiter Earth Saturn Earth Venus
Earth- 2 2 2
planets Earth Earth Earth

Jupiter Saturn Venus

2
Earth 11 2 12 2 10 2

11 2 2 24

318 95.1 0.815
(6.28 10 m) (1.28 10 m) (4.2 10 m)

(6.67 10 N m /kg )(5.97 10 kg

M M M M M M
F G G G

r r r

GM



  

 
       

    2 22 2 17 17) (4.02 10 m ) 9.56 10 N 9.6 10 N     

The force of the Sun on the Earth is as follows:
24 30

11 2 2 22Earth Sun
Earth 2 11 2
Sun Earth

Sun

(5 97 10 kg)(1 99 10 kg)(6 67 10 N m /kg ) 3 52 10 N
(1 50 10 m)

M M
F G

r


   
       

 
2

So the ratio is 17 22 5
Earth- Earth-
planets Sun

9 56 10 N/3 52 10 N 2 7 10 ,F F         which is 27 millionths.

38. Calculate the force on the sphere in the lower left corner, using the free-
body diagram shown. From the symmetry of the problem, the net forces
in the x and y directions will be the same. Note 45  

2 2 2

right diag 2 2 2
1 1cos 1
2 2 2( 2 )

x
m m mF F F G G G
d d d

  
      

 

Thus
2

2
11 .

2 2y x
mF F G
d

 
   

 
The net force can be found by the

m

mm

m

d

d



upF


rightF


diagF




Circular Motion; Gravitation   5-17

© Copyright 2015 Pearson Education, Ltd. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Pythagorean combination of the two component forces. Due to the symmetry of the arrangement, the
net force will be along the diagonal of the square.

2 2
2 2 2

2 2

2
11 2 2 8

2

1 12 2 1 2 2
22 2

(7 5 kg) 1(6 67 10 N m /kg ) 2 1 1 10 N at 45
2(0 80 m)

x y x x
m mF F F F F G G
d d



            
  

           
 

2

The force points toward the center of the square.

39. In general, the acceleration due to gravity of the Earth is given by 2
Earth / ,g GM r where r is the

distance from the center of the Earth to the location in question. So, for the location in question,

2 2Earth Earth1 1
surface Earth10 102 2

Earth

6 7
Earth

        10

10 10(6 38 10 m) 2 02 10 m

M M
g g G G r R

r R

r R

    

      

40. The acceleration due to gravity at any location at or above the surface of a star is given by
2

star star / ,g GM r where r is the distance from the center of the star to the location in question.
30

11 2 2 12 2star Sun
star 2 2 4 2

5 5(1 99 10 kg)(6 67 10 N m /kg ) 7 10 m/s
(1 10 m)

M M
g G G

r r
  

       


41. The shuttle must be moving at “orbit speed” in order for the satellite to remain in the orbit when
released. The speed of a satellite in circular orbit around the Earth is given in Example 5–12.

Earth
orbit

24
11 2 2Earth Earth

6 5
Earth

3

(5 98 10 kg)(6 67 10 N m /kg )
( 780 km) (6 38 10 m 7 8 10 m)

7 46 10 m/s

M
G

r

M M
G G

r R



 



 
     

     

  

42. The speed of a satellite in a circular orbit around a body is given in Example 5–12 as

orbit body / ,GM r  where r is the distance from the satellite to the center of the body.

24
body 11 2 2Earth

6 6 6
Earth

3

(5 98 10 kg)(6 67 10 N m /kg )
4 8 10 m (6 38 10 m 4 8 10 m)

5 97 10 m/s

M M
G G

r R
   
     

       

  
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43. Consider a free-body diagram of yourself in the elevator. NF


is the force of the scale pushing
up on you and reads the normal force. Since the scale reads 77 kg, if it were calibrated in
newtons, the normal force would be 2

N (77 kg)(9 80 m/s ) 754 6 NF     
Write Newton’s second law in the vertical direction, with upward as positive.

2
2N

N
754 6 N (62 kg)(9 80 m/s )    2 4 m/s  upward

62 kg
F mg

F F mg ma a
m
   

       

Since the acceleration is positive, the acceleration is upward.

44. Draw a free-body diagram of the monkey. Then write Newton’s second law for the
vertical direction, with up as positive.

T
T     

F mg
F F mg ma a

m


    

For the maximum tension of 185 N,

 
2

2 2185 N (12 0 kg)(9 80 m/s ) 5 62 m/s 5 6 m/s
12 0 kg

a   
    



Thus the elevator must have an upward acceleration greater than
25 6 m/sa   for the cord to break.

Any downward acceleration would result in a tension less than the monkey’s weight.

45. The speed of an object in a circular orbit of radius r around mass M is given in Example 5–12 by
/GM r  and is also given by 2 / ,r T  where T is the period of the orbiting object. Equate the

two expressions for the speed and solve for T.

2   M rG
r T


 

3 6 4 3
3

11 2 2 22
(1 74 10 m 9 5 10 m)2 2 7 05 10 s 118 min

(6 67 10 N m /kg )(7 35 10 m)
rT
GM

 


    
     

    

46. The speed of a satellite in circular orbit around the Earth is shown in Example 5–12 to be

Earth
orbit .

M
G

r
  Thus the velocity is inversely related to the radius, so the closer satellite will be

orbiting faster.

Earth
7 6 7

closeclose far Earth
6 6 6

far closeEarth Earth

far

1 5 10 m 6 38 10 m 1 5 10 m 1 24
7 5 10 m 6 38 10 m 7 5 10 m

GM
r r R

rGM R
r




       
     

       

So the close satellite is moving 1.2 times faster than the far satellite.

mg

TF


mg
NF

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47. Consider a free-body diagram for the woman in the elevator. NF


is the upward force
the spring scale exerts, providing a normal force. Write Newton’s second law for the
vertical direction, with up as positive.

N N    ( )F F mg ma F m g a     
(a, b) For constant-speed motion in a straight line, the acceleration is 0, so the

normal force is equal to the weight.
2

N (58 0 kg)(9 80 m/s ) 568 NF mg    

(c) Here 0 23 ,a g   so 2
N 1 23 1 23(58 0 kg)(9 80 m/s ) 699 NF mg       

(d) Here 0 23 ,a g   so 2
N 0 77 0 77(58 0 kg)(9 80 m/s ) 440 N .F mg      

(e) Here ,a g  so N 0 .F 

48. The speed of an object in an orbit of radius r around the Earth is given in Example 5–12 by

Earth /GM r  and is also given by 2 / ,r T  where T is the period of the object in orbit. Equate
the two expressions for the speed and solve for T. Also, for a “near-Earth” orbit, Earthr R 

3
Earth

Earth

3 6 3
Earth

11 2 2 24
Earth

2     2

(6 38 10 m)2 2 5070 s 84 5 min
(6 67 10 N m /kg )(5 98 10 m)

M r rG T
r T GM

R
T

GM

 

 


  

 
    

    

No , the result does not depend on the mass of the satellite.

49. Consider the free-body diagram for the astronaut in the space vehicle. The Moon is
below the astronaut in the figure. We assume that the astronaut is touching the inside of
the space vehicle, or in a seat, or strapped in somehow, so a force will be exerted on the
astronaut by the spacecraft. That force has been labeled N F


The magnitude of that

force is the apparent weight of the astronaut. Take down as the positive direction.
(a) If the spacecraft is moving with a constant velocity, then the acceleration of the

astronaut must be 0, so the net force on the astronaut is 0.
N

22
11 2 2Moon

N 2 6 2

0  

(75 kg)(7.4 10 kg)(6.67 10 N m /kg ) 59.23 N
(2.5 10 m)

F mg F

mM
F mg G

r


   


     





Since the value here is positive, the normal force points in the original direction as shown on the
free-body diagram. The apparent weight is 59 N, away from the Moon 

(b) Now the astronaut has an acceleration toward the Moon. Write Newton’s second law for the
astronaut, with down as the positive direction.

2
N N    59.23 N (75 kg)(1.8 m/s ) 76 NF mg F ma F mg ma         

Because of the negative value, the normal force points in the opposite direction from what is
shown on the free-body diagram—it is pointing toward the Moon. So perhaps the astronaut is
pinned against the “ceiling” of the spacecraft, or safety belts are pulling down on the astronaut.
The apparent weight is 76 N, toward the Moon 

mg
NF


mg
NF

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50. The apparent weight is the normal force on the passenger. For a person at rest, the normal force is
equal to the actual weight. If there is acceleration in the vertical direction, either up or down, then the
normal force (and hence the apparent weight) will be different than the actual weight. The speed of the
Ferris wheel is 2 / 2 (11.0 m)/12.5 s 5.529 m/s.r T    

(a) See the free-body diagram for the highest point of the motion. We assume
the passengers are right-side up, so that the normal force of the Ferris wheel
seat is upward. The net force must point to the center of the circle, so
write Newton’s second law with downward as the positive direction.
The acceleration is centripetal since the passengers are moving in a circle.

2 2

R N N    F F mg F ma m F mg m
r r
 

       
The ratio of apparent weight to real weight is given by the following:

2 2
2 2

2
(5.529 m/s)1 1 0.716

(11.0 m)(9.80 m/s )

mg m g
r r

mg g rg

 
 

     

(b) At the bottom, consider the free-body diagram shown. We assume
the passengers are right-side up, so that the normal force of the Ferris
wheel seat is upward. The net force must point to the center of the circle,
so write Newton’s second law with upward as the positive direction. The
acceleration is centripetal since the passengers are moving in a circle.

2 2

R N N    F F F mg ma m F mg m
r r
 

       
The ratio of apparent weight to real weight is given by the following:

2
2 2

2
(5.529 m/s)1 1 1.284

(11.0 m)(9.80 m/s )

mg m
r

mg rg




    

51. The centripetal acceleration will simulate gravity. Thus
2

0.70     0.70 .g gr
r


   Also for a

rotating object, the speed is given by 2 / .r T  Equate the two expressions for the speed and solve
for the period.

2

2 2 2 (16 m)0.70     9.6 s
0.70 (0.70)(9.80 m/s )(16 m)

r rgr T
T gr
        

52. (a) The speed of an object in near-surface orbit around a planet is given in Example 5–12 to be
/ ,GM R  where M is the planet mass and R is the planet radius. The speed is also given

by 2 / ,R T  where T is the period of the object in orbit. Equate the two expressions for the
speed.

2 2 2

2 3 2
2 4 4        M R M R MG G

R T R T R GT
  

    

The density of a uniform spherical planet is given by 34
3

.
Volume
M M

R



  Thus

2

3 2 2
3 3 4 3

44
M
R GT GT

 


  

mgNF


mgNF

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(b) For Earth, we have the following:

3 3
2 11 2 2 2

3 3 5.4 10 kg/m
(6 67 10 N m /kg )[(85 min)(60 s/min)]GT

 


   
  

53. Use Kepler’s third law for objects orbiting the Sun.

   2 3
Neptune Earth Neptune Earth/ /   T T r r 

3/23/2 9
Neptune

Neptune Earth 8
Earth

4 5 10 km(1 year) 160 years
1 50 10 km

r
T T

r
    

          

54. Use Kepler’s third law for objects orbiting the Sun.
3 2 2/3 2/3

11 11Icarus Icarus Icarus
Icarus Earth

Earth Earth Earth

410 d    (1 50 10 m) 1 6 10 m
365 d

r T T
r r

r T T
       

               
      

55. Use Kepler’s third law for objects orbiting the Earth. The following are given:

6
2

8
2

6
1 Earth

86,400 speriod of Moon (27 4 day) 2 367 10 s
1 day

radius of Moon’s orbit 3 84 10 m

radius of near Earth orbit 6 38 10 m

T

r

r R

 
      

 

   

     

   2 3
1 2 1 2/ /   T T r r 

 
3/26

3/2 6 3
1 2 1 2 8

6 38 10 m/ (2 367 10 s) 5 07 10 s ( 84 5 min)
3 84 10 m

T T r r
  

            

56. Knowing the period of the Moon and the distance to the Moon, we can calculate the speed of the Moon
by 2 / .r T  But the speed can also be calculated for any Earth satellite by Earth / ,GM r  as
derived in Example 5–12. Equate the two expressions for the speed, and solve for the mass of the Earth.

Earth
2 3 2 8 3

24
Earth 2 11 2 2 2

/ 2 /   

4 4 (3 84 10 m) 5 98 10 kg
(6 67 10 N m /kg )[(27 4 d)(86,400 s/d)]

GM r r T

rM
GT



 


 

 
    

   

57. There are two expressions for the velocity of an object in circular motion around a mass M:
/GM r  and 2 / .r T  Equate the two expressions and solve for T.

38 7
4

3
15 8

11 2 2 41

8

/ 2 /   

(3 10 m/s)(3 16 10 s)(3 10 ly)
1 ly

2 2 5 8 10 s 1 8 10 yr
(6 67 10 N m /kg )(4 10 kg)

    2 10 yr

GM r r T

rT
GM



 


 

   
  

        
   

 
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58. Use Kepler’s third law, Eq. 5–7b, to find the radius of each moon, using Io’s data for 2r and 2 .T

3 2 2/3
1 2 1 2 1 2 1 2( / ) ( / )     ( / )r r T T r r T T  

 2/3 3 2/3 3
Europa Io Europa Io/ (422 10 km)(3 55 d/1 77 d) 671 10 kmr r T T      

3 2/3 3
Ganymede (422 10 km)(7 16 d/1 77 d) 1070 10 kmr      

3 2/3 3
Callisto (422 10 km)(16 7 d/1 77 d) 1880 10 kmr      

The agreement with the data in the table is excellent.

59. As found in Example 5–12, the speed for an object orbiting a distance r around a mass M is given by
/ .GM r 

star

AA B

B Astar

B

1 0 38
7 0

GM
r r

rGM
r




    


60. Use Kepler’s third law to relate the orbits of Earth and Halley’s comet around the Sun.

   
 

3 2
Halley Earth Halley Earth

2/3 6 2/3 6
Halley Earth Halley Earth

/ /   

/ (150 10 km)(76 yr/1 yr) 2690 10 km

r r T T

r r T T

 

    

This value is half the sum of the nearest and farthest distances of Halley’s comet from the Sun. Since
the nearest distance is very close to the Sun, we will approximate that nearest distance as 0. Then the

farthest distance is twice the value above, or 6 125380 10 km 5 4 10 m     This distance approaches

the mean orbit distance of Pluto, which is 125 9 10 m   It is still in the solar system, nearest to
Pluto’s orbit.

61. The centripetal acceleration is

2
2

Earth Earth2 orbit orbit
R 2

Earth Earth
orbit orbit

2 4
.

R T R
a

R R T

 


 
  
    The force (from Newton’s

second law) is R Earth R .F m a The period is one year, converted into seconds.
2

Earth 2 11
orbit 3 2

R 2 7 2

24 3 2 22
R

4
4 (1 50 10 m) 5 97 10 m/s

(3 15 10 s)

(5 97 10 kg)(5 97 10 m/s ) 3 56 10 N

R
a

T

F ma


 



 
    

 

        

The Sun exerts this force on the Earth. It is a gravitational force.

62. Since mass m is dangling, the tension in the cord must be equal to the weight of mass m, so TF mg 
That same tension is in the other end of the cord, maintaining the circular motion of mass M, so

2

T R RF F Ma M
r


    Equate the expressions for tension and solve for the velocity.
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2
    /M mg mgR M

r


  

63. The force is a centripetal force, and is of magnitude 7 45 mg  Use Eq. 5–3 for centripetal force.

2
27 45     7 45 7 45(11 0 m)(9 80 m/s ) 28 34 m/s 28 3 m/s

1 rev(28 34 m/s) 0 410 rev/s
2 (11 0 m)

F m mg rg
r






             

   


64. The car moves in a horizontal circle, so there must be a net horizontal
centripetal force. The car is not accelerating vertically. Write Newton’s
second law for both the x and y directions.

N N

R N

cos 0    
cos

sin

y

x x

mgF F mg F

F F F ma






    

  



 

The amount of centripetal force needed for the car to round the curve is as follows:
2

2
3

R

1 0 m/s(85 km/h)
3 6 km/h

(1050 kg) 8 130 10 N
72 m

F m
r


  
        

The actual horizontal force available from the normal force is as follows:

2 3
N sin sin tan (1050 kg)(9 80 m/s ) tan14 2 566 10 N

cos
mgF mg  


       

Thus more force is necessary for the car to round the curve than can be
supplied by the normal force. That extra force will have to have a horizontal
component to the right in order to provide the extra centripetal force.
Accordingly, we add a frictional force pointed down the plane. That
corresponds to the car not being able to make the curve without friction.

Again write Newton’s second law for both directions, and again the
y acceleration is zero.

fr
N fr N

2

N fr

sin
cos sin 0    

cos

sin cos

y

x

mg F
F F mg F F

F F F m
r


 




 


     

  





Substitute the expression for the normal force from the y equation into the x equation, and solve for the
friction force.

y
x





mg

NF

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2 2
2fr

fr fr fr

2
3 2

fr

3

sin
sin cos     ( sin ) sin cos cos

cos

cos sin (8 130 10 N)cos 14 (1050 kg)(9 80 m/s )sin 1 4

    5 399 10 N

mg F
F m mg F F m

r r

F m mg
r

       


  


     

        

  

So a frictional force of 35 4 10 N down the plane  is needed to provide the necessary centripetal

force to round the curve at the specified speed.

65. Consider the free-body diagram for a person in the “Rotor-ride.” NF


is the

normal force of contact between the rider and the wall, and frF


is the static
frictional force between the back of the rider and the wall. Write Newton’s
second law for the vertical forces, noting that there is no vertical acceleration.

fr fr0    yF F mg F mg    

If we assume that the static friction force is a maximum, then

fr s N N s    /F F mg F mg    

But the normal force must be the force causing the centripetal motion—it is the only force pointing to

the center of rotation. Thus
2

R NF F m
r


   Using 2 / ,r T v we have
2

N 2
4 mrF
T


  Equate the

two expressions for the normal force and solve for the coefficient of friction. Note that since there are
0.50 revolutions per second, the period is 2.0 s.

2 2 2 2

N s2 2 2
s

4 (9 80 m/s )(2 0 s)    0 18
4 4 (5 5 m)

mr mg gTF
T r
 

  
 

      


Any larger value of the coefficient of friction would mean that the normal force could be smaller to
achieve the same frictional force, so the period could be longer or the cylinder radius smaller.

There is no force pushing outward on the riders. Rather, the wall pushes against the riders. By
Newton’s third law, the riders therefore push against the wall. This gives the sensation of being pressed
into the wall.

66. A free-body diagram for the sinker weight is shown. L is the length
of the string actually swinging the sinker. The radius of the circle of
motion is moving is sinr L   Write Newton’s second law for
the vertical direction, noting that the sinker is not accelerating
vertically. Take up to be positive.

T Tcos 0    
cosy
mgF F mg F


    

The radial force is the horizontal portion of the tension. Write Newton’s second law for the radial
motion.

mg
NF


frF


r = L sin 

 L

mg

TF

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2

R T RsinF F ma m
r


  

Substitute the tension from the vertical equation and the relationships sinr L  and 2 /r T  

2 2 2

T 2 2
4 sinsin     sin     cos

cos 4
mg mL gTF m

r T L
    

 
    

2 2 2
1 1

2 2
(9 80 m/s )(0 75 s)cos cos 56

4 4 (0 25 m)
gT

L


 
   

   


67. At the top of a circle, a free-body diagram for the passengers would be as
shown, assuming the passengers are upside down. Then the car’s normal
force would be pushing DOWN on the passengers, as shown in the diagram.
We assume no safety devices are present. Choose the positive direction to be
down, and write Newton’s second law for the passengers.

2 2

N N    F F mg ma m F m g
r r
  

        
 



We see from this expression that for a high speed, the normal force is positive,
meaning the passengers are in contact with the car. But as the speed decreases, the normal force also
decreases. If the normal force becomes 0, the passengers are no longer in contact with the car—they
are in free fall. The limiting condition is as follows:

2
2min

min0    (9 80 m/s )(8 6 m) 9 2 m/sg rg
r


        

68. The speed of the train is 1 m/s(160 km/h) 44 44 m/s
3 6 km/h

 
    

(a) If there is no tilt, then the friction force must supply the entire centripetal force on the passenger.
2 2

2
R

(55 kg)(44 44 m/s) 190 6 N 1 9 10 N
(570 m)

F m
R
 

      

(b) For the banked case, the normal force will contribute to the radial force
needed. Write Newton’s second law for both the x and y directions. The y
acceleration is zero, and the x acceleration is radial.

fr
N fr N

2

N fr

sin
cos sin 0    

cos

sin cos

y

x

mg F
F F mg F F

F F F m
r


 




 


     

  




Substitute the expression for the normal force from the y equation into
the x equation, and solve for the friction force.

2
fr

fr

2
2

fr fr

sin
sin cos

cos

( sin ) sin cos cos   

mg F
F m

r

mg F F m
r

  


   


  

   

mgNF


y
x






mg

NF


frF

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2

fr

2
2 2

cos sin

(44 44 m/s)(55 kg) cos 8 0 (9 80 m/s ) sin 8 0 113 7 N 1 1 10 N
570 m

F m g
r
  
 

   
 
 

            
  

69. See the diagram for the two stars.
(a) The two stars don’t crash into each other because of

their circular motion. The force on them is centripetal
and maintains their circular motion. Another way to
consider it is that the stars have a velocity, and the
gravity force causes CHANGE in velocity, not actual velocity.
If the stars were somehow brought to rest and then released under the influence of their mutual
gravity, they would crash into each other.

(b) Set the gravity force on one of the stars equal to the centripetal force, using the relationship that
2 / / ,r T d T    and solve for the mass.

2 2 2 2 2 2

R2 2 2 2

2 3 2 11 3
29

2 27
11 2 2

2( / ) 2 2      
/2

2 2 (8 0 10 m) 9 6 10 kg
3 15 10 s(6 67 10 N m /kg ) 12 6 yr

1 yr

G
M d T Md M MdF G F M M G

d dd T d T
dM

GT

  

 




       

 
    

  
      

 

70. The acceleration due to the Earth’s gravity at a location at or above the surface is given by
2

Earth / ,g GM r where r is the distance from the center of the Earth to the location in question.

Find the location where 1
surface2g g 

2 2Earth Earth
Earth Earth2 2

Earth

1     2     2
2

GM GM
r R r R

r R
    

The distance above the Earth’s surface is as follows:

    6 6
Earth Earth Earth2 1 2 1 (6 38 10 m) 2 64 10 m 0 414r R R R           

71. We assume the water is rotating in a vertical circle of radius r. When the bucket is
at the top of its motion, there would be two forces on the water (considering the water
as a single mass). The weight of the water would be directed down, and the normal
force of the bottom of the bucket pushing on the water would also be down. See the
free-body diagram. If the water is moving in a circle, then the net downward force
would be a centripetal force.

2 2

N N    F F mg ma m F m g
r r
  

        
 



The limiting condition of the water falling out of the bucket means that the water loses contact with the
bucket, so the normal force becomes 0.

22
critical

N critical    0    F m g m g rg
r r




  
              

d

GF


GF


mgNF
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From this, we see that yes, it is possible to whirl the bucket of water fast enough. The minimum speed

is rg  All you really need to know is the radius of the circle in which you will be swinging the

bucket. It would be approximately the length of your arm, plus the height of the bucket.

72. For an object to be apparently weightless, the object would have a centripetal acceleration equal to g.
This is the same as asking what the orbital period would be for an object orbiting the Earth with an

orbital radius equal to the Earth’s radius. To calculate, use
2

R
Earth

,g a
R


  along with

Earth2 / ,R T  and solve for T.
22 6

3Earth Earth
2 2

Earth

4 6 38 10 m    2 2 5 07 10 s ( 84 5 min)
9 80 m/s

R R
g T

R gT
    

         


73. The speed of an object in an orbit of radius r around a planet is given in Example 5–12 as

planet / ,GM r  and is also given by 2 / ,r T  where T is the period of the object in orbit. Equate

the two expressions for the speed and solve for T.
3

Planet

Planet

2     2
M r rG T
r T GM


  

For this problem, the inner orbit has radius 7
inner 7 3 10 m,r    and the outer orbit has radius

8
outer 1 7 10 mr     Use these values to calculate the periods.

7 3
4

inner 11 2 2 26

8 3
4

outer 11 2 2 26

(7 3 10 m)2 2 0 10 s
(6 67 10 N m /kg )(5 7 10 kg)

(1 7 10 m)2 7 1 10 s
(6 67 10 N m /kg )(5 7 10 kg)

T

T









 
   

    

 
   

    

Saturn’s rotation period (day) is 10 h 39 min, which is about 43 8 10 s   Thus the inner ring will
appear to move across the sky faster than the Sun (about twice per Saturn day), while the outer ring
will appear to move across the sky slower than the Sun (about once every two Saturn days).

74. The speed of an object in an orbit of radius r around the Moon is given by Moon / ,GM r  and is
also given by 2 / ,r T  where T is the period of the object in orbit. Equate the two expressions for
the speed and solve for T.

 

Moon

33 6 5 3
Moon

11 2 2 22
Moon Moon

3

/ 2 /   

100 km (1 74 10 m 1 10 m)2 2 2
(6 67 10 N m /kg )(7 35 10 kg)

  7 1 10 s ( 2 0 h)

GM r r T

RrT
GM GM



  


 

    
  

    

    

75. The lamp must have the same speed and acceleration as the train.
The forces on the lamp as the train rounds the corner are shown
in the free-body diagram included. The tension in the suspending



mg

TF

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cord must not only hold the lamp up, but also provide the
centripetal force needed to make the lamp move in a circle. Write Newton’s second law for the vertical
direction, noting that the
lamp is not accelerating vertically.

T Tcos 0    
cosy
mgF F mg F


    

The force moving the lamp in a circle is the horizontal portion of the tension. Write Newton’s second
law for that radial motion.

2

R T RsinF F ma m
r


  

Substitute the expression for the tension from the first equation into the second equation, and solve for
the speed.

2

T

2

sin sin tan   
cos

tan (215 m)(9 80 m/s ) tan16 5 25 0 m/s

mgF mg m
r

rg


  



 

   

      

76. The speed of rotation of the Sun about the galactic center, under the assumptions made, is given by

galaxy

Sun orbit
,

M
G
r

  so
2

Sun orbit
galaxy

r
M

G


  Substitute in the relationship that Sun orbit2 /r T  

2 3 2 15 3
Sun orbit

galaxy 2 27
11 2 2 6

41 41

4 ( ) 4 [(30,000)(9 5 10 m)]

3 15 10 s(6 67 10 N m /kg ) (200 10 yr)
1 yr

          3 452 10 kg 3 10 kg

r
M

GT
 



 
 

   
         

    

The number of solar masses is found by dividing the result by the solar mass.
41

galaxy 11 11
30

Sun

3 452 10 kg stars 1 726 10 2 10 stars
2 0 10 kg

M
M

 
       

 

77. (a) The gravitational force on the satellite is given by Earth
grav 2 ,

M m
F G

r
 where r is the distance of

the satellite from the center of the Earth. Since the satellite is moving in circular motion, then the

net force on the satellite can be written as
2

net .F m
r


 By substituting 2 /r T  for a circular

orbit, we have
2

net 2
4 .mrF
T


 Then, since gravity is the only force on the satellite, the two

expressions for force can be equated and solved for the orbit radius.
2

Earth
2 2

4   
M m mrG
r T


 

1/3 1/32 11 2 2 24 2
Earth

2 2

6 6

(6 67 10 N m /kg )(6 0 10 kg)(6600 s)
4 4

7 615 10 m 7 6 10 m

GM T
r

 

       
         

     
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(b) From this value the gravitational force on the satellite can be calculated.
24

11 2 2 4Earth
grav 2 6 2

4

(6 0 10 kg)(5500 kg)(6 67 10 N m /kg ) 3 796 10 N
(7 615 10 m)

      3 8 10 N

M m
F G

r
  

       
 

  

(c) The altitude of the satellite above the Earth’s surface is given by the following:
6 6 6

Earth 7 615 10 m 6 38 10 m 1 2 10 mr R         

78. The speed of an orbiting object is given in Example 5–12 as / ,GM r  where r is the radius of the
orbit, and M is the mass around which the object is orbiting. Solve the equation for M.

2 17 5 2
39

11 2 2
(5 7 10 m)(7 8 10 m/s)/     5 2 10 kg

(6 67 10 N m /kg )
rGM r M
G



   

      
  

The number of solar masses is found by dividing the result by the solar mass.
39

galaxy 9
30

Sun

5 2 10 kg solar masses 2 6 10 solar masses
2 10 kg

M
M

 
     



79. Find the “new” Earth radius by setting the acceleration due to gravity at the Sun’s surface equal to the
acceleration due to gravity at the “new” Earth’s surface.

Earth Sun
Earth Sun 2 2
new Earth Sun

new

24
8 6Earth

Earth Sun 30
new Sun

      

5 98 10 kg(6 96 10 m) 1 21 10 m
1 99 10 kg

GM GM
g g

r r

M
r r

M

   

 
      

 

This is about 1/5 the actual Earth radius.

80. The speed of an object orbiting a mass is given in Example 5–12 as SunGM
r

  

Sun Sun Sun Sun
new new

new new new

new 2

1 5 and     1 5     1 5    

0 44
1 5

GM GM GM GM
r r r r

rr r

            

  


Note that the answer doesn’t depend on either of the asteroid masses.

81. The goal is to form a quantity that has acceleration units, from the speed of the radius of an object in

circular motion. Speed has dimensions ,L
T
 
  

radius has dimensions  ,L and acceleration has

dimensions 2 .L
T
 
  

To get time units squared in the denominator, the speed must be squared. But the

dimensions of speed squared are
2

2 .L
T

 
 
  

This has one too many powers of length, so to reduce that,

divide by the radius.
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 

2

22

2

L
T L a

r L T


 
 
        

Factors such as 2 or , if needed for the final formula, cannot be determined with dimensional
analysis.

Solutions to Search and Learn Problems

1. Ex. 5–1: (i) The ball; (ii) tension in the string acting on the ball.
Ex. 5–2: (i) The Moon; (ii) gravitational force on the Moon from the Earth.
Ex. 5–3: (i) The ball; (ii) tension in the string acting on the ball.
Ex. 5–4: (i) The ball; (ii) at the top it is the sum of the tension and force of gravity;

at the bottom it is the difference between tension and gravity.
Ex. 5–5: (i) The tetherball; (ii) the horizontal component of the tension.
Ex. 5–6: (i) The car; (ii) the force of static friction between the tires and the road.
Ex. 5–7: (i) The car; (ii) the horizontal component of the normal force.
Ex. 5–8: (i) The race car; (ii) the radial component of the static friction.
Ex. 5–9: No centripetal acceleration
Ex. 5–10: (i) The spacecraft; (ii) the force of gravity on the spacecraft from the Earth.
Ex. 5–11: No centripetal acceleration.
Ex. 5–12: (i) The satellite; (ii) the force of gravity on the satellite from the Earth
Ex. 5–13: (i) Mars; (ii) the force of gravity on Mars from the Sun.
Ex. 5–14: (i) Earth; (ii) the force of gravity on Earth from the Sun.

2. A free-body diagram for the ball is shown, similar to Fig. 5–7. The
tension in the suspending cord must not only hold the ball up, but also
provide the centripetal force needed to make the ball move in a circle.
Write Newton’s second law for the vertical direction, noting that the
ball is not accelerating vertically.

T Tsin 0    
siny
mgF F mg F


    

The force moving the ball in a circle is the horizontal component of the tension. Write Newton’s
second law for that radial motion.

2

R T RcosF F ma m
r
  

Substitute the expression for the tension from the first equation into the second equation, and solve for
the angle. Also substitute in the fact that for a rotating object, 2 / .r T  Finally, we recognize that if
the string is of length ,L then the radius of the circle is cos .r L 



mg

TF

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2 2 2

T 2 2

2 2 2 2
1 1

2 2 2

4 4 coscos cos   
sin

(9 80 m/s )(0 500 s)sin     sin sin 5 94
4 4 4 (0 600 m)

mg m mr mLF
r T T

gT gT
L L

   
 



 
  

 

    

 
      



The tension is then given by
2

T
(0 150 kg)(9 80 m s ) 14 2 N

sin sin 5 94
mgF


 
   

 

3. An object at the Earth’s equator is rotating in a circle with a radius equal to the radius of the Earth and
a period equal to one day. Use that data to find the centripetal acceleration and then compare it with g.

2 62

2 2 2
R

R 2 2

4 (6 38 10 m)2
4 3(86,400 s)    0 00344

1000(9 80 m/s )

r
arTa

r r gT


 

  
 
        



So, for example, if we were to calculate the normal force on an object at the Earth’s equator, we could
not say N 0F F mg    Instead, we would have the following:

2 2

N N    F F mg m F mg m
r r
 

      

If we then assumed that
2

N eff ,F mg mg m
r


   then we see that the effective value of g is

2

eff 0 003 0 997g g g g g
r


       

4. (a) The acceleration due to gravity at any location at or above the surface of a star is given by
2

star star / ,g GM r where r is the distance from the center of the star to the location in question.
30

11 2 2 7 2sun
star 2 6 2

Moon

(1 99 10 kg)(6 67 10 N m /kg ) 4 38 10 m/s
(1 74 10 m)

M
g G

R
  

       
 

(b) 7 2 9
star (65 kg)(4 38 10 m/s ) 2 8 10 NW mg      

(c) Use Eq. 2–11c, with an initial velocity of 0.

 2 2
0 0

7 2 3
0

2   

2 ( ) 2(4 38 10 m/s )(1 0 m) 9 4 10 m/s

a x x

a x x

    

        v

5. For a body on the equator, the net motion is circular. Consider the free-body
diagram as shown. NF is the normal force, which is the apparent weight. The
net force must point to the center of the circle for the object to be moving in a
circular path at constant speed. Write Newton’s second law with the inward
direction as positive.

mg

NF




5-32   Chapter 5

© Copyright 2015 Pearson Education, Ltd. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2

R Jupiter N
Jupiter

2 2
Jupiter

N Jupiter 2
Jupiter JupiterJupiter

  

  

F mg F m
R

M
F m g m G

R RR



 

   

  
           



Use the fact that for a rotating object, 2 / .r T 

2
Jupiter Jupiter

N 2 2
Jupiter Jupiter

4M R
F m G

R T

 
  
 
 

Thus the perceived acceleration of the object on the surface of Jupiter is
2 27 2 7

Jupiter Jupiter 11 2 2
2 2 7 2 2
Jupiter Jupiter

2
2

4 (1.9 10 kg) 4 (7.1 10 m)(6.67 10 N m /kg )
(7.1 10 m) 60 s(595 min)

1 min

122.94 m/s 2.3 's
9.80 m/s

M R
G
R T

g g

   
    

   
  

  
 

   
 

Thus you would not be crushed at all. You would certainly feel “heavy” and quite uncomfortable, but
not at all crushed.

6. (a) The Moon is Full when the Sun and Moon are on opposite sides of the Earth. In this position, a
person on the Earth will only be able to see either the Sun or the Moon in the sky at any given
time. Therefore, as the Sun sets, the Moon rises and as the Moon sets, the Sun rises.

(b) As the Moon orbits the Earth it moves toward the east 1/29.53 of a synodic orbit, or about 12
every day. Therefore, if the Moon was just rising at 6 PM on the day of the Full Moon, it would
be about 12 below the horizon at 6 PM the next day, and therefore would not be visible.

(c) The red dot represents the location of a person on the Earth who sees the Full Moon rise at 6 PM
on the day shown as figure (a). A day later (b) the Earth has completed one full rotation and for
the person at that location it is again 6 PM. When the next Full Moon arrives, 29.53 days have
elapsed. That means the red dot has revolved around the Earth about 29 and a half times.
Because of the half revolution, the dot is on the other side of the Earth. To the observer it is now
about 6 AM and the Full Moon is setting as the Sun rises. In part (d) the Earth will have
completed about 27 and a third revolutions, so the red dot should be about one-third of a counter-
clockwise rotation from 6 PM, or about 2 AM.

(d) The Earth completes one full revolution, or 360, around the Sun every year, or 365.25 days. The
angle of the Moon in Fig. 5–31e relative to the “horizontal” (the dashed line in part (a)) is equal
to the angle that the Earth moves between consecutive Full Moons:

29 53 days 360 29 11
365 25 days


 

      
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So in 29.53 days the Moon has orbited 360 + 29.11 = 389.11. The angular speed of the Moon
is constant and can be written as the ratio of the orbital angle to orbital period for either sidereal
or synodic orbits. Setting the ratios equal, solve for the sidereal period.

synopticsidereal

sidereal synoptic

sidereal
sidereal synoptic

synoptic

360(29 53 days) 27 32 days
389 11

T T

T T







  

               


